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Abstract. In this paper we prove the following theorem. Let f be a domi-
nant endomorphism of a smooth projective surface over an algebraically closed
field of characteristic 0. If there is no nonconstant invariant rational function
under f , then there exists a closed point whose orbit under f is Zariski dense.
This result gives us a positive answer to the Zariski dense orbit conjecture pro-
posed by Medvedev and Scanlon, by Amerik, Bogomolov and Rovinsky, and
by Zhang, for endomorphisms of smooth projective surfaces.

Moreover, we define a new canonical topology on varieties over an alge-
braically closed field which has finite transcendence degree over Q. We call
it the adelic topology. The adelic topology is stronger than the Zariski topol-
ogy and an irreducible variety is still irreducible in this topology. Using the
adelic topology, we propose an adelic verison of the Zariski dense orbit conjec-
ture. This version is stronger then the original one and it quantifies how many
such orbits there are. We also proved this adelic version for endomorphisms
of smooth projective surfaces. Moreover, we proved the adelic verison of the
Zariski dense orbit conjecture for endomorphisms of abelian varieties and split
polynomial maps. This yields new proofs for the original version in this two
cases.

In Appendix A, we study the endomorphisms on the k-affinoid spaces. We
show that for certain endomorphism f on a k-affinoid space X, the attractor
Y of f is a Zariski closed subset and the dynamics of f semi-conjugates to its
restriction on Y. A special case of this result is used in the proof of the main
theorem.

In Appendix B, written in collaboration with Thomas Tucker, we prove the
Zariski dense orbit conjecture for endomorphisms of (P1)N .
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1. Introduction

Denote by k an algebraically closed field of characteristic 0.

1.1. Zariski dense orbit conjecture. One of the aim of this paper is to prove
the following result.

Theorem 1.1. Let X be an irreducible smooth projective surface over k. Let
f : X → X be a dominant endomorphism. If there are no nonconstant rational
functions H satisfying H ◦ f = H, then there exists a closed point whose orbit
under f is Zariski dense in X.

This theorem setlles the Zariski dense orbit conjecture for endomorphisms of
smooth projective surfaces.

Conjecture 1.2. Let X be an irreducible projective variety over k and f : X 99K
X be a dominant rational endomorphism for which there exists no nonconstant
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rational function H satisfying H ◦ f = H. Then there exists a point p ∈ X(k)
whose orbit is well defined and is Zariski dense in X.

This conjecture was proposed by Medvedev and Scanlon [33, Conjecture 5.10]
and also by Amerik, Bogomolov and Rovinsky [2], which strengthens the following
conjecture of Zhang [48].

Conjecture 1.3. Let X be an irreducible projective variety and f : X → X
be an endomorphism defined over k. If f is polarized1, then there exists a point
p ∈ X(k) whose orbit {fn(p)| n ≥ 0} is Zariski dense in X.

We note that the presentation form of Conjecture 1.2 is slightly unbalanced.
We note that the nonexistence of nonconstant invariant rational function is bira-
tional invariant, but it is not obvious that the existence of Zariski dense orbits is
birational invariant without assuming the dynamical Mordell-Lang Conjecture.
To eliminate this imbalance, we propose to reformulate Conjecture 1.2 in the
following strong form2.

Conjecture 1.4. Let X be an irreducible projective variety over k and f : X 99K
X be a dominant rational endomorphism for which there exists no nonconstant
rational function H satisfying H ◦ f = H. Then for every Zariski dense open
subset U of X, there exist a point p ∈ X(k) whose orbit Of (p) under f is well
defined, contained in U and Zariski dense in X.

Conjecture 1.4 is equivalent to Conjecture 1.2. But it is stronger than the
original one for every pair (X, f). Indeed it is easy to see that the strong form
holds for (X, f) if and only if the original form holds for every birational model of
(X, f). See Section 2 for more discussion on the strong form of the Zariski dense
orbit conjecture.

In this paper, we also prove Conjecture 1.4 for endomorphism of surfaces.

Theorem 1.5. Let X be an irreducible smooth projective surface over k. Let
f : X → X be a dominant endomorphism. If there are no nonconstant rational
functions H satisfying H ◦ f = H, then for every Zariski dense open set U of X,
there exist a closed point whose orbit is contained in U and is Zariski dense in
X.

This theorem implies Theorem 1.1.

1.2. Historical note. When k is uncountable, Conjecture 1.2 was proved by
Amerik and Campana [3]. If k is countable, Conjecture 1.1 has only been proved
in a few special cases. In [34], Medvedev and Scanlon proved Conjecture 1.2
when f := (f1(x1), · · · , fN(xN)) is an endomorphism of AN

k where the fi’s are
one-variable polynomials defined over k. In [8], Bell, Ghoica and Tucker proved

1A dominant endomorphism f on a projective variety X is said to be polarized if there exists
an ample line bundle L on X satisfying f∗L = L⊗d for some integer d > 1

2This strong form is inspired by [39, Conjecture 7.2] in an earlier paper of Benedetto, Ingram,
Jones, Manes, Silverman and Tucker. In [39, Conjecture 7.2], they also proposed a strong form
of Conjecture 1.2. However, their strong and the original form in [39, Conjecture 7.2] are
equivalent for every pair (X, f).
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Conjecture 1.2 when f := (f1(x1), · · · , fN(xN)) is an endomorphism of PNQ where

the fi’s are endomorphisms of P1
Q which are not post critically finite. In [2],

Amerik, Bogomolov and Rovinsky proved Conjecture 1.2 under the assumption
that k = Q and f has a fixed point o which is smooth and such that the eigen-
values of df |o are nonzero and multiplicatively independent. The author proved
Conjecture 1.2 for surface birational self-maps with dynamical degree great than
1 in [44], and for all polynomial endomorphisms f of A2 in [45].

In [24], Ghioca and the author shows that if Conjecture 1.5 holds for a rational
self-map g : X 99K X of a projective variety then Conjecture1.4 holds for a skew-
linear rational self-map f : X×AN 99K X×AN takes form (x, y) 7→ (f(x), A(x)y)
where A(x) ∈MN×N(k(X)).

We mention that in [1], Amerik proved that there exists a nonpreperiodic al-
gebraic point when f is of infinite order. In [9], Bell, Ghioca and Tucker proved
that if f is an automorphism without nonconstant invariant rational function,
then there exists a subvariety of codimension 2 whose orbit under f is Zariski
dense. See [2, 17, 4, 6, 22, 24, 19, 21] for more previous results.

1.3. Adelic topology. The Zariski dense orbit conjecture indicates the existence
of Zariski dense orbit for a dynamical system, but it says very few about how many
such orbits there are. In order to quantify this problem, we define a canonical
topology and call it the adelic topology.

Assume that the transcendence degree of k over Q is finite. Let X be a variety
over k. The adelic topology is a topology on X(k), which is defined by considering
all embeddings of k in C and Cp where p is some prime. See Section 3 for the
precise definition. The adelic topology has the following basic properties.

(i) It is stronger then the Zariski topology.
(ii) It is T1 i.e. for every distinct points x, y ∈ X(k) there are adelic open

subsets U, V of X(k) such that x ∈ U, y 6∈ U and y ∈ V, x 6∈ V.
(iii) The morphisms between algebraic varieties over k are continuous under

the adelic topology.
(iv) Étale morphisms are open w.r.t. the adelic topology.
(v) The irreducible components of X(k) in the Zariski topology are the irre-

ducible components of X(k) in the adelic topology.
(vi) Let K be any subfield of k which is finitely generated over Q such that X

is defined over K. Then the action

Gal(k/K)×X(k)→ X(k)

is continuous w.r.t. the adelic topology.

In particular, when X is irreducible, the intersection of finitely many nonempty
adelic open subsets of X(k) is nonempty. In general, the adelic topology is strictly
stronger than the Zariski topology. For example, on P1(k) there exists an adelic
open set U such that both U and P1(k) \ U are infinite.

Remark 1.6. In [47, Section 2.1], Yuan and Zhang introduced an analytic space
Xan, which is the union of the original Berkovich spaces over all places. The same
as the adelic topology, the space Xan is canonical and is defined by considering all
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valuations. On the other hand, the topology of Xan is Hausdorff, but the adelic
topology is not Hausdorff in general.

Then we propose an adelic veriosn of the Zariski dense orbit conjecture.

Conjecture 1.7. Assume that the transcendence degree of k over Q is finite.
Let X be an irreducible projective variety over k and f : X 99K X be a dominant
rational endomorphism for which there exists no nonconstant rational function H
satisfying H ◦f = H. Then there exists a nonempty adelic open subset U ⊆ X(k)
such that for every point x ∈ U , its orbit Of (x) is well defined and is Zariski dense
in X.

In Section 3, we will show that this conjecture has good behaviors under the
changing of birational models and it is stronger than the original version of the
Zariski dense orbit conjecture.

In this paper, we prove Conjecture 1.7 for endomorphism of surfaces.

Theorem 1.8. Assume that the transcendence degree of k over Q is finite. Let X
be an irreducible smooth projective surface over k. Let f : X → X be a dominant
endomorphism. If there are no nonconstant rational functions H satisfying H ◦
f = H, then there exists a nonempty adelic open subset U of X(k) such that for
every point x ∈ X(k), the orbit of x is Zariski dense in X.

By Corollary 3.24, this implies Theorem 1.1 and Theorem 1.5.

Most of the known results of the Zariski dense orbit conjecture can be general-
ized to an adelic version. In Section 3, we do this generalization for some results
we need in the proof of Theorem 1.8.

As an application of the adelic topology, we give fast proofs of Conjecture 1.7
for split polynomial endomorphisms on (A1)N and for endomorphisms of abelian
varieties.

Theorem 1.9. Let f : AN → AN , N ≥ 1 be a dominant endomorphism over
k taking form (x1, . . . , xN) 7→ (f1(x1), . . . , fN(xN)). If there are no nonconstant
rational functions H satisfying H ◦ f = H, then there exists a nonempty adelic
open subset U of AN(k) such that for every point x ∈ AN(k), the orbit of x is
Zariski dense in X.

Moreover, if deg fi ≥ 2, i = 1, . . . , N , then there exists a nonempty adelic open
subset U of AN(k) such that for every point x ∈ AN(k), the orbit of x is Zariski
dense in X.

Theorem 1.10. Let A be an abelian variety over k. Let f : A→ A be a dominant
endomorphism. If there are no nonconstant rational functions H satisfying H ◦
f = H, then there exists a nonempty adelic open subset U of A(k) such that for
every point x ∈ A(k), the orbit of x is Zariski dense in X.

These two theorem generalizes [34, Theorem 7.16] and [22, Theorem 1.2], and
they yields new proofs of [34, Theorem 7.16] and [22, Theorem 1.2].

In the original proofs of [34, Theorem 7.16], Medvedev and Scanlon used their
deep result on the classification of all invariant subvarieties of split polynomial
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endomorphisms on (A1)N , which is proved using Model theory and polynomial
decomposition theory. The original proofs of [22, Theorem 1.2] relies on the
Mordell-Lang conjecture, due to Faltings. Our new proofs do not rely on the
classification or the Mordell-Lang conjecture.

1.4. Endomorphisms of (P1)N . In Appendix B, we prove Conjecture 1.7 for
endomorphism of (P1)N which generalizes Theorem 1.9. As a consequence, this
setlles the Zariski dense orbit conjecture for endomorphisms of (P1)N .

Theorem 1.11. Let f : (P1)N → (P1)N , N ≥ 1 be a dominant endomorphism
over k. If there are no nonconstant rational functions H satisfying H ◦ f = H,
then there exists a closed point whose orbit under f is Zariski dense.

This result generalizes [34, Theorem 7.16] and [8, Theorem 14.3.4.2].

In [8, Theorem 14.3.4.2], Bell, Ghoica and Tucker proved Theorem 1.11 when
k = Q and f takes form f := (f1(x1), · · · , fN(xN)) where the fi’s are not post
critically finite. In their proof, after replacing f by a positive iterate, the as-
sumption of not post critically finite guarantee a fixed point o, such that the
eigenvalues of df |o are multiplicatively independent. This derives the existence of
a Zariski dense orbit by [2].

In [34, Theorem 7.16], Medvedev and Scanlon proved Conjecture 1.2 when
f := (f1(x1), · · · , fN(xN)) is an endomorphism of AN

k where the fi’s are one-
variable polynomials defined over k. Their proof based on their classification
of all invariant subvarieties of split polynomial endomorphisms on (A1)N . More
precisely, using model theory, they shows that when all factors fi are not of
some special type, all invariant subvarieties come from some invariant curves
of (fi, fj) : A1 × A1 → A1 × A1 for some i 6= j. Basically, this reduces the
problem to the case N = 2. When N = 2, they classifies all invariant curves
using polynomial decomposition theory. Then we may construct a point which
avoids all such invariant curves of very concrete form. This theorem is generalized
by our Theorem 1.9 by different method. But the strategy of its proof has been
inherited by our proof of Theorem 1.11.

Now we explain the strategy of the proof of Theorem 1.11. It is easy to show
that after replacing f by a positive iterate, we may assume that f takes form
f := (f1(x1), · · · , fN(xN)). As in the proof of [34, Theorem 7.16], we first need a
description of invariant subvarieties of endomorphisms of (P1)N ( see Proposition
9.2). Basically this description shows that when all factors fi are not of some
special type, all invariant subvarieties come from some invariant curves of (fi, fj) :
P1 × P1 → P1 × P1 for some i 6= j. Such a description was already obtained by
Medvedev and Scanlon in [34] using Model theory. Here we give a new and
elementary proof. Using this description, we reduce the problem to the case
N = 2. Then we may conclude the proof by Theorem 1.8.

1.5. Strategy of the proof. In this paper, Theorem 1.1 is implied by its adelic
version Theorem 1.8. Here, for the simplicity, we explain a strategy of a direct
proof of Theorem 1.1. However, except the systematic use of the adelic topology
and some technical difficulties, Theorem 1.8 follows the same idea.
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We first explain this strategy for an endomorphism f of P2 of degree at least
2. For the simplicity, we assume that k = Q. In this case, there is no nonconstant
rational function invariant under f. So we only need to show that there exits a
closed point which has a Zariski dense orbit. The idea of the proof is to combine
the p-adic local dynamic near a certain periodic point with a constraint on the
definition field of an invariant curve which is obtain by some global information.

By [2], if there exists a fixed point o of fm, m ≥ 1 such that the two eigenvalues
λ1, λ2 of dfm|o are multiplicatively independent, then there exits a closed point
which has a Zariski dense orbit. So we may assume that such point does not
exist.

At first, we study the invariant curves of f . Assume that f and all fixed points
of f are defined over a number field K. We show that there exists a positive
integer N depend on f , such that for every irreducible invariant curve C of f ,
C is defined over a field KC such that [KC : K]|Nn for some n ≥ 0. Moreover,
we show that the number of invariant branches of C at a fixed point is bounded
from above by some integer B > N.

Next we want to find a fixed point o of fm, m ≥ 1 and a field embedding
τ : Q ↪→ Cp such that

(i) dfm|o is invertible;
(ii) |τ(λ1)|, |τ(λ2)| ≤ 1 where λ1, λ2 are the two eigenvalues of dfm|o;

(iii) |τ(λ1)||τ(λ2)| < 1.

By studying of multipliers of endomorphisms on curves and assuming that there
is no Zariksi dense orbits of closed points, we show that the existence of such
point is ensured by the existence of repelling periodic point. The later is ensured
by [26, Theorem 3.4, iv)]. After replacing f by fm, we may assume that o is a
fixed point of f . Using τ , we may view Q as a subfield of Cp. We may assume
that λ1, λ2 are contained in K. Denote by Kp the closure of K in Cp.

If |λ1| = 1 and |λ2| < 1, we show that there exists a p-adic neighborhood U of
o in X(Kp) which is isomorphic to a polydisc (K◦p)2 and invariant by f. We show
that after shrinking U , there exist an analytic curve Y ⊆ U which is invariant by
f , and an analytic morphism ψ : U → Y such that ψ|Y = id and ψ ◦ f = f |Y ◦ψ.
Moreover, we have ∩n≥0f

n(U) = Y . Indeed, in Appendix A, we proved a more
general result for endomorphisms of affinoid spaces. For endomorphism of P2, the
periodic points are isolated. It shows that f |Y is not of finite order. In this case,
we can show that there is a point in X(Q) ∩ U which has Zariski dense orbit.

If both |λ1| and |λ2| are strictly less than 1, since λ1, λ2 are not multiplicatively
independent, there exists m1,m2 ≥ 1 such that λm1

1 = λm2
2 . After replacing f

by a suitable iterate, we may assume that (m1,m2) = 1. We show that there
exist a birational morphism π : X ′ → X which is a composition of blowups of
K-points, an irreducible component E in π−1(o) such that the induced rational
endomorphism f ′ on X ′ is regular along E and fix E, and a fixed point o′ ∈ E(K)
such that the two eigenvalues of df ′|o′ is 1, µ where |µ| < 1 and the eigenvectors
for 1 is in the tangent space of E. Let M be a finite field extension of K such
that [M : K] is prime to B!. Denote by Mp the closure of M in Cp. The argument
in the previous paragraph shows that there exists a p-adic neighborhood U of o
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in X ′(Mp) which is isomorphic to a polydisc (M◦
p )2 and invariant by f ′ satisfying

∩n≥0(f ′)n(U) = Y := U ∩ E and an analytic morphism ψ : U → Y such that
ψ|Y = id and ψ ◦ f ′ = f ′|Y ◦ ψ. Moreover the construction of U and ψ shows
that they are defined over Kp. If f ′|Y 6= id, we may conclude the proof by the
argument in the previous paragraph. If f ′|Y = id, such argument is not sufficient.
Here we need the constraint on definition fields of invariant curves. We show that
for every irreducible periodic curve C passing through U are indeed invariant by
f ′. So it is defined over a field KC such that [KC : K]|Nn for some n ≥ 0. It
follows that C ∩ U is defined over (KC)p which is the closure of KC in Cp. We
show that C ∩ U is a disjoint union of ψ−1(xi), i = 1, . . . , s where s ≤ B and
xi ∈ Y = U ∩ E. Then there exists a finite field extension Hp over Kp satisfying
[Hp : (KC)p]|B! such that all xi are defined over Hp. It follows that there exists
n ≥ 0 such that [Hp : Kp]|(B!)n. Since [Mp : Kp] is prime to B!, Mp ∩Hp = Kp.
Then xi ∈ X ′(Kp) ∩ Y, i = 1, . . . , s. Observe that X(Kp) ∩ Y is not dense in Y.

We can show that there exists a point x ∈ X ′(Q) ∩ ψ−1(Y \X ′(Kp)) which has
a Zariski dense orbit for f ′. Then π(x) has a Zariski dense orbit for f .

In the general case, by [9, Theorem 1.3], we may assume that f is not an
automorphism. Using the classification of surface and the works of Fujimoto,
Nakayama, Matsuzawa, Sano and Shibata, we may reduce to a case either can be
treated by the same argument for P2 or preserve a fibration to a curve. In the
later case, we can conclude the proof using this fibration.

1.6. Organization of the paper. The article is organized in 6 Sections and two
appendixes.

In Section 2, we discuss some some basic facts on the Zariski dense orbit conjec-
ture. We show that Conjecture 1.4 implies Conjecture 1.2. In particular, Theorem
1.5 implies Theorem 1.1. We also discuss the relation between the Zariski dense
orbit conjecture and the dynamical Mordell-Lang conjecture.

In Section 3, we introduce the adelic topology and prove some basic facts of
this topology. Using this topology, we propose the adelic version of the Zariski
dense orbit conjecture. We show that Conjecture 1.7 implies Conjecture 1.4. In
particular, Theorem 1.8 implies Theorem 1.5. We generalize some former results
on the Zariski dense orbit conjecture to an adelic version.

In Section 4, we gives some applications of the adelic topology. It yields the
proofs of Theorem 1.9 and Theorem 1.10.

In Section 5, we prove some general facts of endomorphisms of projective sur-
faces. In particular, we prove a constraint on definition field of an invariant
curve.

In Section 6, we first study the multipliers of periodic points and the dynamics
near a fixed point. Then we focus on the amplified endomorphism. In particular,
we prove Theorem 1.8 for endomorphisms of P2.

In Section 7 we prove Theorem 1.8 in the general case.
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In Appendix A, we study the endomorphisms on the k-affinoid spaces. We
show that for certain endomorphism f on a k-affinoid space X, the attractor Y
of f is a Zariski closed subset and the dynamics of f is semi-conjugates to the its
restriction on Y.

In Appendix B, written in collaboration with Thomas Tucker, we prove Theo-
rem 1.11.

Acknowledgement. I would like to thank Yang Cao, Laurent Moret-Bailly and
Miao Niu for useful discussions. I thanks Dragos Ghioca, Thomas Tucker and
Shou-Wu Zhang for their comments of the first version of the paper.

2. The Zariski density orbit conjecture

Let X be an irreducible projective variety over k and f : X 99K X be a
dominant rational endomorphism.

Definition 2.1. We say that a pair (X, f) satisfies the ZD-property, if either
there exists a nonconstant rational function H ∈ k(X) \ k satisfying H ◦ f = H
or there exist a point p ∈ X(k) whose orbit Of (p) under f is well defined and
Zariski dense in X.

Definition 2.2. We say that a pair (X, f) satisfies the strong ZD-property, if
either there exists a nonconstant rational function H ∈ k(X)\k satisfying H◦f =
H or for every Zariski dense open subset U of X, there exist a point p ∈ X(k)
whose orbit Of (p) under f is well defined, contained in U and Zariski dense in
X.

We note that a pair (X, f) satisfies the ZD-property (resp. strong ZD-property)
if and only if Conjecture 1.2 (resp. Conjecture 1.4) holds for it.

Remark 2.3. It is obvious that the strong ZD-property implies the ZD-property.

The following lemma shows that the strong ZD-property is invariant under
birational conjugation and iterations.

Proposition 2.4. The following statements are equivalents:

(i) (X, f) satisfies the strong ZD-property;
(ii) there exists m ≥ 1, such that (X, fm) satisfies the strong ZD-property;

(iii) there exists a pair (Y, g) which is birational to the pair (X, f), and (Y, f)
satisfies the strong ZD-property.

Remark 2.5. Lemma 2.6 implies also that the ZD-property is invariant under
iterations. However, a priori it is not clear that whether the ZD-property is
invariant under birational conjugation.

Proof of Proposition 2.4. It is clear that (i) implies (ii), (i) implies (iii) and (iii)
implies (i).

We only need to prove that (ii) implies (i).
The following Lemma is a special case of [22, Lemma 4.1].
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Lemma 2.6. If there exists m ≥ 1, and a nonconstant rational function H on
X, such that (fm)∗H = H, then there exists a nonconstant rational function G
on X, such that f ∗G = G.

Now assume that (X, fm) satisfies the strong ZD-property. By Lemma 2.6, we
may assume that exists no nonconstant rational function H ∈ k(X)\k satisfying
H ◦ fm = H. Let U be a Zariski dense open subset of X. We only need to show
that there exist a point p ∈ X(k) whose orbit Of (p) under f is contained in U and
is Zariski dense in X. We may assume that U ∩ (I(f)∪ I(f 2) · · · ∪ I(fm−1)) = ∅.
Set

V := U ∩ (∩m−1
i=1 f |−iU (U)).

We note that for every point p ∈ V , the sequence p, f(p), . . . , fm−1(p) are well
defined and are contained in U .

Since the pair (X, fm) satisfies the strong ZD-property, there exist a point
p ∈ X(k) whose orbit Ofm(p) under fm is contained in V and is Zariski dense in
X. It follows that the orbit Of (p) under f is contained in U and is Zariski dense
in X, which implies concludes the proof. �

Proof of Lemma 2.6. Let P1 =
∑m

i=0(f i−1)∗H, . . . , Sm =
∏m

i=0(f i−1)∗H be the
elementary symmetric polynomials of H, . . . , (fm−1)∗H. For every i = 1, . . . ,m,
f ∗Pi = Pi. We only need to show that there exists i = 1, . . . ,m such that Pi is
not constant on X. We have

Hm +
∑
i=1

(−1)iPiH
i = 0.

If all Pi are constant on X, then H is also constant on X, which is a contradiction.
Then we concludes the proof. �

The dynamical Mordell-Lang conjecture was proposed by Ghioca and Tucker
[23]. The following is a slight generalization of the dynamical Mordell-Lang con-
jecture for rational endomorphisms for rational endomorphisms.

Conjecture 2.7. Let X be a projective variety defined over k, let f : X 99K X
be an endomorphism, and V be any subvariety of X. Then for every subvariety
V of X and every point p ∈ X(k) whose orbit is well defined, the set {n ≥
0| fn(x) ∈ V } is a finite union of arithmetic progressions3.

Inspired by this conjecture, we introduce the following definition.

Definition 2.8. We say that a pair (X, f) satisfies the DML-property, if for every
subvariety V of X and every point p ∈ X(k) whose orbit is well defined, the set
{n ≥ 0| fn(x) ∈ V } is a finite union of arithmetic progressions.

This definition was introduced in [43] when X is a surface.

Proposition 2.9. Assume that (X, f) has both the ZD-property and the DML-
property, then it has the strong ZD-property.

3An arithmetic progression is a set of the form {an+ b| n ∈ N} with a, b ∈ N possibly with
a = 0.
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Proof of Proposition 2.9. We may assume that there exists no nonconstant f -
invariant rational function on X. Then there exists p ∈ X(k) whose orbit is well
defined and Zariski dense in X.

Let U be any Zariski dense open subset. Set Z := X \U. Since (X, f) satisfies
the DML-property, the set {n ≥ 0| fn(p) ∈ Z} is a finite union of arithmetic
progressions. If it is infinite, there exist a, b ∈ N, a 6= 0 such that

{an+ b| n ∈ N} ⊆ {n ≥ 0| fn(x) ∈ Z}.
It follows that

{fn(p)| n ≥ b} ⊆ Z ∪ · · · ∪ fa−1(Z).

Then the orbit Of (p) is not Zariski dense, which contradicts our assumption. So
there exists N > 0 such that fn(p) 6∈ Z for every n ≥ N. Then the orbit of fN(p)
is well defined, contained in U and Zariski dense in X. �

3. The adelic topology

Assume that the transcendence degree of k over Q is finite. Let X be a variety
defined over k. Let K0 be a finitely generated field extension over Q such that
K0 = k, and X is defined over K0 i.e. there exists a variety XK0 defined over
K0 such that X = XK0 ×SpecK0 Spec k. In this section, we will define the adelic
topology on X(k).

For every algebraic extension K over K0, we define XK := X ×SpecK0 SpecK.
We may canonically identify XK(k) with X(k).

Define C∞ := C. Let K be any finite field extension of K0. Denote by IK the
set of embeddings for fields τ : K ↪→ Cpτ for some pτ prime or ∞. Denote by

IfK the set of τ ∈ IK for which pτ is a prime. We say two embeddings for fields
τ, τ ′ ∈ IK are equivalent if the absolute values |τ(·)|, |τ ′(·)| on K are the same.

Denote by MK (resp. Mf
K) the set of equivalent classes in IfK .

For every τ ∈ IK , denote by Iτ the set of embeddings for fields τ : k = K ↪→
Cpτ satisfying τ |K = τ. Every τ ∈ Iτ , induces an embedding φτ : X(k) ↪→
XK(Cpτ ). On XK(Cpτ ), we have the natural pτ -adic topology when pτ is a prime
and the complex topology when pτ = ∞. We note that for every τ ∈ Iτ , the
image φτ (X(k)) ⊆ XK(Cpτ ) are the same.

Let τi : K ↪→ Cpi , i = 1, . . . ,m be m ( not necessarily different) elements in IK .
For every i = 1, . . . ,m, let Ui be a nonempty pi-adic open subset of XK(Cpi).

We define

XK((τi, Ui), i = 1, . . . ,m) := ∩mi=1(∪τi∈Iτiφ
−1
τi

(Ui)) ⊆ X(k).

Definition 3.1. A subset S of X(k) is called an adelic subset over K for some
finite extension K over K0, if it is takes form XK((τi, Ui), i = 1, . . . ,m) where
τi ∈ IK , i = 1, . . . ,m and Ui, i = 1, . . .m are open subsets of XK(Cpi).

We say that S is an adelic subset, if it is adelic over K for some finite extension
K over K0.

Remark 3.2. For every Zariski open subset U of X defined over K, the subset
U(k) ⊆ X(k) is an adelique subset over K and we have

XK((τi, Ui), i = 1, . . . ,m) ∩ U = XK((τi, Ui ∩ U), i = 1, . . . ,m).
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Remark 3.3. Let K ′ be a finite extension of K. Then every adelic subsets over
K is a finite union of adelic subsets over K ′.

Let τ ′i : K ′ ↪→ Cpi be an extension of of τi for i = 1, . . . ,m. Then we have

XK′((τ
′
i , Ui), i = 1, . . . ,m) ⊆ XK((τi, Ui), i = 1, . . . ,m).

Remark 3.4. Let Y be a variety over K. Let π : Y → X be a morphism over
K. Then we have

π−1(XK((τi, Ui), i = 1, . . . ,m)) = YK((τi, π
−1(Ui)), i = 1, . . . ,m).

Moreover, if π is étale, then we have π(YK(i, U)) = XK(i, π(U)) which is an
adelic subset.

Proposition 3.5. If X is irreducible and all Ui, i = 1, . . . ,m are not empty, then
the adelic subset XK((τi, Ui), i = 1, . . . ,m) is not empty.

Remark 3.6. Observe that

XK((τi, Ui), i = 1, . . . ,m) ∩XK((τ ′i , U
′
i), i = 1, . . . ,m′)

= XK((τi, Ui), i = 1, . . . ,m, (τ ′j, U
′
j), j = 1, . . . ,m′).

When X is irreducible, by Remark 3.3 and Proposition 3.5, the intersection of
finitely many nonempty adelic subsets is a nonempty adelic subset.

Definition 3.7. We say that S is an adelic open subset, if it is a union of adelic
subsets. Remark 3.3 and 3.6 shows that the adelic open subsets forms a topology
on X. We call it the adelic topology on X(k).

We note that, this adelic topology does not depend on the choice of base field
K0.

Example 3.8. Assume that k = Q, X := A1. Then it is defined over Q. Let
τ : Q ↪→ C be the unique embedding. Let U1 := {x ∈ C = A1(C)| |x| < 1}, U2 :=
{x ∈ C = A1(C)| |x| > 1} be two disjoint open set in A1(C). Then we have

{1/2, 1/3, . . . } ⊆ A1
Q(τ, U1) \ A1

Q(τ, U2);

{2, 3, . . . } ⊆ A1
Q(τ, U2) \ A1

Q(τ, U1)

and

{n±
√
n2 − 1, n = 2, 3, . . . } ⊆ A1

Q(τ, U1) ∩ A1
Q(τ, U2) = A1

Q((τ, U1), (τ, U2)).

We note that A1
Q(τ, U1) is an adelic open subset of A1(Q). Both A1

Q(τ, U1) and

A1(Q) \ (A1
Q(τ, U1)) are infinite. This shows that the adelic topology on A1(Q) is

strictly stronger than the Zariski topology.
We note that A1

Q(τ, U1) ∩ A1
Q(τ, U2) 6= ∅, even when U1 ∩ U2 = ∅.

Proposition 3.9. The adelic topology has the following basic properties.

(i) It is stronger then the Zariski topology.
(ii) It is T1 i.e. for every distinct points x, y ∈ X(k) there are adelic open

subsets U, V of X(k) such that x ∈ U, y 6∈ U and y ∈ V, x 6∈ V.
(iii) The morphisms between algebraic varieties over k are continuous under

the adelic topology.
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(iv) Étale morphisms are open w.r.t. the adelic topology.
(v) The irreducible components of X(k) in the Zariski topology are the irre-

ducible components of X(k) in the adelic topology.
(vi) Let K be any subfield of k which is finitely generated over Q such that X

is defined over K. Then the action

ρ : Gal(k/K)×X(k)→ X(k)

sending (σ, x) to σ(x) is continuous w.r.t. the adelic topology.

In particular, when X is irreducible, the intersection of finitely many nonempty
adelic open subsets of X(k) is nonempty. This also shows that, in general, the
adelic topology is not Hausdorff.

Proof of Proposition 3.9. The properties (i)-(v) easily follows from Remarks 3.2,
Remark 3.3, Remark 3.4 and Proposition 3.5.

We only need to prove (vi). Let U be an adelic subset of X(k) over a fi-
nite Galois extension L over K. We only need to show that ρ−1(U) is open in
Gal(k/K) × X(k). Let (σ, x) be a point in ρ−1(U). Observe that σ−1(U) is an
adelic subset of X(k). We have x ∈ σ−1(U). Moreover, since L is Galois over K,
σ(U) is still over L. It follows that for every τ ∈ Gal(k/L), τ(σ(U)) = σ(U). Then
we have (σ, x) ∈ (Gal(k/L)σ)× (σ−1(U)) and (Gal(k/L)σ)× (σ−1(U)) ⊆ ρ−1(U).
This concludes the proof. �

Remark 3.10. Here we define the adelic topology by using all valuations of k
from some emdeddings in Cp where p is a prime or∞. In fact, this is not necessary.
If we shrink or enlarge the range of valuations we consider, for example, only the
archimedean ones or the nonarchimedean ones, or all possible valuations etc., we
may get some topology which satisfies similar properties. However, the current
range is sufficient for this paper.

Remark 3.11. In this paper, we usually use the adelic topology in the following
way. Assume that X is irreducible. Let A1, . . . , Am be finitely many algebraic
objects defined over k. For example they can be a rational endomorphism of X,
a subvariety of X, a number in k etc. Let P1, . . . , Pn be finitely many algebraic
properties for points in X, which involve only A1, . . . , Am. There exists a subfield
K of k which is finitely generated over Q such that K = k and A1, . . . , Am, X
are defined over K. Once we showed that, for every i = 1, . . . , n, there exists an
embedding τi : k ↪→ Cp and a nonempty open subset Ui of X(Cp) such that the
property Pi is satisfied for all points in Ui, we get automatically that all points
in the nonempty adelic open subset XK((τ1|K , U1), . . . , (τn|K , Un)) satisfy all the
properties A1, . . . , Am.

Proof of proposition 3.5. There exists a finite extension K ′ of K, such that there
are extensions τ ′i : K ′ ↪→ Cpi of τi, i = 1, . . . ,m such that the absolute values
|τ ′i(·)|, i = 1, . . . ,m on K ′ are distinct. After replacing K by K ′ and τi by τ ′i , i =
1, . . . ,m, we may assume that | · |i := |τi(·)|, i = 1, . . . ,m on K are distinct.

Denote by Kpi the closure of τi(K) in Cpi .
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Lemma 3.12. [30, Page 35, Theorem 1]The image of the diagonal embedding

x 7→ (τ1(x), . . . , τm(x)) : K ↪→
m∏
i=1

Kpi

is dense.

We may assume that X is smooth and affine. Set d := dimX. There exists
a finite morphism π : XK → Ad

K . We still denote by π the induced morphism
X → Ad

k.
There exists a Zariski dense open subset V of Ad

K such that π|π−1(V ) is an étale
covering.

Let ψi : Ad
K(K) ↪→ Ad

K(Kpi) be the morphism

ψi : (x1, . . . , xd) 7→ (τi(x1), . . . , τi(xd)).

Let ψ : Ad
K(K) ↪→

∏m
i=1 Ad

K(Kpi) the diagonal embedding

ψ : x 7→ (ψ1(x), . . . , ψm(x)).

Lemma 3.12 shows that the image of ψ is dense. It follows that

ψ : V (K) ↪→
m∏
i=1

V (Kpi)

is dense. Indeed Lemma 3.12 showed that the image of the diagonal map

φ∞ : V (K) ↪→
∏

τ∈MK

V (Kpτ )

is dense.
Now we replace XK by π−1(V ). By Remark 3.4, we may replace XK by an

Galois étale cover over V which dominant XK . Then we may assume that π is
Galois. By [41, Proposition 3.3.1], there exists a thin set A ⊆ V (K) such that
for every point x ∈ V (K) \ A, the fiber π−1(x) is integral.

Set Wi := π(Ui) ⊆ V (Cpi), i = 1, . . . ,m. They are open subsets. After replacing
K by a finite extension, we may assume that there exists xi ∈ V (Kpi) ∩Wi.

Lemma 3.13. The image ψ(V (K) \ A) is dense in
∏m

i=1 V (Kpi).

By Lemma 3.13, there exists a point x ∈ V (K) \A such that for i = 1, . . . ,m,
φi(x) ∈ V (Kpi) ∩ Wi. Since π−1(x) is integral, we have π−1(x) = Spec (L) for
some finite field extension L over K. The inclusion L ⊆ k = K gives a morphism
Spec (k)→ π−1(x) ⊆ X. This defines a point z ∈ X(k).

For i = 1, . . . ,m, there exists y ∈ π−1(x)(Cpi) ∩ Ui. It gives a morphism τy :
L ↪→ Cpi which extends τi. We extend τy to a morphism τi : K ↪→ Cpi . Then we
have φi(z) ∈ Ui, i = 1, . . . ,m. We conclude the proof. �

Proof of Lemma 3.13. When K is a number field, the following lemma is [41,
Theorem 3.5.3].
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Lemma 3.14. Let V be a geometrically irreducible variety over K and let A be
a thin subset of V (K). For every finite subset S0 ⊆Mf

K, there exists a finite set

S ⊆Mf
K \ S0 such that the image of A in

∏
τ∈S V (Kpτ ) under the diagonal map

φS is not dense.

It follows that the image of the diagonal map φf : A ↪→
∏

τ∈Mf
K
V (Kpτ ) is

nowhere dense. Then the image of φ∞ : A ↪→
∏

τ∈MK
V (Kpτ ) is nowhere dense.

It follows that φ∞(V (K) \ A) is dense in
∏

τ∈MK
V (Kpτ ), this concludes the

proof. �

Proof of Lemma 3.14. Let L be a finite Galois extension of K. There exists a
subring R of K which is finitely generated over Z such that K = FracR. Set
WK := SpecR and let WL be the normalization of WK in L. After shrinking WK ,
we may assume that WK is regular.

Lemma 3.15. For every N ≥ 0, and every g ∈ R \ {0}, there exists a prime

p ≥ N and an embedding τ : K ↪→ Cp in IfK such that the absolute value |τ(·)|
on K is complete splitting in L, and τ(Rg) ⊆ C◦p.

In the proof of [41, Theorem 3.5.3], we used the fact that when K is a number
field, there are infinitely many places of K which is completely splitting in L.
Once we replace this fact by Lemma 3.15 in the proof of [41, Theorem 3.5.3], the
same proof still works without assuming K to be a number field. �

Proof of Lemma 3.15. After replacing R by Rg, we may assume that g = 1. Pick

any y ∈ WK(Q), such that the morphism WL → WR is étale at y. Denote by o
the image of x. Then the residue field κ(o) is a number field. Then o induces
an embedding ι : SpecOκ(o),S ↪→ WK , where S is a finite set of places of κ(o)
containing all infinite places.

Denote by q1, . . . , qs the pre-image of o is WL. Since the extension L over K is
Galois, the extensions κ(qi) over κ(o), i = 1, . . . , s are isomorphic to each other.

For every N > 0, there exists a closed point x ∈ SpecOκ(o),S which is com-
pletely splitting in the extension κ(q1) over κ(o) and whose residue field κ(x) is of
characteristic p > N . Then it is completely splitting in the extension κ(qi) over
κ(o) for every i = 1, . . . , s. Let m be the maximal ideal of R corresponding to
ι(x). The pre-image of ι(x) in WL has exactly [L : K] points. Now we only need
to show that there exists an embedding τ : R ↪→ C◦p, such that m = τ−1(C◦◦p ).

For every P ∈ R \ {0}, denote by ZP the set {z ∈ WK(Cp)| P (z) = 0}.
It is a nonwhere dense closed subset of WK(Cp). Observe that the topology of
WK(Cp) can be defined by a complete metric. Since R\{0} is countable, by Baire
category theorem, WK(Cp) \ (∪R\{0}ZP ) is dense in WK(Cp). Let P1, . . . , Pn be a
set of generator of m. Then B := {z ∈ WK(Cp)| |Pi(z)| < 1} is an open subset

of WK(Cp). Pick any inclusion Q ⊆ Cp. Using this inclusion, we may view y as a
point in B ⊆ WK(Cp). So B is not empty. Pick any point z ∈ B \ ((∪R\{0}ZP )).
Then the inclusion τz : R ↪→ Cp defined by z is what we need. �
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3.1. Invariant polydisk and the dynamical Mordell-Lang conjecture.
Assume that the transcendence degree of k over Q is finite. Let X be an ir-
reducible variety defined over k of dimension d. Let K be a finitely generated
field extension over Q such that K = k, and X is defined over K. Let f : X 99K X
be a dominant rational endomorphism of X defined over K. There exists a pro-
jective variety XK → Spec (K) such that X = XK ×Spec (K) Spec (k) and an
endomorphism fK : XK 99K XK such that f = fK ×Spec (K) id.

As we showed in Proposition 2.9, under the assumption of the dynamical
Mordell-Lang conjecture, the ZD-property implies the strong ZD-property. Un-
fortunately, the dynamical Mordell-Lang conjecture is still open in general. In
this section, we use the strategy in [1] and [7] to show that the the dynamical
Mordell-Lang conjecture holds for the points in a nonempty adic open subsets of
X(K).

We first need the following result.

Proposition 3.16. There exists m ≥ 1, a prime p ≥ 3 and an embedding i :
K ↪→ Cp, such that there exists an open subset V ' (C◦p)d of XK(Cp), which is
invariant by fm, the orbit of the points in V are well defined and

fm|V = id mod p.

Moreover, there exists an analytic action Φ : C◦p × V → V of (C◦p,+) on V such
that for every n ∈ Z≥0, Φ(n, ·) = fmn|V (·).

In particular, for every x ∈ V , the Zariski closure of the orbit Ofm(x) in X is
irreducible.

Proof of Proposition 3.16. There exists a subring R of K, which is finitely gen-
erated over Z, such that K = k.

Pick a model π : XR 99K Spec (R) which is projective over Spec (R) and whose
generic fiber is XK . Then f extends to a rational self-map fR : XR 99K XR.
Denote by BR the union of indeterminacy locus of fR, the nonétale locus of fR,
and the singular locus of XR.

Lemma 3.17. There exists a nonempty, affine, open subset U of Spec (R) such
that

(1) U is of finite type over Spec (Z);
(2) for every point y ∈ U , the fiber Xy is absolutely irreducible and dimK(y) Xy =

dimK XK, where K(y) is the residue field at y;
(3) for every y ∈ U , the fiber Xy is not contained in BR.

Proof of Lemma 3.17. To prove the lemma, we shall use the following fact: For
any integral affine scheme Spec (A) of finite type over Spec (Z) and any nonempty
open subset V1 of Spec (A), there exists an affine open subset V2 of V1 which is
of finite type over Spec (Z). Indeed, we may pick any nonzero element g ∈ I
where I is the ideal of A that defines the closed subset Spec (A) \ V and set
U := Spec (A) \ {g = 0}. Then U = Spec (A[1/g]) is of finite type over Spec (Z).

Since XK is absolutely irreducible, Proposition 9.7.8 of [25] gives an affine
open subset V of Spec (R) such that Xy is absolutely irreducible for every y ∈ V .
We may suppose that V is of finite type over Spec (Z). By generic flatness (see
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[25], Thm. 6.9.1), we may change V in a smaller subset and suppose that the
restriction of π to π−1(V ) is flat. Then, the fiber Xy is absolutely irreducible and
of dimension dimK(y) Xy = dimK XK for every point y ∈ V .

Denote by BK the union of the indeterminacy locus, the nonétale locus of f in
XK , the singular locus of XK and ZK . Observe that BK is exactly the generic
fiber of π|BR : BR → Spec (R). By generic flatness, there exists a nonempty, affine,
open subset U of V such that the restriction of π to every irreducible component
of π−1

|BR(U) is flat. Then for y ∈ U , the fiber Xy is not contained in BR. Then,

we shrink U to suppose that U is of finite type over Spec (Z). Since

dimK(y)(BR ∩Xy) = dimK(BK) < dimK XK = dimK(y) Xy

for every y ∈ V , the fiber Xy is not contained in BR. �

By Lemma 3.17, we may replace Spec (R) by U and assume that

• for every y ∈ Spec (R), the fiber Xy is absolutely irreducible;
• for every s ∈ S and y ∈ Spec (R), the fiber Xy is not contained in BR,s.

Recall the following Lemma.

Lemma 3.18 (see [31, 5]). Let L be a finitely generated extension of Q and B be
a finite subset of L. The set of primes p for which there exists an embedding of
L into Qp that maps B into Zp has positive density4 among the set of all primes.

Since R is integral and finitely generated over Z, by Lemma 3.18 there exists
infinitely many primes p ≥ 3 such that R can be embedded into Zp ⊆ C◦p. This
induces an embedding Spec (Zp)→ Spec (R). Set XCp := XR ×Spec (R) Spec (Cp),
and fCp := fR×Spec (R)id. All fibers Xy, for y ∈ Spec (R), are absolutely irreducible
and of dimension d; hence, the special fiber XFp of XC◦p → Spec (C◦p) is absolutely
irreducible. Denote by BCp the union of indeterminacy locus, the nonétale of fCp ,
the singular locus of XCp . Since BCp ⊂ BR ∩XFp , the fiber XFp is not contained

in BCp . We note that XFp and f |XFp\BCp
are indeed defined over Fp.

Apply [1, Corollary 2] to the rational map f |XFp\BCp
: XFp \BCp 99K XFp \BCp

there exists a periodic point x ∈ XFp(Fp)\BCp whose orbit under fCp is contained

in XFp(Fp) \ BCp . Observe that x is a regular closed point in XC◦p . There exists

m ≥ 1 such that f |mXFp
(x) = x and (df |mXFp

)x = id. Let U be the open subset of

X(Cp) consisting of points whose specialization is y. Then we have U ' (C◦◦p )d.
Then we have fm(U) = U and the orbit of the points in U are well defined. The
restriction of fm on U is an analytic automorphism taking form

fm|U : (x1, . . . , xd) 7→ (F1, . . . , Fd)

where Fn =
∑

I a
n
Ix

I , n = 1, . . . d are analytic functions on U with anI ∈ C◦◦p . Since
(df |mXFp

)x = id, we have

fm|U = id mod C◦◦p .

4By positive density, we mean that the proportion of primes p among the first N primes
that satisfy the statement is bounded from below by a positive number if N is large enough.
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There exists l ∈ Q+, such that

fm|U = id mod p−2l.

Set V := {(x1, . . . , xd) ∈ U | |xi| ≤ p−l} ' (C◦p)d. Then V is invariant by fm

and

fm|V = id mod p−l.

After replacing m by some multiple of m, we get

fm|V = id mod p.

By [37, Theorem 1], there exists an analytic action Φ : C◦p× V → V of (C◦p,+)
on V such that for every n ≥ Z≥0, Φ(n, ·) = fmn|V (·).

For every x ∈ V , denote by Φx : C◦p → V the analytic morphism t → Φ(t, x).
Denote Z the Zariski closure of Ofm(x) in X. Let Z1, . . . , Zs be the irreducible
component of Z. We have C◦p = ∩si=1Φ−1

x (Zi). Since C◦p is irreducible in the

Zariski topology, we have Φ−1
x (Zi) = Cp for some i = 1, . . . , s. It follows that

Ofm(x) ⊆ Φx(C◦p) ⊆ Zi. It follows that Z = Zi is irreducible. We concludes the
proof. �

The following result says that the dynamical Mordell-Lang conjecture holds for
the points in some dense adelic open subset of X(k).

Proposition 3.19. There exists a prime p ≥ 3, an embedding i : K ↪→ Cp, and
an open subset V ' (C◦p)d, such that for every proper subvariety Z of X and point
x ∈ XK(i, V ), the orbit of x is well defined and the set {n ≥ 0| fn(x) ∈ Z} is a
finite union of arithmetic progressions. In particular, if the orbit of x is Zariski
dense in X, then {n ≥ 0| fn(x) ∈ Z} is finite.

Proof of Proposition 3.19. By Proposition 3.16, there exists m ≥ 1, a prime p ≥ 3
and an embedding i : K ↪→ Cp, such that on XK(Cp) there exists an open subset
V ' (C◦p)d, such that V is invariant by fm, the orbit of the points in V are well
defined and there exists an analytic action Φ : C◦p× V → V of (C◦p,+) on V such
that for every n ∈ Z≥0, Φ(n, ·) = fmn|V (·).

Let x be a point in XK(i, V ), there exists i ∈ Ii such that φi(x) ∈ V. Using i to
view k as a subfield of Cp and identify x with φi(x) ∈ V. Set Zj := (f |jV )−1(Z), j =
0, . . . ,m−1. Set g := fm|V , we only need to show that for every j = 0, . . . ,m−1,
the set Sj := {n ≥ 0| gn(x) ∈ Zj} is a finite union of arithmetic progressions.
Observe that Sj := {n ≥ 0| gn(x) ∈ Zj} ⊆ Tj := {t ∈ C◦p| Φ(t, x) ∈ Zj}, j =
0, . . . ,m − 1. Observe that Tj is a Zariski closed subset of the disk C◦p. If Sj
is infinite, then Tj is Zariski dense in C◦p. It follows that Sj = Z≥0. So Sj, j =
0, . . . ,m− 1 is is either finite or Z≥0.

Now assume that the orbit Of (x) of x is Zariski dense in X. If {n ≥ 0| fn(x) ∈
Z} is not finite, there exists a ≥ 0, b ≥ 1 such that fa+bn(x) ∈ Z for n ≥ 0. It
follows that

Of (x) ⊆ {x, . . . , fa−1(x)} ∪ Z ∪ · · · ∪ f b−1(Z)

which is not Zariski dense. This contradicts to our assumption, which concludes
the proof. �
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3.2. The adelic version of the Zariski density orbit conjecture. Assume
that the transcendence degree of k over Q is finite. Let X be an irreducible
variety defined over k. and f : X 99K X be a dominant rational endomorphism.

Definition 3.20. We say that a pair (X, f) satisfies the adelic ZD-property,
if either there exists a nonconstant rational function H ∈ k(X) \ k satisfying
H ◦ f = H or there exist a nonempty adelic open subset A of X(k) such that
for every a point x ∈ X(k) whose orbit Of (x) under f is well defined and Zariski
dense in X.

We say that a pair (X, f) satisfies the adelic ZD2-property, if there exist a
nonempty adelic open subset A of X(k) such that for every a point x ∈ X(k)
whose orbit Of (x) under f is well defined and Zariski dense in X.

Then adelic ZD2-property implies adelic ZD-property.

Remark 3.21. Proposition 3.16 shows that when X is a curve, (X, f) satisfies
the adelic ZD2-property if and only if f is not of finite order. In particular, (X, f)
satisfies the adelic ZD-property

Proposition 3.22. The following statements are equivalents:

(i) (X, f) satisfies the adelic ZD-property (resp. adelic ZD2-property);
(ii) there exists m ≥ 1, such that (X, fm) satisfies the adelic ZD-property

(resp. adelic ZD2-property);
(iii) there exists a pair (Y, g) which is birational to the pair (X, f), and (Y, f)

satisfies the adelic ZD-property (resp. adelic ZD2-property).

Proof of Proposition 3.22. We only prove it for adelic ZD-property. For adelic
ZD2-property, the proof is similar.

It is clear that (i) implies (ii) and (iii). Lemma 2.6 shows that (ii) implies (i).
We only need to show that (iii) implies (i). Let π : Y 99K X be a birational

morphism satisfying π ◦ g = f ◦ π. If there exists a nonconstant rational function
H ∈ k(Y ) \ k satisfying H ◦ g = H, there is nothing to proof.

Now assume that exist a nonempty adelic open subset A of X(k) such that for
every a point x ∈ X(k) whose orbit Of (x) under f is well defined and Zariski
dense in X. Let U be a Zariski subset of Y such that π|U : U → X is an
isomorphism to its image. Apply Proposition 3.19 to g|U : U 99K U , there exists
a nonempty adelic open subset A1 of U(k) such that for every point x ∈ A, its
orbit under g|U is well defined. Then for every x ∈ A∩A1, the orbit of x under g
is well defined, contained in U and is Zariski dense in Y . By Remark 3.6, A∩A1

is a nonempty adelic open subset of Y (k). Then π(A ∩ A1) a nonempty adelic
open subset of X(k). Then for every x ∈ π(A ∩ A1), the orbit of x under f is
well defined, contained in π(U) and is Zariski dense in X, which concludes the
proof. �

Lemma 3.23. Let X ′ be an irreducible variety over k. Let f ′ : X ′ 99K X ′ be
a rational dominant endomorphism. Let π : X ′ 99K X be a generically finite
morphism such that π ◦ f ′ = f ◦ π. Then (X ′, f ′) satisfies the adelic ZD-property
(resp. adelic ZD2-property) if and only if (X, f) satisfies the adelic ZD-property
(resp. adelic ZD2-property).



20 JUNYI XIE

Proof of Lemma 3.23. We only prove it for adelic ZD-property. For adelic ZD2-
property, the proof is similar.

After shrinking X ′ we may assume that π is well defined, locally finite and
étale.

We first assume that (X ′, f ′) satisfies the adelic ZD-property.
Assume that there exists a nonconstant rational function H ′ on X ′ such that

(f ′)∗H ′ = H ′. We have H ′ ∈ k(X ′) ⊆ k(X). Set m := [k(X ′) : k(X)]. Then
k(X ′) is a m dimensional k(X) vector space. Denote by

Tm +
m∑
i=1

(−1)iPiT
m−i

the characteristic polynomial of the k(X)-linear operator

k(X ′)→ k(X ′) : g 7→ H ′g.

We have Pi ∈ k(X) and f ∗(Pi) = Pi, i = 1, . . . ,m. If Pi ∈ k for i = 1, . . . ,m,
then H ′ ∈ k, which is a contradiction. It follows that there exists i = 1, . . . ,m,
such that Pi is a nonconstant rational function on X.

Now we may assume that there exists a nonempty adelic open subset A of
X ′(k) such that for every point p ∈ A, the orbit of p is well defined, contained in
π−1(X \ I(f)) and Zariski dense in X ′. Then for every p in the nonempty adelic
open subset π(A) ⊆ X ′(k), the orbit Of (p) is Zariski dense in X.

Next we assume that (X, f) satisfies the adelic ZD-property. If there exists a
nonconstant rational function H on X such that (f)∗H = H, then H ′ := H ◦ π
is a nonconstant rational function on X ′ such that (f ′)∗H ′ = H ′.

Now we may assume that there exists a nonempty adelic open subset A of
X(k) such that for every point p ∈ A, the orbit of p is well defined, contained
in π(X ′ \ I(f ′)) ∩ (X \ I(f)) and Zariski dense in X. Then for every p in the
nonempty adelic open subset π−1(A) ⊆ X(k), the orbit Of ′(p) is Zariski dense in
X ′, which concludes the proof. �

The following result shows that the adelic veriosn of the Zariski densiy conjec-
ture implies the strong Zariski densiy conjecture.

Corollary 3.24. Let k′ be an algebraically closed field extension over k. Set
Xk′ := X ×Speck Spec k′ and fk′ := f ×Speck id. If the pair (X, f) satisfies the
adelic ZD-property, then (Xk′ , fk′) satisfies the strong ZD-property.

Proof of Corollary 3.24. Let U ′ be a nonempty Zariski open of Xk′ . Set V :=
∪σ∈Gal(k′/k)σ(U ′). Then there exists a nonempty Zariski open U of X such that
U ′ = U ×Speck Spec k′. Denote by φ : X(k) ↪→ Xk′(k

′) the natural embedding.
Observe that for every y ∈ X(k), φ(y) is invariant under the action of Gal(k′/k).

By Proposition 3.22, the pair (U, f |U) is satisfies the adelic ZD-property. Then
there exists a nonempty adelic open subset A of U(k) for every x ∈ A, the orbit
of x under f is well defined, contained in U and is Zariski dense in X. Then
we have φ(x) ∈ V , its orbit under fk′ is well defined, contained in V and is
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Zariski dense in Xk′ . For every n ≥ 0, there exists σ ∈ Gal(k′/k) such that
φ(fnk (x)) = fnk′(φ(x)) ∈ σ(U). It follows that

φ(fnk (x)) = σ−1(φ(fnk (x))) ∈ U,

which concludes the proof. �

3.3. Invariant curves. In this section, we assume further that X is surface. The
aim of this section is to prove the following result.

Proposition 3.25. If the pair (X, f) does not satisfy the adelic ZD2-property,
then there exists m ≥ 1, such that there exist infinitely many irreducible curves
C of X satisfying fm(C) ⊆ C.

Proof of Proposition 3.25. Let K be a subfield of k which is finitely generated
over Q, K = k such that X and f are defined over K.

By Proposition 3.16, there exists m ≥ 1, a prime p ≥ 3 and an embedding
i : K ↪→ Cp, such that on XK(Cp) there exists an open subset V ' (C◦p)d, such
that V is invariant by fm, the orbit of the points in V are well defined and there
exists an analytic action Φ : C◦p × V → V of (C◦p,+) on V such that for every
n ∈ Z≥0, Φ(n, ·) = fmn|V (·). Observe that for every point x ∈ V \ Fix(fm), the
orbit of x is infinite. Since the pair (X, f) does not satisfy the adelic Zariski dense
property, V \ Fix(fm) 6= ∅.

Observe that for every point x in XK(i, V \ Fix(fm)), the orbit of x is well
defined and is infinite. Let B be any proper Zariski close subset of X containing
Fix(f). Since the pair (X, f) does not satisfy the adelic Zariski dense property,
there exists z ∈ XK(i, V \ B), whose orbit is not Zariski dense. Denote by Zz
the Zariski closure of Ofm(z) in X. There exists i ∈ Ii such that φi(z) ∈ V. By
Proposition 3.16, Zz is irreducible. Then we have fm(Zz) = Zz and Zz 6⊆ B.
Since z is not preperiodic, dimZz = 1. It follows that for every proper Zariski
close subset of X, there exists an irreducible and fm-invariant curve C of X which
is not contained in B. This concludes the proof. �

The following result generalizes [44, Theorem 1.3] and [9, Theorem 1.3.] in the
adelic setting.

Corollary 3.26. Assume that f is a birational morphism on the surface X, then
the pair (X, f) satisfies the adelic ZD-property.

Proof of Corollary 3.26. If the pair (X, f) does not satisfy the adelic ZD2-property,
then there exists m ≥ 1, such that there exist infinitely many irreducible curves
C of X satisfying fm(C) ⊆ C.

By [15, Theorem B], fm preserves a nonconstant rational function. Then (X, f)
satisfies the adelic ZD-property, which concludes the proof. �

3.4. Skew-linear self-maps. In [24, Theorem 1.4], Ghioca and the author proved
the following theorem.
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Theorem 3.27. 5 Let g : X 99K X be a dominant rational map defined over
an algebraically closed field K of characteristic zero, let N ≥ 1, and let f :
X×AN 99K X×AN be a dominant rational map defined by (x, y) 7→ (g(x), A(x)y)
where A ∈ GLN(k(X)). If the pair (X, g) satisfies the strong ZD-property, then
the pair (X × AN , f) satisfies the ZD-property.

In this section, we will prove the following adelic version of it.

Theorem 3.28. Let g : X 99K X be a dominant rational map defined over
k and N ≥ 1. Let f : X × AN 99K X × AN be a dominant rational map
defined by (x, y) 7→ (g(x), A(x)y) where A ∈ GLN(k(X)) and h : X × PN−1 99K
X × PN−1 be a dominant rational map defined by (x, y) 7→ (g(x), C(x)y) where
C ∈ PGLN(k(X)). If the pair (X, g) satisfies the adelic ZD-property, then the
pairs (X × AN , f) and (X × PN , h) also satisfy the adelic ZD-property.

Proof of Theorem 3.28. Assume that the pair (X, g) satisfies the adelic ZD-property.
We first prove that (X × AN , f) satisfies the adelic ZD-property. Denote by

π : X×AN → X the projection to the first coordinate. Let B be the set of points
x ∈ X such that f is not a locally isomorphism on the fiber π−1(x). Then B is a
proper closed subset of X.

If there exists a nonconstant rational function H on X invariant under g, then
the nonconstant rational function H ◦ π on X × AN is invariant under f . So
Theorem 3.28 holds.

Now we may assume that there is no nonconstant rational function on X in-
variant under g. Then there exists a nonempty adelic open subset A of (X \B)(k)
such that for all point x ∈ A, the orbit of x under g|X\B is well defined and is
Zariski dense in X.

Let I be the set of all invariant subvarieties in X × AN for which every irre-
ducible component of V dominates X under the projection map π : X×AN → X.
Then [24, Theorem 2.1] yields that (perhaps, at the expense of replacing f by a
suitable iterate) there exists an irreducible variety Y endowed with a dominant
rational self-map

g′ : Y 99K Y

and a generically finite map τ : Y 99K X satisfying τ ◦ g′ = g ◦ τ such that
there exists a birational map h on Y ×AN = Y ×X X ×AN of the form (x, y) 7→
(x, T (x)y) where T (x) ∈ GLN(k(Y )) such that for any subvariety V ∈ I, we have

h−1((τ ×X id)#(V )) = Y × α(V ) ⊆ Y × AN ,

where α(V ) is a subvariety of AN and (τ ×X id)#(V ) is the strict transform of V
by the rational map τ ×X id. Let f ′ : Y × AN → Y × AN be the rational map
defined by

g′ ×(X,g) f : (x, y) 7→ (g′(x), A(τ(x))y).

5In [24], we said (X, g) is a good pair if is satisfies the strong ZD-property. The original
statement of [24, Theorem 1.4] said that if (X, g) satisfies the strong ZD-property, then the pair
(X × AN , f) satisfies the strong ZD-property. But its proof only showed the slightly weaker
conclusion as we stated here.
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We have (τ × id) ◦ f ′ = f ◦ (τ × id). Let

F := h−1 ◦ f ′ ◦ h : Y × AN → Y × AN .

Then F is the map (x, y) 7→ (g′(x), B(x)y) whereB(x) := T−1(g′(x))A(τ(x))T (x).
Let ρ := (τ×id)◦h. Then we have ρ◦F = f ◦ρ. For any V ∈ I, we see that ρ#(V )
is invariant by F and it has the form Y × α(V ). Denote by GV the subgroup of
GLN(k) consisting for g ∈ GLN(k) satisfying gα(V ) = α(V ). Set G := ∩V ∈IGV .

After replacing Y by some smaller open subset, we may assume that τ, ρ are
regular morphism. Furthermore, we may assume that τ, ρ are locally finite and
étale. Then τ−1(A) is a nonempty adelic open subset of Y. Let

p : Y × AN → Y

be the projection to the first coordinate. Let B′ be the set of points x ∈ Y such
that F is not locally an isomorphism on the fiber p−1(x). Then B′ is a proper
closed subset of Y . Since Y × α(V ) is invariant by F for every V ∈ I, we get
B(x) ∈ G for x ∈ Y \B′. By Lemma 3.23, we only need to show that (Y ×AN , F )
satisfies the adelic ZD-property.

By Proposition 3.19, there exists a nonempty adelic open subset A1 of Y \ B′
such that for every point x ∈ A1, its orbit under F |Y \B′ is well defined. Since
τ is flat, τ(A1) is a nonempty adelic open subset of X(k). For every point x ∈
τ−1(A) ∩A1, the orbit of x is well defined, contained in Y \ B′ and Zariski dense
in Y.

By [40, Theorem 2], either there exists a nonconstant rational function φ ∈
k(AN) such that φ ◦ g′ = φ for all g′ ∈ G or there exists a nonempty G-invariant
Zariski open subset UG ⊆ AN such that for every y ∈ UG, G · y is Zariski dense
in AN .

First assume that the later holds. Then (A1 ∩ ρ−1(A))× UG(k) is a nonempty
adelic open subset of Y × AN . For every q ∈ (A1 ∩ ρ−1(A)) × UG(k), the orbit
of q is well defined and contained in p−1(Y \B1) ∩ ρ−1(X \ B). We need to show
that that the orbit OF (q) is Zariski dense in Y × AN . Denote by Z the Zariski
closure of OF (q). Since Og′(p(q)) is Zariski dense in Y , then Z has at least one
irreducible component which dominates X. Let W be the union of all irreducible
components of Z which dominate Y ; then ρ(W ) ∈ I and ρ(W ) 6= Y ×AN . There

exists m ≥ 0 such that Fm(q) ∈ ρ#(ρ(W )) = Y × α(ρ(W )) and so,

F n(q) ∈ Y × α(ρ(W ))

for all n ≥ m. Write q = (x, y) ∈ (A1 ∩ ρ−1(A))× UG(k), we have

F n(q) = (g′m(x), B(g′m−1(x)) . . . B(x)y).

It follows that B(g′m−1(x)) . . . B(x)y ∈ α(ρ(W )). Since B(z) ∈ G ⊆ Gρ(W ) for

z ∈ Y \ B′, we get y ∈ α(ρ(W )). It follows that G · y ⊆ α(ρ(W )), which is not
Zariski dense in AN . Then we get a contradiction.

Now we assume that there exists a nonconstant rational function φ ∈ k(AN)
such that φ ◦ g′ = φ for all g′ ∈ Gα. Let χ be the rational function on Y × AN

defined by (x, y) 7→ φ(y). Then χ is nonconstant and is invariant by F .



24 JUNYI XIE

Now we prove that (X × PN−1, h) satisfies the adelic ZD-property. Denote by
π : X × PN−1 → X the projection to the first coordinate. Let B be the set of
points x ∈ X such that h is not a locally isomorphism on the fiber π−1(x). Then
B is a proper closed subset of X.

If there exists a nonconstant rational function H on X invariant under g, then
the nonconstant rational function H ◦ π on X × PN−1 is invariant under h. So
Theorem 3.28 holds.

Now we may assume that there is no nonconstant rational function on X in-
variant under g. Then there exists a nonempty adelic open subset A of (X \B)(k)
such that for all point x ∈ A, the orbit of x under g|X\B is well defined and is
Zariski dense in X.

Let J be the set of all invariant subvarieties in X × PN−1 for which every
irreducible component of V dominates X under the projection map π : X ×
PN−1 → X.

The following result is an analogue of [24, Theorem 2.1] in this setting.

Lemma 3.29. At the expense of replacing h by a suitable iterate, there exists an
irreducible variety Y endowed with a dominant rational self-map

g′ : Y 99K Y

and a generically finite map τ : Y 99K X satisfying τ ◦ g′ = g ◦ τ such that
there exists a birational map β on Y × PN−1 = Y ×X X × PN−1 of the form
(x, y) 7→ (x, T (x)y) where T (x) ∈ PGLN(k(Y )) such that for any subvariety
V ∈ J , we have

β−1((τ ×X id)#(V )) = Y × γ(V ) ⊆ Y × PN−1,

where γ(V ) is a subvariety of PN−1.

After replacing [24, Theorem 2.1] by Lemma 3.29, the proof above for the pair
(X × AN , f) yields directly the proof for the pair (X × PN−1, g). We concludes
the proof. �

Proof of Lemma 3.29. SinceH1
ét(k(X),Gm) = 0, there existsD(x) ∈ GLN(k(X))

whose image in PGLN(k(X)) is C(x). Consider the rational morphism f : X ×
(AN\{0}) 99K X×(AN\{0}) sending (x, y) to (x,D(x)y). Denote θ : (AN\{0})→
PN−1 the morphism (x1, . . . , xN) 7→ [x1 : . . . , : xN ]. Set

φ := id× θ : X × (AN \ {0})→ X × PN−1.

Then we have φ ◦ f = h ◦ φ. Denote by I the set of all f -invariant subvarieties
in X × AN for which every irreducible component of V dominates X under the
projection map π1 : X × AN → X. For every W ∈ J , define Ŵ := φ−1(W ). We

have Ŵ ∈ I.
By [24, Theorem 2.1], at the expense of replacing h, f by a suitable iterate,

there exists an irreducible variety Y endowed with a dominant rational self-map

g′ : Y 99K Y

and a generically finite map τ : Y 99K X satisfying τ ◦ g′ = g ◦ τ such that there
exists a birational map β̂ on Y × AN = Y ×X X × AN of the form (x, y) 7→
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(x, T̂ (x)y) where T̂ (x) ∈ GLN(k(Y )) such that for any subvariety V ∈ I, we
have

β̂−1((τ ×X id)#(V )) = Y × α(V ) ⊆ Y × AN ,

where α(V ) is a subvariety of AN and (τ ×X id)#(V ) is the strict transform of V

by the rational map τ ×X id. Let T (x) be the image of T̂ (x) in PGLN(k(X)).
Let β : Y × PN−1 → Y × PN−1 be the morphism (x, y) 7→ (x, T (x)y). For every

V ∈ J , define γ(V ) := θ(α(V̂ )). Then we get

β−1((τ ×X id)#(V )) = Y × γ(V ) ⊆ Y × PN−1,

which concludes the proof. �

3.5. Diophantine condition. We say that λ1, λ2 ∈ Cp \ {0} satisfy the Dio-
phantine condition [27], if |λ1| = |λ2| = 1 and there exists C, β > 0 such that for
every n1, n2 ∈ Z≥0, n1 + n2 ≥ 2 and i = 1, 2, we have

|λn1
1 λ

n2
2 − λi| ≥ C|n1 + n2|−βR ,

here we denote by | · |R the absolute value on R. By [46], if λ1, λ2 ∈ Cp \ {0} are
algebraic numbers, then this condition is always satisfied.

Proposition 3.30. Let λ1, λ2 ∈ k \ {0} be two multiplicatively independent6 ele-
ments. Then there exists a prime p, a positive integer m ∈ Z>0 and an embedding
τ : Q(λ1, λ2) ↪→ Cp such that τ(λ1)m, τ(λ2)m satisfy the Diophantine condition.

Proof of Proposition 3.30. If λ1, λ2 ∈ Q, we conclude the proof by [46].
If the transcendence degree of Q(λ1, λ2) over Q is two, then we only need to

show that there are elements µ1, µ2 ∈ 1+pZp which are algebraically independent
over Q and satisfy the Diophantine condition. This is clear by [27, Proposition
3].

Now we may assume that the transcendence degree of Q(λ1, λ2) over Q is

one. We may assume that λ1 6∈ Q and λ2 ∈ Q(λ1). Assume that the minimal
polynomial of λ2 over Q(λ1) is as follows:

P (t, x) = xd + ad−1x
d−1 + · · ·+ a0 = 0

where ai ∈ Q(λ1), i = 1, . . . , d. Observe that a0 6= 0.
There exists a finite set S ⊆ Q such that ai ∈ O(A1\S). Denote by Y the curve
{(t, y) ∈ (A1\S)×A1\{0}| yd+ad−1(t)yd−1 + · · ·+a0(t) = 0} and π : Y → A1\S
the projection to the first coordinate. After enlarge S, we may assume that π
is étale. Pick a root of unity µ ∈ Q \ S and a point (µ, c) ∈ π−1(µ). Observe
that c ∈ Q. Let K be a number field who contains µ, c and all coefficients of
ai, i = 0, . . . , d − 1. By Lemma 3.18, there exists a prime p > 2 which does not

6We say that λ1, λ2 are multiplicatively independent if for every (m1,m2) ∈ Z2 \ {(0, 0)},

λm1
1 λm2

2 6= 1.
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divide the order of µ, an embedding τ1 : K → Qp such that ai(µ) ∈ Zp and
(dπ)|(µ,c) is invertible modulo p. Then there exists

φ(t) =
∑
i≥1

cit
i,

where ci ∈ Zp, ci → 0 as i→∞ and P (µ+ t, c+φ(t)) = 0. There exists m ∈ Z>0,
such that p 6 |m, µm = 1 and cm = 1 mod p. Set

α(t) := (µ+ t)m − 1.

We have α(0) = 0 and α|pZp : pCp → pCp is an analytic automorphism. Set
β(t) := (c + φ(α−1(t)))m − 1. Then β converges on pCp and β(pCp) ⊆ pCp.

Observe that the coefficients of β are contained in Zp∩Q. For every u ∈ pCp \Q,
there exists an embedding

τu : Q(λ1, λ2) ↪→ Cp

sending λ1 to 1 + u and λ2 to 1 + β(u). Then we only need to show that there
exists u ∈ pCp\Q, such that 1+u and 1+β(u) satisfy the Diophantine condition.

We note that exp(x) and log(x) are well defined analytic function on pCp and
satisfy:

| log(1 + x)| = | exp(x)− 1| = |x|, x ∈ pCp.

Set δ(t) := log(1 + β(exp(t))), which converges on pCp. Write δ(t) =
∑

i≥0 bit
i.

Lemma 3.31. There exists r ∈ Q>0 ∩ [1,+∞), and C, β > 0 such that for every
v ∈ Cp with norm |v| = p−r, for every m,n ∈ Z,m+ n ≥ 1 and i = 1, 2, we have

|mv + nδ(v)| ≥ C|m+ n+ 1|−βR .

Pick r as in Lemma 3.31. Pick u ∈ pCp \ Q with norm |u| = p−r. Then
v := log(1 + u) has norm |v| = p−r. We conclude the proof by Lemma 3.31. �

Proof of Lemma 3.31. We first have the following observations:

(i) for m,n ∈ Z,m+ n ≥ 1, we have

max{|m|R, |n|R} ≤ |m+ n+ 1|R;

(ii) for n ∈ Z \ {0}, we have |n| ≥ |n|−1
R .

Write δ(t) =
∑

i≥0 bit
i. We note that bi ∈ Q, i ≥ 0.

We first treat the case where bi = 0 for all i 6= 1. Then we have δ(t) = b1t.
Since exp(t) and exp(δ(t)) is multiplicatively independent, we have b1 6∈ Q. Pick
any r = 1 and β := 3. By the p-adic Thue-Siegel-Roth theorem[38], there exists
C1 > 0 such that for m,n ∈ Z,m+ n ≥ 1, we have

|m+ nb1| ≥ C1 max{|m|R, |n|R}−3.

Set C := C1p
−1. Then for every v ∈ pCp with norm |v| = p−1, m, n ∈ Z,m+n ≥ 1,

we have

|mv + nδ(v)| = |m+ nb1|p−1 ≥ C1p
−1 max{|m|R, |n|R}−3 ≥ C|m+ n+ 1|−3

R .

This concludes the proof.
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Now, we may assume that the set {i ∈ Z≥0 \ {1}| bi 6= 0} is nonempty and let
s be the smallest integer in this set.

There exists l ∈ Z>0 such that |blpl| > |bipi| for all i 6= 1, l. Pick r := l+1/(s+2).
Let v be any element with norm |v| = p−r. If n = 0,m ≥ 1, we get

|mv + nδ(v)| = |mv| ≥ p−r|m|−1
R = p−r|m+ n+ 1|−1

R .

For every n ∈ Z \ {0}, We have
• |nbsvs| > |n(

∑
i≥0,i 6=1,s biv

i)|;
• |nbsvs| 6= |(m+ nb1)v|.

It follows that for m,n ∈ Z,m+ n ≥ 1, n 6= 0, we have

|mv + nδ(v)| = |(m+ nb1)v + nbsv
s + n(

∑
i≥0,i 6=1,s

biv
i)|

= max{|(m+ nb1)v|, |nbsvs|} ≥ |nbs|p−sr

≥ |bs|p−sr|n|−1
R ≥ |bs|p

−sr|n+m+ 1|−1
R

We conclude the proof by setting β := 1 and C := min{|b0|p−sr, p−r}. �

The proof of [2, Proposition 2.3], [2, Lemma 2.6] and [2, Corollary 2.7] shows
that

Proposition 3.32. Let p be a prime. Let XCp be an irreducible surface defined
over Cp. and f : XCp 99K XCp be a dominant rational endomorphism. Let o
be a smooth point in XCp(Cp) \ I(f) satisfying f(x) = x. Let λ1, λ2 be the two
eigenvalues of df |o. Assume that λ1, λ2 are nonzero and satisfy the Diophantine
condition. Then for every p-adic neighborhood V of o, there exists a nonempty
p-adic open set U ⊆ V such that for every point y ∈ U , the orbit of y is well
defined and Zariski dense in XCp .

Combine Proposition 3.30 with Proposition 3.32, we get the following result.

Corollary 3.33. Let X be an irreducible surface defined over k. and f : X 99K X
be a dominant rational endomorphism. Let o be a smooth point in X(k) \ I(f)
satisfying f(x) = x. Let λ1, λ2 be the two eigenvalues of df |o. Assume that λ1, λ2

are nonzero and multiplicatively independent. Then the pair (X, f) satisfies the
adelic ZD2-property.

4. Some applications of the adelic topology

In this section, assume that the transcendence degree of k over Q is finite.

4.1. Product by some endomorphism of P1. Let X be an irreducible pro-
jective variety over k. Let g : X 99K X be a dominant rational endomorphism.
Let h : P1 → P1 be a dominant endomorphism. Denote by f : X × P1 → X × P1

the rational endomorphism defined by (x, y) 7→ (g(x), h(y)).

Theorem 4.1. Assume that (X, g) satisfies the adelic ZD-property (resp. adelic
ZD2-property). If h has a superattracting fixed point, then (X × P1, f) satisfies
the adelic ZD-property (resp. adelic ZD2-property).
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Remark 4.2. Theorem 4.1 can be generalized in two direction.
1). Combine the proof of Theorem 4.1 and Lemma [8, Lemma 14.3.4.1] ( see

Lemma 6.8 also), we can replacing the assumption that h has a superattracting
fixed point by assuming h is not a post critially finite.

2). A slight modification of the proof of Theorem 4.1, show that the following
result:

Let f : Y → Y be an endomorphism of a normal projective variety and Z is an
invariant hyperplane of Y . If the generic point of Z is contained in the critical
locus of f , and the pair (Z, f |Z) satisfies the adelic ZD2-property, then the pair
(Y, f) satisfies the adelic ZD2-property.

Combine this result with Theorem 1.8, we can show that for every endomor-
phism f : A3 → A3 which extends to an endomorphism of P3, the pair (A3, f)
satisfies the adelic ZD-property.

Proof of Theorem 4.1. Denote by π : X × P1 → X the projection to the first
coordinate. If g has a nonconstant invariant rational function H, then H ◦ π is a
nonconstant invariant rational function of f.

So we only need to do the proof for adelic ZD2-property.
Now we may assume that there exists a nonempty adelic open subset A of X,

such that for every x ∈ A, the orbit of x is well defined and Zariski dense in X.
Let o be a superattracting fixed point of h. Let K be a subfield of k which is

finitely generated over Q, such that K = k and f,X, h, o are defined over K.
By Proposition 3.16 , after replacing f by a positive iterate, we may assume

that there exists a nonempty adelic open subset B of (X × P1)(k) such that for
every point z ∈ B, the orbit of z is well defined and its closure is irreducible.

By Proposition 3.16 again, after replacing f by a positive iterate, we may
assume that there exists a prime p ≥ 3 and an embedding i : K ↪→ Cp, such that
there exists an open subset V ' (C◦p)d of XK(Cp), which is invariant by f , the
orbit of the points in V are well defined and

f |V = id mod p.

Moreover, there exists an analytic action Φ : C◦p × V → V of (C◦p,+) on V such
that for every n ∈ Z≥0, Φ(n, ·) = fmn|V (·).

Let U be an invariant neighborhood of o in P1
K(Cp) such that for every y ∈ U ,

hn(y)→ o when n→∞.
For every z := (x, y) ∈ V × U , we have fp

n
(z) → (x, o) = (π(z), o) when

n → ∞. Denote by Zz the Zariski closure of the orbit of z. Then we have
(π(z), o) ∈ Zz. It follows that Z(π(z),o) ⊆ Zz.

Then for every z ∈ (X × P1)K(i, (V × U) \X × {o}) ∩ π−1(A) ∩B, we have

(i) the orbits of z and π(z) are well defined;
(ii) the Zariski closure Zπ(z) of the orbit of π(z) is X;

(iii) the Zariski closure Zz of the orbit of z is irreducible;
(iv) Zπ(z) × {o} ⊆ Zz;
(v) z ∈ Zz \ Zπ(z) × {o}.

It follows that Zz = X × P1, which concludes the proof. �
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By induction, this theorem easily implies the adelic veriosn of the Zariski densiy
conjecture for splitting polynomial endomorphisms on (A1)N .

Proof of Theorem 1.9. Extend f to an endomorphism on (P1)N . By Theorem
3.28, we may assume that deg(fi) ≥ 2 for all i = 1, . . . , N. Using Theorem
4.1, we concludes the proof by induction on the number of factors N ≥ 1. �

4.2. Endomorphisms of abelian varieties. Let A be an abelian variety de-
fined over k. Let f : A→ A be a dominant endomorphism.

The aim is to prove Theorem 1.10. In particular, this gives a new proof of [22,
Theorem 1.2].

For every subvariety V , define

SV := {a ∈ A| a+ V = V }.

Then SV is a group subvariety of A. Denote by S0
V the identity component of

SV . Then S0
V is an abelian subvariety.

Proposition 4.3. [28, Theorem 1.2] Assume that V is irreducible and invariant
under f . Then there is an irreducible subvariety W ⊆ V with κ(W ) = dim(W ) =
κ(V ), and some iterate fm, such that V = W + S0

V and fm(S0
V + w) = S0

V + w
for every w ∈ W.

Set B := A/S0
V and denote by π : A → B the quotient morphism. There

exists a unique endomorphism fB : B → B such that fB ◦ π = π ◦ f. Since f is
dominant, fB is dominant. Set WB := π(W ) = π(W + S0

V ) = π(V ). We have
(fmB )|WB

= id. Observe that if dim(WB) = 0, V takes form a+ S0
V where a ∈ V.

Lemma 4.4. Assume that dim(WB) ≥ 1, then there exists a nonconstant rational
function H of A satisfying f ∗H = H.

Proof of Lemma 4.4. By Lemma 2.6, after replacing f by fm, we may assume
that (fB)|WB

= id. Since π is surjective, we only need to show that there exists a
nonconstant rational function G of B satisfying f ∗BG = G. We may assume that
0 ∈ WB. Then fB is an isogeny. We haveWB ⊆ ker(f−id). So dim ker(f−id) ≥ 1.
Write the minimal polynomial of fB as (1 − t)rP (t) where P (1) 6= 0. We have
r ≥ 1. Set N := (id−fB)r−1P (fB). Then dimN(A) ≥ 1 and N(A) ⊆ ker(f − id).
Pick a nonconstant rational function F on N(A). Set G := F ◦ N, which is a
nonconstant rational function on A. We have

f ∗BG = F ◦N ◦ fB = F ◦ fB ◦N = F ◦ id ◦N = G,

which concludes the proof. �

Then we showed the following result.

Lemma 4.5. Assume that there exists no nonconstant rational function H of
A satisfying f ∗H = H. Then every irreducible f -invariant subvariety takes form
a+ A0 where a ∈ A and A0 is a subabelian variety of A.
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Proof of Theorem 1.10. Let K be a subfield of k which is finitely generated over Q
such that k = K and A, f are defined over K. There exists an abelian variety AK
over K and an endomorphism fK : AK → AK such that A = AK ×SpecK Spec k
and f = fK ×SpecK id.

By Proposition 3.16, there exists m ≥ 1, a prime p ≥ 3, m ≥ 1 and an
embedding i : K ↪→ Cp, such that on AK(Cp) there exists a nonempty open
subset V , such that for every x ∈ V , the Zariski closure of the orbit Ofm(x)
in A is irreducible. After replacing f by fm, we may assume that for every
x ∈ AK(i, V ), the Zariski closure Zx of the orbit Of (x) in A is irreducible.

We note that for every x ∈ AK(i, V ), we have f(Zx) = Zz. By Lemma 4.5, Zz
is a translation of subabelian variety of A.

Denote by A[2] the finite subgroup of the 2-torsion points in A. We have
|A[2]| = 22 dimA. Moreover, for every abelian subvariety B of A, we have

|A[2] ∩B| = |B[2]| = 22 dimB.

For every l ∈ Z, denote by [l] : A→ A the morphism x→ lx.
Pick an embedding τ : K ↪→ C3. We note that 0 ∈ AK(C3) is an attracting

fixed point for [3]. There exists a open neighborhood U ⊆ AK(C3) of 0 such that
for every x ∈ U,

lim
n→∞

[3n]x = 0.

Set C := AK(i, V ) ∩ (∩y∈A[2]AK(τ, y + U)), which is a nonempty adelic subset of
A(k).

We only need to show that for every x ∈ C, Zx = A. For every j ∈ Iτ , we denote
by φj : A(k) ↪→ AK(C3) the embedding induced by the embedding j : k ↪→ C3.
For every y ∈ A[2], there exists jy ∈ Iτ such that ay := φjy(x) ∈ U + y. We
note also that ay = φjy(x) ∈ Zx for every y ∈ A[2]. Set B := Zx − a0, which is a
subabelian variety of A. It follows that for every n ≥ 0, y ∈ A[2], we have

y + [3n](ay − y)− [3n]a0 = [3n](ay − a0) ∈ B.

Since a0, ay − y ∈ U , let n → ∞, we get y ∈ B. It follows that A[2] ⊆ B. Then
B = A. It follows that Zx = A, which concludes the proof. �

5. General facts of endomorphisms of projective surfaces

Let X be an irreducible projective surface over k and f : X 99K X be a
dominant rational endomorphism. We mainly interest in the case when f is an
endomorphism. When f is an endomorphism, by [16, Lemma 5.6], f is finite.
Denote by

df := [k(X) : f ∗(k(X))]

the topological degree of f.

5.1. Amplified endomorphisms. Assume that f is an endomorphism. Recall
that f : X → X is said to be amplified [29], if there exists a line bundle L on
X such that f ∗L ⊗ L−1 is ample. In particular, a polarized endomorphism is
amplified.
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Lemma 5.1. Let n be a positive integer. Then f is amplified if and only if fn is
amplified.

Proof of Lemma 5.1. If f is amplified, then there exists a line bundle L on X
such that H := f ∗L ⊗ L−1 is ample. Since f is finite, for every i ≥ 0, (f i)∗H =
(f i+1)∗L⊗ (f i)∗L−1 is ample. It follows that

(fn)∗L⊗ L−1 = ⊗n−1
i=0 H

is ample. Then fn is amplified.

If fn is amplified, then there exists a line bundle L on X such that (fn)∗L⊗L−1

is ample. Set M := ⊗n−1
i=0 (f i)∗L. Then we have

f ∗M ⊗M−1 = (fn)∗L⊗ L−1

is ample. Then f is amplified. �

Denote by Fix(f) the set of fixed points of f . The proof of [16, Theorem 5.1]
shows that when f is amplified, the set of periodic points of f is Zariski dense
and for all n ≥ 1, Fix(fn) is finite.

Lemma 5.2. Assume that f is amplified. Let C be an irreducible curve in X
satisfying f(C) = C. Then the degree of f |C is at least 2 and at most df . In
particular the normalization of C is either P1 or an elliptic curve curve.

Proof of Lemma 5.2. Since f is amplified, there exists a line bundle L on X such
that H := f ∗L ⊗ L−1 is ample. Since f is finite, deg(f |C) ≥ 1. If deg(f |C) = 1,
then (f |C)∗L|C is numerically equivalent to L|C . It follows that

f ∗L⊗ L−1|C = (f |C)∗L|C ⊗ L|−1
C

is both ample and numerically trivial, which is a contradiction. Then we get
deg(f |C) ≥ 2. So the normalization of C is either P1 or an elliptic curve.

Let x be a general point in C(k), we have

deg(f |C) = |f |−1
C (x)| ≤ |f−1(x)| ≤ df ,

which concludes the proof. �

For an irreducible curve C in X satisfying f(C) = C, denote by πC : C → C
the normalization of C and fC : C → C the endomorphism induced by f |C . For
a point o ∈ Fix(f) and an irreducibe curve C of X, denote by mC(o) the number
of branches of C centered at o which is invariant by f. We claim that if f is
amplified, then we have

(5.1) mC(o) ≤ [df + 2d
1/2
f + 1] + 1.

Indeed, if C is not invariant by f , we have mC(o) = 0 for every o ∈ Fix(f). If C
is invariant by f , C is either P1 or an elliptic curve. When C ' P1, we have

|Fix(fC)| ≤ deg(fC) + 1 ≤ df + 1 ≤ [df + 2d
1/2
f + 1] + 1.

When C is an elliptic curve, we have

|Fix(fC)| = |(fC − id)−1(0)| = |α− 1|2
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where α is some complex number satisfying |α|2 = deg(fC) ≥ 2. It follows that

|Fix(fC)| = |α|2 − 2Re(α) + 1 ≤ deg(fC) + 2 deg(fC)1/2 + 1

≤ df + 2d
1/2
f + 1 ≤ [df + 2d

1/2
f + 1] + 1.

Since every invariant branch of C corresponds to a fixed point of fC in C, we get

mC(o) ≤ |Fix(fC)| ≤ [df + 2d
1/2
f + 1] + 1.

Lemma 5.3. Assume that f is amplified. Let C be an irreducible curve in X
satisfying f(C) = C. Then there exists a sequence of distinct points oi ∈ C(k), i ≥
0 such that

(i) o0 ∈ Fix(f) ∩ C;
(ii) f(oi) = oi−1 for i ≥ 1.

Proof of Lemma 5.3. By Lemma 5.2, we have deg(fC) ≥ 2. Denote by Exc(fC)
the set of exceptional points i.e. the points x ∈ C whose inverse orbit ∪i≥0f

−i
C

(x)
is finite. We claim that

Fix(fC) \ Exc(f) 6= ∅.
Recall that C is a either P1 or an elliptic curve.
When C ' P1, it is well know that |Exc(fC)| ≤ 2. If there exists x ∈ Fix(fC)

with multiplicity at least 2, then x 6∈ Exc(fC). Otherwise if all fixed points of fC
are of multiplicity 1, then we have

|Fix(fC)| = deg(f |C) + 1 ≥ 3 > |Exc(fC)|.
We concludes the claim.

When C is an elliptic curve, fC is étale. So we have Exc(fC) = ∅. On the other
hand

|Fix(fC)| = |(fC − id)−1(0)| = |α− 1|2

where α is some complex number satisfying |α|2 = deg(fC) ≥ 2. Since α 6= 1, we
get |Fix(fC)| > 0, which concludes the claim.

Pick q0 ∈ Fix(fC) \ Exc(f). There exists a sequence qi ∈ C, i ≥ 1 such that
fC(qi) = qi−1. Then qi, i ≥ 0 are distinct. Set oi := πC(qi) ∈ C(k), i ≥ 0. Since
πC is finite, the sequence oi, i ≥ 0 is infinite. We have f(oi) = oi+1, i ≥ 1 and
o0 ∈ Fix(f). It follows that oi, i ≥ 0 are distinct, which concludes the proof. �

5.2. Definition field of a subvariety. Let K be a subfield of k such that X, f
are defined over K.

Remark 5.4. There exists always such field K which is finitely generated over
Q.

Set G := Gal(k/K). It naturally acts on X(k). For every x ∈ X(k), we denote
by Gx the stabilizer of x under this action. For every sub-extension K ′/K of k/K,
we write X(K ′) for the set of points in X(k) defined over K ′. We particularly
interest the case K ′ = K.

For a subvariety S of X, define

GS := {g ∈ G| G(S) = S}
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which is a closed subgroup of G. Define KS := kGS , which is the smallest field
extension of K, over which S is defined. In particular, if S is G-invariant, then
we have KS = K.

Define

GS := ∩x∈S(k)Gx

which is a closed subgroup of GS. Define KS := kG
S

which is the the smallest
field extension of K such that all points in S(k) are defined over K. Observe that
KS is a Galois extension of KS whose Galois group GS/G

S is the image of G in
the permutation group of S. It follows that, when S is finite, [KS : KS] divides
|S|!.

Lemma 5.5. Assume that f is an endomorphism. Let p0, . . . , pn be a sequence
of points in X(k) satisfying f(pi) = pi−1, i = 1, . . . , n. Then we have

[K{p0,...,pn} : K{p0}]| (df !)
n.

Proof of Lemma 5.5. We have a filtration of fields

K{p0} ⊆ K{p0,p1} ⊆ · · · ⊆ K{p0,...,pn}.

We only need to show that

[K{p0,...,pi+1} : K{p0,...,pi}]| df !, i = 0, . . . , n− 1.

After replacing K by K{p0,...,pi}, we only need to prove this lemma in the case
n = 1 and K = K{p0}.

Now assume that n = 1 and K = K{p0}. Since f−1(p0) is G-invariant, we have
Kf−1(p0) = K. Then we have

K = Kf−1(p0) ⊆ K{p0,p1} ⊆ Kf−1(p0) .

It follows that

[K{p0,p1} : K]| [Kf−1(p0) : K]| |f−1(p0)|! | df !,

which concludes the proof. �

Then we get the following constraint on definition fields of invariant curves.

Corollary 5.6. Assume that f is an amplified endomorphism. Let C be an
irreducible curve in X satisfying f(C) = C. Then KFix(f) is a finite field extension
of K and there exists n ≥ 1 such that

[KC : KFix(f)]| (df !)
n.

Proof of Corollary 5.6. Since f is amplified, Fix(f) is finite. Then all points in
Fix(f) are defined over K. It follows that KFix(f) is a finite field extension of K.

By Lemma 5.3, there exists a sequence of distinct points oi ∈ C(k), i ≥ 0 such
that

(i) o0 ∈ Fix(f) ∩ C;
(ii) f(oi) = oi−1 for i ≥ 1.
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Let M be an ample line bundle on X defined over K. Denote by Y the space
of curves D in X satisfying M · D ≤ M · C, which is a quasi-projective variety
over k. Moreover, it is defined over K. So G naturally acts on Y.

For every i ≥ 0, denote by Hi the closed subset of Y consisting of curves D ∈ Y
satisfying oi ∈ D, i = 0, . . . , i. Then Hi, i ≥ 0 is decreasing and ∩i≥0Hi = {C}.
There exists n ≥ 1 such that ∩ni=0Hi = {C}. For every g ∈ G{o0,...,on}, we have
g(C) ∈ Y and oi ∈ g(C) for i = 0, . . . , n. It follows that g(C) ∈ ∩ni=0Hi = {C}.
Then we have G{o0,...,on} < GC . It follows that

KC ⊆ K{o0,...,on}.

By Lemma 5.5, we have

[K{o0,...,on} : K{o0}]| (df !)
n.

Since K{o0} ⊆ KFix(f), Then we get [KC : KFix(f)]| (df !)
n. �

6. Local dynamics

Assume that the transcendence degree of k is finite. Let X be a smooth
irreducible projective surface over k and f : X 99K X be a dominant rational
endomorphism.

6.1. Fixed points. Let o be a fixed point of f . Let λ1, λ2 be the eigenvalues of
the tangent map df |o : TX,o → TX,o.

If we blow up o, we get an new surface X1. Denote by E the exceptional
curve. Then f induces a rational endomorphism f1 on X1. Assume that df |o is
invertible. Then f1 is regular along E.

If λ1 6= λ2, then there are exact two fixed points o1, o2 of f1 in E. At oi, i = 1, 2,
df |oi is semi-simple and the tangent vectors in E is an eigenvector of df1|o1 . We
may assume that the eigenvalue for this vector at o1 is λ2/λ1 and the other
eigenvalue is λ1. Then the eigenvalues of df |o2 are λ1/λ2, λ2.

If λ1 = λ2 and df |o is semi-simple, then every point in E is fixed by f1. At
a point q in E, df |q is semi-simple and the eigenvalues of df |q are 1, λ1 = λ2. If
λ1 = λ2 and df |o is not semi-simple, then there exists a unique point q in E fixed
by f1. The eigenvalues of df |q are 1, λ1 = λ2.

If C is a branch of curve centered at o and invariant under f . Then the strict
transform of C in X ′ is a branch of curve passing through a fixed point in E and
it is invariant by f ′. After a finite sequence of blowups at the center of the strict
transform of C, we may get a strict transform C of C where the composition
πC : C → C of these blowups is the normalization of C. The induces morphism
fC : C → C from the blows coincides the one induced by the normalization.
Denote by o the center of C. The above computation shows that

(6.1) df |o = λs1λ
t
2

for some s, t ∈ Z.
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Lemma 6.1. Assume that df |o is invertible and semi-simple. Assume that λ1 =
µm1 and λ2 = µm2, where µ ∈ k and m1,m2 ∈ Z>0 satisfying (m1,m2) = 1. Then
there exists a sequence of birational maps πi : Xi → Xi−1, i = 1, . . . , l with a point
oi ∈ Xi, i = 0, . . . , l such that

(i) X0 = X, o0 = o;
(ii) πi is the blowup at oi−1;

(iii) oi is a fixed point of the rational map fi : Xi 99K Xi induced by f ;
(iv) oi is in the exceptional curve Ei of πi;
(v) the eigenvalues of dfi|oi , i = 0, . . . , l − 1 take form µs, s ≥ 1;

(vi) the two eigenvalues of dfl−1|ol−1
are µ, µ;

(vii) fl|El = id.

Moreover, if K is a subfield of k such that X, f, o and µ are defined over K, then
we may ask that oi are defined over K for i = 0, . . . , l.

Proof of Lemma 6.1. We prove the lemma by induction on max{m1,m2}.
When max{m1,m2} = 1, we have m1 = m2 = 1. Define π1 : X1 → X1 the

blowup of o. Then fl|El = id. Let o1 be any point in E1 ( if µ ∈ K, then pick
o1 ∈ E1(K)), we conclude the proof.

Now assume that we have proved the lemma for max{m1,m2} ≤ N where
N ≥ 1. Assume that max{m1,m2} = N + 1 ≥ 2. Since (m1,m2) = 1, we have
m1 6= m2. Assume that m1 < m2. Define π1 : X1 → X1 the blowup of o. If µ ∈ K,
the two fixed points in E1 are defined over K. In E1, there exists a fixed point o1

of f1 such that the eigenvalues of df1|o1 is µm1 , µm2−m1 .
Since m2−m1 ≥ 1, (m1,m2−m1) = 1 and max{m1,m2−m1} ≤ m2− 1 ≤ N ,

we may apply the induction hypothesis the (f1, X1, o1) to conclude the proof. �

Definition 6.2. The fixed point o ∈ X(k) is said to be good if df |o is invertible
and one of the following holds:

(i) λ1, λ2 are multiplicatively independent;
(ii) there exists a prime p and an embedding τ : k ↪→ Cp such that

|τ(λ1) + τ(λ2)| ≤ 1 and |τ(λ1)||τ(λ2)| < 1

where | · | is the p-adic norm on Cp.

Remark 6.3. We note the that condition (ii) just means that both |τ(λ1)| and
|τ(λ1)| are at most one and there exists i = 1, 2 much that |τ(λi)| < 1.

Definition 6.4. We say that f has R-property if there exists a fixed point o of
f and an embedding σ : k ↪→ C such that both |σ(λ1)| and |σ(λ2)| strictly great
then 1, where λ1, λ2 are the eigenvalues of the tangent map dfo : TX,o → TX,o.

6.2. The existence of good fixed points. In this section, assume that f is an
amplified endomorphism on X. Let L be a line bundle on X such that f ∗L⊗L−1

is ample.
The aim of this section is to prove the following result.
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Lemma 6.5. Assume that f is an amplified endomorphism which has R-property.
Then either (X, f) satisfied the adelic ZD2-property or there exists n ≥ 1, such
that fn has a good fixed point.

Let R be a finitely generated Q sub-algebra of k, such that k is the algebraically
closure of FracR and X, f, L are defined over FracR. There exists a variety XFracR

over FracR and an endomorphism fFracR : XFracR → XFracR, such that X =
XFracR ×Spec FracR Spec k and and f = fFracR ×Spec FracR id.

After shrink W := SpecR, we may assume that W is smooth, there exists a
smooth projective R-scheme π : XR → W whose generic fiber is XFracR, fFracR

extends to a finite endomorphism fR on XFracR and there exists a line bundle LR
on XR such that f ∗LR ⊗ L−1

R is ample over π. For every point t ∈ W (Q), denote
by Xt the special fiber XR ×W SpecQ. Let Lt, ft be the restriction of LR, fR on
Xt.

Lemma 6.6. Assume that there exists t ∈ W (Q) such that ft has a good fixed
point in Xt. Then f has a good fixed point in X.

Proof of Lemma 6.6. Denote by Fix(fR) the subscheme of XR of the fixed points
of fR. It is isomorphic to the intersection of the graph of fR and the diagonal of
XR ×W XR. Let o be a good fixed point of ft ∈ Xt ⊆ XR. We have o ∈ Fix(fR).
Since o is smooth, every irreducible component of Fix(fR) passing through o has
absolute dimension at least 2(dimW + 2) − (dimW + 2 + 2) = dimW. Pick S
an irreducible component of Fix(fR) passing through o. For every s ∈ W (Q),
Xs ∩ S ⊆ Fix(fs), which is finite. It follows that π|S : S → R is finite and
surjective.

Let λ1, λ2 be the eigenvalues of the tangent map d(ft)o : TXt,o → TXt,o. Since o
is a good fixed point, then if d(ft)o is invertible and one of the following holds:

(i) λ1, λ2 are multiplicatively independent;
(ii) there exists a prime p and an embedding τ : k ↪→ Cp such that

|τ(λ1)|, |τ(λ2)| ≤ 1 and |τ(λ1)||τ(λ2)| < 1

where | · | is the p-adic norm on Cp.

If we identify Xk as the geometric generic fiber of π. Then there exists a
point ok of Xk, whose Zariski closure in XR is S. Denote by (λ1)k, (λ2)k be
the eigenvalues of the tangent map d(f)ok : TX,ok → TX,ok . Observe that λ1, λ2

are the specializations of (λ1)k, (λ2)k ( up to some permutation). If λ1, λ2 are
multiplicatively independent, then (λ1)k, (λ2)k are multiplicatively independent.
Now we may assume that there exists a prime p and an embedding τ : k ↪→ Cp

such that
|τ(λ1) + τ(λ2)| ≤ 1 and |τ(λ1)||τ(λ2)| < 1

where | · | is the p-adic norm on Cp.

The embedding τ induces embedings W (Q) ↪→ W (Cp) and XR(Q) ↪→ XR(Cp).
For every x ∈ S(Cp), we denote by λ1(x), λ2(x) the eigenvalues of the tangent
map d(f |Xπ(x))x : TXπ(x),x → TXπ(x),x.

Since λ1(x) + λ2(x) and λ1(x)λ2(x) are continuous functions on S(Cp), there
exists a neighbourhood U ⊆ S(Cp) of o such that for every x ∈ U , |λ1(x) +
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λ2(x)| ≤ 1 and 0 < |λ1(x)λ2(x)| < 1. We note that π(U) is a nonempty open
subset of W (Cp).

For every P ∈ R \ {0}, denote by ZP the set {z ∈ W (Cp)| P (z) = 0}. It is a
nonwhere dense closed subset of W (Cp). Observe that the topology of W (Cp) can
be defined by a complete metric. Since R \ {0} is countable, by Baire category
theorem, W (Cp)\(∪R\{0}ZP ) is dense in W (Cp). It follows that π(U)\(∪R\{0}ZP )
is not empty. Pick any point z ∈ π(U) \ (∪R\{0}ZP ). Then z induces an inclusion
τz : R ↪→ Cp. It extends to a inclusion τz : Frac (R) ↪→ Cp. Pick x ∈ U ∩ π−1(z),
we have |λ1(x) + λ2(x)| ≤ 1 and 0 < |λ1(x)λ2(x)| < 1. Then x induces an
extension σ := τz : k = Frac (R) ↪→ Cp, such that |σ((λ1)k + (λ2)k)| ≤ 1 and
|σ((λ1)k(λ2)k)| < 1. Then f has a good fixed point in X, which concludes the
proof. �

Lemma 6.7. Let o be a fixed point of X. Let C be an irreducible curve in X
passing through o. Assume that f(C) = C, and every branch of C at o is invariant
under f . Denote by πC : C → C the normalization of C and fC : C → C the
endomorphism induced by f |C . Let q ∈ π−1

C (o) and set µ := dfC |q ∈ K. Assume
that there exists an embedding α : k ↪→ C such that 0 < |α(µ)| < 1. Then there
exists n ≥ 0 such that fn has a good fixed point in X.

Proof of Lemma 6.7. After enlarge K, we may assume that o, C, q are defined
over K. In this case, we have µ ∈ R. After shrinking W , we may assume that
there exists an irreducible subscheme CR of XR whose generic fiber is C and a
section oR ∈ XR(R) whose generic fiber is o. For every point t ∈ W , denote by Ct
and ot the specializations of CR and oR. After shrinking W , we may assume that
Ct are irreducible for t ∈ W. There exists a projective morphism πCR : CR → CR
over R whose generic fiber is πC and a point qR ∈ CR(R), whose generic fiber
is q. After shrinking W , we may assume that for all t ∈ W, the specialization
πCt : Ct → Ct of πCR is the normalization of Ct.

The embedding α : R ⊆ k ↪→ C defined a point η ⊆ W (C). We view µ as a
function on W (C). We have |µ(η)| = |α(µ)| ∈ (0, 1). There exists an euclidean
open neighborhood U of η, such that |µ(·)| < 1 on U. Pick t ∈ U ∩W (Q), we have
|µ(t)| < 1. By Lemma 6.6, we only need to prove that there exists n ≥ 0 such
that fnt has a good fixed point in Xt. Then we reduce to the case where k = Q.

Now we may assume that k = Q. Assume that X, f are defined over a number
field K. There exists a variety XK over K and an endomorphism fK : XK → XK ,
such that X = XK ×SpecK Spec k and and f = fK ×SpecK id.

Let OK be the ring of integers of K. There exists a projective OK-scheme XOK

which is flat over SpecOK whose generic fiber is XOK . Denote by πOK : XOK →
SpecOK the structure morphism. The endomorphism fK on the generic fiber
extends to a rational endomorphism fOK on XOK .

Denote by πOKZ : SpecOK → SpecZ the morphism induced by the inclusion
Z ↪→ OK . Let XZ be the Z-scheme which is the same as XOK as an absolute

scheme with the structure morphism πZ := πOKZ ◦πOK : XOK → SpecZ. Then XZ
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is a projective Z-scheme. Denote by fZ : XZ 99K XZ the rational endomorphism
induced by fOK .

Since the generic fiber of XZ is smooth and fZ is regular above the generic fiber,
there exists a finite set B(f,Z) of primes such that π−1

Z (SpecZ\B) is smooth and

fZ is regular on π−1
Z (SpecZ \ B). Set B(f,OK) := (πOKZ )−1(B(f,Z)), which is a

finite subset of Spec (OK). Then π−1
OK

(Spec (OK)\B(f,OK)) is smooth and fOK is

regular on π−1
OK

(Spec (OK)\B(f,OK)). We note that for every prime p 6∈ B(f,Z),

and every embedding τ : K ↪→ Cp, we have |τ(λ1)|, |τ(λ2)| ≤ 1.

By Lemma 5.2, deg(fC) ≥ 2. Observe that C is either P1 or an elliptic curve.
Since on a complex elliptic curve, an endomorphism of degree at least 2 is every-
where repelling, C could not be an elliptic curve. Then we have C ' P1. Since
0 < |α(µ)| < 1, by [35, Corollary 11.6], fC is not post-critically finite.

We need the following lemma, which is almost the same as [8, Lemma 14.3.4.1].

Lemma 6.8. Let g : P1 → P1 be an endomorphism over Q of degree at least 2
which is not post-critically finite. Then for every N ≥ 0 and a finite subset Z
of P1, there exists a prime p > N , a point x ∈ P1(Q), l ≥ 1, and an embedding
τ(Q) ↪→ Cp such that

(i) x 6∈ Z;
(ii) gl(x) = x;

(iii) and |τ(d(gl)|x)| < 1.

Denote by J(f) the critical locus of f . Since o 6∈ J(f) and o ∈ C, we have
C 6⊆ J(f). Then C ∩ J(f) is finite. Let P (f, C) be the union of the orbits of
periodic points in C ∩ J(f). Then P (f, C) is finite. Observe the for every n ≥ 1,
P (fn, C) = P (f, C).

By Lemma 6.8, after replacing f by a suitable positive iterate, there exists a
prime p 6∈ B(f,Z), an embedding τ(Q) ↪→ Cp and x ∈ Fix(f |C) \ π−1

C (P (f, C))
such that

(i) C is smooth at πC(x);
(ii) and |τ(d(f |C)|x)| < 1.

Set q := πC(x). Since q 6∈ P (f, C), df |q is invertible. Since d(f |C)|x is an eigen-
value of df |q, q is a good fixed point of f, which concludes the proof. �

Proof of Lemma 6.8. Denote by J(g) the set of critical points of g. Since g is not
post critically finite, there exists b ∈ J(g) such that the orbit Og(b) of b is infinite.

There exists b1 ∈ P1(Q) such that g(b1) = b. We have b 6= b1. Let W be the union
of all orbits of periodic points in J(g) ∪ Z. Then W is finite.

After a base change, we may assume that g, b, b1, all points in Z and all points
of W are defined over a number field K. Set T := {b, b1} ∪ Z ∪W.

Then g defines a rational map gOK : P1
OK
99K P1

OK
over OK . There exists a

finite subset B ⊆ SpecOK such that

(i) gOK is regular over SpecOK \B;
(ii) for every v ∈ SpecOK \ B, the characteristic of the residue field at v is

strictly great then N ;
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(iii) for every v ∈ SpecOK \B, the specialization of points of T are distinct.

For every v ∈ SpecOK \ B, denote by P1
v the special fiber at v, f : P1

v → P1
v the

specialization of f at v and for every x ∈ P1(K), rv(x) the specialization of x in
P1
v. By [10, Lemma 4.1], there are infinitely may v ∈ SpecOK \B, such that there

exists n ≥ 1 such that fnv (rv(b)) = rv(b1). It follows that fn+1
v (rv(b)) = rv(b).

Denote by p the characteristic of the residue field at v. We have p > N. Then
rv(b) is a critical periodic point of fv. Denote by Kv the completion of K by v
and fix an embedding K ↪→ Kv ⊆ Cp.

Then there exists a point in y ∈ P1(Kv ∩ K) whose reduction is rv(b) and
satisfying fn+1(y) = y. Since b 6∈ W , rv(b) 6∈ rv(W ). It follows that y 6∈ W. Since
y is periodic, y 6∈ Z. Since the reduction of dfn+1|y is dfn+1

v |rv(b) = 0, we have

|dfn+1|y| < 1. Extend the inclusion K ⊆ Cp to an embedding τ : K ↪→ Cp, we
concludes the proof. �

Proof of Lemma 6.5. Since f has R-property, there exists a fixed point o of f at
which X is smooth, and an embedding σ : k ↪→ C such that both |σ(λ1)| and
|σ(λ2)| are strictly great then 1, where λ1, λ2 are the eigenvalues of the tangent
map dfo : TX,o → TX,o. It follows that df |o is invertible.

If λ1, λ2 are multiplicatively independent, then o is a good fixed point of f.
Now we may assume that λ1, λ2 are not multiplicatively independent. There

exists (m1,m2) ∈ Z2 \ {(0, 0)} such that

λm1
1 λm2

2 = 1.

Since |σ(λ1)|, |σ(λ2)| > 1, we have m1m2 < 0. We may assume that m1 > 0 and
m2 < 0.

If for every embedding α : k ↪→ C we have |α(λ1)| ≥ 1, then λ1 ∈ Q. Then by
product formula, there exists a prime p and an embedding τ : k ↪→ Cp such that
|τ(λ1)| < 1. Since

|τ(λ1)|m1 = |τ(λ2)|−m2 ,

we have 0 < |τ(λ1)|, |τ(λ2)| < 1. Then o is good for f.

Now we may assume that there exists an embedding α : k ↪→ C such that
|α(λ1)| < 1. Then we have |α(λ2)| < 1. View X(C) as a complex surface using
the inclusion α : k ↪→ C. Let φα be the natural morphism φα : X(k) ↪→ X(C)
induced by α. We note that X(k) is dense in X(C) in this topology. Then o is
an attracting fixed point of f in X(C). There exists an euclidean open set U of
X(C) containing o such that f(U) ⊆ U and

lim
n→∞

fn(x) = o

for every x ∈ U.

Lemma 6.9. If (X, f) does not satisfies the adelic ZD2-property, then there exists
an irreducible curve C of X over k passing through o and m ≥ 1 such that
fm(C) = C.

Now assume that (X, f) does not satisfies the adelic ZD2-property. After re-
placing f by a suitable positive iterate, we may assume that there exists an
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irreducible curve C of X passing through o such that f(C) = C. Denote by
πC : C → C the normalization of C and f |C : C → C the endomorphism induced
by f |C . After replacing f by a suitable positive iterate, we may assume that every
branch of C at o is invariant under f . Pick q ∈ π−1

C (o). It is a fixed point of f |C .
Set µ := dfC |q ∈ K. By Equation 6.1, there exists l1, l2 ∈ Z such that µ = λl11 λ

l2
2 .

Since f is attracting at o ∈ X(C), we have |α(µ)| < 1. Since λm1
1 = λ−m2

2 , there
exists m ∈ Z>0, s ∈ Z>0 such that

λsm1
1 = λ−sm2

2 = µm.

In particular, we have 0 < |α(µ)| < 1. We conclude the proof by Lemma 6.7. �

Proof of Lemma 6.9. Let K be a subfield of k which is finitely generated over Q,
such that K = k and X, f, o are defined over K. By Proposition 3.16, there exists
m ≥ 1 and a nonempty adelic open subset B of X(k) such that for every x ∈ A,
the Zariski closure of the orbit Ofm(x) in X is irreducible. After replacing f by
fm, we may assume that for every x ∈ B, the Zariski closure Zx of the orbit
Of (x) in X is irreducible.

Since f is finite, there exists an open neighborhood V of o in U such that
f−1(o) ∩ V = {o}. There exists l ≥ 1 such that f l(U) ⊆ V. It follows that

S := ∪i≥0f
−i(o) ∩ U = ∪li=0f

−i(o) ∩ U

is finite. For every x ∈ U \ S, Of (x) is infinite.
Then for every x ∈ XK(α|K , U \ S) ∩ A, Zx is irreducible and positive di-

mensional. Since (X, f) does not satisfy the adelic ZD2-property, there exists
x ∈ XK(α|K , U \ S) ∩ A, such that dimZx = 1. Since fn(φα(x)) → o in XK(C)
for n→∞, we have o ∈ Zx, which concludes the proof. �

6.3. Invariant neighborhood. Let o be a fixed point of f and let λ1, λ2 be the
two eigenvalues of df |o. Let K be a subfield of k which is finitely generated over
Q, such that K = k and X, f, o, λ1, λ2 are defined over K. Let τ : K ↪→ Qp ⊆ Cp

be an embedding for some prime p. Assume that

|τ(λ1)|, |τ(λ2)| ≤ 1.

Let Kp be the closure of τ(K) in Cp which is a finite extension of Qp.

Let W be an affine chart of X containing o. Assume that W is defined over K.
Since o is smooth, we may assume that W is a complete intersection. Then W can
be viewed as a closed subvariety of AN which is defined by the ideal (F1, . . . , FN−2)
where Fi, i = 1, . . . , N − 2 are contained in Kp[x1, . . . , xN ]. We may assume that
o is the origin in AN . Since X is smooth at o, the matrix (∂xjFi(0))1≤i≤N−2,1≤j≤N
has rank N − 2. Observe that the tangent plan of W at o in AN is defined over
Kp. After a Kp linear transform, we may assume that tangent plan of W at o in
AN is spanned by ∂x1(0) and ∂x2(0) and moreover the matrix of df |o under the
base ∂x1(0), ∂x2(0) is a Jordan block(

λ1 ε
0 λ2

)
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where ε = 0 or 1. Then the matrix (∂xjFi(0))1≤i≤N−2,3≤j≤N is invertible. Denote
by π : W → A2 the projection (x1, . . . , xN) 7→ (x1, x2). For every l ≥ 0, denote
by Ul := {(x, y) ∈ A2(Cp)| x, y ∈ plC◦p} which is a p-adic neighborhood of (0, 0)

in A2(Cp). By implicit function theorem, there exists a l ∈ Z>0 and an analytic
morphism φl : Ul → W (Cp) ⊆ AN(Cp) such that

π ◦ φl = id and φl ◦ π|π−1(Ul) = id.

Moreover, φl is defined over Kp.
For every n ≥ l, define Vn := φl(Un) = π−1(Un) which is a p-adic neighborhood

of o in XK(Cp). Then there exists m ≥ l such that f(Vm) ⊆ Vl. Then f induces
an analytic morphism F : Um → Ul. Observe that (0, 0) is fixed by F and

dF |(0,0) =

(
λ1 ε
0 λ2

)
.

We may write F as

F : (x1, x2) 7→ (λ1x1 + εx2 +
∑

i,j≥0,i+j≥2

ai,jx
i
1x

j
2, λ2x2 +

∑
i,j≥0,i+j≥2

bi,jx
i
1x

j
2)

where ai,j, bi,j ∈ Kp. There exists r ∈ Z>0 such that

max{|ai,j|, |bi,j|| i, j ≥ 0, i+ j ≥ 2} ≤ |p|−r+1.

Then we have F (Ur) ⊆ Ur. There exists an isomorphism U := (C◦p)2 → Ur sending
(z1, z2) to (prz1, p

rz2). Then F induces a morphism G : U → U taking form

G : (z1, z2) 7→ (λ1z1+εz2+
∑

i,j≥0,i+j≥2

p(i+j−1)rai,jz
i
1z
j
2, λ2z2+

∑
i,j≥0,i+j≥2

p(i+j−1)rbi,jz
i
1z
j
2).

Observe that

|p(i+j−1)rai,j|, p(i+j−1)rbi,j ≤ |p|

for i, j ≥ 0, i+ j ≥ 2. The reduction G̃ : Ũ = M̃p

2
→ Ũ of G takes form

(z1, z2) 7→ (λ̃1z1 + ε̃z2, λ̃2z2).

Summarizing the above, we get the following result.

Proposition 6.10. Assume that |λ1|, |λ2| < 1. Then there exists an analytic
diffeomorphism φ from the unit polydisk U := (C◦p)2 to the open subset V of
XK(Cp) which is defined over Kp such that,

(i) φ((0, 0)) = o;
(ii) the set V is f -invariant;

(iii) the action of f on V is conjugate, via φ, to an analytic endomropshim on
U = (C◦p)2 taking form

G : (z1, z2) 7→ (λ1z1 + εz2 +
∑

i,j≥0,i+j≥2

ci,jz
i
1z
j
2, λ2z2 +

∑
i,j≥0,i+j≥2

di,jz
i
1z
j
2).

where ci,j, di,j ∈ pK◦p , ε = 0 if df |o is semi-simple and ε = 1 if df |o is not
semi-simple.
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In particular, G is defined over Kp and the reduction of G takes form

G̃ : (z1, z2) 7→ (λ̃1z1 + ε̃z2, λ̃2z2).

Lemma 6.11. Assume that |λ1| < 1, |λ2| = 1 and f is amplified. Then there
exists a nonempty open subset U of XK(Cp), such that for every point x ∈ U , the
orbit Of (x) is well defined and Zariski dense in X.

Proof of Lemma 6.11. Denote by q a uniformizer of Kp. Since |λ1| < 1 and |λ2| =
1, df |o is semi-simple. Then the reduction of F̃ takes form

G̃ : (z1, z2) 7→ (λ̃1z1, λ̃2z2).

By Section 8.1, there exists g ∈ Kp{z1, z2} taking form g = z2 + h where h ∈
qK◦p{z1, z2} such that Y := {g = 0} is invariant by f , f |Y is an isomorphism,
Y ' C◦p and ∩n≥0f

n(U) = Y. There exists a morphism ψ : U → Y satisfying
ψ|Y = id and

f |Y ◦ ψ = ψ ◦ f.
Since f is finite, G(U) 6⊆ Y . Since f is amplified, then all periodic points are
isolated. It follows that G|Y is not of finite order. Then we concludes the proof
by Proposition 8.12 and Remark 8.13. �

Lemma 6.12. Assume that f is an amplified endomorphism, every point in
Fix(f) is defined over K. Assume that df |o is invertible, |λ1|, |λ2| < 1 and λ1, λ2

are not multiplicatively independent. Then there exists a nonempty open subset
U of XK(Cp), such that for every point x ∈ U , the orbit Of (x) is well defined
and Zariski dense in X.

Proof of Lemma 6.12. Since λ1, λ2 are not multiplicatively independent, there ex-
ists (l1, l2) ∈ Z2 \ {(0, 0)} such that

λl11 λ
−l2
2 = 1.

Since |λ1|, |λ2| < 1, we may assume that l1, l2 > 0. After replacing f by f (l1,l2) we
may assume that (l1, l2) = 1. There exists s, t ∈ Z such that sl1 + tl2 = 1. Set
µ := λt1λ

s
2. Since λ1, λ2 ∈ L,we have µ ∈ L. Observe that

µl2 = λtl21 λsl22 = λ1−sl1
1 λsl22 = λ1(λl11 λ

−l2
2 )−s = λ1.

The same, we have µl1 = λ2.

We first treat the case where df |o is not semi-simple. In this case, λ1 = λ2 = µ.
Denote by π1 : X1 → X the blowup of o. Denote by E1 the exceptional curve
and f1 the rational self-map of X1 induced by f . Observe that f1 is regular along
E1. In E1, there exists a unique fixed point o1 of f1 which is defined over K.
The two eigenvalues of df1|o1 is 1, µ. By Proposition 6.10, there exists an analytic
diffeomorphism φ from the unit polydisk U := (C◦p)2 to the open subset V of
X1,K(Cp) which is defined over Kp such that,

(i) φ((0, 0)) = o;
(ii) the set V is f1-invariant;
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(iii) the action of f1 on V is conjugate, via φ, to an analytic endomropshim
on U = (C◦p)2 taking form

G : (z1, z2) 7→ (z1 +
∑

i,j≥0,i+j≥2

ci,jz
i
1z
j
2, µz2 +

∑
i,j≥0,i+j≥2

di,jz
i
1z
j
2).

where ci,j, di,j ∈ pK◦p .

In particular, the reduction of G takes form

G̃ : (z1, z2) 7→ (z1, 0).

Since E1 is fixed by f1, we have di,0 = 0 for i ≥ 2. By Section 8.1 and Remark
8.10, Y := {z2 = 0} is invariant by G, G|Y is an isomorphism, Y ' C◦p and
∩n≥0f

n(U) = Y. There exists a morphism ψ : U → Y satisfying ψ|Y = id and

f |Y ◦ ψ = ψ ◦ f.
Observe that Y = φ−1(V ∩ E1). Since f is finite, G(U) 6⊆ Y . Since f1|E1 is
not of finite order, G|Y is not of finite order. Then we concludes the proof by
Proposition 8.12 and Remark 8.13.

Now we may assume that df |o is semi-simple. By Lemma 6.1, there exists a
sequence of birational map π : X ′ → X defined over K, an irreducible component
E of π−1(o) defined over L, and a point o′ ∈ E(K) such that

(i) π is an isomorphism above X \ {o};
(ii) π−1(o) is a smooth point at o′;

(iii) the induced rational map f ′ : X ′ → X ′ is regular along π−1(o);
(iv) the eigenvalues of df ′|o′ are 1, µ;
(v) f ′|E = id.

By Proposition 6.10 and the fact that f ′|E = id, there exists an analytic diffeo-
morphism φ from the unit polydisk U := (C◦p)2 to the open subset V of X ′K(Cp)
which is defined over Kp such that,

(i) φ((0, 0)) = o;
(ii) the set V is f ′-invariant;

(iii) the action of f ′ on V is conjugate, via φ, to an analytic endomropshim on
U = (C◦p)2 taking form

G : (z1, z2) 7→ (z1 + z2(
∑

i,j≥0,i+j≥1

ci,jz
i
1z
j
2), µz2 + z2(

∑
i,j≥0,i+j≥1

di,jz
i
1z
j
2)).

where ci,j, di,j ∈ pC◦p.
In particular, the reduction of G takes form

G̃ : (z1, z2) 7→ (z1, 0).

We have that Y := {z2 = 0} = φ−1(E) and the morphism β : U \ Y → XK(Cp)
is an homeomorphism on to an open subset of XK(Cp). Observe that Y ' C◦p,
and G|Y = id. Let q be a uniformizer of Kp. Let r be a positive integer which is

prime to ([df + 2d
1/2
f + 1] + 1)!. Set WY := {(z1, 0) ∈ Y | |z1| = |q|1/r}. Then WY

is a no empty open subset of Y.
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Lemma 6.13. Let L be any finite extension of K satisfying

[L : K]|(([df + 2d
1/2
f + 1] + 1)!)n

for some n ≥ 1. Let τL : L ↪→ Cp be any extension of τ . Denote by φτL :
(XK(L)) ↪→ XK(Cp) the induced inclusion. Then WY ∩ φ−1(φτL(EK(L))) = ∅.

By Section 8.1 and Remark 8.10, there exists a morphism ψ : U → Y such that
ψ|Y = id, ψ = ψ ◦ f and for every point x ∈ U , fn(x) tends to ψ(x). Since π|U\E
is a homeomorphism to its image and f is injective in a neighborhood of o, after
shrinking U , we may assume that f(U \ E) ⊆ U \ E.

Set W := ψ−1(WY ) \ Y , which is a nonempty open in U. Then β(W ) is a
nonempty open subset of XK(Cp). Then we conclude the proof by the following
lemma.

Lemma 6.14. For every y ∈ β(W ), the orbit Of (y) is Zariski dense in X.

�

Proof of Lemma 6.13. Denote by Lp the closure of τL(L) in Cp. Then we have

[Lp : Kp]|[L : K]|(([df + 2d
1/2
f + 1] + 1)!)n.

Let t be a uniformizer ofKp, we have |t|e = |q| for some positive integer e|[Lp : Kp].

We have |Lp| = {0} ∪ |q|e
−1Z. We note that |q|1/l 6∈ |Lp|.

Since φ is defined over Kp ⊆ Lp, we have φ−1(E(Lp)) ⊆ Y (Lp) := {(z1, 0)|z1 ∈
L◦p} ⊆ Y. In particular, for every x = (z1, 0) ∈ φ−1(E(Lp)), we have |z1| 6= |q|1/r.
It follows that x 6∈ WY . We conclude the proof. �

Proof of Lemma 6.14. Extension τ to an embedding k ↪→ Cp. Using this embed-
ding, we may view X(k) as a subset of XK(Cp).

Assume that the orbit Of (y) is not Zariski dense in X. Denote by C the Zariski
closure of Of (y) in X. We have dimC = 1.

Set x := β−1(y) which is contained in W. Set c := WY . By Example 8.11,
Dc := ψ−1(c) ' C◦p and it contains the orbit of x. It follows that β(Dc) is an
irreducible analytic curve in XK(Cp) which contains Of (y). Then C is exactly the
Zariski closure of β(Dc) in X. It follows that C is irreducible curve. Moreover,
since f(β(Dc)) ⊆ β(Dc), we have f(C) = C. By Corollary 5.6, there exists a finite
field extension H over K satisfying [H : K]|(df !)l for some l ≥ 0 such that C is
defined over U.

Denote by C ′ the strict transform of C in X ′. Then φ−1(C ′) is a Zariski closed
subset of U. Observe that Y 6⊆ φ−1(C ′). Then φ−1(C ′) takes form tsi=1Dci where
ci ∈ Y and Dci := ψ−1(ci) ' C◦p. We may assume that c0 = c. Then Dc is the

unique irreducible component of φ−1(C ′) which meets c. It follows that C ′ has
only one branch passing through φ(c).

Denote by πC : C → C the normalization of C and fC the endomorphism
induced by f |C . Set Fo := Fix(fC) ∩ π−1(o). We have |Fo| ≤ mC(o) ≤ [df +

2d
1/2
f + 1] + 1. Since C and o are defined over H, Fo is defined over H. Then there



45

exists a finite field extension I over H satisfying [I : H]|([df + 2d
1/2
f + 1] + 1)!

such that every point in Fo is defined over I. We note that

[I : L] = [I : H][H : L]|([df + 2d
1/2
f + 1] + 1)!(df )

l.

The rational map π−1 ◦ πC : C 99K C ′ extends to a morphism πC′ : C → C ′.
It is the normalization of C ′. The morphism πC′ is defined over H. It follows
that the image of every point of Fo in X ′ is defined over I. Then we have φ(c) ∈
πC′(Fo) ⊆ EK(I). Then we have c ∈ WY ∩φ−1(EK(I)). Since [I : L] divides some

power of ([df + 2d
1/2
f + 1] + 1)!, this contradicts Lemma 6.13. Then we concludes

the proof. �

6.4. Amplified endomorphisms of smooth surfaces.

Proposition 6.15. Let X be a smooth projective variety over k. Let f : X → X
be an amplified endomorphism. Assume that f satisfies the R-property. Then the
pair (X, f) satisfies the adelic ZD2-property.

Proof of Proposition 6.15. By Lemma 6.5, after replacing f by a positive iterate,
we may assume that f has a good fixed point o ∈ X(k). Let λ1, λ2 be the
two eigenvalue of df |o. By Corollary 3.33, we may assume that λ1, λ2 are not
multiplicatively independent and there exists an embedding τ : k ↪→ Cp for some
prime p such that |τ(λ1)|, |τ(λ2)| ≤ 1 and 0 < |τ(λ1)||τ(λ2)| < 1. Let K be a
subfield of k which is finitely generated over Q such that K = k and X, f, o, λ1, λ2

are defined over K. Lemma 6.11 and 6.12 show that there exists a nonempty open
subset U ⊆ XK(Cp) such that for every x ∈ XK(τ |K , U), the orbit of x is Zariski
dense in X. This concludes the proof �

Let X be a smooth projective variety over k. Let f : X → X be a dominant
endomorphism. We denote by λ1(f) the first dynamical degree i.e.

λ1(f) := lim
n→∞

((f ∗)nL · L)1/n

where L is an ample line bundle on X. The limit always exists and does not
depend on the choice of the ample line bundle L.

Pick any embedding σ : k ↪→ C. We view XK(C) as a complex surface induced
by σ.

By [26, Theorem 3.4, iv)], if df > λ1(f), then there exists a repelling periodic
point of f. It implies that fn has R-Property for some n ≥ 1. Then Proposition
6.15 implies the following result.

Corollary 6.16. Let X be a smooth projective variety over k. Let f : X → X
be an amplified endomorphism. Assume that df > λ1(f). Then the pair (X, f)
satisfies the adelic ZD2-property.

In particular, when X = P2 and f is an endomorphism of P2 of degree at least
2, the pair (X, f) satisfies the adelic ZD2-property.
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7. Proof of Theorem 1.8

Proof. Assume that the transcendence degree of k over Q is finite. Let X be a
smooth projective surface over k. Let f : X → X be a dominant endomorphism.

If X is an automorphism, then we conclude the proof by Corollary 3.26. Now
we may assume that df ≥ 2.

If the Kodaira dimension of X equals to 2, by [18, Proposition 2.6], f is an
automorphism, which concludes the proof.

Recall the following result [18, Lemma 2.3 and Proposition 3.1].

Lemma 7.1. If the Kodaira dimension of X is nonnegative and f is not an
automorphism, then X is minimal and f is étale.

If the Kodaira dimension of X equals to 1, by [32, Section 8], there exists a
projective curve B, surjective morphism π : X → B and m ≥ 1 such that

π ◦ fm = π.

Pick a nonconstant rational function h on B. Then H := h ◦ π is a nonconstant
rational function on X. We have (fm)∗H = H. Then we concludes the proof by
Lemma 2.6.

Now we assume that the Kodaira dimension of X equals to 0.
So X is either an abelian surface, a hyperelliptic surface, a K3 surface, or an

Enriques surface. Since f is étale, by [18, Corollary 2.3], we have

χ(X,OX) = dfχ(X,OX).

Since df ≥ 2, we have χ(X,OX) = 0. Then X is either an abelian surface or
a hyperelliptic surface, because K3 surfaces and Enriques surfaces have nonzero
Euler characteristics. When X is an abelian surface, we concludes the proof by
Theorem 1.10. Now we may assume that X is a hyperelliptic surface.

Let π : X → E be the Albanese map of X. Then E is a genus one curve, π is a
surjective morphism with connected fibers. There exists a morphism g : E → E
satisfying g ◦ π = π ◦ f . Moreover there is an étale cover φ : E ′ → E such that
X ′ := X ×E E ′ = F × E ′,where F is a genus one curve. Denote by π1 : X ′ → X
the projection to the first factor, which is a finite étale morphism.

By [32, Lemma 6.3], after a further étale base change, we may assume that
there exists an endomorphism g′ : E ′ → E ′ such that φ ◦ g′ = g ◦ φ. Define
f ′ := f ×E g′ : X ′ → X ′ the induced endomorphism on X ′. Then we have
π1 ◦ f ′ = f ◦ π1. Since X ′ is an abelian surface, Theorem 1.8 holds for f ′ by
Theorem 1.10. Then we conclude the proof by Lemma 3.23.

Now we assume that the Kodaira dimension of X equals to −∞.
Recall the following result [36, Proposition 10].

Lemma 7.2. Assume that Kodaira dimension of X equals to −∞ and f is not an
automorphism. Then there is a positive integer m such that for every irreducible
curve E on X with negative self-intersection, we have fm(E) = E.
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By Lemma 7.2, after replacing f by fm, we may assume that f fixes all (−1)-
curves. If we contract a (−1)-curve of X to get a new surface X ′, f induces an
endomorphism f ′ on X ′. By Lemma 3.23, we only need to show Theorem 1.5 for
X ′. Continue this process until there is no (−1)-curve, we may assume that X is
minimal. Then X is either P2 or a P1-bundle over a smooth projective curve B.

If X = P2, then there exists d ≥ 2 such that f ∗O(1) = O(d). Then f is
amplified and λ1(f) = d < d2 = df . Then we conclude the proof by Corollary
6.16.

Now we may assume that X is a P1-bundle π : X → B over a smooth projective
curve B. By [32, Lemma 5.4], after replacing f by f 2, we may assume that there
exists an endomorphism fB : B → B such that π ◦ f = fB ◦ π. Denote by dB
the degree of fB. For b ∈ B, set Fb := π−1(b). Denote by dF the degree of the
morphism f |Fb : Fb → FfB(b). We have

dF × dB = df .

Since df ≥ 2, either dB ≥ 2 or dF ≥ 2.
Denote by N1(X) the R-Neron Serveri group. We have dimN1(X) = 2. Denote

by A the nef cone of X in N1(X). Denote by F the class of a fiber of π in N1(X).
There exists E ∈ N1(X) such that the boundary of A is the union of R≥0F and
R≥0E. We note that for every s, t > 0, sE + tF is ample. Since f∗, f

∗ preserve
the nef cone and f∗f

∗ = df id, we have f ∗(A) = A. Since f preserves π, we have
f ∗(F ) = dBF and f ∗(E) = dFE.

If dF , dB ≥ 2, then

f ∗(F + E)− (F + E) = (dB − 1)F + (dF − 1)E

is ample. It follows that f is amplified. Observe that

λ1(f) = max{dB, dF} < dB × dF = df .

We conclude the proof by Corollary 6.16.

Now we may assume that there is exactly one of dB, dF equals to 1. In particular,
dE 6= dF . Then we have

E · E = d−1
F (f ∗E · E) = d−1

F (E · f∗E) = dB/dF (E · E).

It follows that E · E = 0.
If fB is of finite order, then there exists m ≥ 1 such that

π ◦ fm = π.

Pick a nonconstant rational function h on B. Then H := h ◦ π is a nonconstant
rational function on X. We have (fm)∗H = H. Then we concludes the proof by
Lemma 2.6. Now we may assume that f |B is not of finite order.

For a curve C in X, we denote by [C] its class in N1(X). Write C = aF + bE.
For every m ≥ 0, we have

fm∗ C = afm∗ F + bfm∗ E = admF F + bdmBE.

Then if C is an irreducible periodic curve, we have [C] ∈ R+E ∪R+F. Moreover,
if [C] ∈ R+F, we have [C] · F = 0. It follows that C is a fiber of π.
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By Proposition 3.25, after replacing f by a suitable iterate, we may assume
that there are infinitely many distinguished irreducible curves Ci, i ≥ 1 of f .
Since fB 6= id, there are at most finite many fixed point of fB. Then there are
at most finitely many Ci are fibers of π. After replacing Ci by a subsequence, we
may assume that [Ci] ∈ R+E, i ≥ 1.

By Lemma 3.23, we may replace (X, f) by (X×BC1×BC2×BC3, f×B f |C1×B
f |C2×B f |C3) and assume that C1, C2, C3 are sections of π. Since Ci ·Cj = 0, i, j ≥
0, Ci ∩ Cj = ∅, i 6= j. For every b ∈ B(k), denote by Ci,b ∈ Fb(k) the fiber of
Ci, i = 1, 2, 3. Fix 3 distinct points oi, i = 1, 2, 3 in P1(k). There exists a unique
morphism ψb : P1 → Fb sending oi to Ci,b. The morphism ψ : B × P1 → X
sending (b, x) to ψb(x) ∈ Fb ⊆ X is an isomorphism. Then we may identify X
with B×P1. Denote by π′ : X = B×P1 → P1 the projection to the second factor.
Then we may assume that E is the class of a fiber of π′. Since

f∗E · E = dBE · E = 0,

f preserves π′. Then f : B×P1 → B×P1 takes form (x, y)→ (fB(x), g(y)) where
g is an endomorphism of P1 of degree dF . If g is of finite order, we conclude by
Lemma 2.6.

Now we may assume that both fB and g are of infinite order. By Remark 3.21,
there are nonempty adelic open subsets V1, V2 of B(k) and P1(k) respectively,
such that the for every x ∈ V1 (resp. x ∈ V2), the orbit of x under fB (resp. g)
is Zariski dense in B(k) (resp. P1(k)). Set U1 := π−1(V1) and U2 := (π′)−1(V2).
By Proposition 3.16, there exists m ≥ 1 and a nonempty adelic open subsets U
of X(k), such that for every x ∈ U , the Zariski closure of Ofm(x) is irreducible.
After replacing f by fm, we may assume that m = 1. We only need to show that
for every p = (a, b) ∈ U ∩ U1 ∩ U2, the orbit of x is Zariski dense.

Assume that Of (p) is not Zariski dense. Since p is not preperiodic, the Zariski
closure Z of Of (p) is of dimension 1. Then Z is irreducible and invariant by f.
Then Z is either a fiber of π or a fiber of π′. If Z is a fiber of π, then π(Z) =
π(p) = b is a fixed point which contradicts our assumption. The same, if Z
is a fiber of π′, then π′(Z) = π′(p) = a is a fixed point which contradicts our
assumption. Then we concludes the proof. �

8. Appendix A: Endomorphisms on the k-affinoid spaces

In this appendix, we use the terminology of Berkovich space. See [11, 12]
for the general theory of Berkovich spaces. Our aim is to show that for certain
endomorphism f on a k-affinoid space X, the attractor Y of f is a Zariski closed
subset and the dynamics of f is semi-conjugates to the its restriction on Y. A
special case of this result is used in the proof of the main theorem. In the sequels
to the papers [42], we will generate this result to the global setting.

Denote by k a complete valued field with a nontrivial nonArchimedean norm |·|.
Denote by k◦ := {f ∈ k| |f | ≤ 1} the valuation ring and k◦◦ := {f ∈ k| |f | < 1}
its maximal ideal. Denote by k̃ := k◦/k◦◦ the residue field.

Let A be a strict and reduced k-affinoid space. Let ρ(·) be the spectral norm
on A. Set X := M(A). Denote by X̃ := Spec (A◦/A◦◦) the reduction of X and
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π : X → X̃ the reduction map. Let f : X → X be an endomorphism. Denote by

f̃ : X̃ → X̃ the reduction of f .

For every h ∈ A, the sequence ρ((fn)∗h), n ≥ 0 is decreasing, so the limit

ρf (h) := lim
n→∞

ρ((fn)∗h)

exists. It is easy to see that ρf (·) : A → [0,+∞) is a power multiplicative semi-
norm on A which is bounded by ρ. Define J f to be the ideal of A consisting
of the h ∈ A satisfying ρf (h) = 0. The following result shows that for h ∈ Jf ,
(fn)∗h converges to 0 uniformly.

Proposition 8.1. There exists b ∈ (0, 1) and m ≥ 1 such that for all g ∈ Jf ,
ρ((f ∗)m(g)) ≤ bρ(g).

Proof of Proposition 8.1. Write Jf = (g1, . . . , gs) where ρ(gi) = 1, i = 1, . . . , s.
There exists C > 0 such that for every g ∈ Jf , we may write

g =
s∑
i=1

gihi

where ρ(hi) ≤ Cρ(g). There exists m ≥ 1 such that

ρ((f ∗)m(gi)) < (1 + C)−1, i = 1, . . . .s

We have

(f ∗)m(g) =
s∑
i=1

(f ∗)m(gi)(f
∗)m(hi).

For i = 1, . . . , s, we have

ρ((f ∗)m(gi)(f
∗)m(hi)) ≤ ρ((f ∗)m(gi))ρ((f ∗)m(hi))

< (1 + C)−1Cρ(g).

It follows that
ρ((f ∗)m(g)) ≤ (1 + C)−1Cρ(g)

for all g ∈ Jf . Set b := (1 + C)−1C. We conclude the proof. �

The main result of Appendix A is the following theorem.

Theorem 8.2. Assume that X is distinguished. Assume that there exists a sub-

variety Z ⊆ X̃ such that f̃(X̃) = Z and f̃ |Z is an automorphism of Z. Denote by

Ĩ the ideal of Ã defined by Z. Let Y be the Zariski closed subset of X defined by
Jf .

Then we have

1) J̃f = Ĩ where J̃f := (Jf ∩ A◦)/(Jf ∩ A◦◦);
2) the residue norm on A/Jf w.r.t. the spectral norm of A and the spectral
norm on A/Jf are equal to the norm on Y induced by ρf (·);

3) Ỹ ' π(Y ) = Z where the first isomorphism is induced by the inclusion
of Y in X;

4) f(Y ) = Y ;
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5) f |Y is an automorphism of Y.

There exists a unique morphism ψ : X → Y satisfying ψ|Y = id and

f |Y ◦ ψ = ψ ◦ f.
Moreover there exists C > 0, β ∈ (0, 1) such that for every h ∈ A, x ∈ X and
n ≥ 0, we have

||h(fn(x))| − |h(fn(ψ(x)))|| ≤ Cβnρ(h).

Remark 8.3. Since f̃(X̃) ⊆ Z̃ and ψ|Y = id, we have ψ̃ = f̃ |−1
Z ◦ f̃ .

Remark 8.4. By [13, Theorem 6.4.3/1], when k is stable, X is always distin-
guished.

Remark 8.5. Under the assumption of Theorem 8.2, we have Y = ∩n≥0f
n(X).

Proof of Theorem 8.2. There exists a distinguished epimorphism

φ∗ : T := k{T1, . . . , Tr}� A.

There exists a morphism F ∗ : k{T1, . . . , Tr} → k{T1, . . . , Tr} such that

φ∗ ◦ F ∗ = f ∗ ◦ φ∗.

Denote by K the kernel of φ∗. Set K◦ := K ∩ T ◦ and K̃ := K◦/(K◦ ∩ T ◦◦).
Since φ∗ is distinguished, K̃ is exactly the kernel of φ̃. Denote by Ĩ the ideal of

Ã defined by Z. Set Ĩ1 := φ̃−1(Ĩ). Since f̃(X̃) = Z, we have

F̃ ∗Ĩ1 ⊆ K̃.

Moreover, since f̃Z is an automorphism of Z, for every h ∈ T̃ , j ≥ 1, there exists

h′ ∈ T̃ such that h− (F̃ ∗)j(h′) ∈ Ĩ1. In other words, we have

T̃ = Ĩ1 + (F̃ ∗)j(T̃ ).

Write Ĩ1 = (G̃1, . . . , G̃s). Set g̃i = φ(G̃i), i = 1, . . . , s, then we have Ĩ =
(g̃1, . . . , g̃s).

There are Gi ∈ T ◦, i = 1, . . . , s such that G̃i, i = 1, . . . , s is the reduction of Gi.

Since F̃ ∗(G̃i) ∈ K̃, i = 1, . . . , s, there exists c ∈ (0, 1) such that for all i = 1, . . . , s,

ρ(f ∗(φ(Gi))) ≤ c.

By [14, Corollary 7], we may write K = (K1, . . . , Km) where ρ(K)i = 1, i =

1, . . . ,m such that K̃ = (K̃1, . . . , K̃m) and K◦ =
∑m

i=1KiT
◦.

Lemma 8.6. There exist three disjoint sets S1, S2, S3 and elements Ei, i ∈ S1tS2

and Ej
i , i ∈ S3, j ≥ 1 of T such that

• for every j ≥ 1, Ei, i ∈ S := S1 tS2, E
j
i , i ∈ tS3 is an orthonormal basis

of T ;
• Ei, i ∈ S1 is an orthonormal basis of K;
• Ẽi, i ∈ S1 t S2 is a base of Ĩ1;
• for every i ∈ S2, Ei takes form GjT

I for some j ∈ {1, . . . , s} and some
multi-index I;
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• for every i ∈ S3, j ≥ 1, Ej
i takes form (F ∗)j(P j

i ) where P j
i = T I for some

multi-index I.

For every i ∈ S2, we have ρ(F ∗(Ei)) ≤ c. Set W := ⊕i∈S2kEi. We note that

W̃ is generated by Ẽi, i ∈ S2. So we have

φ̃(W̃ ) = Ĩ .

For every H ∈ W , we may write H =
∑

i∈S2
aiEi with ρ(H) = maxi∈S2 ai. It

follows that
ρ(F ∗(H)) ≤ cρ(H)

for all H ∈ W.
For the convenience, we set Ej

i := Ei for i ∈ S1 t S2, j ≥ 1.

For every H ∈ T, j ≥ 1, we may wrtie H =
∑

i∈S a
j
iE

j
i , a

j
i ∈ k where ρ(G) =

maxi∈S a
j
i . Write

Kj(H) :=
∑
i∈S1

ajiEi ∈ K,

W j(H) :=
∑
i∈S2

ajiEi ∈ W j,

and
Qj(H) :=

∑
i∈S3

ajiP
j
i .

Then we have
H = Kj(H) +W j(H) + (F ∗)j(Qj(H))

and
ρ(H) = max{ρ(Kj(H)), ρ(W j(H)), ρ(Qj(H))}.

For every H ∈ (K ⊕W ) ∩ T ◦, we will define sequences Hi ∈ T ◦, i ≥ 0, ai ∈
k, i ≥ 1 such that |ai| ≤ c,

• (F ∗)i(Hi) ∈ (W ⊕K) ∩ T ◦;
• ρ(W i((F ∗)i(Hi))) ≤

∏i
j=1 |aj|;

• ρ(Hj −Hi) ≤ ci+1 for j > i ≥ 0.

In particular, we have H̃i = H̃ for i ≥ 0 and the sequence Hi converges when
i→∞.

Now we do the construction by recurrence. Set H0 := H. For i ≥ 0, we have

(F ∗)i(Hi) = Ki((F ∗)i(Hi)) +W i((F ∗)i(Hi)).

Pick Vi ∈ W ∩ T ◦ such that W i((F ∗)i(Hi)) = (
∏i

j=1 aj)Vi. It follows that

(F ∗)i+1(Hi) = (
i∏

j=1

aj)F
∗(Vi) mod K.

Since Vi ∈ T ◦ ∩ W , we have ρ(φ(F ∗(Vi))) ≤ c. Pick ai+1 ∈ k with |ai+1| =
ρ(φ(F ∗Vi)). Since φ is distinguished, we may have

F ∗(Vi) = ai+1Ui mod K
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where Ui ∈ T ◦. We have

Ui = W i+1(Ui) + (F ∗)i+1(Qi+1(Ui)) mod K.

It follows that

(F ∗)i+1(Hi) = (
i+1∏
j=1

aj)W
i+1(Ui) + (

i+1∏
j=1

aj)(F
∗)i+1(Qi+1(Ui)) mod K,

thus

(F ∗)i+1(Hi − (
i+1∏
j=1

aj)Q
i+1(Ui)) = (

i+1∏
j=1

aj)W
i+1(Ui) mod K.

We set

Hi+1 := Hi − (
i+1∏
j=1

aj)Q
i+1(Ui).

We note that ρ((
∏i+1

j=1 aj)Q
i+1(Ui)) ≤ ci+1. The sequences Hi ∈ T ◦, i ≥ 0, ai ∈

k, i ≥ 1 are what we need.

We claim that for every g̃ ∈ Ĩ, there exists g ∈ Jf ∩ A◦ such that g̃ is the

reduction of g. Now we prove the claim. For g̃ ∈ Ĩ, there exists G̃ ∈ Ĩ1 such that

g̃ = ψ̃(G̃). Write

G̃ =
∑

i∈S1tS2

ãiẼi

where ai ∈ k◦. Set H :=
∑

i∈S1tS2
aiEi ∈ (K ⊕W ) ∩ T ◦. The reduction of H

equal to G̃. By the construction in the previous paragraph, we have a sequence
Hi, i ≥ 0.

Set H∞ := lim
i→∞

Hi and g := φ(H∞). We have

ρ(H∞ −Hi) ≤ ci+1

for i ≥ 0. In particular, we have H̃∞ = H̃. It follows that the reduction of g is g̃.
For every i ≥ 1, we have

ρ((F ∗)i(H∞)− (F ∗)i(Hi)) ≤ ci+1

and

(F ∗)i(Hi) ∈ K + (
i∏

j=1

ai)W
◦,

we have
ρ((f ∗)i(g)) = ρ((F ∗)i(φ(H∞))) ≤ max{ci, ci+1} = ci.

Then we get g ∈ Jf .

The above argument shows that Ĩ ⊆ J̃f . Since f̃Z is an automorphism of Z,

we have Ĩ = ker(f̃ ∗
i
) for all i ≥ 1. For every g ∈ Jf ∩ A◦ there exists n ≥ 1 such

that (f ∗)n(g) ∈ A◦◦. Then we have g̃ ∈ ker(f̃ ∗
n
) = Ĩ . Then we get

Ĩ = J̃f ,
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which proves 1).
Define Y to be the Zariski closed subset of X defined by the ideal Jf . We have

Y =M(A/Jf ). Denote by ‖ · ‖Y the residue norm on A/Jf . Denote by ρY (·) the
spectral norm on A/Jf . We still denote by ρf (·) the norm on A/Jf induced by
ρf (·) on A. Since ρf (·) ≤ ρ(·) on A and it is power-multiplicative, we have

‖ · ‖Y ≥ ρY (·) ≥ ρf (·)
on A/Jf . To prove 2), we only need to show that for every g ∈ A/Jf , we have

ρf (g) ≥ ‖g‖Y .

Lemma 8.7. Let A be a distinguished k-affinoid algebra. Let I be a reduced ideal
of A. Denote by π : A� B := A/I the quotient map. Denote by ‖ · ‖ the residue
norm on B w.r.t. the spectral norm on A. Then for every g ∈ B, there exists
G ∈ π−1(g) such that ρ(G) = ‖g‖.

By Lemma 8.7, there exists g ∈ A whose image in A/Jf is g such that

ρ(g) = ‖g‖Y .
We may assume that ρ(g) = ‖g‖Y = 1 and we only need to show that ρf (g) = 1.
Otherwise ρf (g) < 1, then there exists n ≥ 1 such that ρ((f ∗)n(g)) < 1. In other

words, g̃ ∈ ker(f̃ ∗)n = Ĩ . Since Ĩ = J̃f , there exists w ∈ Jf and h ∈ A◦◦ such
that g = w + h. It follows that ‖g‖Y ≤ ρ(h) < 1, which is a contradiction. Then
we proved 2).

The inclusion of Y in X induces a morphism Ỹ → X̃. By 2), this morphism is
a closed embedding given by the morphism

Ã� Ã/J̃f = Ã/Jf .

By 1), we have Ĩ = J̃f . It implies that the image of this inclusion is exactly

Z. This proves 3). Since f ∗(Jf ) ⊆ Jf , we have f(Y ) ⊆ Y. Since f̃ |Z is an

automorphism of Z, f̃ |Y is an automorphism of Ỹ . By 2) and the assumption
that X is distinguished, Y is distinguished.

Proposition 8.8. Let A,B be two distinguished k-affinoid algebra. Let g : A→
B be a morphism. If the reduction g̃ : Ã � B̃ is surjective. Then the morphism
g : A→ B is surjective.

By Proposition 8.8, f |∗Y is surjective. By [13, 6.3.1 Theorem 6], f |∗Y is injective.
Then f |∗Y is an isomorphism of Y . Then we get 4) and 5).

We now construct the morphism ψ : X → Y. Denote by τ the quotient mor-
phism τ : A→ A/Jf . Pick a bounded k-linear map χ : A/Jf → A satisfying

τ ◦ χ = id.

There exists C > 0 such that

ρ(χ(h)) ≤ CρY (h).

By Proposition 8.1, there exists b ∈ (0, 1) and m ≥ 1 such that for all g ∈ Jf ,
ρ((f ∗)m(g)) ≤ bρ(g).
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It follows that for every n ≥ m, g ∈ Jf we have

ρ((f ∗)n(g)) ≤ ρ((f ∗)[n/m]m(g)) ≤ bn/mρ(g) ≤ bn/2mρ(g).

For n ≥ 0, define bounded k-linear maps

ψn := (f ∗)n ◦ χ ◦ (f |∗Y )−n : A/Jf → A.

Denote by ‖ · ‖ the operator norm. We have ‖ψn‖ ≤ C.
For every h ∈ A/Jf , j ≥ i ≥ m, we have

ψj(h)− ψi(h) = (f ∗)j ◦ χ ◦ (f |∗Y )−j(h)− (f ∗)i ◦ χ ◦ (f |∗Y )−i(h)

= (f ∗)i ◦ ((f ∗)(j−i) ◦ χ ◦ (f |∗Y )−j(h)− χ ◦ (f |∗Y )−i(h)).

Observe that

τ((f ∗)(j−i) ◦ χ ◦ (f |∗Y )−j(h)− χ ◦ (f |∗Y )−i(h))

= τ ◦ (f ∗)(j−i) ◦ χ ◦ (f |∗Y )−j(h)− τ ◦ χ ◦ (f |∗Y )−i(h)

= (f |∗Y )(j−i) ◦ (τ ◦ χ) ◦ (f |∗Y )−j(h)− (τ ◦ χ) ◦ (f |∗Y )−i(h)

= 0.

We have (f ∗)(j−i) ◦ χ ◦ (f |∗Y )−j(h)− χ ◦ (f |∗Y )−i(h) ∈ Jf and

ρ((f ∗)(j−i) ◦ χ ◦ (f |∗Y )−j(h)− χ ◦ (f |∗Y )−i(h)) ≤ ‖χ‖ρ(h).

It follows that

ρ(ψj(h)−ψi(h)) = ρ((f ∗)i((f ∗)(j−i)◦χ◦(f |∗Y )−j(h)−χ◦(f |∗Y )−i(h))) ≤ bi/2mρ(h).

Then the sequence of operators ψi, i ≥ 0 converges to a bounded k-linear map

ψ∗ : A/Jf → A

with ‖ψ∗‖ ≤ C.
For g, h ∈ A/Jf , n ≥ m, we have

ψn(gh)− ψn(g)ψn(h) = (f ∗)n ◦ (χ ◦ (f |∗Y )−n(gh)− χ ◦ (f |∗Y )−n(g)χ ◦ (f |∗Y )−n(h))

Observe that

τ(χ ◦ (f |∗Y )−n(gh)− χ ◦ (f |∗Y )−n(g)χ ◦ (f |∗Y )−n(h))

= (f |∗Y )−n(gh)− (f |∗Y )−n(g)(f |∗Y )−n(h) = 0.

We have χ ◦ (f |∗Y )−n(gh)− χ ◦ (f |∗Y )−n(g)χ ◦ (f |∗Y )−n(h) ∈ Jf of of norm at most
CρY (g)ρY (h). So we have

ρ(ψn(gh)−ψn(g)ψn(h)) = ρ((f ∗)n◦(χ◦(f |∗Y )−n(gh)−χ◦(f |∗Y )−n(g)χ◦(f |∗Y )−n(h)))

≤ Cbn/2mρY (g)ρY (h).

Let n → ∞, we get ψ∗(gh) = ψ∗(g)ψ∗(h). Then ψ∗ is indeed a morphism of
k-algebra. It defines a morphism ψ : X → Y. Observe that

τ ◦ ψn = τ ◦ (f ∗)n ◦ χ ◦ (f |∗Y )−n = τ ◦ (f |∗Y )n ◦ (τ ◦ χ) ◦ (f |∗Y )−n = id

for all n ≥ 0. Then we have τ ◦ ψ∗ = id. This shows that ψ|Y = id. We have

ψn ◦ f |∗Y = f ∗ ◦ ψn−1.

Let n→∞, we get ψ∗ ◦ f |∗Y = f ∗ ◦ ψ∗. It follows that ψ ◦ f = f |Y ◦ ψ.
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For every x ∈ X, h ∈ A◦, n ≥ m we have

ρ((f ∗)n ◦ ψ∗ ◦ τ(h)− (f ∗)n ◦ ψ∗n ◦ τ(h)) ≤ ‖ψ∗ − ψn‖ρ(h) ≤ Cbn/2m.

We note that τ(ψ∗n◦τ(h)−h) = τ(h)−τ(h) = 0. Then we have ψ∗n◦τ(h)−h ∈ Jf
and its norm is at most C. It follows that

ρ((f ∗)n ◦ ψ∗n ◦ τ(h)− (f ∗)n(h)) ≤ bn/2mC.

Then we have

||h(ψ(fn(x)))| − |h(ψ(fn(x)))|| ≤ |h(ψ(fn(x)))− h(ψ(fn(x)))|

≤ ρ((f ∗)n ◦ ψ∗ ◦ τ(h)− (f ∗)n(h))

≤ max{ρ((f ∗)n ◦ ψ∗n ◦ τ(h)− (f ∗)n(h)), ρ((f ∗)n ◦ ψ∗n ◦ τ(h)− (f ∗)n(h))}
≤ bn/2mC.

Now we only need to prove the uniqueness of ψ. If we have another morphism
ψ1 : X → Y satisfying ψ1|Y = id and f |Y ◦ψ1 = ψ1 ◦ f , we want to show ψ = ψ1.
Since f ∗ ◦ψ∗ = ψ∗ ◦ f |∗Y , for every n ≥ 0, we have (fn)∗ ◦ψ∗ = ψ∗ ◦ (f |nY )∗. Then
we have

(fn)∗ ◦ ψ∗ ◦ (f |−nY )∗ = ψ∗.

The same, we get
(fn)∗ ◦ ψ∗1 ◦ (f |−nY )∗ = ψ∗1.

For every h ∈ A/Jf , n ≥ 0, we have

(ψ∗ ◦ (f |−nY )∗(h)− ψ∗1 ◦ (f |−nY )∗(h))|Y = 0.

Then we have ψ∗ ◦ (f |−nY )∗(h)− ψ∗1 ◦ (f |−nY )∗(h) ∈ Jf . Then for every n ≥ m, we
have

ρ(ψ∗(h)− ψ∗1(h)) = ρ((f ∗)n(ψ∗ ◦ (f |−nY )∗(h)− ψ∗1 ◦ (f |−nY )∗(h)))

≤ bn/2mρ(ψ∗ ◦ (f |−nY )∗(h)− ψ∗1 ◦ (f |−nY )∗(h)) ≤ bn/2mρ(h).

Let n→∞, we get ψ∗(h)− ψ∗1(h) = 0, which implies that ψ = ψ1. �

Proof of Lemma 8.6. By [14, Proposition 3], there exists a Bald subring R of k◦

such that all coefficients of F,Gi, i = 1, . . . , s and Ki, i = 1, . . . ,m are contained
in R. After localizing R by all elements of norm 1, we may assume that R is a
B-ring. Moreover, after taking completion, we may assume that R is complete.

Then R̃ = R◦/R◦◦ is a subfield of k̃.

We have K̃ ⊆ Ĩ1 and T̃ = Ĩ1 + (F̃ ∗)j(T̃ ), j ≥ 1. We have a base Ẽi, i ∈ S1 of

K̃ such that for all i ∈ S1, Ẽi takes form K̃jiT̃
Ii for some ji ∈ {1, . . . ,m} and

some multi-index Ii. Since Ĩ1 is spanned by G̃jT̃
I , j = 1, . . . s, I ∈ Zs≥0, there exist

Ẽi, i ∈ S2 such that Ẽi, i ∈ S1tS2 is a base of Ĩ1 and for all i ∈ S2, Ẽi takes form

G̃jiT̃
Ii for some ji ∈ {1, . . . , s} and some multi-index Ii.

For every j ≥ 1, since T̃ = Ĩ1 + (F̃ ∗)j(T̃ ), and (F̃ ∗)j(T̃ I), I ∈ Zr≥2 spans

(F̃ ∗)j(T̃ ), there exist Ẽj
i , i ∈ S3 such that Ẽi, i ∈ S1 t S2, Ẽ

j
i ∈ S3 is a base of T̃

and for all i ∈ S3, Ẽj
i takes form (F̃ ∗)j(T̃ I

j
i ) for some multi-index Iji .
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Define Ei := KjiT
Ii for i ∈ S1, Ei := GjiT

Ii for i ∈ S2, Ej
i := (F ∗)j(T I

j
i ) for

i ∈ S3, j ≥ 1 and S := S1 t S2 t S3. We note that Ei, E
j
n ∈ R{T1, . . . , Tr} for

i ∈ S1 t S2, n ∈ S3, j ≥ 1. Now [14, Theorem 6] implies that for every j ≥ 1,
Ei, i ∈ S := S1 tS2, E

j
i , i ∈ S3 forms an orthonormal basis of T , which concludes

the proof. �

Proof of Lemma 8.7. Pick a distinguished epimorphism

φ : T := k{T1, . . . , Tr}� A.

The spectral norm on A is the residue norm w.r.t. the spectral norm on T. It
implies that the norm ‖ · ‖ on B is the residue norm w.r.t. the spectral norm on
T.

So we may assume that A = T. The we conclude the proof by [14, Corollary
7]. �

Proof of Proposition 8.8. Let φA : TA := k{T1, . . . , Tr} � A be a distinguished
epimorphism. Let φB : TB := k{U1, . . . , Us} � B be a distinguished epimor-
phism. There exists a morphism F : TA → TB such that

g ◦ φA = φB ◦ F.
Denote byK the kernel of φB. By [14, Corollary 7], we may writeK = (K1, . . . , Km)

where ρ(K)i = 1, i = 1, . . . ,m such that K̃ = (K̃1, . . . , K̃m) andK◦ =
∑m

i=1 KiT
◦
B.

By [14, Proposition 3], there exists a Bald subring R of k◦ such that all coef-
ficients of F and Ki, i = 1, . . . ,m are contained in R. After localizing R by all
elements of norm 1, we may assume that R is a B-ring. Moreover, after taking

completion, we may assume that R is complete. Then R̃ = R◦/R◦◦ is a subfield

of k̃.

We have a base Ẽi, i ∈ S1 of K̃ such that for all i ∈ S1, Ẽi takes form K̃jiŨ
Ii

for some ji ∈ {1, . . . ,m} and some multi-index Ii.

Since f̃ and φ̃A are surjective, T̃B = K̃ + F̃ (T̃A). We note that F̃ (T̃ I), I ∈ Zr≥2

spans F̃ (T̃ ). There exist Ẽj
i , i ∈ S2 such that Ẽi, i ∈ S1 t S2 is a base of T̃ and

for all i ∈ S2, Ẽj
i takes form F̃ (T̃ Ii) for some multi-index Ii.

Define Ei := KjiU
Ii for i ∈ S1, Ei := F ∗(T Ii) for i ∈ S2. We note that

Ei ∈ R{U1, . . . , Us} for i ∈ S1 t S2. Now [14, Theorem 6] implies that Ei, i ∈
S := S1 t S2 forms an orthonormal basis of TB. Since Ei ∈ K for i ∈ S1 and
Ei ∈ F ∗(T ) for i ∈ S2, we get

TB = K + F ∗(T ).

Then B = F ∗(T )/(K ∩ F ∗(T )), which implies that g is surjective. �

Proposition 8.9. Assume that A is distinguished. Let J be a reduced ideal of
A such that the residue norm on A/J w.r.t. the spectral norm of A equals to
the spectral norm on A/J . Let g1, . . . , gm be elements in A◦ ∩ J such that their

reductions g̃1, . . . , g̃m generate J̃ := (J ∩A◦)/(J ∩A◦◦). Then g1, . . . , gm generate
J.
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Proof of Proposition 8.9. Since the spectral norm of A equals to the spectral norm
on A/J , we have

Ã/J = Ã/J̃.

Pick a distinguished epimorphism

φ : T := k{T1, . . . , Tr}� A.

Denote by ‖ · ‖ the spectral norm on T . The spectral norm on A is the residue

norm w.r.t. the spectral norm on T. Set I := ker(φ) and Ĩ := (I ∩ T ◦)/(I ∩
T ◦◦). Pick F1, . . . , Fs in I ∩ T ◦ such that their reductions F̃1, . . . , F̃s generate Ĩ .
Since φ is distinguished, by [14, Corollary 7], for every i = 1, . . . ,m, there exists
G1, . . . , Gm ∈ T such that

‖Gi‖ = ρ(gi) ≤ 1, i = 1, . . . ,m.

We have Fi, i = 1, . . . , Fs, G1, . . . , Gm ∈ φ−1(J). We only need to show that
F1, . . . , Fs, G1, . . . , Gm generate φ−1(J).

Denote by ψ : T � A/J = T/φ−1(J) the composition of φ and the quotient
morphism A→ A/J. Since φ is distinguished and the residue norm on A/J w.r.t.
the spectral norm of A equals to the spectral norm on A/J , ψ is distinguished.
It follows that

Ã/J̃ = Ã/J = T̃ /φ̃−1(J)

where

φ̃−1(J) := (φ−1(J) ∩ A◦)/(φ−1(J) ∩ A◦◦).

Since φ is distinguished, we have Ã = T̃/I = T̃ /Ĩ. Then we get

T̃ /φ̃−1(J) = T̃ /φ̃−1(J̃),

which implies that

φ̃−1(J) = φ̃−1(J̃).

Observe that F̃1, . . . , F̃s, G̃1, . . . , G̃m generate φ̃−1(J̃). Then the proof of [14,
Corollary 7], shows that F1, . . . , Fs, G1, . . . , Gm generate φ−1(J), which concludes
the proof. �

8.1. The Zariski density of orbits. In this section, we assume that k = Cp.
Let Kp ⊆ Cp be a finite field extension of Qp.

Let f : D2 → D2 be an endomorphism defined over Kp whose reduction f̃ :
A2

k̃
→ A2

k̃
takes form

f̃ : (x, y) 7→ (ãx+ b̃, 0)

where ã ∈ k̃ \ {0}, b̃ ∈ k̃.
By Theorem 8.2 and Proposition 8.9, there exists g ∈ Kp{x, y} taking form

g = y + h where h ∈ Kp{x, y}◦◦ such that Jf = (g). Set Y := M(k{x, y})/(g).
We have Y ' D1. There exists a unique morphism ψ : D2 → Y satisfying ψ|Y = id
and

f |Y ◦ ψ = ψ ◦ f.
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There exists C > 0, β ∈ (0, 1) such that for every F ∈ A, x ∈ X and n ≥ 0, we
have

||F (fn(x))| − |F (fn(ψ(x)))|| ≤ Cβnρ(F ).

Remark 8.10. Assume that f takes form (x, y) 7→ (ax + b + P, yQ) where
|a| = 1, P,Q ∈ k{x, y}, ρ(P ), ρ(Q) < 1. Then for n ≥ 1, we have

(f ∗)n(y) = yQf ∗(Q) · · · (f ∗)nQ.
It follows that ρ((f ∗)n(y)) ≤ ρ(Q)n. In particular, we have y ∈ Jf . By Proposition
8.9, we have Jf = (y).

Example 8.11. Assume that f takes form (x, y) 7→ (x + yP, yQ) where P,Q ∈
k{x, y}, ρ(P ), ρ(Q) < 1. By Proposition 8.9, we have Jf = (y). So we have
Y := {y = 0}. In this case we may compute the morphism ψ : D2 → Y explicitly.
Follows the proof Theorem 8.2, ψ equal to lim

n→∞
fn, which is defined by

(x, y) 7→ ( lim
n→∞

(f ∗)n(x), lim
n→∞

(f ∗)n(y)) = (x+
∑
i≥1

(f ∗)i(y)(f ∗)i(P ), 0).

We note that ρ((f ∗)i(y)(f ∗)i(P )) ≤ ρ((f ∗)i(y)) ≤ ρ(Q)i. In particular, for every
c ∈ k◦, ψ−1((c, 0)) = {x +

∑
i≥1(f ∗)i(y)(f ∗)i(P ) = c}. By implicit function

theorem, ψ−1((c, 0)) ' D.
Proposition 8.12. Assume that f |Y is not torsion and f−1(Y ) 6= D2. Then there
exists a nonempty strict affinoid subdomain V of X such that for every q ∈ V (k),
the orbit Of (o) of is Zariski dense in D2.

Remark 8.13. Assume that X is an projective surface over k. Denote by Xan

the analytification of X. Then we have a natural morphism πX : Xan → X. We
note that πX gives a bijection between Xan(k) and X(k).

Assume that there exists a strict affinoid subdomain U of Xan. Then the Zariski
topology of U is finer than the pullback by πX |U of the Zariski topology of X.
So if X is irreducible and a set S of U(k) is Zariski dense in U(k), πX(U(k)) is
Zariski dense in X.

Proof of Proposition 8.12. Fix an identification D1 =M(k{T}) ' Y. The reduc-

tion of f |Y takes form f̃ |Y : T 7→ ãT + b̃. There exists m ≥ 0 such that ãm = 1.

After replacing f by fmp, we may assume that ã = 1, b̃ = 0. Then we have

f̃ |Y = id.
Denote by ∆f |Y := f |∗Y − id : k{T} → k{T} the difference operator which is a

bounded linear operator on the Banach space k{T}.Denote by ‖∆f |Y ‖ th operator

norm of ∆f |Y . Since f̃ |Y = id, and Y, f |Y are defined over a discrete valuation
field Kp, we have ‖∆f |Y ‖ < 1. By [37, Remark 4], there exists r ≥ 1 such that
‖∆f |Y r‖ < p−2. After replacing f by f r, we may assume that ‖∆f |Y ‖ < p−2. Then
[37, Theorem 1], shows that the set of preperiodic points of f |Y in D1(k) is the
set of fixed points Fix(f |Y ) of f |Y in D1(k). Since f |Y is not torsion, Fix(f |Y ) is
finite. Since f−1(Y ) 6= D2, f−1(Y ) is a union of finitely many irreducible curves.
Let Y1 to be the union of all irreducible components of f−1(Y ) except Y. Then
Y ∩ Y1 is a finite union of closed points.
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Pick a ∈ Y (k) \ (Fix(f |Y ) ∪ (Y ∩ Y1)). There exists s ≥ 1 such that the ball
B := {t ∈ Y = D1| |(T−a)(t)| ≤ p−s} does not meet Fix(f |Y )∪(Y ∩Y1). Observe
that B is a strict affinoid subdomain of Y . By [37, Remark 4], after replacing f
by some positive iterate, we may assume that ‖∆f |Y ‖ < p−s. It follows that the
ball B := {t ∈ D1| |(T − a)(t)| ≤ p−s} is invariant under f |Y .

We note that Y ∩ ψ−1(B) ∩ Y1 = B ∩ Y1 = ∅. There exists l ≥ 1 such that

Y l ∩ ψ−1(B) ∩ Y1 = ∅

where Y l is the affinoid subdomain {t ∈ D2| |g(x)| ≤ pl}. Observe that f(Y l) ⊆
Y l. It follows that Y l∩ψ−1(B) is an analytic subdomain of D2 which is invariant by
f . Moreover (Y l∩ψ−1(B))\Y is also invariant by f. Since W := (Y l∩ψ−1(B))\Y
contains a strict affinoid subdomain of X, we only need to show that for every
o ∈ W (k), the orbit of o is Zariski dense. Otherwise, denote by Z the Zariski
closure of Of (o). We have dim(Z) ≤ 1. Since fn(o) 6∈ Y, n ≥ 0 and tends to Y , we
have dim(Z) = 1. After replacing f by a positive iterate, we may assume that Z is
an irreducible curve. The intersection Z ∩Y is a finite set of closed points. Since
f |Y is an automorphism and f(Z) ⊆ Z, every point in Z∩Y is periodic. It follows
that (Z ∩Y )(k) ⊆ Fix(f |Y ). By [37, Remark 4], we have fp

n
(ψ(o))→ ψ(o) when

n→∞. Assume that Z is defined by g1, . . . , gr. For every i = 1, . . . , r, n ≥ 0 we
have

|gi(fp
n

(ψ(o)))| = ||gi(fp
n

(ψ(o)))| − |gi(fp
n

(o))|| ≤ Cβp
n

ρ(gi).

Let n→∞, we have gi(ψ(o)) = 0. It follows that ψ(o) ∈ (Z ∩ Y )(k) ⊆ Fix(f |Y ),
which is a contradiction. Then we concludes the proof. �

9. Appendix B (Joint work with Thomas Tucker): The Zariski
dense orbit conjecture for endomorphisms of (P1)N

Let k be an algebraically closed field of characteristic zero.
The aim of this appendix is to prove Theorem 1.11. By Corollary 3.24, we only

need to show the following adelic version of it.

Theorem 9.1. Assume that the transcendence degree of k over Q is finite. Let
f : (P1)N → (P1)N be a dominant endomorphism of (P1)N , N ≥ 1. Then the pair
((P1)N , f) satisfies the adelic ZD-propety.

Now, we assume further that the transcendence degree of k over Q is finite.

For i = 1, . . . , N , denote by πi : (P1)N → P1 the projection to the i-th co-
ordinate. Denote by Hi, i = 1, . . . , N the class in N1((P1)N)R represented by
π∗i (OP1(1)). The Nef cone C of (P1)N in N1((P1)N)R is the convex cone spanned
by H1, . . . , HN . Since f ∗, f∗ preserve the Nef cone, after replacing f by some
positive iteration, we may assume that f ∗Hi is some multiple to Hi. It follows
that f preserves all πi, i = 1, . . . , N. Now we may assume that f takes form
(x1, . . . , xN) 7→ (f1(x1), . . . , fN(xN)). Where fi is an endomorphism of P1 of de-
gree at least 1.
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9.1. Exceptional endomorphisms of curves. Let C be an irreducible projec-
tive curve. Let g be an endomorphism g : P1 → P1 of deg g ≥ 2. Then C is either
P1 or an elliptic curve.

We say that g is of Lattés type, if it semi-conjugates to an endomorphism of an
elliptic curve i.e. there exists an endomorphism of an elliptic curve h : E → E
and a finite morphism π : E → C such that f ◦ π = π ◦ h.

We say that g is of monomial type, if it semi-conjugates to an endomorphism of
a monomial map i.e. there exists a monomial endomorphism h : P1 → P1 taking
form x 7→ xd, d ≥ 2 and a finite morphism π : P1 → C such that f ◦ π = π ◦ h.
We note that in this case C ' P1.

We say that g is exceptional if it is of Lattés type or monomial type. Otherwise,
it is said to be nonexceptional.

For every endomorphism g : P1 → P1 of deg g ≥ 2, it has exactly one type in
Lattés, monomial and nonexception. Moreover, the types of gn, n ≥ 1 are the
same.

The following facts are well known.

(i) If two endomorphisms of curves are semi-conjugacy, then they have the
same type.

(ii) If there is a nonzero rational differential form ω, such that g∗ω = µω for
some µ ∈ k∗, then g is exceptional.

(iii) If g has an exceptional point i.e. a point in C whose inverse orbits is
finite, then g2 is polynomial. In particular, when g is of monomial type,
g2 is polynomial.

9.2. Invariant subvarieties. For every l = 1, . . . , N , denote by Sl the set of
subsets of {1, . . . , N} of l elements. For every I ⊆ {1, . . . , N}, the ordering in
I is induced by the ordering in {1, . . . , N}. For every subset I of {1, . . . , N},
we denote by πI : (P1)N → (P1)|I| the projection (xi)i=1,...,N 7→ (xi)i∈I . Denote
by fI : (P1)|I| → (P1)|I| the endomorphism (xi)i∈I 7→ (fi(xi))i∈I . Then we have
πI ◦ f = fI ◦ πI .

The following results on the invariant subvarieties was obtained in [34] using
model theory. When k = Q, it was also obtained by Ghioca, Nguyen and Ye in
[20, Theorem 1.2], as a consequence of their solution of the Dynamical Manin-
Mumford Conjecture in this case. Here we give a new proof which is purely
geometric.

Proposition 9.2. Assume that N ≥ 2, deg fi ≥ 2, i = 1, . . . , N and all fi, i =
1, . . . , N are nonexceptional. Let V be a proper irreducible subvariety of (P1)N

which is invariant under f . Then there exists I ∈ S2 such that V ⊆ π−1
I (C) where

C is a fI-invariant curve in (P1)2.

To prove this, we need the following Lemmas.

Lemma 9.3. Let V be an irreducible hypersurface of (P1)N . For J ∈ Sl, l ≤ N−2,
for a general point z ∈ (P1)|J |, (πJ |V )−1(z) is irreducible.

Proof of Lemma 9.3. We may assume that J = {1, . . . , l}. Let µ : Y → V be a
desingularization of V . Set µi := πi ◦ µ, i = 1, . . . , N.
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By Theorem of Bertini, for general a1 ∈ P1, µ−1
1 (a1) is irreducible and smooth of

dimension N−2; for general a2 ∈ P1, µ−1
1 (a1)∩µ−1

2 (a2) is irreducible and smooth
of dimension N − 3;. . . ; for general al ∈ P1, µ−1

1 (a1) ∩ · · · ∩ µ−1
l (al) is irreducible

and smooth of dimension N − l− 1. It follows that the geometric generic fiber of
πJ ◦µ is irreducible and smooth. Then for a general point z ∈ (P1)|J |, (πJ ◦µ)−1(z)
is irreducible and smooth. Then, (πJ |V )−1(z) = µ((πJ ◦ µ)−1(z)) is irreducible.
We concludes the proof. �

Lemma 9.4. Assume that N = 3, deg fi ≥ 2, i = 1, 2, 3 and f1 is nonexceptional.
Let V be a proper irreducible hypersurface of (P1)3 which is invariant under f .
Assume that π{1,3}(V ) = (P1)2, π{2,3}(V ) = (P1)2, then π{1,2}(V ) 6= (P1)2.

Proof of Lemma 9.4. Assume that π{1,2}(V ) = (P1)2.
Set g := f |V . Set Pi := πi|V , i = 1, 2, 3. Then we have three nonzero rational

differential forms dPi, i = 1, 2, 3 on V. We have

g∗dPi = d(Pi ◦ g) = d(fi ◦ Pi) = P ∗i f
′
idPi.

Since π{1,2}(V ) = (P1)2, dP1, dP2 are linearly independent at a general point in
V. So there are rational functions G1, G2 ∈ k(V ) such that dP3 = G1dP1 +G2dP2.
Since π{1,3}(V ) = (P1)2, π{2,3}(V ) = (P1)2, G1, G2 are nonzero.

For every a ∈ P1, define Va := π−1
1 (a) ∩ V. By Lemma 9.3, there exists a

nonempty Zariski open subset U of P1, such that for every a ∈ U , Va is irreducible.
After shrinking U , we may assume that for every a ∈ U , G1|Va and G2|Va are
nonzero.

We note that Per (f1) is Zariski dense in P1. For every a ∈ U ∩ Per (f1), there
exists s ≥ 1, such that f s1 (a) = a. Then Va is gs invariant. The set of critical
periodic points of f1 is finite. After shrinking U , we may assume that for all
a ∈ U ∩ Per (f1), (fn1 )′(a) 6= 0 for n ≥ 0.

We have

(P3|∗Va(f
s
3 )′)dP3|Va = (gs|Va)∗dP3|Va = (gs|Va)∗(G1|VadP1|Va +G2|VadP2|Va)

= ((gs|Va)∗G1|Va)((f s1 )′(a))dP1|Va + ((g|sVa)
∗G2|Va)(P2|∗Va(f

s
2 )′)dP2|Va .

It follows that
((gs|Va)∗G1|Va)((f s1 )′(a))

((g|sVa)∗G2|Va)(P2|∗Va(f
s
2 )′)

=
G1|Va
G2|Va

.

It follows that

(gs|Va)∗(
G2|Va
G1|Va

dP2|Va) = (gs|Va)∗(
G2|Va
G1|Va

)(P2|∗Va(f
s
2 )′)dP2|Va

= ((f s1 )′(a))
G2|Va
G1|Va

dP2|Va .

Then gs|Va is exceptional. Since gs semi-conjugates to f s1 , f1 is exceptional, which
is a contradiction. Then we concludes the proof. �
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Proof of Proposition 9.2. We do the proof by induction on N ≥ 2. When N = 2,
there is nothing to prove.

Assume that Proposition 9.2 is known for N = 2, . . . , l. We need to show it
when N = l + 1 ≥ 3.

We first assume that there exists J ∈ Sl such that πJ(V ) 6= (P1)|J |. Then it
is a proper irreducible subvariety of (P1)|J | which is invariant under fJ . We may
conclude by the induction hypothesis.

Now we may assume that for every J ∈ Sl, we have πJ(V ) = (P1)|J |. Then we
have dimV = l, and for every J ∈ St, 1 ≤ t ≤ l, πJ(V ) = (P1)|J |.

When l = 2, N = 3, we conclude the proof by Lemma 9.3. Now we may assume
that l ≥ 3. Set K := {1, . . . , N},J := {4, . . . , N} and I := {1, 2, 3}. By Lemma
9.3, there exists a nonempty Zariski open subset U of (P1)N−3 such that for every
a ∈ U , Va := π−1

J (a) ∩ V is an irreducible surface.
For every i ∈ J , Per (fi) is Zariski dense in P1. Since the set Ci of critical

fi-periodic points of is finite, Pi := Per (fi) \ Ci is Zariski dense in P1. Then
(
∏

i∈J Pi) ∩ U is Zariski dense in (P1)|J |. Pick a ∈ (
∏

i∈J Pi) ∩ U , there exists
s ≥ 1 such that f sJ(a) = a. Then Va is invariant under f sI . By Lemma 9.4, there
exists i ∈ I such that πI\{i}(Va) 6= (P1)2. Pick o ∈ (P1)2\πI\{i}(Va). Then we have
(o, a) ⊆ (P1)N−1 \ πK\i(V ). It follows that πK\i(V ) 6= (P1)N−1, which contradicts
our assumption. We conclude the proof. �

9.3. Proof of Theorem 9.1.

Proof. By Theorem 3.28, we may assume that deg fi ≥ 2, i = 1, . . . , N. By Theo-
rem 4.1, we may assume that f 2

i , i = 1, . . . , N are not polynomial. In particular,
none of fi, i = 1, . . . , N are of monomial type.

By Proposition 3.16, after replacing f by some positive iterate, there exists a
nonempty adelic open subset A of (P1)N(k) such that for every x ∈ A, the Zariski
closure Zx of the orbit Of (x) is irreducible.

We may assume that there exists 0 ≤ s ≤ N such that fi is nonexceptional for
i ≤ s and it is of type Lattés for i ≥ s+ 1. Define l(f) := min{s,N − s} ≥ 0.

We first treat the case l(f) = 0.
If s = 0, then all fi are of type Lattés. Then there exists an abelian variety

A, a dominant endomorphism g : A → A and a finite morphism π : A → (P1)N

such that f ◦ π = π ◦ g. By Theorem 1.10, the pair (A, g) satisfies the adelic
ZD-property. Then we concludes the proof by Lemma 3.23.

If s = N, then all fi are nonexceptional. For every J ∈ S2, fJ is an amplified
endomorphism on (P1)2, whose topological degree is strictly larger than λ1(fJ).
By Corollary 6.16, there exists a nonempty adelic open subset AJ of (P1)2 such
that the fJ -orbits of every point in AJ are Zariski dense in (P1)2.

Then for every point x in the nonempty adelic open subset A∩(∩J∈S2π
−1
J (AJ)),

the Zariski closure Zx of the orbit of x is irreducible, invariant by f and πJ(Zx) =
(P1)2 for J ∈ S2. Proposition 9.2 shows that Zx = (P1)N which concludes the
proof.
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Now we do the proof by induction on l(f)N ≥ 0. Assume that Theorem 9.1
holds when 0 ≤ l(f)N ≤ m. We need to prove it when l(f)N = m+ 1 ≥ 1.

By the induction hypothesis, for every J ⊆ SN−1, there exists a nonempty
adelic open subset AJ of (P1)N−1(k), such that the fJ -orbit of every x ∈ AJ is
Zariski dense in (P1)N−1(k).

Set B := A ∩ (∩J∈SN−1
π−1
J (AJ)). For every x ∈ B, the Zariski closure Zx of

the orbit Of (x) is irreducible, invariant by f and for every J ∈ SN−1, we have
πJ(Zx) = (P1)N−1. Then we have dimZx ≥ N − 1, and for every J ∈ St, 1 ≤ t ≤
N − 1, πJ(V ) = (P1)|J |.

Assume that dimZx = N − 1. We note that f1 is nonexceptional and fN is
of Lattés type. Set I := {2, . . . , N − 1}. Lemma 9.3 shows that there exists a
nonempty Zariski open subset U ⊆ (P1)N−2, such that for a ∈ U , (πI |Zx)−1(a)
is an irreducible curve. Denote by Per (fI) the set of periodic points of fI . It
is Zariski dense in (P1)N−2. Pick a ∈ Per (fI) ∩ U. Then Ca := (πI |Zx)−1(a) is
an irreducible curve in (P1)2, which is invariant under f s{1,N} for some s ≥ 1.

Then f s{1,N}|Ca : Ca → Ca is an endomorphism of degree at least 2. Denote by

pi, i = 1, N : (P1)2 → P1 the projection (x1, xN) 7→ xi. If pi(Ca) = P1 for i = 1, 2,
then f s{1,N}|Ca semiconjugates to both f s1 and f sN . In particular, f1 and fN has the
same type, which is a contradiction. It follows that Ca is a fiber of pi, i = 1 or
N . This implies that for all b ∈ (P1)N−2, Cb := (πI |Zx)−1(b) is a fiber of pi. Then,
for J := {1, . . . , N} \ {N + 1− i}, we have πJ(Zx) 6= (P1)N−1, which contradicts
our assumption. It follows that dimZx = N , which concludes the proof. �
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à fibré canonique trivial. Pure Appl. Math. Q., 4(2, part 1):509–545, 2008.

[4] Jason Bell, Dragos Ghioca, and Zinovy Reichstein. On a dynamical version of a theorem
of Rosenlicht. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 17(1):187–204, 2017.

[5] Jason P. Bell. A generalised Skolem-Mahler-Lech theorem for affine varieties. J. London
Math. Soc. (2), 73(2):367–379, 2006.

[6] Jason P. Bell, Dragos Ghioca, Zinovy Reichstein, and Matthew Satriano. On the Medvedev-
Scanlon conjecture for minimal threefolds of nonnegative Kodaira dimension. New York J.
Math., 23:1185–1203, 2017.

[7] Jason P. Bell, Dragos Ghioca, and Thomas J. Tucker. The dynamical Mordell-Lang prob-
lem for étale maps. Amer. J. Math., 132(6):1655–1675, 2010.

[8] Jason P. Bell, Dragos Ghioca, and Thomas J. Tucker. The dynamical Mordell-Lang con-
jecture, volume 210 of Mathematical Surveys and Monographs. American Mathematical
Society, Providence, RI, 2016.

[9] Jason Pierre Bell, Dragos Ghioca, and Thomas John Tucker. Applications of p-adic anal-
ysis for bounding periods for subvarieties under étale maps. Int. Math. Res. Not. IMRN,
(11):3576–3597, 2015.

[10] Robert L. Benedetto, Dragos Ghioca, Pär Kurlberg, and Thomas J. Tucker. A case of the
dynamical Mordell-Lang conjecture. Math. Ann., 352(1):1–26, 2012. With an appendix by
Umberto Zannier.



64 JUNYI XIE

[11] V. G. Berkovich. Spectral theory and analytic geometry over non-Archimedean fields. Num-
ber 33 in Mathematical Surveys and Monographs. American Mathematical Society, 1990.

[12] Vladimir G. Berkovich. Étale cohomology for non-Archimedean analytic spaces. Inst.

Hautes Études Sci. Publ. Math., (78):5–161 (1994), 1993.
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