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Abstract. We investigate compact quantum group actions on
unital C∗-algebras by analyzing invariant subsets and invariant
states. In particular, we come up with the concept of compact
quantum group orbits and use it to show that countable compact
metrizable spaces with infinitely many points are not quantum
homogeneous spaces.

1. Introduction

A compact quantum group is a unital C∗-algebra A together with a
unital ∗-homomorphism ∆ : A→ A⊗ A satisfying the coassociativity

(∆⊗ id)∆ = (id⊗∆)∆

and the cancellation laws that both ∆(A)(1⊗A) and ∆(A)(A⊗ 1) are
dense in A ⊗ A. If A is a commutative C∗-algebra, then A = C(G)
for some compact group G. From the viewpoint of noncommutative
topology A = C(G) for some compact quantum space G. So compact
quantum groups are generalizations of compact groups. There are lots
of similarities and differences between C(G) and C(G). For instance,
firstly both of them have the unique bi-invariant state called the Haar
state. But unlike the Haar state of C(G), the Haar state of C(G)
need to be neither faithful nor tracial. Secondly, although there is a
linear functional called the counit which plays the same role in C(G)
as the unit in G, the counit is only densely defined and not necessarily
bounded.

An action of a compact quantum group G on a unital C∗-algebra B
is a unital ∗-homomorphism α : B → B ⊗ A satisfying that

(1) (α⊗ id)α = (id⊗∆)α;
(2) α(B)(1⊗ A) is dense in B ⊗ A.
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If A = C(G) for some compact group G and B = C(X) for some
compact Hausdorff space X, then the action α is just the action of G on
X as homeomorphisms. Therefore actions of compact quantum groups
on unital C∗-algebras are generalizations of compact groups on compact
Hausdorff spaces. Moreover when a group acts on a space, the group
elements are symmetries on the space. So when a compact quantum
group G acts on a unital C∗-algebra B, then G can be understood as a
set of quantum symmetries of the compact quantum space B.

A compact quantum group action α of G on B is called ergodic if
{b ∈ B|α(b) = b ⊗ 1} = C. If G is a compact group and B = C(X)
for a compact Hausdorff space X, then α is ergodic just means that
the action is transitive. In this case X is called homogeneous. Gener-
alizing the classical homogeneous space, we call a unital C∗-algebra B
a homogeneous space if B admits an ergodic compact group action or
a quantum homogeneous space if B admits an ergodic compact quan-
tum group action. Note that there are different definitions of quantum
homogeneous spaces (see [? ] for example) we adopt the one given by
P. Podleś in [? , Definition 1.8].

A compact group is a compact quantum group, hence a homoge-
neous space is a quantum homogeneous space. However, a quantum
homogeneous space is not necessarily a homogeneous space.

It was shown by Høegh-Krohn, Landstad and Størmer that a ho-
mogeneous space has a finite trace [? ]. But the class of quantum
homogeneous spaces includes operator algebras of some other types.
For instance, S. Wang showed that some type III factors and Cuntz al-
gebras are quantum homogeneous spaces [? ]. So there exists compact
quantum spaces which are quantum homogeneous space, but not ho-
mogeneous. Thus on some compact quantum spaces, namely Cuntz al-
gebra, although there are not enough symmetries to make these spaces
to be homogeneous spaces, there are enough quantum symmetries such
that these spaces are quantum homogeneous spaces.

But when one considers compact quantum group actions on classical
compact spaces, the situation is quite different. So far, all classical
quantum homogeneous spaces are homogeneous spaces [? ? ? ]. This
means that on a classical compact space, if there are not enough sym-
metries, then there are not enough quantum symmetries. This interest-
ing phenomena leads us to conjecture that a compact Hausdorff space
is a quantum homogeneous space if and only if it is a homogeneous
space. Our main result in the paper is to confirm this conjecture in
the case of compact Hausdorff spaces with countably infinitely many
points.
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Theorem 1.1. Any compact Hausdorff space with countably infinitely
many points is not a quantum homogeneous space.

To prove the main theorem, we use invariant subsets and invariant
states, formulate the concept of compact quantum group orbits and
adopt them to study ergodic actions on compact spaces.

The paper is organized as follows. In section 2 we collect some
facts about compact quantum groups and their actions on unital C∗-
algebras. In section 3, we derive some results about invariant subsets
and invariant states which will be used later. Especially, we show that a
compact quantum group action is ergodic iff there is a unique invariant
state (Theorem ??). Next we show that the “support” of an invariant
state is an invariant subset (Theorem ??) and show that as long as
all invariant states are tracial or there exists a faithful tracial invari-
ant state, the compact quantum group is a Kac algebra (Theorem ??).
Section 4 is about compact quantum group actions on classical com-
pact spaces. We formulate the concept of orbits. Then we prove that
an orbit is an invariant subset (Theorem ??) and that an action is
ergodic iff there exists a unique orbit (Theorem ??). In section 4.4
we prove Theorem ?? which says the invariant measure on a quantum
homogeneous compact Hausdorff space with infinitely many points is
non-atomic and the main theorem, Theorem ?? follows immediately.
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2. Preliminaries

In this section, we recall some definitions and basic properties of
compact quantum groups and their actions. We refer to [? ? ? ] for
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basics of compact quantum groups and [? ? ? ] for some background
of compact quantum group actions.

Throughout this paper, for two unital C*-algebras A and B, the
notations A ⊗ B and A � B stand for the minimal and the algebraic
tensor product of A and B respectively.

For a ∗-homomorphism β : B → B ⊗ A, use β(B)(1 ⊗ A) and
β(B)(B ⊗ 1) to denote the linear span of the set {β(b)(1B ⊗ a)|b ∈
B, a ∈ A} and the linear span of the set {β(b1)(b2 ⊗ 1A)|b1, b2 ∈ B}
respectively.

For a C*-algebra B, we use S(B) to denote the state space of B. For
µ ∈ S(B), we denote {b ∈ B|µ(b∗b) = 0} by Nµ. If Nµ = {0}, then
µ is called faithful. If µ(ab) = µ(ba) for all a, b ∈ B, then µ is called
tracial.

Let’s first recall the definition of compact quantum group, which,
briefly speaking, is the C∗-algebra of continuous functions on some
compact quantum space with a group-like structure.
Definition 2.1. [? , Definition 1.1]

A compact quantum group is a pair (A,∆) consisting of a unital
C*-algebra A and a unital ∗-homomorphism ∆ : A→ A⊗A such that

(1) (id⊗∆)∆ = (∆⊗ id)∆.
(2) ∆(A)(1⊗ A) and ∆(A)(A⊗ 1) are dense in A⊗ A.

The ∗-homomorphism ∆ is called the coproduct or comultiplica-
tion of G. The first condition in the definition of compact quantum
groups just means that the coproduct is associative, and the second
condition says that the left cancellation law and the right cancellation
law hold. Note that a compact semigroup in which cancellation laws
hold is a group. Hence compact quantum groups are the quantum
analogue of compact groups.

Furthermore, one can think of A as C(G), i.e., the C*-algebra of
continuous functions on some quantum space G and in the rest of the
paper we write a compact quantum group (A,∆) as G.

There exists a unique state h on A such that

(h⊗ id)∆(a) = (id⊗ h)∆(a) = h(a)1A

for all a in A. The state h is called the Haar state of G or the Haar
state on A. Throughout this paper, we use h to denote the Haar state
of G.
Example 2.2. [Examples of compact quantum groups]

(1) For every non-singular n × n complex matrix Q (n > 1), the
universal compact quantum group (Au(Q),∆Q) [? , Theorem
1.3] is generated by uij (i, j = 1, · · · , n) with defining relations
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(with u = (uij)):

u∗u = In = uu∗, utQūQ−1 = In = QūQ−1ut;

and the coproduct ∆Q given by ∆Q(uij) =
∑n

k=1 uik ⊗ ukj for
1 ≤ i, j ≤ n. In particular, when Q is the identity matrix, we
denote (Au(Q),∆Q) by Au(n).

(2) The quantum permutation group (As(n),∆n) [? , Theorem
3.1] is the universal C∗-algebra generated by aij for 1 ≤ i, j ≤ n
under the relations

a∗ij = aij = a2ij,
n∑
i=1

aij =
n∑
j=1

aij = 1.

The coproduct ∆n : As(n)→ As(n)⊗As(n) is the ∗-homomorphism
satisfying that

∆n(aij) =
n∑
k=1

aik ⊗ akj.

Definition 2.3. Let A be an associative ∗-algebra over C with an
identity. Assume that ∆ is a unital ∗-homomorphism from A to A�A
such that (∆ ⊗ id)∆ = (id ⊗∆)∆. Also assume that there are linear
maps ε : A→ C and κ : A→ A such that

(ε⊗ id)∆(a) = (id⊗ ε)∆(a) = a

m(κ⊗ id)∆(a) = m(id⊗ κ)∆(a) = ε(a)1

for all a ∈ A, where m : A � A → A is the multiplication map. Then
(A,∆) is called a Hopf ∗-algebra [? , Definition 2.3].

A nondegenerate (unitary) representation U of a compact quan-
tum group G is an invertible (unitary) element in M(K(H) ⊗ A) for
some Hilbert space H satisfying that U12U13 = (id⊗∆)U . Here K(H)
is the C∗-algebra of compact operators on H and M(K(H) ⊗ A) is
the multiplier C*-algebra of K(H) ⊗ A. We write U12 and U13 re-
spectively for the images of U by two maps from M(K(H) ⊗ A) to
M(K(H) ⊗ A ⊗ A) where the first one is obtained by extending the
map x 7→ x⊗1 from K(H)⊗A to K(H)⊗A⊗A, and the second one is
obtained by composing this map with the flip on the last two factors.
The Hilbert space H is called the carrier Hilbert space of U . From
now on, we always assume representations are nondegenerate. If the
carrier Hilbert space H is of finite dimension, then U is called a finite
dimensional representation of G.
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For two representations U1 and U2 with the carrier Hilbert spaces
H1 and H2 respectively, the set of intertwiners between U1 and U2,
Mor(U1, U2), is defined as

Mor(U1, U2) = {T ∈ B(H1, H2)|(T ⊗ 1)U1 = U2(T ⊗ 1)}.

Two representations U1 and U2 are equivalent if there exists an in-
vertible element T in Mor(U1, U2). A representation U is called irre-
ducible if Mor(U,U) ∼= C.

Moreover, we have the following well-established facts about repre-
sentations of compact quantum groups:

(1) Every finite dimensional representation is equivalent to a uni-
tary representation.

(2) Every irreducible representation is finite dimensional.

Let Ĝ be the set of equivalence classes of irreducible representations

of G. For every γ ∈ Ĝ, let Uγ ∈ γ be unitary and Hγ be its carrier
Hilbert space with dimension dγ. After fixing an orthonormal basis
of Hγ, we can write Uγ as (uγij)1≤i,j≤dγ with uγij ∈ A. The matrix Uγ

is still an irreducible representation (not necessarily unitary) with the
carrier Hilbert space Hγ. It is called the contragradient representa-
tion of Uγ and the equivalence class of Uγ is denoted by γc. There
is a unique positive invertible element F γ in Mor(Uγ, Uγcc) such that
tr(F γ) = tr(F γ)−1. Denote tr(F γ) by Mγ and Mγ is called the quan-
tum dimension of γ. Note that F γ > 0 is in B(Hγ) and can be
expressed as a dγ × dγ matrix under the same orthonormal basis of Hγ

adopted by Uγ.
The linear space A spanned by {uγij}γ∈Ĝ, 1≤i,j≤dγ is a Hopf ∗-algebra [?

? ] such that

∆|A : A → A �A , ∆(uγij) =

dγ∑
m=1

uγim ⊗ u
γ
mj.

Moreover, the following are true.

(1) The Haar state h is faithful on A , that is, if h(a∗a) = 0 for an
a ∈ A , then a = 0.

(2) There exist uniquely a linear multiplicative functional ε : A →
C and a linear antimultiplicative map κ : A → A such that

ε(uγij) = δij, κ(uγij) = (uγji)
∗.

The two maps ε and κ are called the counit and the antipodle
of G respectively.
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For γ1, γ2 ∈ Ĝ, 1 ≤ m, k ≤ dγ1 and 1 ≤ n, l ≤ dγ2 , we have

(1) h(uγ1mku
γ2∗
nl ) =

δγ1γ2δmnF
γ1
lk

Mγ1

,

and

(2) h(uγ1∗kmu
γ2
ln) =

δγ1γ2δmn(F γ1)−1lk
Mγ1

.

A compact quantum group (A′,∆′) is called a quantum subgroup
of G if there exists a surjective ∗-homomorphism π : A→ A′ such that

(π ⊗ π)∆ = ∆′π.

We can identify A′ with a quotient C∗-algebra of A, i.e., A′ ∼= A/I for
some ideal of A. We call the ideal I a Woronowicz C∗-ideal of A.
If we write A′ as C(H) for some quantum space H, we also call H a
quantum subgroup of G [? , Definition 2.13].
Definition 2.4. [? , Definition 1.4]

An action of a compact quantum group G on a unital C*-algebra B
is a unital ∗-homomorphism α : B → B ⊗ A satisfying that

(1) (α⊗ id)α = (id⊗∆)α;
(2) α(B)(1⊗ A) is dense in B ⊗ A.

An action α of a compact quantum group G on B is called ergodic
if the fixed point algebra Bα = {b ∈ B|α(b) = b⊗ 1} equals C1B.

Consider an action of G on B. For every γ ∈ Ĝ, there is a linear
subspace Bγ of B with a basis Sγ = {eγki|k ∈ Jγ, 1 ≤ i ≤ dγ} such

that α maps Bγ into Bγ �A and α(eγki) =
∑dγ

j=1 eγkj ⊗ u
γ
ji. Moreover

Bγ contains any other subspace of B satisfying these two conditions.
The quantum multiplicity mul(B, γ) of γ is defined as cardinality
of Jγ, which does not depend on the choice of Jγ [? , Theorem 1.5].
Moreover, B∗γ = Bγc [? , Lemma 11]. Hence mul(B, γ) > 0 implies
mul(B, γc) > 0.

Take B =
⊕

γ∈Ĝ Bγ. It is known from [? , Theorem 1.5] that B is
a dense ∗-subalgebra of B, which is called the Podlés algebra of B.
Also

α|B : B → B �A , (id⊗ ε)α|B = idB.

We say a bounded linear functional µ on B is α-invariant or briefly
invariant if (µ⊗ id)α(b) = µ(b)1A for all b ∈ B. Denote by Invα the
set of α-invariant states on B. It is known that

Invα = {(ψ ⊗ h)α|ψ ∈ S(B)}.
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Denote by C(X) the C∗-algebra of complex-valued continuous func-
tions on a compact Hausdorff space X. If a compact quantum group
G acts on B = C(X), then briefly we say that G acts on X.
Definition 2.5. [? , Definition 1.8]

A unital C∗-algebra B is called a quantum homogeneous space
if B admits an ergodic compact quantum group action.

Briefly speaking, the investigation of actions of compact quantum
groups on unital C∗-algebras is to study how compact quantum groups
behave as symmetries of compact quantum spaces. Certainly there are
many interesting examples of compact quantum group actions. Below
we list some of them for later use, in particular, we give two examples
of compact quantum group actions on compact Hausdorff spaces.
Example 2.6. [Examples of compact quantum group actions]

(1) Every compact quantum group G acts on A by the coproduct
∆, and A is the Podlés algebra of A.

(2) The adjoint action Adu of (Au(Q),∆Q) on Mn(C) is given by

Adu(b) = u(b⊗ 1)u∗,

for every b ∈Mn(C).
(3) Recall that the Cuntz algebra On [? ] is the universal C∗-

algebra generated by n(≥ 2) isometries S1, S2, ..., Sn such that

n∑
i=1

SiS
∗
i = 1.

The compact quantum group (Au(Q),∆Q) acts on On by

α(Si) =
n∑
j=1

Sj ⊗ uji,

for 1 ≤ i ≤ n [? , Equation 5.2].
(4) The quantum permutation groupAs(n) acts on {x1, x2, · · · , xn} [?

, Theorem 3.1] by

α(ei) =
n∑
j=1

ej ⊗ aji,

where ei is the characteristic function of {xi} for 1 ≤ i ≤ n.
(5) Let Y be a connected compact Hausdorff space and Y1 is a

closed subset of Y . Define an equivalence relation in Xn × Y
as the following: (xi, y) ∼ (xj, y) if (xi, y) = (xj, y) or y ∈ Y1.
Then As(n) acts on the connected compact space Xn × Y/ ∼
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faithfully and the action α is given by

α(
n∑
i=1

ei ⊗ fi) =
n∑
i=1

n∑
j=1

ej ⊗ fi ⊗ aji

for all
∑n

i=1 ei ⊗ fi ∈ C(Xn × Y/ ∼) [? ].

3. Actions on compact quantum spaces

3.1. Faithful actions.
In this section, we give some equivalent conditions of faithful compact

quantum group actions for future use. This is well known for experts,
but for completeness and convenience, we give a proof here. Part of
these results can be found in [? , Lemma 2.4].

We first recall some definitions.
Definition 3.1. [? , Definition 2.9]

For a compact quantum group G, a unital C*-subalgebra Q of A is
called a compact quantum quotient group of G if ∆(Q) ⊆ Q⊗Q,
and ∆(Q)(1 ⊗ Q) and ∆(Q)(Q ⊗ 1) are dense in Q ⊗ Q. That is,
(Q,∆|Q) is a compact quantum group. If Q 6= A, we call Q a proper
compact quantum quotient group.

We say that a compact quantum group action α on B is faithful if
there is no proper compact quantum quotient group Q of G such that
α induces an action αq of (Q,∆|Q) on B satisfying α(b) = αq(b) for all
b in B [? , Definition 2.4].

There are several equivalent descriptions of faithful actions.

Proposition 3.2. Consider a compact quantum group action α of G
on B. The following are equivalent:

(1) The action α is faithful.
(2) The ∗-subalgebra ofA generated by (ω⊗id)α(B) for all bounded

linear functionals ω on B is dense in A.
(3) The ∗-subalgebra A1 of A generated by (ω ⊗ id)α(B) for all

bounded linear functionals ω on B is dense in A.
(4) The ∗-subalgebra A2 of A generated by uγij for all γ ∈ Ĝ and

1 ≤ i, j ≤ dγ such that mul(B, γ) > 0 is dense in A.
(5) A2 = A .

Proof. (2) ⇒ (1). Suppose that the action α of G on B induces an
action αq of a quotient group Q of G on B such that α(b) = αq(b) for
all b in B. The ∗-subalgebra generated by (ω⊗ id)α(B) for all bounded
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linear functional ω on B is a subalgebra of Q. Hence Q = A and α is
faithful.

(1)⇒ (4). Let A2 be the closure of A2 in A. We want to show that
(A2,∆|A2) is a quotient group of G. First, since ∆(A2) ⊆ A2 �A2, we
have that ∆(A2) ⊆ A2 ⊗ A2.

We next show that ∆(A2)(1 ⊗ A2) is dense in A2 ⊗ A2. Since uγ is

unitary for all γ ∈ Ĝ with mul(B, γ) > 0, we first have

dγ∑
t=1

∆(uγit)(1⊗ u
γ∗
jt ) = uγij ⊗ 1,

for all 1 ≤ i, j ≤ dγ. Note that
∑dγ

t=1 ∆(uγit)(1 ⊗ uγ∗jt ) belongs to
∆(A2)(1⊗ A2), so does uγij ⊗ 1 for all 1 ≤ i, j ≤ dγ. It follows that

uγ1ij u
γ2
kl⊗1 ∈ ∆(A2)(1⊗A2)(u

γ2
kl⊗1) = ∆(A2)(u

γ2
kl⊗1)(1⊗A2) ⊆ ∆(A2)(1⊗A2)

for all γ1, γ2 ∈ Ĝ with positive multiplicity in B and all 1 ≤ i, j ≤ dγ1
and 1 ≤ k, l ≤ dγ2 . Inductively uγ1i1j1 · · ·u

γs
isjs
⊗ 1 ∈ ∆(A2)(1 ⊗ A2) for

all γ1, · · · , γs ∈ Ĝ with positive multiplicity in B and all 1 ≤ it, jt ≤ dγt
with 1 ≤ t ≤ s.

Note that A2 is the ∗-subalgebra of A generated by the matrix

elements of uγ for all γ ∈ Ĝ with mul(B, γ) > 0. Also the adjoint of the
matrix elements of uγ are the matrix elements of uγ

c
, the contragradient

representation of γ. Hence A2 is the subalgebra of A generated by the

matrix elements of uγ for all γ ∈ Ĝ with positive multiplicity in B. So
A2 ⊗ 1 is in the closure of ∆(A2)(1⊗ A2). Then for any a, b ∈ A2, we
have a ⊗ b = (a ⊗ 1)(1 ⊗ b) is in the closure of ∆(A2)(1 ⊗ A2) since
∆(A2)(1⊗A2)(1⊗ b) ⊆ ∆(A2)(1⊗A2). Hence ∆(A2)(1⊗A2) is dense
in A2 ⊗ A2.

Similarly, we can prove that 1 ⊗ uγ∗ij ∈ ∆(A2)(A2 ⊗ 1) for all γ ∈ Ĝ
with mul(B, γ) > 0 and all 1 ≤ i, j ≤ dγ, and that ∆(A2)(A2 ⊗ 1) is
dense in A2⊗A2. Therefore, A2 is a compact quantum quotient group
of A. Next we show that α is an action of (A2,∆|A2) on B.

Obviously α(B) ⊆ B ⊗ A2. To show that α(B)(1 ⊗ A2) is dense in

B⊗A2, it is enough to prove that eγki⊗1 ∈ α(B)(1⊗A2) for all γ ∈ Ĝ
such that mul(B, γ) > 0 and all 1 ≤ i ≤ dγ and 1 ≤ k ≤ mul(B, γ).
This follows from the following identity:

dγ∑
t=1

α(eγkt)(1⊗ uγ∗it ) = eγki ⊗ 1.

Hence α is also an action of A2 on B. By the faithfulness of α, we have
that A2 = A.
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(3) ⇔ (4). To prove the equivalence of (3) and (4), it suffices to

show that A1 = A2. Obviously A1 ⊆ A2. For γ ∈ Ĝ such that

mul(B, γ) > 0, we have that α(eγki) =
∑dγ

j=1 eγkj ⊗ u
γ
ji for 1 ≤ i ≤ dγ

and 1 ≤ k ≤ mul(B, γ). Note that eγki’s are linearly independent. For
every 1 ≤ s ≤ dγ and every 1 ≤ l ≤ mul(B, γ), by the Hahn-Banach
Theorem, there exists a bounded linear functional ωγls on B such that
ωγls(eγki) = δklδsi for 1 ≤ i ≤ dγ and 1 ≤ k ≤ mul(B, γ). Therefore

(ωγks⊗ id)α(eγki) = uγsi ∈ A1 for all γ ∈ Ĝ such that mul(B, γ) > 0, and
for every 1 ≤ i ≤ dγ and every 1 ≤ s ≤ mul(B, γ) . This implies that
A2 ⊆ A1, which proves the equivalence of (3) and (4).

(2) ⇔ (3). The equivalence of (2) and (3) is immediate from the
density of B in B and the continuity of (ω ⊗ id)α for every bounded
linear functional ω on B.

(4) ⇔ (5). It is obvious that (5) implies (4). Now suppose that (4)
is true. The ∗-subalgebra A2 is a Hopf ∗-subalgebra of A. A compact
quantum group has a unique dense Hopf ∗-subalgebra [? , Theorem
A.1], so (5) follows. �

3.2. Invariant states. In this subsection, we prove Theorem ?? and
Theorem ??.

First, for a compact quantum group, there is a reduced version of it
in which the Haar state is faithful [? , Theorem 2.1].

For a compact quantum group G with the Haar state h and the
counit ε, let Nh = {a ∈ A|h(a∗a) = 0} and πr : A → A/Nh be the
quotient map. Then Nh is a two-sided ideal of A [? , Proposition 7.9].
Furthermore, the following is true.
Theorem. [? , Theorem 2.1]

For a compact quantum groupG, the C∗-algebra Ar = A/Nh is a
compact quantum subgroup of G with coproduct ∆r determined by
∆r(πr(a)) = (πr⊗πr)∆(a), for all a ∈ A. The Haar state hr of (Ar,∆r)
is given by h = hrπr and hr is faithful. Also, the quotient map πr is
injective on A and the Hopf ∗-algebra of (Ar,∆r) is πr(A ), with the
counit εr and the antipodle κr determined by ε = εrπr and πrκ = κrπr,
respectively.

Definition 3.3. The compact quantum group (Ar,∆r) is called the
reduced compact quantum group of G, and we write it as Gr.

From the theorem above, it is easy to check that any compact quan-
tum group action of G on B induces an action αr of (Ar,∆r) on B
defined by

αr = (id⊗ πr)α.
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Let α be an action of compact quantum group G on a unital C*-
algebra B. Let Bα = {b ∈ B|α(b) = b⊗ 1A}. It is known that

Bα = (id⊗ h)α(B).

Next we show that the space of invariant linear bounded functionals
on B is isometrically isomorphic to the dual space of Bα.

Let (Bα)′ be the dual space of Bα and Inv(B) be the space of α-
invariant bounded linear functionals on B. Define T : Inv(B)→ (Bα)′

as T (ψ) = ψ|Bα . Then

Theorem 3.4. The linear map T is a bijective isometry.

Proof. Obviously ‖T‖ ≤ 1, so T is bounded. Define the map S :
(Bα)′ → B′ by S(ϕ) = ϕ̃ for every ϕ in (Bα)′ where ϕ̃ is the linear
functional on B defined by

ϕ̃(b) = ϕ((id⊗ h)α(b))

for every b ∈ B. Next we show that S is the inverse of T .
First we show that ϕ̃ is α-invariant. From (α ⊗ id)α = (id ⊗ ∆)α

and (h⊗ id)∆ = h(·)1A, we have

(ϕ̃⊗ id)α = ((ϕ⊗ h)α⊗ id)α = (ϕ⊗ h⊗ id)(α⊗ id)α

= (ϕ⊗ h⊗ id)(id⊗∆)α = (ϕ⊗ ((h⊗ id)∆))α

= (ϕ⊗ (h(·)1A))α = ϕ((id⊗ h)α(·))1A = ϕ̃(·)1A.

Hence S maps (Bα)′ into Inv(B). Moreover α(b) = b ⊗ 1A for any
b ∈ Bα. Hence ϕ̃(b) = ϕ(b) for any b ∈ Bα. So ϕ is the restriction of ϕ̃
on Bα. Therefore ϕ̃ is α-invariant and TS(ϕ) = T (ϕ̃) = ϕ. This shows
the surjectivity of T .

Secondly for all φ ∈ Inv(B) and all b ∈ B, we have (φ ⊗ id)α(b) =
φ(b)1A. Applying h on both sides of the above equation, we get (φ ⊗
h)α(b) = φ(b). So

T̃ (φ)(b) = T (φ)((id⊗ h)α(b)) = φ((id⊗ h)α(b)) = (φ⊗ h)α(b) = φ(b)

for all b ∈ B. That is to say that ST (φ) = T̃ (φ) = φ for all φ ∈ Inv(B).
Therefore S is the inverse of T and T is bijective.

Moreover for every φ ∈ Inv(B), we see that ‖T (φ)‖ ≤ ‖φ‖ and
φ(b) = (φ ⊗ h)α(b) = φ((id ⊗ h)α(b)) for each b ∈ B. If b ∈ B and
‖b‖ ≤ 1, then (id⊗ h)α(b) ∈ Bα and ‖(id⊗ h)α(b)‖ ≤ 1. So

‖φ‖ = sup
‖b‖≤1

|φ(b)| = sup
‖b‖≤1

|φ((id⊗ h)α(b))|

= sup
‖b‖≤1

|T (φ)((id⊗ h)α(b))| ≤ ‖T (φ)‖.

12



Therefore ‖T (φ)‖ = ‖φ‖ for every φ ∈ Inv(B) and T is an isometry
from Inv(B) onto (Bα)′. �

The following theorem follows from Theorem ?? immediately.
Theorem 3.5. A compact quantum group action α of G on B is
ergodic if and only if there is a unique α-invariant state on B.

Proof. The “only if” part is well-known [? , Lemma 4], and we just
prove the “if” part.

Assume that there is a unique α-invariant state on B. By Theo-
rem ??, we have that Inv(B) ∼= (Bα)′. So there is a unique state on
(Bα)′. Every bounded linear functional on Bα is a linear combination
of states on Bα, so (Bα)′ = C. Hence Bα ⊆ (Bα)′′ = C. Therefore
Bα = C and α is ergodic. �

For a compact quantum group action α of G on B, recall that the
reduced action αr of Gr on B is defined by

αr = (id⊗ πr)α.
A state µ on B is α-invariant if and only if µ is αr-invariant since
(µ⊗ h)α = (µ⊗ hr)αr. So by Theorem ??, the following is true.

Corollary 3.6. A compact quantum group action α of G on B is
ergodic if and only if the reduced action αr of Gr on B is ergodic.

3.3. Invariant subsets. From now on, an ideal I of a unital C∗-
algebra B always means a closed two-sided ideal, and we denote the
quotient map from B onto B/I by πI .

Definition 3.7. Suppose a compact quantum group G acts on B by
α. An ideal I of B is called α-invariant if for all b ∈ I,

(πI ⊗ id)α(b) = 0.

A proper I is called maximal if any proper α-invariant ideal J ⊇ I of
B satisfies that I = J .

Remark 3.8. If an ideal I of B is α-invariant, then α induces an action
αI of G on B/I given by

αI(b+ I) = (π ⊗ id)α(b)

for all b ∈ B.
If B = C(X) for a compact Hausdorff space X, then there is a one-

one correspondence between closed subsets of X and ideals of B. To say
that an ideal is invariant under a compact group action is equivalent to
say that the corresponding closed subset of X is invariant. An ideal is
maximal just means that the corresponding closed subset is a minimal
invariant subset of X.
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Take an α-invariant state µ on B. Let Φµ : B → B(Hµ) be the GNS
representation of B with respect to µ and denote ker Φµ by Iµ. If B is
commutative, then

Iµ = Nµ = {f ∈ B|µ(f ∗f) = 0} = {f ∈ B| f |support of µ = 0}.

For a compact group action on a commutative C∗-algebra B = C(X),
the ideal Iµ is invariant is equivalent to that the support of µ is an
invariant subset of X. The following theorem says that this is also true
in the quantum case.
Theorem 3.9. Suppose that G acts on B by α and µ is an α-invariant
state on B. The ideal Iµ of B is α-invariant, and the induced action
on B/Iµ, denoted by αµ, is injective.

To prove Theorem ??, we need the following lemma:
Lemma 3.10. There exists an injective ∗-homomorphism β : B(Hµ)→
L(Hµ ⊗ A) such that

βΦµ = (Φµ ⊗ id)α,

where Hµ ⊗ A is the right Hilbert A-module with the inner product
〈., .〉 given by 〈b1 ⊗ a1, b2 ⊗ a2〉 = µ(b∗1b2)a

∗
1a2 for ai ∈ A and bi ∈ B,

and L(Hµ ⊗ A) is the set of adjointable maps on Hµ ⊗ A

Proof. We can define a bounded linear map U : Hµ ⊗ A→ Hµ ⊗ A by

U(b⊗ a) = α(b)(1⊗ a),

for all b ∈ B and a ∈ A.
Using the argument in [? , Lemma 5], we get that U is a unitary

representation of G with the carrier Hilbert space Hµ.
Let β(T ) = U(T ⊗ 1)U∗ for T ∈ B(Hµ). It is easy to see that β is

an injective ∗-homomorphism from B(Hµ) into L(Hµ ⊗ A). To prove
βΦµ = (Φµ ⊗ id)α, it is enough to show that

βΦµ(b)(α(b1)(1⊗ a1)) = (Φµ ⊗ id)α(b)(α(b1)(1⊗ a1))

for all a1 ∈ A and b, b1 ∈ B, since α(B)(1⊗A) is dense in B⊗A. From
the definitions of U and β and that U is unitary,

βΦµ(b)(α(b1)(1⊗ a1)) = u(b⊗ 1)u∗(α(b1)(1⊗ a1))
= u(bb1 ⊗ a1) = α(bb1)(1⊗ a1).

On the other hand, we have that

(Φµ ⊗ id)α(b)(α(b1)(1⊗ a1)) = α(bb1)(1⊗ a1).

This completes the proof. �

Now we are ready to prove Theorem ??.
14



Proof. By Lemma ??, we have that βΦµ = (Φµ ⊗ id)α. Hence (Φµ ⊗
id)α(b) = βΦµ(b) = 0 for any b ∈ Iµ. Let πµ be the quotient map from

B onto B/Iµ and Φ̂µ be the injective ∗-homomorphism from B/Iµ into
B(Hµ) induced by Φµ, then

Φµ = Φ̂µπµ.

The injectivity of Φ̂µ gives us the injectivity of Φ̂µ ⊗ id. So for b ∈ Iµ,
the identities

0 = βΦµ(b) = (Φµ ⊗ id)α(b) = (Φ̂µ ⊗ id)(πµ ⊗ id)α(b)

implies that (πµ ⊗ id)α(b) = 0, which proves the invariance of Iµ.
If αµ(b + Iµ) = 0 for some b ∈ B, then (πµ ⊗ id)α(b) = 0. Hence

(Φ̂µ ⊗ id)(πµ ⊗ id)α(b) = 0. Then it follows from Φµ = Φ̂µπµ that
(Φµ ⊗ id)α(b) = 0. Since βΦµ = (Φµ ⊗ id)α, we have that βΦµ(b) = 0.

That is to say βΦ̂µπµ(b) = 0. Since β and Φ̂µ are both injective, we
have that πµ(b) = 0, which proves the injectivity of αµ. �
Example 3.11. [Examples of invariant ideals]

(1) Consider the action of a compact quantum group G on A given
by ∆. The Haar state h is the unique ∆-invariant state on A.
Since Nh is an ideal [? , Proposition 7.9], we have that Ih = Nh.
Hence Nh is an invariant ideal of A.

(2) If B is commutative, then Nµ = Iµ for every α-invariant state
µ on B and Nµ is an α-invariant ideal of B by Theorem ??.

3.4. Kac algebra and tracial invariant states.

Definition 3.12. A compact quantum group G is called a Kac alge-
bra if one of the following equivalent conditions holds [? , Theorem
1.5] [? , Example 1.1] [? , Definition 8.1]:

(1) The Haar state h of G is tracial.
(2) The antipode κ of G satisfies that κ2 = id on A .

(3) F γ = id for all γ ∈ Ĝ.

For an ergodic action α of a compact quantum group G on B, in gen-
eral, the unique α-invariant state µ on B is not necessarily tracial (See
Remark 3.34 below). In [? ], Goswami showed that if G acts on a uni-
tal C∗-algebra B ergodically and faithfully, and the unique α-invariant
state µ on B is tracial, then G is a Kac algebra [? , Corollary 2.3].
Actually Goswami proved this result with the assumption that B is
commutative, but his proof works in the noncommutative case with
the assumption of the traciality of µ.
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Using a different method, we generalize this result to faithful (not
necessarily ergodic) actions, and show that traciality of h depends on
traciality of invariant states (see Theorem ?? below).

Lemma 3.13. Suppose that G acts on B by α. Take γ ∈ Ĝ such that
mul(B, γ) > 0. If there exists a state ϕ on B satisfying that

ϕ(
∑

1≤s≤dγ

eγkse
∗
γks) > 0

and (ϕ⊗h)α(eγkje
∗
γki) = (ϕ⊗h)α(e∗γkieγkj) for some 1 ≤ k ≤ mul(B, γ)

and all 1 ≤ i, j ≤ dγ, then F γ = id.

Proof. For convenience, in the proof we denote F γ by F for γ ∈ Ĝ.

Recall that for γ1, γ2 ∈ Ĝ, 1 ≤ m, k ≤ dγ1 and 1 ≤ n, l ≤ dγ2 , we have
that

h(uγ1mku
γ2∗
nl ) =

δγ1γ2δmnFlk
Mγ1

,

and

h(uγ1∗kmu
γ2
ln) =

δγ1γ2δmn(F−1)lk
Mγ1

.

Hence
(ϕ⊗ h)α(eγkje

∗
γki)

=
∑

1≤s,t≤dγ

ϕ(eγkse
∗
γkt)h(uγsj(u

γ
ti)
∗)

=
∑

1≤s,t≤dγ

ϕ(eγkse
∗
γkt)δst

Fij
Mγ

=
∑

1≤s≤dγ

ϕ(eγkse
∗
γks)

Fij
Mγ

,

and
(ϕ⊗ h)α(e∗γkieγkj)

=
∑

1≤s,t≤dγ

ϕ(e∗γkseγkt)h((uγsi)
∗uγtj)

=
∑

1≤s,t≤dγ

ϕ(e∗γkseγkt)(F
−1)ts

δij
Mγ

.

From (ϕ⊗h)α(eγkje
∗
γki) = (ϕ⊗h)α(e∗γkieγkj) and

∑
1≤s≤dγ ϕ(eγkse

∗
γks) >

0, we have that

Fij =

∑
1≤s,t≤dγ ϕ(e∗γkseγkt)(F

−1)tsδij∑
1≤s≤dγ ϕ(eγkse∗γks)

,
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which implies that F is a scalar matrix under a fixed orthonormal basis
of Hγ. Note that tr(F ) = tr(F−1), hence we get F = I under a fixed
orthonormal basis of Hγ, which means that F = id. �

Proposition 3.14. Suppose that a compact quantum group G acts on
B by α. If one of the following two conditions is true:

(1) every invariant state on B is tracial,
(2) there exists a faithful tracial invariant state,

then for all γ ∈ Ĝ such that mul(B, γ) > 0, we have that F γ = id.

Proof. Suppose that every invariant state on B is tracial. Note that
(ϕ ⊗ h)α is an α-invariant state for any ϕ ∈ S(B). By assumption

(ϕ ⊗ h)α is tracial. For any γ ∈ Ĝ with mul(B, γ) > 0, since for any
1 ≤ k ≤ mul(B, γ),

∑
1≤s≤dγ eγkse

∗
γks > 0, there exists a ϕγ ∈ S(B)

satisfying that
∑

1≤s≤dγ ϕγ(eγkse
∗
γks) > 0. Hence by Lemma ?? we have

that F γ = id.
On the other hand, if there exists a faithful tracial invariant state

on B, say ψ, then (ψ ⊗ h)α = ψ and ψ satisfies the conditions of

Lemma ??. Hence F γ = id for all γ ∈ Ĝ with positive mul(B, γ). �

Remark 3.15. A special case of Proposition ?? is the following:
If α is ergodic and the unique α-invariant state µ is tracial, then for

all γ ∈ Ĝ such that mul(B, γ) > 0, we have that F γ = id.
A slightly different version of this result appears in [? , Theorem 3.1]

where a necessary and sufficient condition of traciality of the unique
invariant state of an ergodic action is given.

Theorem 3.16. Suppose that a compact quantum group G acts on B
by α faithfully. If one of the following two conditions is true:

(1) every invariant state on B is tracial,
(2) there exists a faithful tracial invariant state on B,

then G is a Kac algebra.

Proof. Note that for all γ ∈ Ĝ and a unitary uγ ∈ γ, it follows from [?
, Theorem 5.4] that (id⊗ κ2)uγ = F γuγ(F γ)−1. By Proposition ??, we

see that F γ = id for all γ ∈ Ĝ such that mul(B, γ) > 0. So

κ2(uγij) = uγij

for all γ ∈ Ĝ such that mul(B, γ) > 0 and 1 ≤ i, j ≤ dγ. Note that κ2 is
a linear multiplicative map on A . Hence κ2 is the identity map when

restricted on the algebra A ′
2 generated by uγij’s for all γ ∈ Ĝ such that

mul(B, γ) > 0 and 1 ≤ i, j ≤ dγ. If mul(B, γ) > 0, then mul(B, γc) >

0. Note that uγ = (uγ∗ij )1≤i,j≤dγ ∈ γc for all γ ∈ Ĝ. So uγ∗ij ∈ A ′
2 for
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all γ ∈ Ĝ such that mul(B, γ) > 0 and 1 ≤ i, j ≤ dγ, and A ′
2 is a

∗-algebra. Thus A ′
2 = A2 where A2 is defined in Proposition ?? and

is the ∗-algebra generated by uγij for all γ ∈ Ĝ such that mul(B, γ) > 0
and 1 ≤ i, j ≤ dγ.

Note that α is faithful, hence A2 = A by Proposition ??. So κ2 = id
on A . This completes the proof. �

Remark 3.17. Theorem ?? includes Theorem 2.10 (i) in [? ] as special
cases.

However, the converse of Theorem ?? is not true.
By [? , Theorem 5.1], there exists an ergodic and faithful action α

of Au(n) on the Cuntz algebra On by

α(Sj) =
n∑
i=1

Si ⊗ uij.

Although Au(n) is a Kac algebra, there is no tracial state on On.

4. Actions on compact Hausdorff spaces

In this section, we consider a compact quantum group G acts on a
compact Hausdorff space X by α and denote C(X) by B. Let evx be
the evaluation functional on B at x ∈ X, i.e., evx(f) = f(x) for all
f ∈ B.

4.1. Compact quantum group orbit. We define compact quantum
group orbits and derive some basic properties.

Definition 4.1. Let G act on X by α. For x ∈ X. We call the subset

{x′ ∈ X|(evx ⊗ h)α = (evx′ ⊗ h)α}

of X the orbit of x, and denote it by Orbx.

For a closed subset Y of X, let JY = {f ∈ B| f = 0 onY } and
πY be the quotient map from B onto B/JY . Suppose that a compact
quantum group G acts on X by α. We say that Y is an α-invariant
subset of X if JY is an α-invariant ideal of B.

Define the induced action αY of G on Y by αY (f + JY ) = (πY ⊗
id)α(f) for f ∈ B. For a state µ on B, since B is commutative,
Nµ = {f ∈ B|µ(f ∗f) = 0} is a two-sided ideal of B. Let Xα = {x ∈
X|f(x) = 0 for all f ∈ kerα}.

We now give another characterization of invariant subsets. First we
need the following lemma.
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Lemma 4.2. For a closed subset Y of X and f ∈ B, (πY ⊗id)α(f) = 0
if and only if (evx ⊗ id)α(f) = α(f)(x) = 0 for all x in Y .

Proof. Suppose that (πY ⊗ id)α(f) = 0. For any x in Y , we define
a linear functional ẽvx on B/JY by ẽvx(f + JY ) = f(x) for all f ∈
B. If f ∈ JY , then f(x) = 0 for all x in Y . Hence ẽvx is well-
defined. Furthermore, ẽvxπY = evx. Applying ẽvx⊗ id to both sides of
(πY ⊗ id)α(f) = 0, we get (evx ⊗ id)α(f) = 0 for all x in Y .

On the other hand, for all x in Y and some f ∈ B, if (evx⊗id)α(f) =
0, then (ẽvxπY ⊗id)α(f) = 0. Note that (πY ⊗id)α(f) ∈ (B/JY )⊗A ∼=
C(Y )⊗A ∼= C(Y,A). Hence for all x ∈ Y , if (ẽvx⊗id)(πY⊗id)α(f) = 0,
then (πY ⊗ id)α(f) = 0. �

Using Lemma ??, we have the following.

Proposition 4.3. A closed subset Y of X is α-invariant if and only if
(evx ⊗ id)α(f) = 0 for all x in Y and f in JY .

Next, we show that every orbit is an invariant subset.
Recall that Bα ∼= C(Yα) and we denote the canonical quotient map

from X onto Yα by π. Then we have the following,

Lemma 4.4. For every y ∈ Yα, two points x1 and x2 are in π−1(y) if
and only if x1 and x2 are in the same orbit.

Proof. Note that Bα = (id⊗h)α(B). We have that x1, x2 ∈ π−1(y) for
y ∈ Yα if and only if

(evx1 ⊗ h)α(g) = (evy ⊗ h)α(g) = (evx2 ⊗ h)α(g)

for every g ∈ B. That is to say, x1 and x2 are in the same orbit. �
Theorem 4.5. For every x ∈ X, the orbit Orbx is an α-invariant
subset of X.

Proof. By Proposition ??, it suffices to show that for any f ∈ C(X), if
f |Orbx = 0, then (evx′ ⊗ id)α(f) = 0 for every x′ ∈ Orbx.

By Lemma ??, there exists y ∈ Yα such that π−1(y) = Orbx.
Let f ∈ B such that f |Orbx = 0. For arbitrary ε > 0, denote the

closed subset {x ∈ X||f(x)| ≥ ε} by Eε. Both X and Yα are compact
Hausdorff spaces,

hence π(Eε), denoted by Kε, is also compact and Hausdorff. Since
y /∈ Kε, by Urysohn’s Lemma, there exists a gε ∈ Bα, such that 0 ≤
gε ≤ 1, gε(y) = 0 and gε|Kε = 1. Since Bα is a C*-subalgebra of B, the
function gε is also in B and satisfies that 0 ≤ gε ≤ 1, gε|Orbx = 0 and
gε|Eε = 1.

Now consider f − fgε. Then |f(x) − gε(x)f(x)| = 0 for every x in
Eε, and |f(x)− gε(x)f(x)| < ε for all x ∈ X \ Eε since |f(x)| < ε and
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0 ≤ gε ≤ 1. Therefore ||f − fgε|| < ε which implies

||(evx′ ⊗ id)α(f)− (evx′ ⊗ id)α(fgε)|| < ε

for every x′ ∈ X.
Note that gε ∈ Bα and gε|Orbx = 0. For every x′ ∈ Orbx, we have

that

(evx′⊗id)α(fgε) = (evx′⊗id)(α(f)(gε⊗1)) = (evx′⊗id)α(f)gε(x
′) = 0.

Consequently, ||(evx′ ⊗ id)α(f)|| < ε for all x′ ∈ Orbx. Note that ε is
arbitrary. So (evx′ ⊗ id)α(f) = 0 for every x′ ∈ Orbx. This ends the
proof. �
Theorem 4.6. The action α is ergodic iff Orbx = X for some x ∈ X.

Proof. Suppose that α is ergodic. Then (id ⊗ h)α(f) is a constant
function on X for every f ∈ B. Therefore, (evx ⊗ h)α(f) = (evx′ ⊗
h)α(f) for all x and x′ in X. Consequently Orbx = X.

If there exists x ∈ X such that Orbx = X. We have that (evy ⊗
h)α(f) = (evx⊗h)α(f) for every f ∈ B and y ∈ X. So (id⊗h)α(f) is
a constant function on X for every f ∈ B. Therefore α is ergodic. �

4.2. Non-atomic invariant measures.
We first prove the following result.

Theorem 4.7. If a compact quantum group G acts ergodically by α
on a compact metrizable space X with infinitely many points, then the
unique α-invariant measure µ of X is non-atomic. That is, every point
of X has zero µ-measure.

Denote C(X) by B. For y ∈ X, denote by ey the characteristic
function of {y}. For a compact quantum group action α : B → B⊗A,
we use evx to denote the evaluation functional on B at a point x ∈ X.

Take a regular Borel probability measure µ on X. Denote µ({x}) by
µx and define a linear functional νx on B by νx(f) = f(x)µx for all f ∈
B. With abuse of notation, we also use µ to denote the corresponding
linear functional on B such that µ(f) =

∫
X
f dµ for f ∈ B. For a subset

U of X, if an f ∈ B satisfies that 0 ≤ f ≤ 1 and f |U = 1, then we
write it as U ≺ f . If f satisfies that 0 ≤ f ≤ 1 and supportof f ⊆ U ,
then we denote it by f ≺ U .

Before proceeding to the main theorem, we prove two preliminary
lemmas.
Lemma 4.8. Suppose that a compact quantum group G acts on a
compact Hausdorff space X by α. Take an α-invariant measure µ on
X. If µx > µy for two points x and y in X, then there exists an open
neighborhood V of y satisfying that (evx ⊗ id)α(g) = 0 for all g ∈ B
with g ≺ V .
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Proof. Note that µ is a state on B and X is a compact Hausdorff space.
Hence µ is a regular Borel measure on X by the Riesz representation
theorem. Since µx > µy, there exists an open neighborhood U of y
such that µx > µ(U). We claim that

‖(evx ⊗ id)α(f)‖ < 1

for all f ∈ B with f ≺ U . Since 0 ≤ f ≤ 1, we have that ‖(evx ⊗
id)α(f)‖ ≤ 1. If ‖(evx ⊗ id)α(f)‖ = 1, then there exists a state φ on
A such that φ((evx ⊗ id)α(f)) = ‖(evx ⊗ id)α(f)‖ = 1 since (evx ⊗
id)α(f) ≥ 0. Moreover,

(µ⊗ φ)α(f) = φ((µ⊗ id)α(f)) = φ(

∫
X

(evx ⊗ id)α(f) dµ)

≥ φ((evx ⊗ id)α(f))µx = µx.

Since µ is α-invariant, on the other hand

(µ⊗ φ)α(f) = φ((µ⊗ id)α(f)) = φ(µ(f)1A) = µ(f).

Therefore combining these, we get that µ(f) ≥ µx. Since f ≺ U , we
also have that µx > µ(U) ≥ µ(f). This leads to a contradiction. Hence
‖(evx ⊗ id)α(f)‖ < 1 for all f ∈ B with f ≺ U .

Since X is a compact Hausdorff space, there exist an open subset V
and a compact subset K of X such that y ∈ V ⊆ K ⊆ U .

By Urysohn’s lemma, there is an f ∈ B such that K ≺ f ≺ U . For
any g ∈ B with g ≺ V , we see that 0 ≤ g ≤ fn for every positive
integer n. Thus

‖(evx ⊗ id)α(g)‖ ≤ ‖(evx ⊗ id)α(fn)‖ = ‖(evx ⊗ id)α(f)‖n → 0

as n→∞. Therefore (evx ⊗ id)α(g) = 0. �

Lemma 4.9. Suppose that a compact quantum group G has the faith-
ful Haar state and acts ergodically by α on a compact Hausdorff space
X with infinitely many points. Denote the unique α-invariant measure
on X by µ. Assume that there exists some x ∈ X such that µx > 0.
Let E1 = {y ∈ X|µy = max{µx|x ∈ X}}. For any f ∈ B, if f |E1 = 0,
we have α(f) = 0.

Proof. First E1 is a finite subset of X since µ is a finite measure on
X. Let E1 = {x1, ..., xn} and evi = evxi for 1 ≤ i ≤ n. For any
ε > 0, there exists an open neighborhood Vi of xi for each xi ∈ E1 such
that |f(x)| < ε for all x ∈

⋃n
i=1 Vi. For any y /∈ E1, by Lemma ??,

there exists an open neighborhood Vy of y such that Vy
⋂
E1 = ∅ and

(evi ⊗ id)α(g) = 0 for all g ∈ B with g ≺ Vy and all 1 ≤ i ≤ n. Then
V = {Vy}y/∈E1

⋃
{Vi}ni=1 is an open cover of X. Since X is a compact
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Hausdorff space, there exists a finite subcover V ′ of V . Let {gV }V ∈V ′

be a partition of unity of X subordinate to V ′. Then f =
∑

V ∈V ′ fgV .
Now let i = 1 for convenience. By Lemma ??, we have that (ev1 ⊗

id)α(gV ) = 0 for all V ∈ V ′ \ {Vi}ni=1. Hence

(ev1 ⊗ id)α(f) = (ev1 ⊗ id)α(
∑
V ∈V ′

fgV )

=
∑

V ∈V ′ ⋂{Vi}ni=1

(ev1 ⊗ id)α(fgV ) +
∑

V ∈V ′\{Vi}ni=1

(ev1 ⊗ id)α(fgV )

=
∑

V ∈V ′ ⋂{Vi}ni=1

(ev1 ⊗ id)α(fgV ).

Take any x ∈ X. If x ∈
⋃n
i=1 Vi, then |

∑
V ∈V ′ ⋂{Vi}ni=1

f(x)gV (x)| ≤
|f(x)| < ε. If x /∈

⋃n
i=1 Vi, then

∑
V ∈V ′ ⋂{Vi}ni=1

f(x)gV (x) = 0. There-

fore ‖
∑

V ∈V ′ ⋂{Vi}ni=1
fgV ‖ ≤ ε.

Thus

‖(ev1 ⊗ id)α(f)‖ = ‖(ev1 ⊗ id)α(
∑

V ∈V ′ ⋂{Vi}ni=1

fgV )‖ ≤ ε.

Since ε is arbitrary, we have that (ev1⊗ id)α(f) = 0. Note that (ev1⊗
id)α is a ∗-homomorphism, so (ev1 ⊗ id)α(f ∗f) = 0. The action α is
ergodic, hence (evx ⊗ h)α(f ∗f) = (ev1 ⊗ h)α(f ∗f) = 0 for any x ∈
X. The Haar state h is faithful and (evx ⊗ id)α(f ∗f) ≥ 0, therefore
(evx ⊗ id)α(f ∗f) = 0 for all x ∈ X which means α(f) = 0. �

Now we are ready to prove the main theorem in this subsection.
Proof. [Proof of Theorem ??]

We can assume the Haar state h of G is faithful otherwise we replace
α by the reduced compact quantum group action αr of Gr which has
the faithful Haar state. The action αr is also ergodic by Corollary ??.
Moreover, a state on B is α-invariant if and only if it is αr-invariant (see
the argument preceding Corollary ??).

Suppose that µ({x}) > 0 for some x ∈ X. Define E1 = {x1, ..., xn}
as in Lemma ??. Let B be the Podlés algebra of B = C(X). Define a
linear map T from α(B) into Cn by

T (α(f)) = (f(x1), f(x2), ..., f(xn))

for all f ∈ B. Note that α is injective on B. So T is well-defined.
Also T is linear. By Lemma ??, T is injective. The space X contains
infinitely many points, hence B is infinite dimensional. Since B is a
dense subspace of B, we have that B is also infinite dimensional. This

22



leads to a contradiction to that Cn is finite dimensional and that T is
injective. �

Now we consider compact quantum group actions on a compact
Hausdorff space X∞ with countably infinitely many points. We com-
plete the paper with the following main result by using Theorem ??.
Theorem 4.10. X∞ is not a quantum homogeneous space.

Proof. For every Borel probability measure µ on X∞, there exists an
x ∈ X∞ such that µ({x}) > 0. So by Theorem ??, the space X∞
cannot admit an ergodic compact quantum group action. �
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