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Abstract. We construct faithful actions of quantum permutation
groups on connected compact metrizable spaces. This disproves a
conjecture of Goswami.

1. Introduction

Compact quantum groups were introduced by Woronowicz in [15, 16].
They are noncommutative analogues of compact groups. Among all
literatures related to compact quantum groups, one particularly inter-
esting topic is the compact quantum group actions on commutative or
noncommutative unital C*-algebras (from the viewpoint of noncom-
mutative topology, that means actions on commutative or noncommu-
tative compact spaces). The actions of compact quantum groups are
the natural generalizations of actions of compact groups. It was Podleś
who first formulated the concept of compact quantum group actions,
then established some basic properties [8]. Later, Wang introduced
the quantum permutation groups [13] and showed that they are the
universal compact quantum groups acting on finite spaces. After that,
many interesting actions are studied (see [1–4, 6, 7] and the references
therein). But so far, all known (commutative) compact spaces admit-
ting genuine faithful compact quantum group actions are disconnected.
In [7], Goswami showed that there is no genuine faithful quantum iso-
metric action of compact quantum groups on the Riemannian man-
ifold G/T where G is a compact, semisimple, centre-less, connected
Lie group with a maximal torus T , and conjectured that the quantum
permutations on (disconnected) finite sets are the only possible faithful
actions of genuine compact quantum groups on classical spaces. In this
paper, we construct faithful actions of quantum permutation groups on
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connected compact metrizable spaces and disprove Goswami’s conjec-
ture.

The paper is organized as follows. In the next section we recall some
basic definitions and terminologies related to compact quantum groups
and their actions. Then in section 3, we construct faithful quantum
permutation group actions on connected compact metrizable spaces.
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2. Preliminaries

In this section, we recall some definitions about compact quantum
groups. See [8, 12, 13, 15, 16] for more details.

Throughout this paper, the notation A⊗B for two unital C*-algebras
A and B stands for the minimal tensor product of A and B.

For a ∗-homomorphism β : B → B ⊗ A, use β(B)(1⊗ A) to denote
the linear span of the set {β(b)(1B⊗a)|b ∈ B, a ∈ A} and β(B)(B⊗1)
to denote the linear span of the set {β(b1)(b2 ⊗ 1A)|b1, b2 ∈ B}.

Denote by C the set of complex numbers. For a compact Hausdorff
space X and a unital C*-algebra A, denote by C(X,A) the C*-algebra
of continuous functions mapping from X to A. Especially, we write
C(X,C) as C(X). Use evx to denote the evaluation functional on
C(X) at the point x ∈ X.

Definition 2.1 (Definition 1.1 in [16]). A compact quantum group is
a unital C*-algebra A with a unital ∗-homomorphism ∆ : A→ A⊗ A
such that

(1) (∆⊗ id)∆ = (id⊗∆)∆;
(2) ∆(A)(1⊗ A) and ∆(A)(A⊗ 1) are dense in A⊗ A.

If A is noncommutative, we say that (A,∆) is a genuine compact
quantum group. A unital C*-subalgebra Q of A is called a compact
quantum quotient group of (A,∆) if ∆(Q) ⊆ Q⊗Q, and ∆(Q)(1⊗Q)
and ∆(Q)(Q⊗ 1) are dense in Q⊗Q. That is, (Q,∆|Q) is a compact
quantum group [12, Definition 2.9]. If Q 6= A, we call Q a proper
compact quantum quotient group.

Definition 2.2 (Definition 1.4 in [8]). An action of a compact quantum
group (A,∆) on a unital C*-algebra B is a unital ∗-homomorphism
α : B → B ⊗ A satisfying that
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(1) (α⊗ id)α = (id⊗∆)α;
(2) α(B)(1⊗ A) is dense in B ⊗ A.

When A is noncommutative, we call α a genuine compact quantum
group action.

We say that α is faithful if there is no proper compact quantum
quotient group Q of A such that α induces an action αq of Q on B
satisfying α(b) = αq(b) for all b in B [13, Definition 2.4].

If A acts on C(X) for a compact Hausdorff space X, we say that A
acts on X.

For any positive integer n, let An be the universal C*-algebra gener-
ated by aij for 1 ≤ i, j ≤ n under the relations

a∗ij = aij = a2ij,

n∑
i=1

aij =
n∑

j=1

aij = 1.

Let ∆n : An → An ⊗ An be the ∗-homomorphism satisfying that

∆n(aij) =
n∑

k=1

aik ⊗ akj.

Then (An,∆n) is a compact quantum group and is called a quantum
permutation group [13, Theorem 3.1]. Moreover, An is a genuine com-
pact quantum group when n ≥ 4 [14, the example preceding Theorem
6.2].

Let Xn = {x1, x2, . . . , xn} be the finite space with n points. Define
ei for 1 ≤ i ≤ n to be the function on Xn such that ei(xj) = δij for
1 ≤ j ≤ n. There is an action αn of An on Xn given by

αn(ei) =
n∑

k=1

ek ⊗ aki

for all 1 ≤ i ≤ n [13, Theorem 3.1].

3. Main Results

Let Y be a compact Hausdorff space. Note that C(Xn × Y ) ∼=
C(Xn)⊗C(Y ). For C*-algebras A1, A2, . . . , An, we use σ23 : A1⊗A2⊗
A3⊗· · ·⊗An → A1⊗A3⊗A2⊗· · ·⊗An to denote the operator flipping
the 2nd and 3rd components.

Lemma 3.1. There exists an action α of the quantum permutation
group An on Xn × Y given by

α(
n∑

i=1

ei ⊗ fi) =
n∑

i=1

n∑
k=1

ek ⊗ fi ⊗ aki,
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where every fi ∈ C(Y ).

Proof. The map α : C(Xn) ⊗ C(Y ) → C(Xn) ⊗ C(Y ) ⊗ An is well-
defined since every element of C(Xn)⊗C(Y ) can be expressed uniquely
as

∑n
i=1 ei ⊗ fi for fi ∈ C(Y ), and a routine calculation shows that α

is a ∗-homomorphism. We also have

(α⊗ id)α(ei ⊗ f) =
n∑

k=1

n∑
l=1

el ⊗ f ⊗ alk ⊗ aki

= (id⊗∆n)α(ei ⊗ f).

Thus (α ⊗ id)α = (id ⊗∆n)α. Moreover, note that α = σ23(αn ⊗ id).
Since αn is an action of An on Xn, αn(C(Xn))(1 ⊗ An) is dense in
C(Xn)⊗An. It follows easily that α(C(Xn)⊗C(Y ))(1⊗An) is dense
in C(Xn) ⊗ C(Y ) ⊗ An. This proves that α is an action of An on
Xn × Y . �

Remark 3.2. Suppose that compact quantum groups (Ã1, ∆̃1) and

(Ã2, ∆̃2) act on B1 and B2 respectively. Then (Ã1⊗ Ã2, σ23(∆̃1⊗ ∆̃2))
is a compact quantum group and acts onB1⊗B2 naturally [11, Theorem

2.1]. Lemma 3.1 also follows from this by taking (Ã1, ∆̃1) = (An,∆n)

and Ã2 = C.

Let Y1 be a closed subset of Y . We define an equivalence relation
∼ on Xn × Y as follows. For y′, y′′ in Y and x′, x′′ in Xn, two points
(x′, y′) and (x′′, y′′) in Xn × Y are equivalent if one of the following is
true:

(1) y′ = y′′ ∈ Y1;
(2) y′ = y′′ and x′ = x′′.

Since the following Lemma uses the standard argument in general
topology and is well known to experts, we just sketch the proof.

Lemma 3.3. The quotient space Xn×Y/ ∼ is compact and Hausdorff.

Proof. The compactness of Xn × Y/ ∼ follows from the compactness
of Xn × Y . That Xn × Y/ ∼ is Hausdorff follows from that the subset
R := {(z1, z2) ∈ (Xn×Y )2|z1 ∼ z2} of (Xn×Y )2 is closed [9, Theorem
8.2]. �

Lemma 3.4. If an element F of C(Xn × Y ) satisfies that F (xi, y
′) =

F (xj, y
′) for some y′ in Y and all 1 ≤ i, j ≤ n, then α(F )(xk, y

′) =
F (xj, y

′)1An for all 1 ≤ j, k ≤ n.
4



Proof. Note that F can be written as
∑n

i=1 ei ⊗ fi where f1, ..., fn are
in C(Y ). If F (xi, y

′) = F (xj, y
′), then fi(y

′) = fj(y
′). We obtain that

α(F )(xk, y) = (evk ⊗ evy ⊗ id)α(
n∑

i=1

ei ⊗ fi)

=
n∑

i=1

(evk ⊗ evy ⊗ id)α(ei ⊗ fi)

=
n∑

i=1

n∑
l=1

(evk ⊗ evy ⊗ id)(el ⊗ fi ⊗ ali)

=
n∑

i=1

fi(y)aki

for any y ∈ Y and 1 ≤ k ≤ n. Since fi(y
′) = fj(y

′) for all 1 ≤ i, j ≤ n,
and

∑n
i=1 aki = 1An for all 1 ≤ k ≤ n, we get

α(F )(xk, y
′) =

n∑
i=1

fi(y
′)aki = fj(y

′)
n∑

i=1

aki = fj(y
′)1An = F (xj, y

′)1An

for all 1 ≤ j, k ≤ n. This completes the proof. �

Note that C(Xn × Y/ ∼) is a C*-subalgebra of C(Xn × Y ).

Proposition 3.5. When the action α is restricted on C(Xn × Y/ ∼),
it induces an action α̃ of An on Xn × Y/ ∼.

Proof. We first prove the following:

(1) α(C(Xn × Y/ ∼)) ⊆ C(Xn × Y/ ∼)⊗ An.

Since C(Xn × Y/ ∼) ⊗ An
∼= C(Xn × Y/ ∼, An) and C(Xn × Y ) ⊗

An
∼= C(Xn × Y,An), an element c of C(Xn × Y ) ⊗ An belongs to

C(Xn×Y/ ∼)⊗An if and only if (evk⊗evy⊗id)(c) = (evl⊗evy⊗id)(c)
for all 1 ≤ k, l ≤ n and y ∈ Y1.

Therefore, to prove (1), it suffices to show that

(evk ⊗ evy ⊗ id)α(F ) = (evl ⊗ evy ⊗ id)α(F )

for all 1 ≤ k, l ≤ n, y ∈ Y1 and F in C(Xn × Y/ ∼).
Let F be in C(Xn × Y/ ∼). Then F can be written as

∑n
i=1 ei ⊗ fi

for fi ∈ C(Y ) satisfying that fi(y) = fj(y) for all 1 ≤ i, j ≤ n and
y ∈ Y1. By Lemma 3.4, we have

(evk⊗ evy⊗ id)α(
n∑

i=1

ei⊗fi) = fj(y)1An = (evl⊗ evy⊗ id)α(
n∑

i=1

ei⊗fi)
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for all y ∈ Y1 and 1 ≤ j, k, l ≤ n. This proves (1).
Next we verify the density condition, that is, α(C(Xn × Y/ ∼))(1⊗

An) is dense in C(Xn × Y/ ∼)⊗ An.
It is enough to show that F ⊗ a is in the closure of α(C(Xn × Y/ ∼

))(1 ⊗ An) for all F in C(Xn × Y/ ∼) and a in An. Denote F ⊗ a −
α(F )(1 ⊗ a) by G. Note that F can be written as

∑n
i=1 ei ⊗ fi for

fi ∈ C(Y ) satisfying that fi(y) = fj(y) for all 1 ≤ i, j ≤ n and y ∈ Y1.
By Lemma 3.4, we have α(F )(xi, y) = F (xj, y)1An for all xi, xj in Xn

and y in Y1. Thus G|Xn×Y1 = 0. For arbitrary ε > 0, let U be an
open subset of Y containing Y1 and satisfying that ‖G(xi, y)‖ < ε for
all (xi, y) ∈ Xn×U . By Urysohn’s Lemma, there exists an f in C(Y ),
such that f |Y1 = 0, f |Y \U = 1 and 0 ≤ f ≤ 1. Denote 1⊗f ∈ C(Xn×Y )
by Hε. Then Hε|Xn×Y1 = 0 and Hε(xi, y) = 1 for all xi in Xn and y in
Y \U . It follows from Lemma 3.4 that (α(Hε)G−G)(xi, y) = 0 for all
xi ∈ Xn and y ∈ Y \U . Since 0 ≤ Hε ≤ 1, for (xi, y) ∈ Xn × U , we
have

‖(α(Hε)G−G)(xi, y)‖ ≤ ‖α(Hε)− 1‖‖G(xi, y)‖ < ε.

Hence ‖α(Hε)G − G‖ < ε. Moreover, since α is an action of An on
Xn×Y , we have that α(C(Xn×Y ))(1⊗An) is dense in C(Xn×Y )⊗An.
So there exist Fi ∈ C(Xn×Y ) and ai ∈ An for 1 ≤ i ≤ m where m is a
positive integer such that ‖G−

∑m
i=1 α(Fi)(1⊗ai)‖ < ε. It follows from

0 ≤ Hε ≤ 1 that ‖α(Hε)G− α(Hε)
∑m

i=1 α(Fi)(1⊗ ai)‖ < ε. Hence

‖F ⊗ a− α(F )(1⊗ a)−
m∑
i=1

α(HεFi)(1⊗ ai)‖

= ‖G−
m∑
i=1

α(HεFi)(1⊗ ai)‖

≤ ‖G− α(Hε)G‖+ ‖α(Hε)G−
m∑
i=1

α(HεFi)(1⊗ ai)‖ < 2ε.

Note that HεFi|Xn×Y1 = 0 for all 1 ≤ i ≤ m. Thus HεFi is in C(Xn ×
Y/ ∼) for all 1 ≤ i ≤ m. It follows that α(F )(1⊗a)+

∑m
i=1 α(HεFi)(1⊗

ai) is in α(C(Xn×Y/ ∼))(1⊗An). Since ε > 0 is arbitrary, we conclude
that F⊗a is in the closure of α(C(Xn×Y/ ∼))(1⊗An). This completes
the proof. �

Remark 3.6. In fact, in the proof of Proposition 3.5, we can prove
the density condition more briefly by using [10, Remark 2.3]. But this
method is more involved and uses the Hopf ∗-subalgebra of An.

Theorem 3.7. If Y1 6= Y , the action α̃ of An on Xn×Y/ ∼ is faithful.
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Proof. Suppose Y1 6= Y . Take a point y0 in Y but not in Y1. Since Y
is compact Hausdorff, there exists f ∈ C(Y ) such that f(y0) = 1 and
f |Y1 = 0. Note that ei ⊗ f is in C(Xn × Y/ ∼) for any 1 ≤ i ≤ n.
Suppose Q is a compact quantum quotient group of An such that α̃ is
an action of Q on Xn × Y/ ∼. Then for any 1 ≤ k ≤ n,

(evk ⊗ evy0 ⊗ id)α(ei ⊗ f) = (evk ⊗ evy0 ⊗ id)(
n∑

l=1

el ⊗ f ⊗ ali)

= f(y0)aki = aki

is in Q. Since i is arbitrarily chosen, we get aki ∈ Q for any 1 ≤ k, i ≤ n.
Thus Q = An. Therefore α̃ is faithful. �

An action α of a compact quantum group (A,∆) on a unital C*-
algebra B is called ergodic if {b ∈ B|α(b) = b⊗ 1A} = C1B.

Proposition 3.8. If Y contains at least two points, the action α̃ is not
ergodic.

Proof. Since Y consists of at least two points, there exist a non constant
function f ∈ C(Y ). Then 1⊗ f is in C(Xn × Y \ ∼) and not constant.
Also

α̃(1⊗ f) = 1⊗ f ⊗ 1.

This shows that α̃ is not ergodic. �

Proposition 3.9. If Y is connected and Y1 is nonempty, then Xn ×
Y/ ∼ is connected.

Proof. The proof follows from [5, Theorem 6.1.9]. �

By Theorem 3.7 and Proposition 3.9, if we take a nonempty proper
closed subset Y1 of a connected compact Hausdorff space Y , then we
get a faithful action of An on a compact connected space Xn × Y/ ∼.
To be more specific, we list some examples of Xn × Y/ ∼.

Example 3.10.

(1) If Y = [0, 1] and Y1 = {0}, then Xn × Y/ ∼ is a wedge sum
of n unit intervals by identifying (xi, 0) to a single point for all
1 ≤ i ≤ n. In this case Xn × Y/ ∼ is a contractible compact
metrizable space.

(2) If Y = S1 is a circle, and Y1 = {y0} for some point y0 in S1, then
Xn×S1/ ∼ will be the n circles touching at a point, which is a
connected compact metrizable space whose fundamental group
is the free group with n generators.
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Remark 3.11. By Theorem 3.7, the quantum permutation group An

can act on the spaces in Example 3.10 faithfully. When n ≥ 4, this gives
us faithful genuine compact quantum group actions on connected com-
pact metrizable spaces. This disproves the conjecture of Goswami [7]
mentioned in the introduction. However, Proposition 3.8 tells us that
these faithful genuine compact quantum actions on compact connected
spaces are not ergodic. For this reason, we ask the following question:

Question 3.12. Are there any faithful ergodic genuine quantum group
actions on compact connected spaces?
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