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Abstract
In the following, we prove the geometric Bogomolov conjecture over a function
field of characteristic 0.

1. Introduction

1.1. The geometric Bogomolov conjecture

1.1.1. Abelian varieties and heights
Let k be an algebraically closed field. Let B be an irreducible normal projective vari-
ety over k of dimension dB � 1. Let K WD k.B/ be the function field of B . Let A be
an abelian variety defined over K of dimension g. Fix an ample line bundle M on B ,
and fix a symmetric ample line bundle L on A.

Let K be an algebraic closure of K , and set AK D A ˝K K . Denote by
Oh W A.K/ ! Œ0;C1/ the canonical height on A with respect to L and M (see
Section 3.1). For any irreducible subvariety X of AK and any � > 0, we define

X� WD
®
x 2X.K/

ˇ̌
Oh.x/ < �

¯
:

In the following, we study the subvarieties X of A for which X� is Zariski-dense
in X for all � > 0. Both Oh and the sets X� depend on the ample line bundles M
and L, but different choices give rise to comparable height functions (see [32, Propo-
sition 2.6]), so that the density of X� in X for all � > 0 does not depend on these
choices.

Denote by .AK=k; tr/ the K=k-trace of AK : it is the final object of the category
of pairs .C;f /, where C is an abelian variety over k and f is a morphism from
C ˝kK to AK (see [18, Section 7] or [4, Section 6]). If char kD 0, then tr is a closed

immersion and AK=k ˝k K can be naturally viewed as an abelian subvariety of AK .
By definition, a torsion coset of A is a translate aCC of an abelian subvariety C �A
by a torsion point a. An irreducible subvariety X of AK is said to be special if
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X D tr.Y˝kK/C T

for some torsion coset T of AK and some subvariety Y of AK=k. When X is special,
X� is Zariski-dense in X for all � > 0 (see [19, Chapter 6, Theorem 5.4]).

1.1.2. Bogomolov conjecture
The following conjecture was proposed by Yamaki in [30, Conjecture 0.3], but par-
ticular instances of it were studied earlier by Gubler in [13]. It is an analogue over
function fields of the Bogomolov conjecture which was proved by Ullmo in [27] and
Zhang in [36].

GEOMETRIC BOGOMOLOV CONJECTURE

Let X be an irreducible subvariety of AK . If X is not special, then there exists � > 0
such that X� is not Zariski-dense in X .

The aim of this article is to prove the geometric Bogomolov conjecture over func-
tion fields of characteristic 0.

THEOREM A
Assume that k is an algebraically closed field of characteristic 0. Let X be an irre-
ducible subvariety of AK . If X is not special, then there exists � > 0 such that X� is
not Zariski-dense in X .

1.1.3. Historical note
Gubler proved the geometric Bogomolov conjecture in [13] when A is totally degen-
erate at some place of K . Then, Yamaki reduced the conjecture to the case of abelian
varieties with good reduction everywhere and trivial trace (see [33]). He also settled
the conjecture when dim.X/ or codim.X/ is equal to 1 (see [31], and see [28], [29]
for previous works on curves). These important contributions of Gubler and Yamaki
work in arbitrary characteristic.

In characteristic 0, Cinkir had proved the geometric Bogomolov conjecture when
X is a curve of arbitrary genus (see [3], and see [7] when the genus is small). Recently,
the second- and the third-named authors in [8] proved the conjecture when char kD 0
and dimB D 1. This last reference, as well as the present article, make use of the
Betti map and its monodromy: the idea comes from [15], in which the third-named
author gave a new proof of the conjecture in characteristic 0 when A is the power of
an elliptic curve and dimB D 1.
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1.2. An overview of the proof of Theorem A

1.2.1. Notation
We keep the notation of Section 1.1.1, with k an algebraically closed field of char-
acteristic 0. We now construct a model of A that is sufficient for our purpose. Since
the symmetric line bundle L is ample, we can replace it by some positive power to
ensure that it will be very ample, and then we use L to embed A into P

N
k.B/ for some

N > 0. The Zariski closure A of A inside P
N
k �k B is an irreducible projective vari-

ety. We write � WA!B for the projection. The pullback L0 of O
P
N
k
.1/ on P

N
k �k B

to A is very ample relative to B . But L0 may fail to be ample on A. To remedy this,
we use instead LDL0 ˝ ��M˝k , which is ample for all k � 1 large enough by [9,
Proposition 13.65]. The restriction of L toA still equalsL. Finally, replacing A by its
normalization, we assume that A is normal. (L remains ample on the normalization.)

We may also assume that M is very ample, and we fix an embedding of B in a
projective space such that the restriction of O.1/ to B coincides with M . For b 2 B ,
we set Ab D �

�1.b/. We denote by e W B ��� A the zero section and by Œn� the
multiplication by n on A; it defines a rational mapping A ��� A. Fix a Zariski-dense
open subset Bo of B such that Bo is smooth and �j��1.Bo/ is smooth; then, set
Ao WD ��1.Bo/.

After base changing K by a finite extension, we may let X be a geometrically
irreducible subvariety of A and assume that X� is Zariski-dense in X for every � > 0.
We denote by X its Zariski closure in A, by Xo its Zariski closure in Ao, and by
Xo;reg the regular locus of Xo. Our goal is to show that X is special.

1.2.2. Complex numbers
We will see below in Remark 3.2 that it suffices to prove Theorem A in the case
kDC. For the rest of the paper, except if explicitly stated otherwise (in Sections 3.1
and 3.2), we will assume that B and M are defined over C and that A, X , and L
are defined over C.B/. Since M is the restriction of O.1/ (in some fixed embedding
of B in a projective space), its Chern class is represented by the restriction of the
Fubini–Study form to B ; we denote by � this Kähler form.

1.2.3. The main ingredients
One of the main ideas we develop here is to consider the Betti foliation (see Sec-
tion 2.1). It is a C1-smooth foliation of Ao by holomorphic leaves, which is trans-
verse to � .

Every torsion point of A gives local sections of �j��1.Bo/. These sections are
local leaves of the Betti foliation, and this property characterizes it.

To prove Theorem A, the first step is to show that Xo is invariant under the folia-
tion when small points are dense in X ; in other words, at every smooth point x 2Xo,
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the tangent space to the Betti foliation is contained in TxXo. For this, we introduce
a semipositive closed .1; 1/-form ! on Ao which is canonically associated to L and
vanishes along the foliation. An inequality of Gubler implies that the canonical height
Oh.X/ (see Section 3.1 for its definition) of X is 0 when small points are dense in X ;
Theorem B asserts that the condition Oh.X/D 0 translates into

Z
Xo
!dimXC1 ^ .���/m�1 D 0;

where � is any Kähler form on the base Bo. From the construction of !, we deduce
that X is invariant under the Betti foliation.

The first step implies that the fibers of �jXo are invariant under the action of the
holonomy of the Betti foliation; the second step shows that a subvariety of a fiber
Ab which is invariant under the holonomy is the sum of a torsion coset and a subset
of AK=k. The conclusion easily follows from these two main steps. For this second
step, we apply results of Deligne to describe the holonomy group, and we import
ideas from dynamical systems, in particular, from Muchnik, to describe its invariant
subsets. This second step already appeared in [8], but the final argument was based
on Pila and Zannier’s counting strategy and in the special case [15] as a consequence
of a theorem of Kronecker.

2. The Betti foliation and the Betti form
In this section, k D C. We define a foliation and a closed .1; 1/-form on Ao. This
form, which is naturally associated to the line bundle L, was introduced by Mok
in [22, p. 374] to study Mordell–Weil groups over function fields. The foliation, or
more precisely the local Betti maps defined below, is also implicitly present in the
work of Mok, Masser, and Zannier [34, Section 3.3], or Pink [26, Construction 2.9].
A recent paper of André, Corvaja, and Zannier also studies these Betti maps to prove
the density of torsion points on sections of certain abelian schemes with maximal
variation (see [1, Theorem 2.3.2]).

2.1. The local Betti maps
Let b be a point of Bo, and let U �Bo.C/ be a connected and simply connected open
neighborhood of b in the Euclidean topology. Fix a basis of H1.AbIZ/, and extend it
by continuity to all fibers above U .

Consider the Lie algebra of Ac for c 2 U : it may be identified with the tangent
space Te.c/Ac , where e denotes the zero section. The family of these vector spaces
determines a complex vector bundle of dimension g over U . If U is small enough,
we can trivialize this bundle, and we obtain g holomorphic vector fields .�j /1�j�g
on ��1.U / which are tangent to the fibers of � and trivialize their tangent bundle.
Integrating these vector fields gives a holomorphic action of the additive group Cg on
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��1.U / whose orbits are the fibers of � . Then, the stabilizer of e.c/, for c in U , is a
lattice ƒc in Cg and Ac DCg=ƒc . The continuous choice of a basis for H1.Ac IZ/,
c 2 U , gives a choice of basis of the Z-module ƒc � Cg that depends holomorphi-
cally on c. Now, using this basis to identify ƒc with Z2g and Cg with R2g , we see
that there is a real analytic diffeomorphism �U W �

�1.U /! U �R2g=Z2g such that
(1) �1 ı �U D � , where �1 W U �R2g=Z2g ! U is the first projection;
(2) for every c 2 U , the map �U jAc W Ac! ��11 .c/ is an isomorphism of real Lie

groups that maps the basis of H1.AcIZ/ to the canonical basis of Z2g .
For b in U , denote by ib W R2g=Z2g ! U �R2g=Z2g the inclusion y 7! .b; y/. The
Betti map is the C1-projection ˇbU W �

�1.U /!Ab defined by

ˇbU WD .�U jAb /
�1 ı ib ı �2 ı �U ;

where �2 W U �R2g=Z2g !R2g=Z2g is the projection to the second factor. Changing
the basis of H1.AbIZ/, we obtain another trivialization �0U that is given by postcom-
posing �U with a constant linear transformation

.b; z/ 2 U �R2g=Z2g 7!
�
b;h.z/

�

for some element h of the group GL2g.Z/; thus, ˇbU does not depend on �U .
Note that ˇbU is the identity on Ab . In general, ˇbU is not holomorphic. How-

ever, for every p 2 Ab , .ˇbU /
�1.p/ is a complex submanifold of Ao \ ��1.U /.

To see this, pick a torsion point of A of order r . Its Zariski closure in A gives
a multisection of � , and above U the connected components of this multisection
are fibers of ˇbU : indeed, on such a component the values of ˇbU are contained in
the finite set .1

r
Z2g/=Z2g . Thus, a dense set of fibers are complex submanifolds.

By the continuity of the complex structure J 2 End.TA/ and of the tangent spaces
x 2 ��1.U / 7! Tx..ˇ

b
U /
�1.ˇbU .x///, all fibers are complex submanifolds.

2.2. The Betti foliation
The local Betti maps determine a natural foliation F on Ao: for every point p 2
��1.U /, the local leaf FU;p through p is the fiber .ˇ�.p/U /�1.p/. We call F the Betti
foliation. The leaves of F are holomorphic, in the following sense: for every p 2Ao,
the local leaf FU;p is a complex submanifold of ��1.U /�Ao. But a global leaf Fp
can be dense in Ao for the Euclidean topology. Moreover, F is everywhere transverse
to the fibers of � , and �jFp W Fp! Bo is a regular holomorphic covering for every
point p. (It may have finite or infinite degree, and this may depend on p.)

Remark 2.1
Assume that the family � W Ao! Bo is trivial; that is, Ao D Bo � AC, where AC

is an abelian variety over C and � is the first projection. Then, the leaves of F are
exactly the fibers of the second projection.
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Remark 2.2
The foliation F is characterized as follows. Let q be a torsion point of Ab ; it deter-
mines a multisection of the fibration � , obtained by analytic continuation of q as
a torsion point in nearby fibers of � . This multisection coincides with the leaf Fq .
There is a unique foliation of Ao which is everywhere transverse to � and whose set
of leaves contains all those multisections.

Remark 2.3
One can also think about F dynamically. The endomorphism Œn� determines a ratio-
nal transformation of the model A and induces a regular transformation of Ao. It
preserves F , mapping leaves to leaves. Preperiodic leaves correspond to preperiodic
points of Œn� in the fiber Ab ; they are exactly the leaves given by the torsion points
of A.

2.3. Holonomy versus monodromy
Let 	 be a loop in Bo, based at some point b. Following the trivialization of
H1.AbIZ/ along the loop 	.t/, t 2 Œ0; 1�, we obtain a second basis of H1.AbIZ/
when t D 1. The change of basis is an element Mon.	/ of the group GL.H1.AbI

Z// ' GL2g.Z/, called the monodromy along 	 . Note that Mon.	/ gives a linear
transformation ofH1.AbIR/'R2g that preserves the latticeH1.AbIZ/' Z2g and,
hence, also a (linear) diffeomorphism of the torus R2g=Z2g (i.e., of Ab). By defi-
nition, the image of Mon in GL2g.Z/ (resp., in GL.H1.AbIZ//) is the monodromy
group of Ao!Bo.

Now, let x be a point of Ab . Since � W Fx!Bo is an unramified cover, 	 lifts to
a unique path O	x W Œ0; 1�!A such that � ı O	x D 	 and O	x.t/ 2 Fx for all t . By def-
inition, the point O	x.1/ is the image of x by the holonomy Hol.	/: this construction
defines a representation of the fundamental group �1.B; b/ in the diffeomorphism
group Diff1.Ab/. By the construction of the Betti map, we have

Hol.	/DMon.	/

as C1-diffeomorphisms of Ab 'R2g=Z2g .

2.4. The Betti form
For b 2Bo, there exists a unique smooth .1; 1/-form !b 2 c1.LjAb / on Ab which is
invariant under translations; this form is classically called the harmonic, or Riemann,
form associated to c1.LjAb /. If we write Ab D Cg=ƒ and denote by z1; : : : ; zg the
standard coordinates of Cg , then

!b D
X

1�i;j�g

ai;j dzi ^ d Nzj

for some complex numbers ai;j . This form !b is positive since LjAb is ample.
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Now, we define a smooth 2-form ! on Ao. Let p be a point of Ao. First, define
Pp W TpAo! TpA�.p/ to be the projection onto the first factor in

TpAo D TpA�.p/˚ TpF :

Since the tangent spaces TpF and TpA�.p/ are complex subspaces of TpAo, the
map Pp is a complex linear map. Then, for v1 and v2 2 TpAo, we set

!.v1; v2/ WD !�.p/
�
Pp.v1/;Pp.v2/

�
:

We call ! the Betti form. By construction, !jAb D !b for every b. Since !b is of
type .1; 1/ and Pp is C-linear, ! is an antisymmetric form of type .1; 1/. Since !b is
positive, ! is semipositive.

Let U and �U be as in Section 2.1. Let yi , i D 1; : : : ; 2g denote the standard
coordinates of R2g . Then there are real numbers bi;j such that

.��1U /�! D
X

1�i<j�2g

bi;j dyi ^ dyj :

The bi;j ’s are constant: they do not depend on the point p 2 U �R2g=Z2g . Indeed,
the bi;j ’s are the coordinates of the cohomology class c1.LjAb / in a fixed basis of
H 2.AbIZ/. It follows that d..��1U /�!/D 0 and that ! is closed. Moreover, Œn��! D
n2!. Thus, we get the following lemma.

LEMMA 2.4
The Betti form ! is a real analytic, closed, and semipositive .1; 1/-form on Ao such
that !jAb D !b for every point b 2 Bo. In particular, the cohomology class of !jAb
coincides with c1.LjAb / for every b 2Bo.

3. The canonical height and the Betti form
In Sections 3.1 and 3.2, k is any algebraically closed field of characteristic 0, and we
use an inequality of Gubler and Zhang to reduce the proof to the case kD C. Then,
Section 3.3 shows how to translate the density of small points in X into an invariance
with respect to the Betti foliation.

3.1. The canonical height
Recall that K D k.B/. Let X be any irreducible subvariety of AK , and let K 0 be a
finite field extension of K over which X is defined: there exists a subvariety X 0 of
AK0 such that X DX 0˝K0 K . Let 
0 W B 0!B be the normalization of B in K 0. Let
A be the model of A constructed at the beginning of Section 1.2.1; A is normal, and
L is an ample line bundle on A. Set A0 WDA �B B

0, and denote by 
 WA0!A the
projection to the first factor; then, denote by X0 the Zariski closure of X 0 in A0. The
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naive height of X associated to the model � W A!B and the line bundles L and M
is defined by the intersection number

h.X/D
1

ŒK 0 WK�

�
X0 � c1.


�L/dXC1 � 
���
�
c1.M/

�dB�1�; (3.1)

where dX D dimX and dB D dimB . It depends on the model A and the extension L

of L to A, but it does not depend on the choice of K 0.
The canonical height is the limit

Oh.X/D lim
n!C1

h.Œn��X/

n2.dXC1/
D lim
n!C1

deg.Œn�jX /h.Œn�X/

n2.dXC1/
: (3.2)

It depends on L but not on the model .A;L/ (see Gubler’s work [13, Theorem 3.6]
and [12, Theorem 11.18]).

To simplify the notation, we suppose now that K 0 DK , so 
 is the identity and
B 0 D B , A0 D A, X0 D X. Suppose that k0 is an algebraically closed subfield of
k such that B and M are the base change to k of a variety Bk0 and a line bundle
Mk0 defined over k0. Suppose, furthermore, that A, X , and L are the base change
of an abelian variety, a subvariety, and a line bundle which are defined over k0.Bk0/.
We get models Ak0 and Xk0 now defined over k0. Intersection numbers as in (3.1) are
invariant under extending the field of constants. And so the limit in (3.2) is unchanged;
that is, Oh.X/D Oh.Xk0/. In particular,

Oh.X/D 0 if and only if Oh.Xk0/D 0: (3.3)

3.2. Gubler–Zhang inequality
By definition, the essential minimum ess.X/ of a subvarietyX �A is the real number

ess.X/D sup
Y

inf
x2X.K/nY.K/

Oh.x/;

where Y runs through all proper Zariski-closed subsets ofX . The following inequality
is due to Gubler (see [13, Lemma 4.1]); it is an analogue of Zhang’s inequality [35,
Theorem 1.10] that concerns the number field case:

0�
Oh.X/

.dX C 1/degL.X/
� ess.X/:

We refer to it as the Gubler–Zhang inequality. The converse inequality ess.X/ �
Oh.X/=degL.X/ also holds, but we shall not use it in this article.

Definition 3.1
We say that X is small if X� is Zariski-dense in X for all � > 0.
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Clearly, X is small if and only if ess.X/ D 0. The Gubler–Zhang inequality
shows that Oh.X/D 0 if X is small. (From the converse inequality, this is in fact an
equivalence.) So, to prove Theorem A, we only need to show the following theorem.

THEOREM A0

Assume that k is an algebraically closed field of characteristic 0. Let X be an irre-
ducible subvariety of AK . If Oh.X/D 0, then X is special.

Remark 3.2
We now explain why it suffices to prove Theorem A0 when the field of constants is C.
Let X be as in the theorem and k algebraically closed of characteristic 0, and say
Oh.X/D 0. There exists an algebraically closed subfield k0 � k of finite transcendence
degree over Q such that B (resp., M ) comes from a variety (resp., a line bundle on
it) defined over k0 via base change, and A, L, and X come from an abelian variety, a
line bundle, and a subvariety defined over its function field. Now k0 can be embedded
into C. So we get a variety BC over C and, by abusing notation, an abelian variety
AC.B/ with a subvarietyXC.B/ �AC.B/, both over C.B/, and their corresponding line
bundles. Applied two times, the equivalence in (3.3) and Oh.X/D 0 give Oh.XC.B//D

0. So, if Theorem A0 is established over C, as will be done in Section 5, we deduce
that XC.B/ is special. But then X is special too.

PROPOSITION 3.3
Let g W A! A0 be a morphism of abelian varieties over K , and let a 2 A.K/ be a
torsion point. Let X be a geometrically irreducible subvariety of A over K .
(1) If X is small, then g.X/ is small.
(2) If g is an isogeny and g.X/ is small, then X is small.
(3) X is small if and only if aCX is small.

Proof
Assertions (1) and (2) follow from [32, Proposition 2.6]. To prove (3), fix an integer
n� 1 such that naD 0. By assertions 1 and 2, aCX is small if and only if Œn�.aC
X/D Œn�.X/ is small if and only if X is small.

3.3. Smallness and the Betti form
Now we assume kD C, and we reformulate the canonical height in differential geo-
metric terms. Recall the setup of (3.1) assuming, for simplicity, that X is already
defined over K . Pick a Kähler form ˛ in c1.L/. (Such a form exists because we
chose L ample.) For every n� 1, there exists an irreducible smooth projective vari-
ety �n W An ! B over B , extending �jAo W Ao ! Bo, such that the rational map
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Œn� W A ��� A lifts to a morphism fn W An ! A over B . Write Ln WD f
�
n L and

˛n WD f
�
n ˛; in particular A1 is a smooth model of A and ˛1 D ˛ on Ao. Denote

by Xn the Zariski closure of Xo in An. Since the Kähler form � introduced in Sec-
tion 1.2.1 represents the class c1.M/, the projection formula gives

Oh.X/D lim
n!1

n�2.dXC1/
�
Xn � c1.Ln/

dXC1 � c1.�
�
nM/dB�1

�

D lim
n!1

n�2.dXC1/
Z
Xn

˛dXC1n ^ .��n�/
dB�1

D lim
n!1

n�2.dXC1/
Z
Xo

�
Œn��˛

�dXC1 ^ .���/dB�1; (3.4)

because the integral on Xn is equal to the integral on the dense Zariski-open subset
Xo or better on the regular locus Xo;reg.

Here is the key relationship between the canonical height and the Betti form.

THEOREM B
Let X be a geometrically irreducible subvariety of A over K . If Oh.X/D 0, then

Z
Xo
!dXC1 ^ .���/dB�1 D 0;

with ! the Betti form associated to L and � the Kähler form on B representing the
class c1.M/.

Proof
We may assume that X is defined over K . Since Oh.X/D 0, (3.4) shows that

0D lim
n!1

n�2.dXC1/
Z
Xo

�
Œn��˛

�dXC1 ^ .���/dB�1: (3.5)

Let U �Bo be any relatively compact open subset of Bo in the Euclidean topol-
ogy. There exists a constant CU > 0 such that CU˛ � ! is semipositive on ��1.U /.
Since Œn� WAo!Ao is regular, the .1; 1/-form n�2Œn��.CU˛�!/D CUn

�2Œn��˛�

! is semipositive. Since ! and � are semipositive, we get

0�

Z
��1.U /\Xo

!dXC1^ .���/dB�1 �
�CU
n2

�dXC1 Z
Xo

�
Œn��˛

�dXC1^ .���/dB�1

for all n� 1. By letting n go to C1, (3.5) gives
Z
��1.U /\Xo

!dXC1 ^ .���/dB�1 D 0:

Since this holds for all relatively compact subsetsU ofBo, the theorem is proved.
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COROLLARY 3.4
Assume that X is small. Let U and V be open subsets of Bo and Xo, respectively
(in the Euclidean topology), such that U contains the closure �.V /� B . If � is any
smooth real semipositive .1; 1/-form on U , thenZ

V

!dXC1 ^ .���/dB�1 D 0:

Proof
We can assumeU to be a relatively compact subset ofBo. Since ! and� are semipos-
itive, the integral is nonnegative. Since � is strictly positive on U , there is a constant
C > 0 such that C� �� is semipositive. From Theorem B we get

0�

Z
V

!dXC1 ^ .���/dB�1 � C dB�1
Z
V

!dXC1 ^ .���/dB�1 D 0;

and the conclusion follows.

THEOREM B0

Assume that X is small. Then at every point p 2 Xo, we have TpF � TpXo. In
other words, Xo is invariant under the Betti foliation: for every p 2Xo, the leaf Fp
is contained in Xo.

Proof
We start with a simple remark. Let P W CNC1 ! CN be a complex linear map of
rank N . Let !0 be a positive .1; 1/-form on CN . If V is a complex linear subspace of
CNC1 of dimension N , then ker.P /� V if and only if P jV is not onto if and only if
.P �!N0 /jV D 0. Now, assume that B has dimension 1. Then, the integral of !dXC1

on Xo vanishes by Theorem B; since the form ! is semipositive, the remark implies
that the kernel of the projection Pp from Section 2.4 is contained in TpXo at every
smooth point p of Xo. This proves the proposition when dB D 1.

The general case reduces to dB D 1 as follows. Let U and U 0 be open subsets
of Bo such that (i) U � U 0 in the Euclidean topology and (ii) there are complex
coordinates .zj / on U 0 such that U D ¹jzj j< 1; j D 1; : : : ; dBº. Set

� WD i.dz2 ^ dz2C � � � C dzdB ^ dzdB /:

Note that �dB�1 is the volume form .dB � 1/Ši
dB�1 dz2 ^ dz2 ^ � � � ^ dzdB . It is a

smooth real semipositive .1; 1/-form on U 0. By Corollary 3.4, we haveZ
��1.U /\X

!dXC1 ^ .���/dB�1 D 0: (3.6)

For .w2; : : : ;wdB / in CdB�1 with modulus jwj j< 1 for all j , consider the slice
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X.w2; : : : ;wdB /DX \ ��1
�
U \ ¹z2 Dw2; : : : ; zdB DwdB º

�
I

these slices provide a family of subsets of A over the 1-dimensional disk ¹.z1;w2; : : : ;
wdB /I jz1j< 1º. Now (3.6) can be reformulated to

Z
jw2j<1;:::;jwdB j<1

�Z
X.w2;:::;xdB /

!dXC1
�
.���/dB�1 D 0:

Both ! and ��� are semipositive on Ao, and so the integral of !dXC1 over
X.w2; : : : ;wdB / vanishes for .�dB�1/-almost all .w2; : : : ;wdB /; from the case dB D
1, we know that, at every point p of Xo \ ��1.U /, the intersection TpXo \ TpF

contains a line whose projection in T�.p/B is the line ¹z2 D � � � D zdB D 0º. Doing
the same for all coordinates zi , we see that TpF is contained in TpXo.

As a direct application of Theorem B0 and Remark 2.1, we prove Theorem A in
the isotrivival case.

COROLLARY 3.5
If AK D A

K=C ˝C K and X is small, then there exists a subvariety Y � AK=C such
that X ˝K K D Y ˝C K .

Proof
Replacing K by a suitable finite extension K 0 and then B by its normalization in K 0,
we may assume that Ao D Bo �AK=C and that � W Ao! B is the projection to the
first factor. By Remark 2.1, the leaves of the Betti foliation are exactly the fibers of
the projection �2 onto the second factor. Since X is small, Theorem B0 shows that
X D ��12 .Y /, with Y WD �2.X/.

4. Invariant analytic subsets of real and complex tori
Let m be a positive integer. Let M D Rm=Zm be the torus of dimension m, and
let � W Rm!M be the natural projection. The group GLm.Z/ acts by real analytic
homomorphisms on M . In this section, we study analytic subsets of M which are
invariant under the action of a subgroup � � GLm.Z/; our goal is Theorem 4.18,
stated in Section 4.4. The main ingredient is a result of Muchnik and of Guivarc’h
and Starkov.

4.1. Zariski closure of �
We denote by

G D Zar.�/irr
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the neutral component, for the Zariski topology, of the Zariski closure of � in the real
algebraic group GLm.R/. Note that the Lie group G.R/ is not necessarily connected
for the Euclidean topology.

LEMMA 4.1
The group � \G.R/ has finite index in � . If �0 is a finite index subgroup of � , then
Zar.�0/irr DG.

Proof
The index of G in Zar.�/ is equal to the number ` of irreducible components of the
algebraic variety Zar.�/, and the index of � \G.R/ in � is also `. Now, let �0 be a
finite index subgroup of � . Then, �0\G has finite index in �\G.R/, and we can fix
a finite subset ¹˛1; : : : ; ˛kº � � \G.R/ such that � \G.R/D

S
j ˛j .�0 \G.R//.

So

Zar
�
� \G.R/

�
�
[
j

˛j Zar
�
�0 \G.R/

�
�G.R/:

Because � \G.R/ is Zariski-dense in the irreducible group G we find G D Zar.�0\
G.R//. So G � Zar.�0/, and the lemma follows as G D Zar.�/irr.

We shall denote by V the vector space Rm; the lattice Zm determines an integral,
hence a rational structure on V . The Zariski closure Zar.�/ is a Q-algebraic subgroup
of GLm for this rational structure; the same is true for every subgroup of � . In partic-
ular, G is defined over Q. For simplicity, we denote by G.v/, instead of G.R/.v/, the
orbit of a point v 2 V under the action of G.R/.

We shall say that G (or �) has no invariant vector in V n ¹0º or that every G-
invariant vector is trivial if every vector u 2 V such that g.u/D u for all g 2 G is
equal to 0. This notion depends only on G, not on � : by Lemma 4.1, this property is
inherited by finite index subgroups of � .

4.2. Results of Muchnik and of Guivarc’h and Starkov
From now on, we assume that G is semisimple. In particular, dim.G/ is positive, and
dimV > 0. Assume that V is an irreducible representation of G over Q; this means
that every proper Q-subspace of V which is G-invariant is the trivial subspace ¹0º.
Since G is semisimple, we can decompose V into irreducible subrepresentations Wi
of G over R (see [20, Proposition 22.41]):

V DW1˚W2˚ � � � ˚Ws :

To each Wi corresponds a subgroup Gi of GL.Wi / given by the restriction of the
action of G to Wi . Some of the groups Gi .R/ may be compact, and we denote by Vc
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the sum of the corresponding subspaces: Vc is the maximal G-invariant subspace of
V on which G.R/ acts by a compact factor.

LEMMA 4.2
Let W � V be a �-invariant subspace. Then, W � Vc if and only if the orbit �.w/ of
every vector w 2W is a bounded subset of V .

Proof
If W � Vc , then every orbit is bounded, because �jW is contained in a compact sub-
group of GL.W /.

For the reverse implication, we shall use the following fact (see [5] for a more
general result). Let N be a real or complex vector space. Let H be a subgroup of
GL.N / such that all complex eigenvalues of all elements of H have modulus at
most 1. If the action of H on N is irreducible, then H is contained in a compact sub-
group of GL.N /. Indeed, assume first that we work over C. By Burnside’s theorem,
H generates the vector space End.N / (see [17]). Let .hi /�H be a basis of End.N /.
The trace map g 2 End.N / 7! .trace.ghi // 2 C.dimN/2 is a linear isomorphism, so
there is a basis .gi / of End.N / with gD

P
i trace.ghi /gi for all g 2 End.N /. From

the hypothesis on the eigenvalues, the trace functions h 7! trace.hhi / are bounded by
dim.N / on H , so the image of H in GL.N / is relatively compact. Now, suppose we
work over R, and set NC D N ˝R C. Let N0 � NC be a nontrivial and H -invariant
complex subspace on whichH acts irreducibly;N0 and its complex conjugateN0 are
both H -invariant, and by the first step, the images of H in GL.N0/ and GL.N0/ are
relatively compact. Moreover, N0CN0 DNC because the representation of H on N
is irreducible; thus, the image of H in GL.N / is compact.

Now, assume that W is not contained in Vc . Then W contains an irreducible
subrepresentation W0 �W such that G0.R/ (the image of G.R/ in GL.W0/) is not
compact. The group �jW0 is unbounded because otherwise its closure would be a
compact group; hence, it would preserve some positive definite quadratic form,G0.R/
would also preserve this quadratic form because � \G.R/ is Zariski-dense in G, and
then G0.R/ would be compact. Thus, the fact we just recalled gives an element of �
with a (complex) eigenvalue of modulus greater than 1 on W0˝C; as a consequence,
there is a vector w 2W0 whose orbit is unbounded.

Recall that V DRm and M is the torus Rm=Zm.

LEMMA 4.3
The subspace Vc is a proper subspace of V . The projection �jVc W Vc !M is injec-
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tive; in other words, Vc \Zm D ¹0º. If a and a0 are two distinct torsion points of M ,
then aC �.Vc/ does not intersect a0C �.Vc/.

Proof
If Vc were equal to V , then G.R/ would be compact, � would be finite, and G would
be trivial (contradicting dim.G/ > 0).

If �jVc is not injective, then Vc contains an element u ¤ 0 of the lattice Zm.
The �-orbit of u is contained in Vc \ Zm; as a consequence, the vector subspace
W � V spanned by this orbit is defined over Q and is G-invariant. Since Vc is a
proper subspace of V , W is a proper G-invariant subspace defined over Q, and this
contradicts the irreducibility of the representation over Q. This contradiction proves
the second assertion.

The third assertion follows from the second: if .aC�.Vc//\ .a0C�.Vc// were
not empty, then Vc would contain a nonzero element of ��1.a � a0/; since ��1.a �
a0/�Qm, Vc would contain an element of Zm n ¹0º.

Let z be a point of Vc , and let x D �.z/ be its projection. Then the orbit G.z/
is compact, and �.x/ is contained in �.G.z//, a compact subset of M contained in
�.Vc/; in particular, �.x/ is not dense in M . More generally, if a is a torsion point
of M and x 2 a C �.Vc/, then �.x/ is not dense in M . This shows that the two
properties of the following theorem are exclusive.

THEOREM 4.4 ([24, Theorems 1.1, 1.2], [14, Theorem 2])
Assume that G is semisimple, and its representation on Qm is irreducible. Let x be
an element of M . Then, one of the following two exclusive properties occur:
(1) the �-orbit of x is dense in M ;
(2) there exists a torsion point a 2M such that x 2 aC �.Vc/.

Remark 4.5
In the second assertion, the torsion point a is uniquely determined by x: this follows
from the last assertion in Lemma 4.3.

Remark 4.6
By Lemma 4.1, the hypothesis and, therefore, the conclusion of Theorem 4.4 remain
unchanged if � is replaced by a finite index subgroup.

Remark 4.7
Theorem 4.4 will be used to describe �-invariant real analytic subsets Z �M . If it
is infinite, then such a set contains the image of a nonconstant real analytic curve.
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The existence of such a curve is the main difficulty in Muchnik’s argument, but in our
situation it is given for free.

Proof of Theorem 4.4
This result is a consequence of Theorem 1.2 of [24]. Indeed, if �0 is a finite index
subgroup of � , then by Lemma 4.1 we have Zar.�0/irr D G, so that �0 does not
preserve any proper, nontrivial vector subspace of V defined over Q; this shows that
� acts strongly irreducibly on Qm. If � were cyclic-by-finite, then by definition �
would contain a normal cyclic subgroup of finite index, and G would be abelian,
contradicting its semisimplicity. Thus, Properties 1 and 2 in Theorem 1.1 of [24] are
satisfied, and we can apply Theorem 1.2 of [24]: by Lemma 4.2, it gives precisely the
alternative stated in our Theorem 4.4.

COROLLARY 4.8
If F �M is a nonempty closed, proper, connected, and �-invariant subset, then F is
contained in aC �.Vc/ for a unique torsion point a 2M . If x 2M has a finite orbit
under the action of � , then x is a torsion point.

Proof
Let us prove the first assertion. If x 2 F , then �.x/ � F because F is �-invariant.
Since F is closed and proper, �.x/ is not dense in M . From Theorem 4.4 and
Remark 4.5, there is a unique torsion point a.x/ such that x 2 a.x/C �.Vc/. This
map x 2 F 7! a.x/ must be constant.

To see this, let us first assume that F is path connected. Take two points x and
x0 in F and a continuous path  W Œ0; 1�! F that connects x D .0/ to x0 D .1/.
Lifting  to a path Q in V and then projecting it to V=Vc , we obtain a continuous map
Œ0; 1�! V=Vc ; since this map takes at most countably many values, it is constant, and
there is a rational point Qa in V that projects onto it. Then a WD �. Qa/ is a torsion point
and F � aC �.Vc/.

To prove Theorem 4.18 and deduce Theorem A0, it suffices to assume that F is
path connected. If F is only assumed to be connected, then a similar but more delicate
argument applies, as the following lemma shows.

LEMMA 4.9
Let F be a closed and connected subset of M . Assume that every x 2 F is the sum
of a torsion point a.x/ and a point �.v/ for some v 2 Vc . Then F is contained in a
unique torsion translate of �.Vc/.
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Proof
Denote by pc W V ! V=Vc the natural projection. The translates b C �.Vc/ form a
linear foliation Fc ofM . Locally, in small open subsets U, this foliation is defined by
the fibers of the submersion pU D pc ı��1 for some local inverse of � on U. Say that
x 2 F is locally transversely isolated (l.t.i. for short) if there is a small neighborhood
U of x inM such that F \U is contained in a unique fiber of pU, that is, in a unique
local leaf of Fc in U. If every point of F is l.t.i., then the function x 2 F 7! a.x/ is
locally constant, and by connectedness, it is indeed constant.

Thus, we may assume that F contains at least one point which is not l.t.i. Con-
sider the subset F1 D F �F D ¹x�y j x;y 2 F º. This set is compact and connected
and is also contained in a union of torsion translates of �.Vc/. Moreover, the origin
�.0/ is a point of F1 which is not l.t.i. Now, F2 D F1 � F1 shares the same proper-
ties, and no point of F2 is l.t.i. Let Bn � Vc be the closed ball of radius n in Vc , for
some Euclidean metric. Enumerate the set of torsion points by N, and denote by an
the nth torsion point. Set Dn D

S
k�n.ak C �.Bn//. This is an increasing sequence

of compact subsets of M . Then, F2 is contained in
S
nDn, and F2 \Dn has empty

interior in F2 because no point of F2 is l.t.i. Since F2 is a compact metric space, the
theorem of Baire can be applied in F2 (see [25, Theorems 1.3 and 9.1]), and we get a
contradiction.

To prove the second assertion of Corollary 4.8, pick a point x 2M with a finite
�-orbit, and write x D aC �.z/ for some torsion point a and some element z 2 Vc .
The orbit �.a/ is finite. Let Gc be the image of G in GL.Vc/: it is an algebraic
subgroup of GL.Vc/, Gc.R/ is compact, and the image �c of � \G.R/ in GL.Vc/
is Zariski-dense in Gc . Thus, the closure of �c for the Euclidean topology is equal to
Gc.R/ because all closed subgroups of Gc.R/ are algebraic (see [23, Section 4.6]).
We deduce that the orbit .� \G.R//.z/ is dense in G.z/DGc.z/ for the Euclidean
topology. Since the orbit of x is finite, G.z/ is finite too. This implies thatG.z/ is just
one point because G is Zariski connected and that z D 0 because the representation
is irreducible over Q. Thus, z D 0 and x D a.

Remark 4.10
Assume that mD 2g for some g � 1 and M is in fact a complex torus Cg=ƒ, with
ƒ ' Z2g . Suppose that F is a smooth complex analytic subset of M ; then F is a
compact Kähler manifold. The inclusion F !M factors through the Albanese torus
F ! AF of F , via a morphism AF !M , and the image of AF is the quotient of
a subspace W in Cg by a lattice W \ ƒ (see [10, pp. 331 and 552]). So, if F �
aC �.Vc/, then the subspace Vc contains a subspace W �Rm which is defined over
Q, contradicting the irreducibility assumption (Lemma 4.3). To separate clearly the
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arguments of complex geometry from the arguments of dynamical systems, we shall
not use this type of idea before Section 4.4.

Remark 4.11
Theorem 2 of [14] is not correct, but becomes true if there is no compact factor
.Gc ; Vc/. (This is implicitly assumed in [14, Proposition 1.3].)

4.3. Invariant real analytic subsets
Let F be a closed analytic (resp., subanalytic) subset of the torus M . (We refer to [2]
for subanalytic sets.) We say that F does not fully generate M if there is a proper
subspace W of V and a nonempty open subset U of F such that TxF �W for every
regular point x of F in U. Otherwise, we say that F fully generates M .

PROPOSITION 4.12
Let � be a subgroup of GLm.Z/. Assume that the neutral component Zar.�/irr �
GLm.R/ is semisimple and has no invariant vector in Rm n ¹0º. Let F be a closed,
subanalytic, and �-invariant subset of M . If F fully generates M , then it is equal
to M .

To prove this result, note that G D Zar.�/irr is both defined over Q and semisim-
ple (as in Sections 4.1 and 4.2); so,G is semisimple as an algebraic group over Q (see
[20, Proposition 19.5]). So, we can decompose the linear representation of G on V
into a direct sum of irreducible representations over Q (see [20, Proposition 22.41]):

V D V1˚ � � � ˚ Vs:

Since every invariant vector is trivial, none of the Vi ’s are the trivial representation.
For each index i , we denote by Vi;c the compact factor of Vi . As in Lemma 4.3, the
projection � is an injective map from Vi;c onto its image in M . Set

Mi D Vi=.Zm \ Vi /: (4.1)

Then, each Mi is a compact torus of dimension dim.Vi /, and M is isogenous to the
product of the Mi ’s. We may and we shall assume that M is in fact equal to this
product:

M DM1 � � � � �MsI

this assumption simplifies the exposition without any loss of generality because the
image and the preimage of a subanalytic set by an isogeny are subanalytic too. We
can also assume (see Remark 4.6) that � is contained inG. For every index 1� i � s,
we denote by �i the projection on the i th factor Mi .
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LEMMA 4.13
If F fully generates M , then the projection Fi WD �i .F / is equal to Mi for every
1� i � s.

Proof
By construction, Fi is a closed and �-invariant subset ofMi . Since F is compact and
subanalytic, F and Fi have finitely many connected components. Fix a connected
component F 0i of Fi ; it is invariant by a finite index subgroup �0 of � . If it were
contained in a translate of �.Vi;c/, then F would not fully generate M . The first
assertion of Corollary 4.8, applied to �0, implies F 0i DMi .

We prove Proposition 4.12 by induction on the number s of irreducible factors.
For just one factor, this is the previous lemma. Assuming that the proposition has
been proven for s � 1 irreducible factors, we now want to prove it for s factors. To
simplify the exposition, we suppose that s D 2, which means that M is the product
of just two factors M1 �M2. The proof will only use that �1.F /DM1 and F fully
generates M ; thus, by changing M1 into M1 � � � � �Ms�1, this proof also establishes
the induction in full generality.

Let ' W N ! F be a surjective and proper analytic map, from an analytic man-
ifold N of dimension dim.F /, as in the uniformization theorem of Bierstone and
Milman (see [2, Theorem 0.1]). The composition �1 ı ' W N !M1 is analytic and
onto. Let C be the set of critical values of �1 ı'. From Sard’s theorem, C is a closed
subanalytic subset of M1 of dimension strictly less than dim.M1/.

The set of points x 2M1 with Fx DM2 is closed; if it coincides with M1, then
F DM . Otherwise, there is an open ballU0 �M1 such that Fx is a nonempty, proper,
and subanalytic subset of M2 for every x 2 U0. Let U be an open ball contained in
U0 n C . On NU WD .�1 ı '/�1.U /, the map �1 ı ' is a proper submersion so, by
Ehresmann’s product neighborhood theorem, it is a trivial fibration because U is a
ball: there is a C1-diffeomorphism  W NU ! U � Y for some compact manifold Y
such that �1 ı ' corresponds to the first projection (see [21, Section 7, p. 46]). The
fibers Fx , for x in U , are parameterized by ' ı �1 W ¹xº � Y ! Fx . Let Y1; : : : ; YJ0
be the connected components of Y . The number J.x/ of connected components of
Fx is a lower semicontinuous function of x 2 U because the condition ' ı �1.¹xº�
Yj /\ ' ı 

�1.¹xº � Yk/D; is open. Let J be the maximum of this function on U ;
changing U in a smaller ball if necessary, we may assume that (1) J.x/D J for all
x 2 U and (2) each connected component Fx;j of Fx is the image of

S
i2I.j /.¹xº �

Yi / by ' ı �1 for a fixed set of indices I.j /� ¹1; : : : ; J º. In particular,
S
x2U Fx;j

is a connected component of F \ ��11 .U / and is subanalytic.
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Let x 2 U be a torsion point. The stabilizer of x is a finite index subgroup of � ,
and we can apply Corollary 4.8 to each connected component of Fx . We deduce that
there is a unique torsion point aj .x/ such that

Fx;j � aj .x/C �.V2;c/ and Fx �

J[
jD1

aj .x/C �.V2;c/: (4.2)

Since torsion points are dense in U and ' ı �1 is smooth, the inclusions (4.2) hold
for every x in U , but now the aj .x/ 2M2 are not torsion points anymore.

Assume temporarily that J D 1, so that Fx D Fx;1 is contained in a.x/C�.V2;c/
for some point a.x/ of M2. The point a.x/ is not uniquely defined by this property
(one can replace it by a.x/C�.v/ for any v 2 V2;c), but there is a way to choose a.x/
unequivocally. First, the action of G.R/ on V2;c factors through a compact subgroup
of GL.V2;c/, so we can fix a G.R/-invariant Euclidean metric dist2 on V2;c . Then,
any compact subset K of V2;c is contained in a unique ball of smallest radius for the
metric dist2; we denote by c.K/ and r.K/ the center and radius of this ball. Since J
is assumed to be 1, Fx is a compact, connected, and subanalytic subset of M that is
contained in aC �.V2;c/ for some point a. Since M can be analytically embedded
in R2m, Theorem 6.10 of [2] implies that Fx is locally path connected, hence also
globally path connected. Let 	 W Œ0; 1�! Fx be a continuous path. Then 	 lifts to a
path Q	 into the universal cover V of M , and because Fx is contained in aC �.Vc/,
Q	.Œ0; 1�/ is contained in the countable union of subspaces V2;c C ��1.¹aº/. Since
Œ0; 1� is connected and Q	 is continuous, Q	.Œ0; 1�/ is in fact contained in some fixed
translate of Qa C Vc , with �. Qa/ D a. Now, assume that 	 is a loop, with base point
	.0/ D 	.1/. By Lemma 4.3, � is injective on V2;c , so Q	.0/ D Q	.1/, Q	 is in fact a
loop in V2;c , and there is a homotopy that contracts Q	 to a constant loop in V2;c .
Projecting back toM by � , we deduce that the image of the fundamental group of Fx
in the fundamental group of M is trivial. By Propositions 1.33 and 1.34 of [16], there
exists a unique continuous lift Q� W .Fx � a/! V of the inclusion � W .Fx � a/!M

that maps the origin 0 2 .FX � a/ to 0 2 V ; since Fx is path connected, we obtain
Q�.Fx � a/� V2;c . Then we define the center of Fx by

c.x/ WD aC �2
�
c
�
Q�.Fx � a/

��
2M2:

By construction, c.x/ does not depend on a, and Fx is contained in c.x/C �.V2;c/.
When J > 1, this procedure gives a finite set of centers ¹cj .x/º1�j�J .

LEMMA 4.14
Let E1 DRm and E2 DRn be two Euclidean vector spaces. Let B1 �E1 be a closed
ball. Let Z � B1 �E2 be a relatively compact subanalytic subset such that the pro-
jection �1 W Z! B1 is onto. For each x in E1, denote by r.x/ and c.x/ the radius
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and center of the smallest ball containing the fiber Zx . Then r and c are subanalytic
functions of x.

Proof
Denote by k�k the Euclidean norm onE2. LetB2 �E2 be a closed ball such thatZ �
B1�B2, letR be its radius, and let I be the interval Œ0;R�. As in [2, Remark 3.11(1)],
we consider the set

AD
®
.x; y; z; t/ 2B1 �B2 �Z � I

ˇ̌
�1.z/D x; and t <

���2.z/� y��¯:
It is subanalytic, and so is its projection .A/� B1 � B2 � I , where .x;y; z; t/D
.x; y; t/. This projection is the set ¹.x; y; t/ j 9z 2Zx ; t < kz � ykº. By the theorem
of the complement (see [2, Theorem 3.10]),

.A/c D
®
.x; y; t/ 2B1 �B2 � I

ˇ̌
t � kz � yk for every z 2Zx

¯

is also subanalytic. By Remark 3.11(2) of [2], the function

r.x/D min
y2B2

�
min

®
t
ˇ̌
.x; y; t/ 2 .A/c

¯�

is subanalytic. Now, consider the subanalytic set

C D
®
.x; y; t/ 2B1 �B2 � I

ˇ̌
t D r.x/

¯
\ .A/c :

Denote by � W C ! B1 � B2 the projection .x; y; t/ 7! .x; y/. Then �.C / is suban-
alytic and it is the graph of the map B1! B2 W x 7! c.x/. It follows that c.x/ is a
subanalytic function of x.

This lemma shows that the radius rj .x/ and the center cj .x/ are suban-
alytic functions of x for every index j � J . The uniformization theorem [2,
Theorem 0.1] provides a real analytic manifold Nj and a real analytic mapping
ˆj D .'j ; �j / W Nj ! U � R such that the graph of rj is the image of ˆ and
'j W Nj ! U is generically of rank dim.U /D dim.M1/. By [2, Theorem 7.10] there
is a proper, closed, analytic subset Dj of U with the following property: if a 2 Nj
and 'j .a/ …Dj , then there is a neighborhood W of a and an analytic function O�j
on 'j .W / such that 'j is a diffeomorphism from W to 'j .W / and �j D O�j ı 'j
on W . Thus, on U nDj , rj is locally a smooth analytic function. A similar result
holds for cj , for some proper analytic set D0j � U . Set D D

S
j .Dj [ D

0
j /. Let

G be the subset of ��11 .U n D/ given by the union of the graphs of the centers:
G D ¹.x; y/ 2M1 �M2Ix 2 U nD;y D cj .x/ for some j º.

LEMMA 4.15
The tangent space z 2 G 7! TzG takes only finitely many values .Wj /1�j�k; given
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any point z 2 G , there is a neighborhood of z in M in which G coincides with z C
�.Wj / for one of these subspaces.

This lemma concludes the proof of Proposition 4.12 because if G is locally con-
tained in aC�.W / for some proper subspace W of V of dimension dimM1, then F
is locally contained in aC �.W C V2;c/, and F does not fully generate M because
dim.W C V2;c/ < dimV .

Proof
By construction, G is an analytic subset of ��11 .U nD/ and it is invariant by � : if
z 2 G and g is an element of � such that g.z/ 2 ��11 .U /, then g.z/ 2 G . For x in
U nD, we denote by Gx the finite fiber ��11 .x/\ G .

For every torsion point x 2 U nD, the stabilizer �x of x is a finite index sub-
group of � that preserves the finite set Gx . By the last statement of Corollary 4.8
applied to �x , Gx is a finite set of torsion points of M . In particular, torsion points
are dense in G . Fix one of these torsion points z D .x; y/ 2 G , and denote by �z
the stabilizer of z in � . The tangent subspace TzG is the graph of a linear morphism
'z W TxM1! TyM2. By identifying the tangent spaces TxM1 and TyM2 with V1 and
V2, respectively, 'z becomes a morphism that interlaces the representations 
1 and

2 of �z on V1 and V2; by Lemma 4.1 and our assumptions, �z is Zariski-dense in
G, so we get


2.g/ ı 'z D 'z ı 
1.g/ (4.3)

for every g in G. In other words, 'z 2Hom.V1IV2/ is a morphism of G-spaces. This
holds for every torsion point z 2 G ; by the continuity of tangent spaces and the density
of torsion points, this holds everywhere on G .

Since G is �-invariant, we also have

'g.z/ ı 
1.g/D 
2.g/ ı 'z

for all g 2 � and z 2 G such that g.z/ 2 ��11 .U /. Then, (4.3) shows that 'g.z/ D 'z ,
which means that the tangent space TzG is constant along the orbits of � . Take a
point z in G whose projection �1.z/ 2 U nD has a dense �-orbit inM1; such a point
exists because the set of points in M1 whose orbit is not dense has empty interior
(see Corollary 4.8). Since T G is constant along the orbit of z, the tangent space w 2
G 7! TwG takes only finitely many values, at most jG�1.z/j. Let .Wj /1�j�k be the
list of possible tangent spaces TzG . Locally, near any point z 2 G , G coincides with
zC �.Wj / for some j .
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4.4. Complex analytic invariant subsets
Let J be a complex structure on V DRm, so that M is now endowed with a structure
of a complex torus. Then, mD 2g for some integer g, Rm can be identified to Cg ,
and M D Cg=ƒ, where ƒ is the lattice Zm; to simplify the exposition, we denote
by A the complex torus Cg=ƒ and by M the real torus Rm=Zm. Thus, A is just M ,
together with the complex structure J. LetX be an irreducible complex analytic subset
of A, and let X reg be its smooth locus.

LEMMA 4.16
Let W be the real subspace of V generated by the tangent spaces TxX , for x 2X reg.
ThenW is a complex subspace of V defined over Q, andX is contained in a translate
of the complex torus �.W /.

Proof
Since X is complex analytic, its tangent bundle is invariant under the complex struc-
ture: J.TxX/D TxX for all x 2X reg. So, the sumW WD

P
x TxX of the TxX over all

points x 2 X reg is invariant by J and W is a complex subspace of V ' Cg . Observe
that if V 0 is any real subspace of V such that �.V 0/ contains some translate of X reg,
then W � V 0.

Let a be a point of X reg, and let Y be the translate X �a of X . It is an irreducible
complex analytic subset of A that contains the origin 0 of A and satisfies TyY �W
for every y 2 Y reg. Thus, Y reg is contained in the projection �.W /�A. Set Y .1/ D Y ,
Y
.1/
o D Y reg, and then

Y .`C1/ D Y .`/ � Y .`/; Y .`C1/o D Y .`/o � Y
.`/
o

for every integer `� 1. Since Y .1/ is irreducible and Y .2/ is the image of Y .1/ �Y .1/

by the complex analytic map .y1; y2/ 7! y1 � y2, we see that Y .2/ is an irreducible
complex analytic subset of A. Moreover, Y .2/o is a connected, dense, and open subset
of Y .2/. Observe that Y .2/o is contained in �.W / because �.W / is a subgroup of A,
and contains Y .1/o because 0 2 Y .1/o . By induction, the sets Y .`/ form an increasing
sequence of irreducible complex analytic subsets ofA, and Y .`/o is a connected, dense,
and open subset of Y .`/ that is contained in �.W /. By the Noether property, there is
an index `0 � 1 such that Y .`/ D Y .`0/ for every `� `0. This complex analytic set is a
subgroup ofA; hence, it is a complex subtorus. Write Y .`0/ D �.V 0/ for some rational
subspace V 0 of V . Since Y � �.V 0/, we getW � V 0. Since Y .`0/o � �.W /, we derive
V 0 D TxY

.`0/
o �W for every x 2 Y .`0/; reg

o . This implies W D V 0 and shows that W
is rational.

Thus, �.W / is a complex subtorus of A. Since TxX is contained in W for every
regular point, X reg is locally contained in a translate of �.W /. Since X is irreducible,
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X and X reg are connected; thus, X reg is contained in a unique translate aC �.W /,
and by the density of X reg, X is also contained in aC �.W /.

LEMMA 4.17
Let X be an irreducible complex analytic subset of A. The following properties are
equivalent:
(i) X is contained in a translate of a proper complex subtorus B �A;
(ii) X does not fully generate M ;
(iii) there is a proper real subspace V 0 of V that contains TxX for every x 2X reg.

Proof
Obviously (i)) (iii)) (ii). Also, if (iii) is satisfied, then Lemma 4.16 implies thatX
is contained in a translate of a complex subtorus B D �.W /� A for some complex
subspace W of V 0; hence, (iii)) (i). To conclude, we prove that (ii) implies (iii). If
X does not fully generate M , then (iii) is satisfied on some nonempty open subset
U of X reg, for some subspace V 0 of V . Once V 0 is given, the property TxX � V 0 is
a real analytic condition on x 2 X reg, so if it holds on U, then it holds on the con-
nected component of X reg containing it. But X being irreducible, X reg is connected,
so TxX � V 0 for every x 2X reg.

THEOREM 4.18
Let � be a subgroup of GLm.Z/. Assume that the neutral component, for the Zariski
topology, of the Zariski closure of � in GLm.R/ is semisimple and has no invariant
vector in Rm n ¹0º. Let J be a complex structure on M D Rm=Zm, and let X be
an irreducible complex analytic subset of the complex torus AD .M; J/. If X is �-
invariant, then it is equal to a translate of a complex subtorus B � A by a torsion
point.

Proof
Set W WD

P
x2X reg TxX . Lemma 4.16 shows that W is complex and defined over Q.

Since X is �-invariant, so is W . Its projection B D �.W / is a complex subtorus of
A such that
(1) B is �-invariant;
(2) B contains a translate Y DX � a of X .
Moreover, Lemma 4.17 shows that
(3) Y fully generates B .
The group � acts on the quotient torus A=B and preserves the image of X , that is, the
image a of a. Since G has no invariant vector in V n ¹0º, a is a torsion point of A=B ;
indeed, A=B is isogenous to a product of tori Mi D Vi=.Zm \ Vi / associated to Q-
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irreducible subrepresentations, as in (4.1), and Corollary 4.8 shows that the projection
of a in each Mi is a torsion point. Then there exists a torsion point a0 in A such that
X � a0 C B . Replacing a by a0 and � by a finite index subgroup � 0 which fixes
a0, we may assume that a is torsion and Y D X � a is invariant by � . We apply
Proposition 4.12 to B , the restriction �B of � to B , and the complex analytic subset
Y : by property (3) above, Y coincides with B . Thus, X D aCB .

5. Proof of Theorems A and A0

Let X be an irreducible subvariety of AK , and assume that X� is dense in X for every
positive �. We want to prove thatX is special. The argument in Section 3.2 shows that
Oh.X/D 0 and that it is sufficient to prove Theorem A0. So, in this section, we prove
Theorem A0.

Replacing K by a finite extension we may assume that X is defined over K . In
the rest of this section, we use A to denote AK . By Remark 3.2, we may assume
kDC and Oh.X/D 0.

5.1. Monodromy and invariance
Recall that X is geometrically irreducible. By [11, Proposition 9.7.8], after replacing
Bo by a Zariski-open and dense subset, we may assume that Xb is irreducible for all
b 2Bo.

Let b 2 Bo be any point. As explained in Section 2.3, the holonomy of the
Betti foliation and the monodromy of the abelian scheme Ao ! Bo give rise to
the same representation Mon W �1.BoIb/! GL2g.Z/, and we call its image � D
Mon.�1.BoIb//�GL2g.Z/ the monodromy group.

Theorem B0 from Section 3.3 implies that Xo is invariant under the Betti
foliation F , so Xb is invariant under the action of the holonomy group of F

on Ab . Thus, Xb is invariant under the monodromy group � on the torus Ab '

H1.AbIR/=H1.AbIZ/'R2g=Z2g .

5.2. Trivial trace
We first treat the case when AK=C is trivial. According to [33, Theorem 1.5], this is
the only case we need to treat. However, we shall also treat the case of a nontrivial
trace below for completeness.

To show thatX is special, we shall apply Theorem 4.18 to Xb �R2g=Z2g and � .
As in Section 4.1, let G be the neutral component of Zar.�/irr �GL2g . The key point
now is to prove that � satisfies the assumption of Theorem 4.18; this will follow from
deep results on variations of Hodge structures.
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THEOREM 5.1 (Deligne)
If the trace AK=C is trivial, then G is semisimple and has no invariant vector in
H1.AbIR/ n ¹0º.

Proof
By Deligne’s semisimplicity theorem, the group G is semisimple (see [6, Corol-
lary 4.2.9]). Set � 0 D � \ G.R/; it is a Zariski-dense subgroup of G, and to see
that every G-invariant vector is trivial we shall prove that W WDH1.AbIQ/�

0

is ¹0º.
Recall that � is the image of Mon W �1.Bo; b/! GL2g.Z/. Since � 0 has finite

index in � , its inverse image Mon�1.� 0/ is a finite index subgroup of �1.Bo; b/. It
gives rise to a finite covering B 0! Bo such that the abelian scheme A0 WDAo �Bo

B 0!B 0 has monodromy group � 0. Note that the geometric generic fiber of � 0 W A0!
B 0 is still A. Fix b0 2 B 0 lying above b. Then H1.A0b0 IQ/DH1.AbIQ/, and hence,
W DH1.A

0
b0
IQ/�

0

.
The local system R1�

0
�Q, defined as the dual of R1� 0�Q, satisfies .R1� 0�Q/s Š

H1.A
0
sIQ/ for each s 2 B 0; it is a variation of Hodge structures on B 0 of type

.�1; 0/ C .0;�1/. By standard facts on local systems, R1� 0�Q is determined by a
fiber .R1� 0�Q/b0 and the action of �1.B 0; b0/ on this fiber, via the monodromy group
� 0. We have

H0.B
0;R1�

0
�Q/D .R1�

0
�Q/

�0

b0 DH1.A
0
b0 IQ/

�0 DW: (5.1)

Let .R1�
0
�Q/

const be the largest constant sublocal system of R1�
0
�Q. Then

.R1�
0
�Q/

const
b0
DH0.B

0;R1�
0
�Q/. So .R1� 0�Q/

const
b0
DW by (5.1).

Deligne’s theorem of the fixed part implies that .R1� 0�Q/
const is a subvariation

of Hodge structures of R1� 0�Q on B 0 (see [6, Corollaire 4.1.2]). It gives rise to an
abelian subscheme C ! B 0 of A0! B 0 with H1.Cb0 IQ/D .R1� 0�Q/

const
b0
DW by

[6, Rappel 4.4.3].
Denote by C D Cb0 ; it is defined over C. We claim that C D C � B 0. Indeed,

consider the abelian scheme � 00 W C � B 0! B 0. The local system R1�
00
�Q, defined

as the dual of R1� 00�Q, is a constant local system with .R1� 00�Q/b0 D H1.C IQ/ D
H1.Cb0 IQ/DW ; it is also a variation of Hodge structures on B 0 of type .�1; 0/C
.0;�1/. Thus, R1� 0�Q D R1�

00
�Q as variations of Hodge structures on B 0. Hence,

C D C �B 0 by [6, Rappel 4.4.3].
So the geometric generic fiber of C!B 0 is CK . The inclusion C �A0 of abelian

schemes over B 0 provides an inclusion CK � A, and in fact, CK � A
K=C by the

definition of AK=C. Thus, the triviality of AK=C implies W D ¹0º.

We can now conclude the proof of Theorem A0 when the K=C-trace of A is
trivial. Since G is semisimple and H1.AbIR/G D ¹0º, Theorem 4.18 implies that
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Xb is the translate of an abelian subvariety of Ab by some torsion point yb 2 Ab .
Observe that the leaf Fyb is a multisection of Ao (see Remark 2.2). By base change,
we may assume that Fyb is a section and is the Zariski closure of a torsion point
y 2 A.K/ in Ao. Theorem B0 from Section 3.3 shows that y 2 X , and replacing X
by X � y we may suppose that 0 2 X ; then, Xb is an abelian subvariety of Ab for
all b 2 Bo. It follows that Xo is a subscheme of the abelian scheme Ao over Bo

which is stable under the group laws. So X is an abelian subvariety of A. This proves
Theorems A0 and A in the trivial trace case.

5.3. The general case
We do not assume anymore that AK=C is trivial. Set At DAK=C˝C K . Replacing K
by a finite extension and A by a finite cover, we assume that AD At � Ant , where
Ant is an abelian variety over K with trivial trace. We also choose the model A so
that Ao D .At /o �Bo .A

nt /o, where .At /o and .Ant /o are the Zariski closures of At

and Ant in Ao, respectively. Denote by � t WAo! .At /o the projection to the first
factor and by �nt WAo! .Ant /o the projection to the second factor. After replacing
K by a further finite extension K 0 and B by its normalization in K 0, we may assume
that .At /o DAK=C�Bo. Note that � t jAt

b
WAt

b
!AK=C is an isomorphism for every

fiber At
b

with b 2Bo.
By Proposition 3.3(1), the geometric generic fibers of � t .Xo/ and �nt .Xo/ are

small subvarieties of At and Ant , respectively. Corollary 3.5 shows that � t .Xo/D

Y �Bo for some subvariety Y of AK=C. Section 5.2 shows that the geometric generic
fiber of �nt .Xo/ is a torsion coset a C A0 for some torsion point a 2 Ant

K
.K/ and

some abelian subvarietyA0 ofAnt
K

. ReplacingK by a finite extension, we may assume
that a and A0 are defined over K . We have Xo � � t .Xo/�Bo �

nt .Xo/, and we only
need to show that Xo D � t .Xo/�Bo �

nt .Xo/.
For every b 2Bo, Ab DAt

b
�Ant

b
. The monodromy on Ab is the diagonal prod-

uct of the monodromies on each factor. It is trivial on the first one so, for every x 2At
b
,

the fiber � t j�1
Ab
.x/'Ant

b
is invariant under � . It follows that � t j�1

Ab
.x/ \Xb , and

hence Wx D �
nt .� t j�1

Ab
.x/ \Xb/, is also �-invariant. Each irreducible component

of Wx is �0-invariant for a finite index subgroup �0 � � . Recall that the neutral com-
ponents of Zar.�0/ and Zar.�/ are equal by Lemma 4.1. Since Ant has trivial trace,
we can apply Theorem 4.18 to each irreducible component of Wx as in the trivial
trace case in Section 5.2. Thus, each Wx is a Zariski-closed subset whose irreducible
components are torsion cosets of the abelian variety Ant

b
. The abelian variety Ant

b

has only countably many Zariski-closed subsets having the property that each of the
finitely many irreducible components is a torsion coset. By the theorem of Baire [25,
Theorems 1.3 and 9.1], there exists a Zariski-dense subset †� � t .Xb/ such that Wx

is independent of x for all x 2†. Call this finite union of torsion cosets A0.
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Thus, the Zariski closure of
S
x2† �

t j�1
Ab
.x/ \ Xb is � t .Xb/ � A

0 under the
decomposition Ab DAt

b
�Ant

b
. Hence, � t .Xb/ � A

0 �Xb . Note that ¹xº � A0 is
the fiber of � t j�1

Xb
.x/ for all x 2†. As Xb is irreducible we find � t .Xb/�A

0 DXb

by comparing dimensions. Then Xo D � t .Xo/�Bo �
nt .Xo/, and this concludes the

proof of Theorems A0 and A for the general case.
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