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We construct the Gromov–Witten invariants of moduli of stable maps to P4 with fields.

This is the all genus mathematical theory of the Guffin–Sharpe–Witten model, and is a

modified twisted Gromov–Witten invariant of P4. These invariants are constructed using

the cosection localization of Kiem–Li, an algebro-geometric analog of Witten’s perturbed

equations in Landau–Ginzburg theory. We prove that these invariants coincide, up to

sign, with the Gromov–Witten invariants of quintics.

1 Introduction

The Candelas et al. genus zero generating function [3] of the Gromov–Witten invariants

of quintic Calabi–Yau three-folds was proved by Givental [12] and Lian et al. [21]; the

genus 1 generating function of Bershadsky et al. [2] was proved by Zinger [26]. Both

proofs rely on the “hyperplane property” of the Gromov–Witten invariants of quintics,

which expresses the invariants in terms of “Euler class of bundles” over the moduli of

stable maps to P4. The hyperplane property for genus 0 was derived by Kontseviech [17];

the case of genus 1 was proved by Li and Zinger [20]. This paper is our first step to build

such a theory for all genus Gromov–Witten invariants of quintics [19], and beyond.
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2 H.-L. Chang and J. Li

In this paper, we introduce a new class of moduli spaces: the moduli of stable

maps to P4 with fields. These moduli spaces are cones over the usual moduli of stable

maps to P4; they are not proper for positive genus. We use Kiem–Li’s cosection localized

virtual cycle to construct their localized virtual cycles, and thus their Gromov–Witten

invariants. Applying degeneration, we prove that these invariants coincide (up to signs)

with the Gromov–Witten invariants of the quintics.

We briefly outline our construction and the main theorem. Given nonnegative

integers g and d, we form the moduli Mg(P
4, d)p of genus g degree d stable maps to P4

with p-fields:

Mg(P
4, d)p= {[u, C , p]|[u, C ] ∈Mg(P

4, d), p∈ Γ (C , u∗OP4(−5)⊗ ωC )}/∼ .

Here Mg(P
4, d) is the moduli of degree d genus g stable maps to P4.

It is a Deligne–Mumford stack; forgetting the fields, the induced morphism

Mg(P
4, d)p→Mg(P

4, d)

has fiber H0(u∗OP4(−5)⊗ ωC ) over [u, C ] ∈Mg(P
4, d). When g is positive, it is not proper.

The moduli space Mg(P
4, d)p has a perfect obstruction theory, and thus has

a virtual class. To overcome its nonproperness in order to define its Gromov–Witten

invariant, we construct a cosection (homomorphism) of its obstruction sheaf. The choice

of the cosection depends on the choice of a degree 5 homogeneous polynomial, like

w= x5
1 + · · · + x5

5 . The nonsurjective locus (called the degeneracy locus) of the cosection

associated to w

σ : ObMg(P4,d)p −→OMg(P4,d)p

is

Mg(Q, d)⊂Mg(P
4, d)p, Q= (x5

1 + · · · + x5
5 = 0)⊂ P4,

which is proper. Applying Kiem–Li cosection localized virtual class construction, we

obtain a localized virtual cycle

[Mg(P
4, d)p]vir

σ ∈ A0Mg(Q, d).
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GW Invariants of Stable Maps with Fields 3

We define the Gromov–Witten invariant of Mg(P
4, d)p to be

Ng(d)
p
P4 = deg[Mg(P

4, d)p]vir
σ .

(We also call them the Gromov–Witten invariants of the space (KP4 , w).)

This relates to the Gromov–Witten invariants the quintic Q:

Theorem 1.1. For g≥ 0 and d> 0, the Gromov–Witten invariant of Mg(P
4, d)p (or

(KP4 , w)) coincides with the Gromov–Witten invariant Ng(d)Q of the quintic Q up to

a sign:

Ng(d)
p
P4 = (−1)5d+1−gNg(d)Q. �

When g= 0, this is derived in Guffin and Sharpe [13] using path integral. This

identity also is the same as Kontsevich’s formula for g= 0 Gromov–Witten invariants of

quintics. If one views the localized virtual cycle of Mg(P
4, d)p as “Euler class of bun-

dles”, this theorem is a substitute of the “hyperplane property” of the Gromov–Witten

invariants of quintics in high genus.

We believe that this construction will lead to a mathematical approach to Wit-

ten’s Gauged-Linear-Sigma model for all genus. In [24], Witten constructed a (gauged)

topological field theory (for g= 0) whose target is the stacky quotient [C6/C∗] (of weights

(1, 1, 1, 1, 1,−5)) with a superpotential, say w. This theory has two GIT quotients: one

is (KP4 , w), called the massive theory; the other is ([C5/Z5], w) called the linear Landau–

Ginzburg model. (Linear Landau–Ginzburg model means the space is the orbifold quo-

tient of an affine space.) Witten proposed to A-twist both models: the A-twist of (KP4 , w)

likely is a theory of moduli of stable quotients, and the resulting theory is of Landau–

Ginzburg type. The A-twist of ([C5/Z5], w) is related to the generalized Witten conjecture

[25] for A4 = (C, x5).

The program proposed in [24] provides a possible road map toward an all

genus mathematical theory linking the Gromov–Witten theory of quintic to the Landau–

Ginzburg model of ([C5/Z5], w). A bolder speculation is that there is a geometric mirror

construction identifying the A-twisted topological string theory of ([C5/Z5], w) with the

B-side invariants of its Landau–Ginzburg Mirror.

In [10], Fan et al. constructed the virtual cycle of the A-twisted topological string

theories of the linear Landau–Ginzburg model of ([C5/Z5], w); their construction is via

analytic perturbation of Witten’s equation. Later, Ruan and Chiodo proved [6] the genus

zero mirror symmetry for ([C5/Z5], w) and its mirror.
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4 H.-L. Chang and J. Li

For massive theory of (KP4 , w), Marian, Oprea and Pandharipande constructed

the moduli of stable quotients [23], which is believed to be an example of massive

instantons. It is interesting to see how the invariants of A-twisting the construc-

tion in [23] relate to the invariants of the massive instantons in (KP4 , w) in Witten’s

program.

Using Super-String theories, Guffin and Sharpe constructed a special type of

genus 0 Landau–Ginzburg model for (KP4 , w), and equated it with the genus 0 Gromov–

Witten invariants of the quintic Q [13]. The notion of p-fields was introduced in this

work. Using nonperturbative localization of path-integral, they reduced this theory to

the genus 0 Gromov–Witten invariants of quintics. Since this follows Witten’s Gauged-

Linear-Sigma model program, we call this construction the Guffin–Sharpe–Witten (GSW)

model.

Our work is an algebro-geometric construction of the GSW model for all genus.

The moduli of stable maps with p-fields is the algebro-geometric substitute of the phase

space of all smooth maps with smooth fields. The cosection localized virtual cycle is

the analog of Witten’s perturbed equation. Theorem 1.1 shows that the Gromov–Witten

invariants of the algebro-geometric GSW model of all genus coincide up to signs with

the Gromov–Witten invariants of quintic three-folds.

Our construction applies to global complete intersection Calabi–Yau three-folds

of toric varieties. In the subsequent papers, we apply the techniques developed to the

moduli of stable quotients (cf. [23]) to obtain all genus invariants of massive theory

of (KP4 , w) [4]; we shall also apply it to the linear Landau–Gingzberg model to obtain an

alternative algebro-geometric construction of Fan–Jarvis–Ruan–Witten invariants [5]. In

the later case, the resulting invariants are equal to those defined using perturbed Witten

equations [10].

We believe the new invariants and their equivalence with the Gromov–Witten

invariants of quintics provide the first step toward building a geometric bridge estab-

lishing the conjectural equivalence of Gromov–Witten invariants of quintics and the

Fan–Jarvis–Ruan–Witten invariants of ([C5/Z5], w). Constructing such a bridge will be

the long-term goal of this project.

Conventions. In this paper, the primary focus is on moduli of stable maps with

fields to P4, on a smooth quintic Calabi–Yau Q⊂ P4 defined by
∑

x5
i = 0, and on a defor-

mation of P4 to the normal cone to Q⊂ P4.

Throughout the paper, we fix homogeneous coordinates [x1, . . . , x5] of P4, with

xi ∈ H0(P4,O(1)) and O(1) :=OP4(1). We denote by N the normal bundle to Q in P4. Using

the defining section
∑

x5
i = 0, we obtain a canonical isomorphism N ∼=OQ(5).
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GW Invariants of Stable Maps with Fields 5

In this paper we fix positive integers g and d throughout. We use ( f, C) with

subscripts to denote the universal families of various moduli spaces. For instance, after

abbreviating P =Mg(P
4, d)p, the universal curve and map of P is denoted by

( fP , πP) : CP −→ P4 × P.

For any locally free sheaf L on C, we denote by Vb(L ) the underlying vector

bundle of L ; namely, the sheaf of sections of Vb(L ) is L .

In this paper we use fonts E, etc. to denote derived objects (of complexes). We

reserve LX/Y to denote the cotangent complex of X→Y; we denote by TX/Y its derived

dual TX/Y =L∨X/Y, called the tangent complex of X→Y. We use φX/Y : TX/Y→EX/Y to

denote a relative obstruction theory of X→Y, following Behrend and Fantechi [1].

Without causing confusion, all pull-backs of derived objects (respectively

sheaves) are derived pull back (respectively sheaves pull back) unless otherwise stated.

2 Direct Image Cones and Moduli of Sections

In this section, to a locally free sheaf L over a family of nodal curves π : C→A over an

Artin stack A, we construct its direct image cone C (π∗L), and its relative obstruction

theory.

2.1 Direct image cones

Let A be an Artin stack, π : C→A be a flat family of connected, nodal, arithmetic genus

g curves, and L be a locally free sheaf on C.

Definition 2.1. For any scheme S, we define C (π∗L )(S) to be the collection of (ρ, p) so

that ρ : S→A is a morphism and p∈ H0(CS, ρ
∗L ), where CS = S×A C and ρ∗L =L ×OC

OCS .

An arrow from (ρ, p) to (ρ ′, p′) in C (π∗L )(S) consists of an arrow τ : CS→ CS in

A(S) such that under the induced isomorphism τ ∗ρ ′∗L ∼= ρ∗L , p= τ ∗p′. Given S→ S′, we

define C (π∗L )(S′)→ C (π∗L )(S) by pull-back. �

We show that C (π∗L ) is a stack over A. Given a module F , we denote by SymF
the symmetric algebra of F .
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6 H.-L. Chang and J. Li

Proposition 2.2. Let the notation be as in Definition 2.1. We have a canonical

A-isomorphism

C (π∗L )∼= SpecASymR1π∗(L ∨ ⊗ ωC/A). �

Proof. For any scheme S and a morphism ρ : S→A, we let

C (π∗L )(ρ)= {(ρ, p) | p∈ H0(CS, ρ
∗L )} ∼= Γ (CS, ρ

∗L ).

We define a transformation

C (π∗L )(ρ)−→HomS(S, SpecASymR1π∗(L ∨ ⊗ ωC/A)×A S) (2.1)

as follows. We let F = R1π∗(L ∨ ⊗ ωC/A). Given a ρ : S→A, an S-morphism S→
SpecASymF ×A S is given by a morphism of sheaves of OA-algebras

SymF −→OS,

which is equivalent to a morphism of sheaves of OA-modules

R1πS∗(L ∨
S ⊗ ωCS/S)=F ⊗OA

OS −→OS.

Here we have used the base change property of R1π∗.

Applying Serre duality [9] to the complete intersection morphism πS : CS→ S, we

obtain

HomS(R1πS∗(L ∨
S ⊗ ωCS/S),OS)= Γ (CS,LS).

This defines the transformation (2.1). It is direct to check that this is an isomorphism,

and satisfies the base change property. This proves the Proposition. �

2.2 Moduli of sections

One can also construct the direct image cone via the moduli of sections. Let C→A be

as in Definition 2.1; let Z→ C be an Artin stack such that the arrow Z→ C is repre-

sentable and quasi-projective. We define a groupoid S (with dependence on Z implicitly

understood) as follows.
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GW Invariants of Stable Maps with Fields 7

For any scheme S→A, we define CS = C ×A S and ZS =Z ×C CS; we view ZS as a

scheme over CS via the projection πS : ZS→ CS. We define

S(S)= {s : CS→ZS | s are CS-morphisms}.

The arrows are defined by pull-backs.

Proposition 2.3. The groupoid S is an Artin stack with a natural projection to A. The

morphism S→A is representable and quasi-projective. �

Proof. This follows from the functorial construction of Hilbert scheme and that Z→ C
is representable and quasi-projective. �

Corollary 2.4. Let π : C→A be as in Definition 2.1, and let Z =Vb(L ), which is the

underlying vector bundle of the locally free sheaf L . Then canonically C (π∗L )∼=S as

stacks over A. �

2.3 The obstruction theory

We give the perfect obstruction theory of S. Let Z→ C→A be as in Proposition 2.3. Let

πS : CS→S be the universal family of S and e : CS→Z be the tautological evaluation

map; namely, (πS, e) : CS→S× Z is the universal family of S.

As mentioned at the end of the introduction, we let TS/A be the tangent complex

of S→A, which is the dual of the cotangent complex LS/A.

Proposition 2.5. Let the situation be as stated. Suppose Z→ C is smooth; then S→A

has a perfect relative obstruction theory:

φS/A : TS/A −→ES/A := R•πS∗e∗Ω∨Z/C . �

Proof. By our construction we have the commutative diagrams

S ←−−−− CS
e−−−−→ Z⏐⏐� ⏐⏐� ⏐⏐�

A ←−−−− C =−−−−→ C

(2.2)
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8 H.-L. Chang and J. Li

where the left one is Cartesian. Applying the projection formula to

π∗STS/A
∼=TCS/C −→ e∗TZ/C = e∗Ω∨Z/C, (2.3)

and using

TS/A −→ R•πS∗π∗STS/A,

we obtain

φS/A : TS/A −→ES/A := R•πS∗e∗Ω∨Z/C . (2.4)

We claim that φS/A is a perfect obstruction theory.

We prove this by applying the criterion in [1, Theorem 4.5]. Given an extension

T ⊂ T ′ by ideal J with J2 = 0, and a commutative diagram

T
m−−−−→ S⏐⏐� ⏐⏐�

T ′
n−−−−→ A

(2.5)

we say that m lifts to an m′ : T ′ →S if m′ fits into (2.5) to form two commuting triangles.

By standard deformation theory, the diagram (2.5) provides a morphism

m∗LS/A −→LT/T ′ −→L
≥−1
T/T ′ = J[1],

which gives an element


(m) ∈Ext1
T (m∗LS/A, J)= H1(T,m∗TS/A ⊗OT J). (2.6)

Using the morphism φS/A in (2.4), we obtain the homomorphism

φ′ : H1(T,m∗TS/A ⊗OT J)−→ H1(T,m∗ES/A ⊗OT J).

We define

ob(T, T ′,m) := φ′(
(m)) ∈ H1(T,m∗ES/A ⊗OT J).

To prove that φS/A is a perfect relative obstruction theory, by the criterion in

[1, Theorem 4.5 (3)], we need to show

(1) ob(T, T ′,m)= 0 if and only if m in (2.5) can be lifted to m′ : T ′ → C;
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GW Invariants of Stable Maps with Fields 9

(2) when ob(T, T ′,m)= 0, the set of liftings m′ : T ′ → C forms a torsor under

H0(T,m∗EC/A ⊗OT J).

We now verify (1) and (2). Pulling back C to T and T ′ via m and n, respectively,

we obtain two families πT : CT→ T and πT ′ : CT ′ → T ′; pulling back e to T , we have the

evaluation map eT : CT→Z. Let

κ : H1(T,m∗ES/A ⊗OT J)
∼=−→H1(T, R•πT∗(e∗TΩ∨Z/C ⊗ π∗T J))

be the canonical isomorphism defined by the definition of ES/A (cf. (2.4)).

Using the standard property of cotangent complex, the commuting square

CT
eT−−−−→ Z⏐⏐� ⏐⏐�

CT ′
ñ−−−−→ C

(2.7)

where ñ is the lift of n in (2.5), induces homomorphisms

e∗TΩZ/C ∼= e∗TLZ/C −→LCT /CT ′ = π∗TLT/T ′ −→L
≥−1
CT /CT ′

= π∗T J[1].

Their composite associates to an element


(eT ,Z, C) ∈ H1(CT , e∗TΩ∨Z/C ⊗ π∗T J)∼= H1(T, R•πT∗(e∗TΩ∨Z/C ⊗ π∗T J)).

By Lemma A.5, 
(eT ,Z, C)= 0 if and only if (2.7) admits a lifting CT ′ →Z.

As (2.7) is the composition of (2.5) with (2.2), 
(eT ,Z, C)= κ(φ′(
(m))). Thus

ob(T, T ′, m)= 0 if and only if (2.7) has a lifting, which is equivalent to the fact that m

lifts to an m′ : T ′ →S in (2.5). This verifies criterion (1).

Finally, when ob(T, T ′,m)= 0, any two liftings CT ′ →Z differ by a section in

H0(CT , e∗TΩ∨Z/C ⊗ π∗T J), and vice versa [14, Theorem 2.1.7]. This proves the criterion (2).

These complete the proof of the Proposition. �

2.4 Moduli of stable maps

Using the stack Dg of curves with line bundles, this construction provides a different

perspective of the moduli of stable maps to a projective scheme.
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10 H.-L. Chang and J. Li

Definition 2.6. We define Dg to be the groupoid associating to each scheme S the set

Dg(S) of pairs (CS,LS), where CS→ S is a flat family of connected nodal curves and LS

is a line bundle on CS of degree d along fibers of CS/S. An arrow from (CS,LS) to (C ′S,L ′
S)

consists of a pair (ρ, τ ), where ρ : CS→ C ′S and τ : ρ∗L ′
S→L are S isomorphisms. �

It is easy to show that Dg is a smooth Artin stack. By forgetting the line bundles,

one obtains an induced morphism Dg→Mg, where Mg is the Artin stack of all connected

nodal curves of genus g. For any ξ = (C , L) ∈Dg the automorphism group of ξ relative to

Mg, (i.e., automorphisms of L that fix C ) is C∗. We denote by (CDg,LDg), with πDg : CDg→
Dg implicitly understood, the universal family of Dg.

We now let X ⊂ Pn be a projective scheme. For the integer d given (the integer d

is fixed throughout this paper), we have the moduli of genus g and degree d stable maps

to X: Mg(X, d). We now present it as the moduli of sections. We keep the homogeneous

coordinates [x1, . . . , xn+1] of Pn mentioned in the introduction. The choice of [xi] provides

a presentation

Pn=An+1∗/C∗, An+1∗ :=An+1 − 0. (2.8)

We form the bundle

Vb(L ⊕(n+1)

Dg
)∗ =Vb(L ⊕(n+1)

Dg
)− 0CDg

,

where 0CDg
is the zero section. Using the C∗-equivariance of the projection An+1∗ → Pn

induced by (2.8), we obtain a canonical morphism

Ψ : Vb(L ⊕(n+1)

Dg
)∗ −→ Pn.

We let

ZX =Vb(L ⊕(n+1)

Dg
)∗ ×Pn X ⊂Vb(L ⊕(n+1)

Dg
)∗.

We let SX be the stack of sections constructed in Section 2.2 with Z replaced by ZX.

Proposition 2.7. There is a canonical open immersion of stacks Mg(X, d)→SX, as

stacks over Mg. �

Proof. For notational simplicity, in the remainder of this Section, we abbreviate

Y=Mg(X, d), and denote by ( fY, πY) : CY→ X × Y the universal family. Pulling back

O(1), we obtain LY = f∗YO(1); pulling back the homogeneous coordinates xi (viewing
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GW Invariants of Stable Maps with Fields 11

xi ∈ H0(Pn,OPn(1))), we obtain ui = f∗Y xi. Since fY has degree d along fibers of CY/Y,

(CY,LY) defines a morphism

λ : Y=Mg(X, d)−→Dg; (2.9)

since fY(CY)⊂ X, (u1, . . . , un+1) defines a section Y→Vb(L ⊕(n+1)

Dg
)×Dg Y (of Y) that factors

through a section

ξ : Y→ZX ×Dg Y.

This defines a morphism Y→SX.

It is direct to check that this is an open immersion, and is a morphism over Mg.

This proves the Proposition. �

It is worth comparing the relative obstruction theory φY/Dg of Mg(X, d)→Dg

constructed using Section 2.3 with the relative obstruction theory φY/Mg of Mg(X, d)→
Mg given in [1].

Following the notation before Proposition 2.5, we have an evaluation map eY :

CY→ZX. The induced morphism π∗YTY/Dg
∼=TCY/CDg

→ e∗YTZX/CDg
induces

φY/Dg : TY/Dg −→EY/Dg := R•π∗e∗YTZX/CDg
.

Applying Proposition 2.5, φY/Dg is a perfect relative obstruction theory of Y→Dg.

Lemma 2.8. Suppose that X is smooth. The relative obstruction theories φY/Dg and

φY/Mg are related by a morphism of distinguished triangles:

R•πY∗OCY −−−−→ EY/Dg −−−−→ EY/Mg

+1−−−−→�⏐⏐|| �⏐⏐φY/Mg

�⏐⏐φY/Dg

λ∗TDg/Mg [−1] −−−−→ TY/Dg −−−−→ TY/Mg

+1−−−−→
�

Proof. Let CMg be the universal curve on Mg; let

χM : ZX −→ CMg × X
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12 H.-L. Chang and J. Li

be the morphism so that its first factor is the composite ZX→ CDg→ CMg , and the second

factor is the natural projection. Let

f : CY −→ CMg × X

be the compost of eY : CY→ZX with χM : ZX→ CMg × X. Note that the first factor of f is

the canonical projection induced by Y→Dg→Mg; its the second factor is fY.

Taking the tangent complex relative to Mg, we obtain

π∗YTY/Mg
∼=TCY/CMg

−→ f∗TCMg×X/CMg
∼= f∗Y TX.

This induces

φY/Mg : TY/Mg −→EY/Mg := R•π∗ f∗Y TX,

which is the perfect relative obstruction theory of Y→Mg defined in [1].

We let χD : ZX→ CDg × X be defined similarly to χM, and let g : CDg × X→ CMg × X

be the projection. Note that g ◦ χD = χM. By the construction, we have the commutative

diagrams

ZX
χD−−−−→ CDg × X

g−−−−→ CMg × X⏐⏐�ρ0

⏐⏐�π1

⏐⏐�
CDg CDg −−−−→ CMg

(2.10)

It induces an exact sequence of locally free sheaves

0−→ TZX/CDg×X −→ TZX/CDg
−→ χ∗DTCDg×X/CDg

−→ 0.

Since χD is a C∗-principal bundle, OZX
∼= TZX/CDg×X. Also we have canonical isomorphism

χ∗DTCDg×X/CDg
∼= χ∗MTCMg×X/CMg

. Let λC : CY→ CDg be induced by λ. The above sequence fits

into a morphism of distinguished triangles,

e∗YTZX/CDg×X −−−−→ e∗YTZX/CDg
−−−−→ e∗Yχ∗MTCMg×X/CMg

∼= f∗XTX
+1−−−−→�⏐⏐ �⏐⏐ �⏐⏐

λ∗C TCDg/CMg
[−1] −−−−→ TCY/CDg

−−−−→ TCY/CMg

+1−−−−→
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GW Invariants of Stable Maps with Fields 13

where the left vertical arrow is the composition

λ∗TCDg/CMg
∼= e∗Yχ∗Dπ∗1 TCDg/CMg

∼= e∗Yχ∗DTCDg×X/CMg×X −→ e∗YTZX/CDg×X[1],

where the last arrow is given by the distinguished triangle of cotangent complexes asso-

ciated to the top row of (2.10). Here the commutativity of squares in the above diagram

can be checked by diagram chasing using (2.10).

Therefore we have a homomorphism of distinguished triangles

R•πY∗OCY −−−−→ EY/Dg −−−−→ EY/Mg

+1−−−−→�⏐⏐ �⏐⏐φY/Dg

�⏐⏐φY/Mg

λ∗TDg/Mg [−1] −−−−→ TY/Dg −−−−→ TY/Mg

+1−−−−→

By the property of cotangent complex of Picard stacks the left vertical arrow of the above

diagram is an isomorphism. �

Let [Y/Dg]vir and [Y/Mg]vir ∈ A∗Y be the virtual cycles using the respective perfect

relative obstruction theories.

Corollary 2.9. We have an identity

[Y/Dg]vir = [Y/Mg]vir ∈ A∗Y. �

Proof. Applying [1, Proposition 2.7] to Lemma 2.8, we obtain a diagram of cone stacks

h1/h0(R•πY∗OCY ) −−−−→ h1/h0(EY/Dg)
θ−−−−→ h1/h0(EY/Mg)∥∥∥ �⏐⏐(φY/Dg )∗

�⏐⏐(φY/Mg )∗

h1/h0(λ∗TDg/Mg [−1]) −−−−→ h1/h0(TY/Dg)
θint−−−−→ h1/h0(TY/Mg)

of which the two rows are an exact sequence of abelian cone stacks. Applying an

argument analogs to the second line in the proof of [16, Proposition 3], one checks

(θint)
∗(CY/Mg)= CDg/M f . Hence θ is a quotient of bundle stacks such that θ∗(CY/Mg)=

CY/Dg . By the projection formula

[Y/Dg]vir = [Y/Mg]vir ∈ A∗Y.
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14 H.-L. Chang and J. Li

This proves the Corollary. �

We remark that this construction is parallel to the construction of Ciocan-

Fontanine and Kim [7, 8] on the obstruction theories of the moduli spaces of maps to

toric varieties [8, Theorem 3.2.1]; and to the comparison result with the perfect obstruc-

tion theory relative to Mg in the same paper [8, Secttion 5].

3 Gromov–Witten Invariant of the GSW Model

In this section, we construct the moduli of stable maps to P4 coupled with p-fields. We

construct its localized virtual cycle, using Kiem–Li’s cosection localized virtual cycles.

We define its degree to be the virtual counting of stable maps to P4 with p-field. This

class of invariants is a generalization of the genus 0 GSW model (KP4 , wP4) [13].

3.1 Moduli of stable maps with p-fields

Let Mg(P
4, d) be the moduli of genus g degree d stable maps to P4. For the moment,

we denote by ( fM, CM, πM) the universal family of Mg(P
4, d), and by LM = f∗MO(1) the

tautological line bundle. We form

PM :=L −⊗5
M ⊗ ωCM/M,

and call it the auxiliary invertible sheaf on Mg(P
4, d).

We define the moduli of genus g degree d stable maps with p-fields to be the

direct image cone

P :=Mg(P
4, d)p := C (πM∗PM). (3.1)

(We abbreviate it to P, as indicated above.)

Like before, we can embed P into the moduli of sections for a choice of Z→Dg.

Let [x1, . . . , x5] be the homogeneous coordinates of P4 specified in the Introduction. Let

( fP , πP) : CP→ P4 × P

be the universal map of P. We let LP = f∗PO(1) be the tautological invertible sheaf;

PP =L −⊗5
P ⊗ ωCP/P be the auxiliary invertible sheaf; and

p ∈ Γ (CP ,PP) and ui = f∗Pxi ∈ Γ (CP ,LP) (3.2)
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GW Invariants of Stable Maps with Fields 15

be the universal p-field and the tautological coordinate functions, respectively. Note that

(CP ,LP) induces a morphism P→Dg so that (CP ,LP) is isomorphic to the pull-back of

(CDg,LDg).

Using the line bundle LDg on CDg and its auxiliary invertible sheaf

PDg =L −⊗5
Dg
⊗ ωCDg/Dg,

we form the bundle

Z :=Vb(L ⊕5
Dg
⊕PDg)

over CDg . Then the section ((ui)
5
i=1, p) defines a section of

Z ×CDg
CP −→ CP .

This section induces a CDg-morphism CP→Z ×CDg
CP . Composed with the projection

Z ×Dg P→Z, we obtain the evaluation morphism over CDg :

ẽ : CP −→Z. (3.3)

Proposition 3.1. The pair P→Dg admits a perfect relative obstruction theory

φP/Dg : TP/Dg −→EP/Dg := R•πP∗(L ⊕5
P ⊕PP). �

Proof. The proof follows from Proposition 2.5 applied to the (evaluation) morphism ẽ,

using that Ω∨Z/CDg
=L ⊕5

Dg
⊕PDg . �

3.2 Constructing a cosection

We define a multilinear bundle morphism

h1 : Vb(L ⊕5
Dg
⊕PDg)−→Vb(ωCDg/Dg), h1(z, p)= p ·

5∑
i=1

z5
i , (3.4)

where (z, p)= ((zi)
5
i=1, p) ∈Vb(L ⊕5

Dg
⊕PDg). This map is based on the dualpairing L ⊗5

Dg
⊗

PDg→ωCDg/Dg .
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16 H.-L. Chang and J. Li

The morphism h1 induces a homomorphism of tangent complexes

dh1 : TVb(L ⊕5
Dg
⊕PDg )/CDg

−→ h∗1TVb(ωCDg /Dg )/CDg
= h∗1Ω

∨
Vb(ωCDg /Dg )/CDg

.

In explicit form, for any closed ξ ∈ CP and (z, p) ∈Vb(L ⊕5
Dg
⊕PDg)|ξ , dh1|(z,p) sends

((z̊i), p̊) ∈Ω∨
Vb(L ⊕5

Dg
⊕PDg )/CDg

∣∣
(z,p)
= (L ⊕5

Dg
⊕PDg)⊗OCDg

k(ξ)

to

dh1|(z,p)(z̊, p̊)=
(

5∑
i=1

z5
i

)
· p̊+ p ·

5∑
i=1

5z4
i · z̊i. (3.5)

On the other hand, by pulling back dh1 to CP via the evaluation morphism ẽ

(cf. (3.3)), one has (homomorphism and canonical isomorphisms)

ẽ∗(dh1) : ẽ∗Ω∨
Vb(L ⊕5

Dg
⊕PDg )/CDg

−→ ẽ∗h∗1Ω
∨
Vb(ωCDg /Dg )/CDg

.

Because the right-hand side is canonically isomorphic to ωCP/P , applying R•πP∗, we

obtain

σ •1 : EP/Dg −→ R•πP∗(e∗h∗1Ω
∨
Vb(ωCDg /Dg )/CDg

)∼= R•πP∗(ωCP/P). (3.6)

We define

σ1 := H1(σ •1 ) : ObP/Dg = H1(EP/Dg)−→ R1πP∗(ωCP/P)∼=OP . (3.7)

By Proposition 3.1, σ1 is in the form (of homomorphism of sheaves)

σ1 : ObP/Dg = R1πP∗L ⊕5
P ⊕ R1πP∗PP −→OP .

3.3 Degeneracy locus of the cosection

We give a coordinate expression of the cosection σ1. We define by ui = f∗Pxi and let p ∈ Γ

(CP ,PP) be the tautological section of P. Take any étale chart T→P, and let CT = CP ×P
T . For

p̊∈ H1(CT ,PP) and ů= (ůi)
5
i=1 ∈ H1(CT ,L ⊕5

P ),
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GW Invariants of Stable Maps with Fields 17

we define

ζ( p̊, ů) := 5p ·
5∑

i=1

u4
i · ůi +

(
5∑

i=1

u5
i

)
· p̊, (3.8)

where p and ui are the pull-back of p and ui to CT , respectively. The expression (3.8) is an

element in R1πP∗(ωCP/P)⊗OP OT
∼=OT .

One checks that this defines a homomorphism

ζ : R1πP∗L ⊕5
P ⊕ R1πP∗PP −→OP .

Lemma 3.2. The two homomorphisms ζ and σ1 coincide. �

Proof. This follows from the explicit expression of dh1 in affine coordinates

generalizing the expression (3.5). It is straightforward. �

Definition 3.3. We define the degeneracy locus of σ1 to be

D(σ1)= {ξ ∈P|σ1|ξ : ObP/Dg ⊗OP k(ξ)−→ k(ξ) vanishes}. �

Following our convention, we denote by Q⊂ P4 the quintic three-fold defined by∑
x5

i = 0. We let Mg(Q, d) be the moduli of genus g degree d stable maps to Q. Using

Mg(Q, d)⊂Mg(P
4, d), we obtain an embedding

Mg(Q, d)⊂Mg(P
4, d)⊂P,

where the second inclusion is by assigning zero p-fields.

Proposition 3.4. The degeneracy locus of σ1 is Mg(Q, d)⊂P; it is proper. �

Proof. Let ξ = (C , L , φ, p) ∈P, where φ = (φi)
5
i=1 ∈ H0(C , L⊕5). The restriction of σ1 = ζ to

ξ takes the form σ1|ξ ( p̊, φ̊)= 5p
∑

φ4
i φ̊i +

∑
φ5

i p̊.

Suppose
∑

φ5
i �= 0; then, by Serre duality, we can find p̊ ∈ H1(C , L−⊗5 ⊗ ωC ) so that

p̊ ·∑φ5
i �= 0 ∈ H1(C , ωC ). Letting φ̊i = 0, we obtain σ1|ξ �= 0.

Suppose
∑

φ5
i = 0 and p �= 0. Then, since φi have no common vanishing locus, for

some k, p · φ4
k �= 0. By Serre duality, we can find a φ̊k so that p · φ4

k · φ̊k �= 0 ∈ H1(C , ωC ). By

choosing other φ̊i = 0, we obtain the surjectivity of σ1|ξ . This proves that the degeneracy
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18 H.-L. Chang and J. Li

locus (i.e., the nonsurjective locus) of σ1 is the collection of (C , L , φ, p) such that
∑

φ5
i = 0

and p= 0. This set is Mg(Q, d)⊂P.

We comment that though this argument is set-theoretic, it is easy to see that the

identification given is as closed substacks of P. �

3.4 The cosection factorizes

Let q : P→Dg be the tautological morphism. We form the distinguished triangle

q∗LDg −→LP −→LP/Dg

δ−→q∗LDg [1]. (3.9)

Composing φP/Dg : TP/Dg→EP/Dg with the dual of δ in the above distinguished triangle,

we obtain the morphism

φP/Dg ◦ δ∨ : q∗TDg −→TP/Dg [1]−→EP/Dg [1].

Defining η= H0(φP/Dg ◦ δ∨), we obtain the composite

η : q∗TDg −→ H1(TP/Dg)−→ H1(EP/Dg)=ObP/Dg . (3.10)

Following the construction in [15, (4.3)], the cokernel of (3.10) is the absolute obstruction

sheaf of P, which we denote by ObP .

In this subsection, we show the following proposition.

Proposition 3.5. The cosection σ1 : ObP/Dg→OP lifts to a σ̄1 : ObP→OP . �

We continue to use the notation developed in the proof of Proposition 3.1.

Lemma 3.6. The following composition is trivial:

0= H1(σ •1 ◦ φP/Dg) : H1(TP/Dg)−→ H1(EP/Dg)−→ R1πP∗ωCP/P . �

Proof. Using the universal curve πDg : CDg→Dg of Dg, we introduce the direct image

cone Cω = C (π∗ωCDg/Dg); we denote by Vb(ωCDg/Dg) the underlying bundle of ωCDg/Dg . Let

CCω
= CDg ×Dg Cω be the universal curve over Cω, and πCω

: CCω
→ Cω be the projection.
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GW Invariants of Stable Maps with Fields 19

Continue to denote by ( fP , CP ,LP) the universal family of P, and using

ui = f∗Pxi ∈ Γ (CP ,LP) and p ∈ Γ (CP ,PP), the universal coordinate functions and p-field,

respectively, (cf. (3.2)), we form

ε := p · (u5
1 + · · · + u5

5) ∈ Γ (CP , ωCP/P).

It defines a morphism Φε : P→ Cω so that if we denote by Φ̃ε : CP→ CCω
the tautological

lift of Φε using that both CP and CCω
are pull-backs of CDg , and denote by e and e′ the eval-

uation morphisms as shown, we have a commutative diagram of morphisms of stacks

over CDg :

CP e−−−−→ Vb(L ⊕5
Dg
⊕PDg)⏐⏐�Φ̃ε

⏐⏐�h1

CCω

e′−−−−→ Vb(ωCDg/Dg)

(3.11)

Here h1 is defined in (3.4). This shows that the square below is commutative:

π∗PTP/Dg TCP/CDg
−−−−→ e∗Ω∨

Vb(L ⊕5
Dg
⊕PDg )/CDg⏐⏐� ⏐⏐� ⏐⏐�dh1

π∗PΦ̃∗ε TCω/Dg Φ̃∗ε TCCω /CDg
−−−−→ Φ̃∗ε e′∗Ω∨Vb(ωCDg

/Dg)/CDg

(3.12)

Applying R1πP∗ to the lower horizontal arrow, we obtain the obstruction assign-

ment homomorphism

(0=) H1(Φ∗ε φCω/Dg) : H1(Φ∗ε TCω/Dg)−→Φ∗ε R1πCω∗ωCCω /Cω
, (3.13)

which is trivial since Cω is a vector bundle over Dg and CCω
→ CDg is smooth.

Therefore, using the Cartesian squares

CP Φ̃ε−−−−→ CCω⏐⏐�πP

⏐⏐�πCω

P Φε−−−−→ Cω

(3.14)

and the commutativity of (3.12), applying R1πP∗, we see that the composite

H1(TP/Dg)−→ R1πP∗e∗Ω∨Vb(L ⊕5
Dg
⊕PDg )/CDg

−→ R1πP∗e∗h∗1Ω
∨
Vb(ωCDg /Dg )/CDg
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20 H.-L. Chang and J. Li

coincides with the composite

H1(TP/Dg)−→ H1(Φ∗ε TCω/Dg)
0−→Φ∗ε R1πCω∗Ω

∨
Vb(ωCDg /Dg )/CDg

.

Since the composite in the second line is trivial (cf. (3.13)), the composite in the first line

is trivial. Using

e∗h∗1Ω
∨
Vb(ωCDg /Dg )/CDg

∼=ωCP/P ,

this is exactly the vanishing desired by the Lemma. �

Proof of Proposition 3.5. The composition of σ with (3.10) is the H1 of the composition

TDg [−1]−→TP/Dg

φP/Dg−→ EP/Dg

σ •1−→ R•πP∗ωCP/P ,

where the first arrow is the δ∨ in (3.9). Lemma 3.6 implies the H1 of the above composi-

tion is trivial. �

Here we comment the background of this construction in Super-String Theories.

Let KP4 be the total space of the canonical line bundle P4. The quintic polynomial
∑

x5
i

defines a regular map wP4 ∈ Γ (OK
P4 ). Its critical locus is the quintic three-fold Q⊂ P4. In

physics literature, the pair (KP4 , wP4) is called a Landau–Ginzburg model (nonlinear). In

[13], Guffin and Sharpe constructed a path integral for genus 0 A-twisted theory of the

Landau–Ginzburg space (KP4 , wP4) [13]. In this paper, we have constructed a mathemat-

ical theory generalizing it to all genus.

3.5 The virtual dimension

We calculate the virtual dimension of P. Let ξ = ( f, C , L , p) ∈P be any closed point. The

virtual dimension of P/Dg at ξ is

dim H0(EP/Dg ⊗OP k(ξ))− dim H1(EP/Dg ⊗OP k(ξ)).

By the expression of EP/Dg , the above term equals to

h0(L⊕5)+ h0(L−⊗5 ⊗ ωC )− h1(L⊕5)− h1(L−⊗5 ⊗ ωC )= 4− 4g.
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GW Invariants of Stable Maps with Fields 21

Because

dim Dg= dim Dg/Mg + dim Mg= (h0(OC )− 1)+ 3g− 3= 4g− 4,

the virtual dimension of P at ξ is zero.

3.6 Localized virtual cycle

We recall the notion of kernel-stack of a cosection. Let E = [E1→ E1] be a two-term

complex of locally free sheaves on a Deligne–Mumford stack X; let f : H1(E)→OX be

a cosection of H1(E). We denote by D( f) the closed subset of x∈ X such that f |x= 0 :

H1(E)|x→Cx. Let U = X − D( f).

Definition 3.7. Let the notation be as stated. We define the kernel stack h1/h0(E) f be

h1/h0(E) f := (h1/h0(E)×X D( f)) ∪ ker{h1/h0(E)|U → H1(E)|U →CU }. �

Here h1/h0(E)|U → H1(E)|U is the tautological projection and H1(E)|U →CU is

f |U . Since f is surjective over U , the composite in the bracket is surjective, thus the

kernel is a bundle-stack. Clearly, the union is closed in h1/h0(E); we endow it the reduced

structure, and call it the kernel-stack of f .

We apply the theory developed in [15]. As σ1 is a cosection of H1(EP/Dg), we can

apply the preceding construction to σ1 to form the kernel subcone-stack

h1/h0(EP/Dg)σ1 ⊂ h1/h0(EP/Dg). (3.15)

Proposition 3.8. The virtual normal cone cycle [CP/Dg ] ∈ Z∗h1/h0(EP/Dg) lies inside

Z∗h1/h0(EP/Dg)σ1 . �

Proof. The smoothness of the morphism from CP/Dg to CP (the intrinsic normal cone

of P) and Propostion 3.5 reduces the claim to the absolute case, which is proved in [15,

Proposition 4.3]. �

In [15], Kiem and the second-named author constructed a localized Gysin map

0!
σ1,loc : A∗h1/h0(EP/Dg)σ1 −→ A∗−nD(σ1),

where −n is the rank of EP/Dg .
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22 H.-L. Chang and J. Li

Definition-Proposition 3.9. We define the localized virtual cycle of (P, σ1) to be

[P]vir
σ1
= [Mg(P

4, d)p]vir
σ1

:= 0!
σ1,loc([CP/Dg ]) ∈ A0Mg(Q, d).

We define the virtual enumeration Ng(d)
p
P4 := deg [Mg(P

4, d)p]vir
σ1

. �

The number Ng(d)
p
P4 is the virtual counting of the GSW model (P, σ1). We call it

the Gromov–Witten invariants of the moduli of stable maps to P4 with p-fields, or of the

Landau–Ginzburg space (KP4, wP4).

4 Degeneration of Moduli of Stable Maps with p-Fields

In the second part, we use degeneration to prove that Ng(d)
p
P4 coincides up to a sign with

the Gromov–Witten invariants Ng(d)Q of the quintic three-fold Q.

The degeneration we use is to degenerate the moduli P to the moduli of stable

maps to the normal bundle to Q⊂ P4 coupled with p-field. After constructing a cosection

of its obstruction sheaf, the degeneration admits a localized virtual cycle that provides

the proof of the equivalence of two classes of invariants.

4.1 The degeneration

We let V be the total space of the deformation of P4 to the normal bundle of Q⊂ P4; it is

the blow-up of P4 × A1 along Q× 0, after taking out the proper transform of P4 × 0. Let

qA1 : V −→A1 and qP4 : V −→ P4 (4.1)

be the two projections. Then the fiber of q1
A

over c �= 0 is P4, and the central fiber (over

0 ∈A1) is the normal bundle N to Q⊂ P4. We define the degree of a morphism u: C → V

to be deg u= deg(qP4 ◦ u)∗O(1).

We form the moduli of genus g and degree d stable maps Mg(V, d). For the

moment, we denote by

( f̃, π̃) : C̃ −→ V ×Mg(V, d)

the universal family of Mg(V, d). Since qA1 is proper away from the central fiber

N = V ×A1 0, and since A1 is affine, the composite qA1 ◦ f̃ : C̃→A1 factors through a map

Mg(V, d)→A1. Its fibers over c �= 0 ∈A1 are Mg(P
4, d); its central fiber is Mg(N, d).
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GW Invariants of Stable Maps with Fields 23

We now couple the stable maps with p-field. Let L̃ = f̃∗O(1) and P̃ = L̃ −⊗5 ⊗
ωC̃/Mg(V,d) be the tautological and auxiliary invertible sheaves, respectively. Like before,

we define the moduli of stable maps coupled with p-fields the be

V :=Mg(V, d)p := C (π̃∗P̃),

the direct image cone. It is over A1, and its fibers over c �= 0 ∈A1 and 0 ∈A1 are,

respectively,

V ×A1 c∼=P, V ×A1 0 :=Mg(N, d)p.

Here Mg(N, d)p is the moduli of stable maps to N coupled with p-fields.

Following our convention, we denote by

( fV , πV) : CV −→ V × V (4.2)

the universal map of V.

4.2 The cone over V

We construct the tautological cone C (V) over V that will be used to construct the eval-

uation morphism ev of CV . The evaluation map will be used to construct the obstruction

theory of V.

We let B =Vb(O(5)) be the underlying line bundle of O(5) over P4; let

qP4 : B × A1→ B→ P4 and qA1 : B × A1 −→A1

be the (composite of) projection(s). We let t∈ Γ (OA1) be the standard coordinate function

of A1. We introduce tautological sections over B × A1:

x̃i = q∗
P4 xi ∈ Γ (q∗

P4O(1)), t̃= q∗
A1t∈ Γ (OB×A1), and ỹ∈ Γ (q∗

P4O(5)), (4.3)

where ỹ is the section so that the morphism B × A1→Vb(O(5)) induced by ỹ is the

projection B × A1→ B =Vb(O(5)). (i.e., ỹ is the pull-back of the identity map B→ B.)

Lemma 4.1. We have a closed immersion

V ∼= (s̃= 0} ⊂ B × A1, s̃= x̃5
1 + · · · + x̃5

5 − t̃ · ỹ. �
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24 H.-L. Chang and J. Li

Proof. This is proved in [11, Remark 5.1.1]. We only add that the isomorphism is given

by extending

Φ : V − V ×A1 0−→ B × A1

to V , which is defined via Φ∗(x̃i)= q∗
P4(xi), Φ∗(t̃)= q∗

A1t, and Φ∗ ỹ= t−1 · (x5
1 + · · · + x5

5),

where qP4 : V→ P4 is the projection, etc. (cf. (4.1)). �

In the following, we view V ⊂ B × A1 using this isomorphism. We next construct

the desired cone C (V). We let W5 =CA1 (respectively W1 =C⊕5
A1 ) be the trivial line bundle

(respectively rank 5 trivial vector bundle) over A1. We consider the rank 6 bundle

prA1 : W1 ×A1 W5 −→A1

with the C∗-action: C∗ acts on the base A1 trivially and acts on fibers of W1 (respec-

tively W5) of weight 1 (respectively weight 5); namely, for z∈W1 and y∈W5, zσ = σz and

yσ = σ 5y.

We let W∗1 =W1 − 0W1 , where 0W1 is the zero section of W1. We introduce

C (V)= (ε = 0)⊂W∗1 ×A1 W5, ε = z5
1 + · · · + z5

5 − t · y.

It is smooth and is C∗-invariant.

Sine the C∗ acts trivially on the base A1, and acts on the fibers of W∗1 ×A1 W5→A1

with weights (1, 1, 1, 1, 1, 5), (W∗1 ×A1 W5)/C∗ is isomorphic to B =Vb(O(5)), and under

this isomorphism we have the following commuting (horizontal) quotient morphisms:

W∗1 ×A1 W5
Ψ−−−−→ B × A1�⏐⏐∪ �⏐⏐∪

C (V)
/C
∗

−−−−→ V

(4.4)

which is also a fiber diagram.

For a later purpose, we describe the tangent bundles TC (V)/A1 and TC (V). Using the

defining equation of C (V), they fit into the exact sequences

0−→ TC (V)/A1 −→O⊕5
C (V) ⊕ OC (V)

d′ε−→OC (V) −→ 0, (d′t= 0), (4.5)
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where d′ is the relative differential and d′ε|((zi),y,t) sends ((z̊i), ẙ) to
∑

5z4
i z̊i − tẙ;

0−→ TC (V) −→O⊕5
C (V) ⊕ OC (V) ⊕ OC (V)

dε−→OC (V) −→ 0, (4.6)

where dε|((zi),y,t) sends ((z̊i), ẙ, t̊) to
∑

5z4
i z̊i − tẙ− yt̊.

Together they fit into the exact sequence

0−→ TC (V)/A1 −→ TC (V) −→OC (V) −→ 0. (4.7)

4.3 The evaluation maps

We now construct the evaluation morphism of CV . Since V is a family over A1, it is natural

to construct the obstruction theory of V relative to Dg × A1.

To this purpose, we introduce D̃g=Dg × A1, viewed as a stack over A1; denote by

CD̃g
:= CDg × A1 −→Dg × A1 = D̃g

the universal curve, and denote by LD̃g
the pull-back of LDg via CD̃g

→ CDg .

We form Vb(L ⊕5
D̃g

)∗ =Vb(L ⊕5
D̃g

)− 0D̃g
, and consider the bundle over CDg :

Vb(L ⊕5
D̃g

)∗ ×CDg
Vb(L ⊗5

D̃g
)−→ CD̃g

. (4.8)

Note that, for each ξ ∈ CDg , the fiber of (4.8) over ξ × A1 ⊂ D̃g is isomorphic to

(L⊕5 − 0)× L⊗5 × A1 ∼=W∗1 ×A1 W5, L :=L ⊕5
Dg
⊗CDg

k(ξ),

where the isomorphism is uniquely determined by an isomorphism L ∼=C, and two dif-

ferent isomorphisms are equivalent under a scaling of (C5 − 0)× C by a c∈C∗ with

weights (1, . . . , 1, 5) on the factors of (C5 − 0)× C.

We let C∗ act on the bundle (4.8) fiberwise with these weights. We obtain the

quotient A1-morphisms (the A1 is the base of W→A1 and of D̃g=Dg × A1→A1)

Vb(L ⊕5
D̃g

)∗ ×CD̃g
Vb(L ⊗5

D̃g
)−→ (Vb(L ⊕5

D̃g
)∗ ×CD̃g

Vb(L ⊗5
D̃g

))/C∗ −→ (W∗1 ×A1 W5)/C∗.

We define

Z ′ = (Vb(L ⊕5
D̃g

)∗ ×CD̃g
Vb(L ⊗5

D̃g
))×(W∗1×A1 W5)/C∗ V; (4.9)

 at H
ong K

ong U
niversity of Science and T

echnology on O
ctober 31, 2011

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


26 H.-L. Chang and J. Li

it is the preimage of V ⊂ (W∗1 ×A1 W5)/C∗ of the morphism above (4.9). We define

Z =Z ′ ×CD̃g
Vb(PD̃g

). (4.10)

We now construct the evaluation morphism

ev : CV −→Z. (4.11)

We let LV = f∗VO(1), where ( fV , CV) is the universal family of V (cf. (4.2)), let PV =L −⊗5
V ⊗

ωCV/V be the auxiliary invertible sheaf, and let

p ∈ Γ (CV ,PV), ui = f∗V x̃i ∈ Γ (CV ,LV) and y= f∗V ỹ∈ Γ (CV ,L ⊗5
V ) (4.12)

(cf. (4.3)) be the universal p-field and the tautological coordinate functions, respectively.

Note that (CV ,LV) induces an A1-morphism V→ D̃g so that (CV ,LV) is isomorphic to the

pull-back of (CD̃g
,LD̃g

).

Then the definition of V ⊂ B × A1 implies that the sections in (4.12) satisfy

u5
1 + u5

2 + u5
3 + u5

4 + u5
5 − t · y= 0,

where t is the coordinate function of A1 mentioned before. Therefore the section

((ui)
5
i=1, y, p) defines a section of

Z ×CD̃g
CV −→ CV .

This section induces a CV-morphism CV→Z ×CD̃g
CV . Composed with the projection

Z ×D̃g
V→Z, we obtain the evaluation morphism over CD̃g

in (4.11).

4.4 The obstruction theory of V/D̃g

We will build the obstruction theories to carry out the degeneration for virtual cycles.

We first construct the relative obstruction theory of V→ D̃g. The restriction of this

obstruction theory to fibers over c∈A1 will give the relative obstruction theories of

Vc= V ×A1 c→Dg.

We begin with a description of the tangent bundle TZ ′/D̃g
. Let � : Z ′ → D̃g be the

tautological projection. Using the explicit description of TC (V)/A1 given in (4.5), and the
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construction of Z ′ in (4.9), we see that Ω∨Z ′/D̃g
fits into the exact sequence

0−→Ω∨Z ′/D̃g
−→ �∗L ⊕5

D̃g
⊕ �∗L ⊗5

D̃g

dE−→ �∗L ⊗5
D̃g
−→ 0,

where dE restricted to ((zi), y, t) ∈Z ′ sends ((z̊i), ẙ) to
∑

5z4
i z̊i − tẙ. (cf. (4.5).) Using that

LV = f∗VO(1), we obtain

e∗vΩ∨Z ′/CD̃g

∼= f∗VH and e∗vΩ∨Z/CD̃g

∼= f∗VH ⊕PV , (4.13)

where H on B × A1 is defined by the exact sequence

0−→H −→ q∗
P4O(1)⊕5 ⊕ q∗

P4O(5)
d′ s̃−→q∗

P4O(5)−→ 0,

where d′s̃ is the differential of s̃ in Lemma 4.1, after setting d′t= 0. (Recall that V ⊂
B × A1 by Lemma 4.1.) Namely, for ξ ∈ B × A1 with (x̊i) ∈ q∗

P4O(1)⊕5|ξ and ẙ∈ q∗
P4O(5)|ξ , we

set

d′s̃|ξ ((x̊i), ẙ)= 5u1(ξ)5x̊1 + · · · + 5u5(ξ)5x̊5 − t̃(ξ) · ẙ∈ q∗
P4O(5)|ξ .

We have a similar description

e∗vΩ∨Z ′/CDg

∼= f∗VK and e∗vΩ∨Z/CDg

∼= f∗VK ⊕PV , (4.14)

where K is defined by the exact sequence

0−→K
i−→q∗

P4O(1)⊕5 ⊕ q∗
P4O(5)⊕ q∗

P4O
ds̃−→q∗

P4O(5)−→ 0, (4.15)

where ds̃ is the differential of s̃ in Lemma (4.1).

Proposition 4.2. The pair V→ D̃g admits a perfect relative obstruction theory

φV/D̃g
: TV/D̃g

−→EV/D̃g
:= R•πV∗( f∗VH ⊕PV).

Its specialization at c �= 0 ∈A1 (respectively 0 ∈A1) gives the perfect relative obstruction

theory φP/Dg (respectively φMg(N,d)p/Dg
). �
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28 H.-L. Chang and J. Li

Proof. We fit ev : CV→Z (cf. (4.11)) into the commutative diagrams

V πV←−−−− CV ev−−−−→ Z⏐⏐� ⏐⏐� ⏐⏐�pr

D̃g

πD̃g←−−−− CD̃g
CD̃g

(4.16)

where the left one is Cartesian. Using

π∗VTV/D̃g
∼=TCV/CD̃g

−→ e∗VTZ/CD̃g
= e∗VTZ/CD̃g

(4.17)

and applying the projection formula, we obtain

φV/D̃g
: TV/D̃g

−→ R•πV∗e∗VTZ/CD̃g
. (4.18)

Let S be the moduli of section of Z→ D̃g constructed in Section 2.2. Because

the evaluation morphism ev induces an open immersion V→S, using Proposition 2.5

implies that φV/D̃g
is a perfect relative obstruction theory.

Finally, the fiber product of every stack in (4.16) with c �= 0 ∈A1 gives the dia-

gram used to construct φP/Dg . Using ιc : V ×A1 c→ V, the functoriality of the construction

ensures that φP/Dg is the composition of TP/Dg→ ι∗cTV/D̃g
with

ι∗c(φV/D̃g
) : ι∗cTV/D̃g

−→ ι∗cEV/D̃g
∼=EP/Dg .

In case c= 0, we define EMg(N,d)p/Dg
:= ι∗0EV/D̃g

and let φMg(N,d)p/Dg
be the composition

of TMg(N,d)p/Dg
→ ι∗0TV/D̃g

with ι∗0(φV/D̃g
). This defines a perfect obstruction theory for

Mg(N, d)p/Dg by [1, Proposition 7.2]. This proves the Proposition. �

4.5 The obstruction theory of V/Dg

To compare the virtual cycle of V0 with Vc�=0, we need the relative obstruction theory of

V→Dg.

We use the φV/D̃g
just constructed. We let

K −→ q∗
P4OP4 ∼=OB×A1 (4.19)
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be the composition of i in (4.15) with the projection to the last factor. We form

μ : R•πV∗ f∗VK −→ R•πV∗ f∗VOV −→ R1πV∗OCV [−1],

where the first arrow is R•πV∗ of (4.19), and the second arrow is the tautological homo-

morphism from a two-term complex to its H1.

We let C (μ∨) be the mapping cone of μ∨, and let C (μ∨)∨ be its dual. It fits into

the distinguished triangle

R1πV∗OCV [−2]−→ C (μ∨)∨ −→ R•πV∗ f∗VK
+1−→ R1πV∗OCV [−1]. (4.20)

We define

E′V/Dg
:= R•πV∗( f∗VK ⊕PV) and EV/Dg := C (μ∨)∨ ⊕ R•πV∗PV .

Then one has

R1πV∗OCV [−2] −−−−→ EV/Dg

η−−−−→ E′V/Dg

μ−−−−→
+1

R1πV∗OCV [−1]. (4.21)

By construction EV/Dg is a derived object representable by a two-term complex of locally

free sheaves; its H1 is

H1(EV/Dg)= ker{H1(μ) : R1πV∗( f∗VK ⊕PV)−→ R1πV∗OCV }.

Since (4.19) is surjective, H1(μ) is also surjective.

We now derive the perfect relative obstruction theory of V→Dg. Substituting D̃g

and C̃Dg in Proposition 4.2 by Dg and CDg , respectively, and following the recipe in the

proof of Proposition 4.2, we obtain a morphism

φ′V/Dg
: TV/Dg −→ R•πV∗e∗vTZ/CDg

∼= R•πV∗( f∗VK ⊕PV) :=E′V/Dg
. (4.22)

Since moduli of sections of Z→ D̃g is isomorphic to the moduli of sections of Z→Dg,

where Z→Dg is via the composite Z→ D̃g→Dg, both are V, thus Proposition 2.5

implies that φ′V/Dg
is a perfect relative obstruction theory.
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30 H.-L. Chang and J. Li

According to Proposition 4.2, the obstruction sheaf of φ′V/Dg
has an extra factor

R1πV∗OCV compared with that of φP/Dg and of φMg(N,d)p/Dg
. Our solution is to lift it to a

new obstruction theory (cf. (4.21))

φV/Dg : TV/Dg −→EV/Dg, (4.23)

whose obstruction sheaf is parallel to that of φP/Dg and of φMg(N,d)p/Dg
.

We denote by r̃ : CV→ CD̃g
the tautological morphism covering the tautological

projection r shown in the Cartesian square

CV r̃−−−−→ CD̃g⏐⏐�πV

⏐⏐�
V r−−−−→ D̃g

Applying T·/CDg
to the evaluation CDg-morphism ev : CV→Z (in (4.16)), the identity

r̃= pr ◦ ev : CV ev−→Z pr−→ CD̃g

provides us a commutative square

e∗vΩ∨Z/CDg
−−−−→ (pr ◦ ev)∗Ω∨CD̃g/CDg

∼=OCV�⏐⏐ �⏐⏐
TCV/CDg

∼= π∗VTV/Dg −−−−→ r̃∗Ω∨CD̃g/CDg

∼= π∗Vr∗Ω∨
D̃g/Dg

applying projection formula to both vertical arrows, we further obtain the commutative

diagrams

E′V/Dg
−−−−→ R•πV∗OCV −−−−→ R1πV∗OCV [−1]�⏐⏐φ′V/Dg

�⏐⏐ �⏐⏐
TV/Dg −−−−→ r∗Ω∨

D̃g/Dg
=OV −−−−→ 0

(4.24)

This shows that μ ◦ φ′V/Dg
= 0 (cf. μ is in (4.21)). Applying Hom(TV/Dg, ·) to (4.21), we con-

clude that the morphism φ′V/Dg
(in (4.21)) lifts (nonuniquely) as stated in (4.23) such that

η ◦ φV/Dg = φ′V/Dg
. (4.25)
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Proposition 4.3. The homomorphism φV/Dg is a perfect relative obstruction theory of

V→Dg. �

Proof. We only need to check the criterion of perfect obstruction theory stated in the

proof of Proposition 2.5; namely, we need to show that to any square zero extension

T ⊂ T ′ of affine schemes by J, and a commutative square

T
m−−−−→ V⏐⏐� ⏐⏐�

T ′
n−−−−→ Dg

the arrow φV/Dg assigns an element 
(m) ∈ H1(T,m∗EV/Dg ⊗ J) (cf. (2.6)) such that there

is a lifting m′ : T ′ → V of the square above if and only if 
(m)= 0.

Recall that φ′V/Dg
is also a perfect relative obstruction theory. We let 
(m)′ ∈

H1(T,m∗E′V/Dg
⊗ J) be the associated obstruction class. Since φV/Dg is a lift of φ′V/Dg

,


(m)′ is the image of 
(m) under the homomorphism

H1(η) : H1(T,m∗EV/Dg ⊗ J)−→ H1(T,m∗(R•πV∗E′V/Dg
⊗ J)

induced by the η in (4.21). Because of the distinguished triangle (4.21), H1(η) is injective.

This proves that 
(m)= 0 if and only if 
(m)′ = 0. Since the later is the obstruction class,

the former is too.

The other part of the criterion follows from the same reason. This proves the

Proposition. �

4.6 Comparison of obstruction theories

Let c∈A1 be any closed point. We denote the restrictions to fibers over c by

ιc : Vc= V ×A1 c
⊂−→V and evc = ev|CVc

: CVc = CV ×V Vc−→Zc=Z ×A1 c.

Recall by Proposition 4.2 that composing the tautological TVc/Dg→ ι∗cTV/D̃g
with ι∗cφV/D̃g

gives the perfect relative obstruction theory

φVc/Dg : TVc/Dg −→EVc/Dg := ι∗cEV/D̃g
.
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32 H.-L. Chang and J. Li

(Note that for c �= 0, Vc=Mg(P
4, d)p, and this obstruction theory coincides with the one

constructed in Section 3.1.)

We now compare the obstruction theory φV/Dg with φVc/Dg . Using the tautological

exact sequence

0−→ TZc/CDg
−→ TZ/CDg

|Zc −→OZc −→ 0, (4.26)

we obtain a morphism of distinguished triangles (the top line is an exact sequence of

sheaves):

e∗vc
Ω∨Zc/CDg

−−−−→ e∗vc
(Ω∨Z/CDg

|Zc) −−−−→ e∗vc
OZc
∼=OCVc

+1−−−−→ 0�⏐⏐ �⏐⏐ �⏐⏐
TCVc/CDg

−−−−→ TCV/CDg
|CVc

−−−−→ TCc/CV [1]
+1−−−−→

(4.27)

By projection formula, we have a morphism of distinguished triangles

R•πVc∗OVc[−1] −−−−→ EVc/Dg

β ′−−−−→ E′V/Dg
|Vc

+1−−−−→�⏐⏐ �⏐⏐φVc/Dg

�⏐⏐φ′V/Dg
|Vc

TVc/V −−−−→ TVc/Dg

γ0−−−−→ TV/Dg |Vc

+1−−−−→

(4.28)

(Here and later, we use (·)|V := ι∗c(·) to denote the derived restriction.) Applying the map-

ping cone construction (4.21) to the top row of (4.28), and using the octahedral axiom,

we obtain a compatible diagram of mapping cones

R1πVc∗OCVc
[−1]

=−−−−→ R1πVc∗OCVc
[−1]�⏐⏐μ|Vc

�⏐⏐
R•πVc∗OCVc

[−1] −−−−→ EVc/Dg

β ′−−−−→ E′V/Dg
|Vc −−−−→ R•πVc∗OVc�⏐⏐ �⏐⏐ �⏐⏐η|Vc

�⏐⏐
πVc∗OCVc

[−1] −−−−→ EVc/Dg

β0−−−−→ EV/Dg |Vc

β1−−−−→ πVc∗OVc

(4.29)
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Restricting the perfect obstruction theory φV/Dg (cf. Proposition 4.3) to Vc, we obtain the

following (not necessarily commuting) homomorphisms:

EVc/Dg

β0−−−−→ EV/Dg |Vc�⏐⏐φVc/Dg

�⏐⏐φV/Dg |Vc

TVc/Dg

γ0−−−−→ TV/Dg |Vc

(4.30)

We consider

δ = φV/Dg |Vc ◦ γ0 − β0 ◦ φVc/Dg : TVc/Dg −→EV/Dg |Vc.

Applying the commutative diagrams (4.25), (4.29), and (4.28), we conclude that

η|Vc ◦ δ= η|Vc ◦ φV/Dg |Vc ◦ γ0 − η|Vc ◦ β0 ◦ φVc/Dg = φ′V/Dg
|Vc ◦ γ0 − β ′ ◦ φVc/Dg = 0.

Therefore, δ factors through R1πVc∗OVc[−2]→EV/Dg |Vc.

Because of this, after applying the truncation functor τ≤1 to (4.30), we obtain a

commutative square

EVc/Dg

β0−−−−→ EV/Dg |Vc�⏐⏐φ
≤1
Vc/Dg

�⏐⏐φ
≤1
V/Dg

|Vc

T
≤1
Vc/Dg

γ0−−−−→ TV/Dg |≤1
Vc

(4.31)

On the other hand, applying the truncation functor τ≤1 to the left square in (4.28), we

obtain another commutative square

πVc∗OCVc
[−1] −−−−→ EVc/Dg�⏐⏐ �⏐⏐φ

≤1
Vc/Dg

T
≤1
Vc/V −−−−→ T

≤1
Vc/Dg

(4.32)

Combined, we have a commutative diagram

OVc[−1]∼= πVc∗OCVc
[−1] −−−−→ EVc/Dg

β0−−−−→ EV/Dg |Vc

+1−−−−→�⏐⏐ �⏐⏐φ
≤1
Vc/Dg

�⏐⏐φ
≤1
V/Dg

|Vc

T
≤1
Vc/V −−−−→ T

≤1
Vc/Dg

γ0−−−−→ TV/Dg |≤1
Vc

(4.33)
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34 H.-L. Chang and J. Li

By (4.29) the top row is a distinguished triangle (but not the lower one).

We comment that applying results in [16], this diagram implies that the virtual

cycle of Vc is the pull-back via ιc : Vc→ V of the virtual cycle of V. In our case, we are

using localized virtual cycles via cosections of the obstruction sheaves, thus we need to

construct a cosection of the obstruction sheaf

ObV = coker{TDg ⊗ODg
OV −→ H1(EV/Dg)}.

4.7 Family cosection

We first construct a cosection of the obstruction sheaf ObV/D̃g
. The construction is par-

allel to the case P =Mg(P
4, d)p.

First, we define a bi-linear morphism of bundles

h : Vb(L ⊕5
D̃g
⊕L ⊗5

D̃g
⊕PD̃g

)−→Vb(L ⊗5
D̃g

)×CD̃g
Vb(PD̃g

)−→Vb(ωCD̃g/D̃g
).

Here the first arrow is (pr2, pr3), where pri is the ith projection; the second arrow is

induced by tensoring of sheaves of OCD̃g
-modules L ⊗5

D̃g
⊗PD̃g

→ωCD̃g/D̃g
. Using that the

family Z→ CD̃g
in (4.10) is a subfamily

Z ⊂Vb(L ⊕5
D̃g

)∗ ×CD̃g
Vb(L ⊗5

D̃g
)×CD̃g

Vb(PD̃g
)⊂Vb(L ⊕5

D̃g
⊕L ⊗5

D̃g
⊕PD̃g

),

composing with h, we obtain a CD̃g
-morphism

Z −→Vb(ωCD̃g/D̃g
). (4.34)

Lemma 4.4. The homomorphism (4.34) induces a homomorphism

σ • : EV/D̃g
−→ R1πV∗OCV [−1]

whose restriction to V ×A1 c∼=P, c �= 0, is proportional (by an element in C∗) to σ •1
in (3.7). �

Proof. The proof is exactly as in Section 3.2. We omit it here. �

We define

σ = H1(σ •) : ObV/D̃g
:= H1(EV/D̃g

)−→ R1πV∗ωCV/V ∼=OV . (4.35)
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Let q̃ : V→ D̃g be the projection. The distinguished triangle q̃∗LD̃g
→LV→

LV/D̃g
→ q̃∗TD̃g

[1] gives a morphism q̃∗TD̃g
→TV/D̃g

[1], which, composed with φV/D̃g
:

TV/D̃g
→EV/D̃g

, gives

η : q̃∗TD̃g
−→EV/D̃g

[1].

Taking the cokernel of the H0 of this arrow, we obtain the absolute obstruction sheaf

ObV := coker{H0(η) : q̃∗Ω∨
D̃g
−→ H1(EV/D̃g

)}. (4.36)

Lemma 4.5. The following composite vanishes:

q̃∗Ω∨
D̃g

H0(η)−→ H1(EV/D̃g
)

σ−→ R1πV∗ωCV/V . (4.37)

�

Proof. The proof is exactly the same as that of Proposition 3.5, and will be omitted. �

This immediately gives the following corollary.

Corollary 4.6. The cosection σ : ObV/D̃g
→OV lifts to a cosection σ̄ : ObV→OV . �

Lastly, we describe the degeneracy (nonsurjective) locus of σ . As before, we say σ

is degenerate at ξ ∈ V if σ |ξ is not surjective (i.e., is trivial). Let ξ ∈ V be any closed point;

ξ is represented by

((φi), b, p) ∈ H0(L⊕5)× H0(L⊗5)× H0(L−⊗5 ⊗ ωC )

for (C , L) ∈Dg the point under ξ . Then σ |ξ : ObV/D̃g
|ξ→C is identical to the composite of

the inclusion

ObV/D̃g
|ξ ⊂ H1(L⊕5)⊕ H1(L⊗5)⊕ H1(L−⊗5 ⊗ ωC )

with the pairing

H1(L⊕5)⊕ H1(L⊗5)⊕ H1(L−⊗5 ⊗ ωC )−→ H1(ωC )

defined via ((φ̊i), b̊, p̊) �→ b̊ · p+ b · p̊. Like the proof of Proposition 3.4, this description

shows that the degeneracy locus of σ is Mg(Q, d)× A1 ⊂ V, where the inclusion is via
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vanishing p-fields and the inclusion Mg(Q, d)× A1 ⊂Mg(V, d) induced by the tautologi-

cal inclusion Q× A1 ⊂ V .

Lemma 4.7. The degeneracy locus of the cosection σ̄ is Mg(Q, d)× A1 ⊂ V; it is proper

over A1. �

Proof. We first need to verify that σ is as given. The proof of this is exactly the same

as that of Lemma 3.2. Using this description, we argue that the degeneracy locus of the

cosection σ : ObV/Dg→OV is Mg(Q, d)× A1 ⊂ V, and thus is proper over A1. Since σ̄ is a

lift of σ , the degeneracy locus of σ̄ coincides with that of σ . This proves the Lemma. �

4.8 The constancy of the invariants

By direct verification, the virtual dimension of V is 1. Using Lemma 4.7 and Corollary 4.6,

following the convention introduced in Section 3.6, we denote by

h1/h0(EV/Dg)σ̄ ⊂ h1/h0(EV/Dg)

the kernel of a cone-stack morphism h1/h0(EV/Dg)→CV induced by σ̄ defined as in

Definition 3.7.

Let

[CP/Dg ] ∈ Z∗h1/h0(EV/Dg)

be the intrinsic normal cone embedded using the obstruction theory φV/Dg . Because of

Lemma 4.7 and Corollary 4.6, applying [15, Theorem 5.1] we conclude that

[CP/Dg ] ∈ Z∗h1/h0(EV/Dg)σ̄ .

We then apply the localized Gysin map [15]

0!
σ̄ ,loc : A∗h1/h0(EV/Dg)σ̄ −→ A∗(Mg(Q, d)× A1).

Definition 4.8. We define the localized virtual cycle of (V, σ̄ ) to be

[V]vir
σ̄ := 0!

σ̄ ,loc([CV/Dg ]) ∈ A1(Mg(Q, d)× A1). �
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Now let c∈A1 be any closed point and let jc : c→A1 be the closed inclusion. We

define N := V ×A1 0. By the compatibility stated in diagram (4.33) and Corollary 4.6, we

apply [15, Theorem 5.2] to obtain the following proposition.

Proposition 4.9. Under the shriek operation of cycles (c �= 0),

j !
c([V]vir

σ̄ )= [P]vir
σ̄1
∈ A0Mg(Q, d), j !

0([V]vir
σ̄ )= [N ]vir

σ̄0
∈ A0Mg(Q, d). �

Here [N ]vir
σ̄0

is the localized virtual cycle using the obstruction theory of N
induced by the restriction of φV/D̃g

(Proposition 4.2) and the restriction of the cosection

σ̄0 = σ̄ |N .

5 Gromov–Witten Invariant of (KN , wN )

We continue to denote by

r : N −→ Q

the normal bundle to Q in P4. Let KN be the total space of the canonical line bundle of N,

which is isomorphic to the underlying line bundle of the pull-back r∗O(−5). The dual-

ity paring OQ(5)⊗OQ OQ(−5)→OQ defines a regular function wN ∈ Γ (OKN ). The degree

deg[N ]vir
σ̄0

are the Gromov–Witten invariants of the Landau–Ginzburg space (KN, wN).

We denote by Mg(N, d) the moduli space of genus g degree d stable maps to N,

where the degree is measured by their images in P4 via N→ Q⊂ P4. Because N = V ×A1 0,

canonically Mg(N, d)=Mg(V, d)×A1 0. The moduli of stable maps coupled with p-fields

is identical to N
N := V ×A1 0=Mg(V, d)p×A1 0∼=Mg(N, d)p.

We let

( fN , πN ) : CN −→ N ×N

be the universal map of N . By definition, it is the restriction of ( fV , πV , CV) to the fiber

over 0 ∈A1.

5.1 The invariants and the equivalence

As indicated in the beginning of Section 4.6, we have evaluation morphism

eN : CN −→Z0 =Z ×A1 0.
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38 H.-L. Chang and J. Li

By construction in Proposition 4.2,

φN /Dg : TN /Dg −→ R•πN∗e∗NTZ0/CDg
:=EN /Dg (5.1)

is a perfect relative obstruction theory of N /Dg, which is identical to the restriction of

φV/D̃g
to the fiber over 0 ∈A1.

We let σ0 be the restriction of σ to N :

σ0 = σ |N : ObN /Dg −→ON . (5.2)

Proposition 5.1. The cosection σ0 lifts to a cosection σ̄0 : ObN →ON . The degeneracy

(nonsurjective) locus of the cosection σ̄0 is Mg(Q, d)⊂Mg(N, d)P , and thus is proper. �

Proof. This follows directly from Lemma 4.7. �

Because the virtual dimension of V is 1, the virtual dimension of N is 0. By

Proposition 3.4, applying a cosection localization Gysin map [15, Theorem 5.1], we obtain

the following proposition.

Definition-Proposition 5.2. We define the localized virtual cycle of Mg(N, d)P to be

[Mg(N, d)P ]vir
σ := 0!

σ,loc([CMg(N,d)P /Dg
]) ∈ A0Mg(Q, d);

we define Ng(d)KNQ
= deg [Mg(N, d)P ]vir

σ . �

We call Ng(d)KNQ
the formal Landau–Ginzburg model.

Theorem 5.3. For any positive d, the invariants coincide: Ng(d)
p
P4 = Ng(d)KNQ

. �

Proof. The proof follows directly from Proposition 4.9. �

5.2 Comparing with the GW invariant of Quintics

We now show that the formal Landau–Ginzburg model gives the same invariants as the

Gromov–Witten invariants of Q up to signs.
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We first construct a perfect relative obstruction theory of N →Q. In the fiber

product over Dg

N γ−−−−→ C := C (πDg∗(L
⊗5
Dg
⊕PDg))⏐⏐�υ

⏐⏐�
Q :=Mg(Q, d) −−−−→ Dg

(5.3)

where C (πDg∗(L
⊗5
Dg
⊕PDg)) is the direct image cone constructed in Section 2.1, the

morphism γ pulls back the relative perfect obstruction theory

TC/Dg −→EC/Dg (5.4)

to the morphism

φN /Q : TN /Q −→EN /Q := γ ∗EC/Dg .

If one uses the usual convention to define LN = f∗NO(1), where

( fN , πN ) : CN −→ N ×N (5.5)

is the universal family of N and let PN =L −⊗5
N ⊗ ωCN /N , then one has

EN /Q ∼= R•πN∗(L ⊗5
N ⊕PN ).

By Proposition 2.5, φN /Q is the perfect relative obstruction theory associated with the

direct image cone stack N ∼= C (πQ∗(L ⊗5
Q ⊕PQ)) relative to Q=Mg(Q, d).

We define

Q=Vb(L ⊕5
Dg

)∗ ×P4 Q. (5.6)

The evaluation maps of N and Q fit into the diagram

CN eN−−−−→ Z0 −−−−→ Vb(L ⊗5
Dg

)×CDg
Vb(PDg)⏐⏐�υC

⏐⏐� ⏐⏐�
CQ eQ−−−−→ Q −−−−→ CDg

where the right square is a fiber product of smooth morphisms, and υC is induced by the

vertical arrow v in diagram (5.3).

 at H
ong K

ong U
niversity of Science and T

echnology on O
ctober 31, 2011

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


40 H.-L. Chang and J. Li

The diagram associates a morphism between distinguished triangles

e∗N TZ0/Q −−−−→ e∗N TZ0/CDg
−−−−→ υ∗Ce∗QTQ/CDg

+1−−−−→�⏐⏐ �⏐⏐ �⏐⏐
TCN /CQ −−−−→ TCN /CDg

−−−−→ υ∗CTCQ/CDg

+1−−−−→

Identifying EN /Q with R•πN∗e∗N TZ0/Q, by the projection formula we have

EN /Q −−−−→ EN /Dg

h−−−−→ υ∗EQ/Dg

+1−−−−→�⏐⏐φN /Q

�⏐⏐φN /Dg

�⏐⏐υ∗φQ/Dg

TN /Q −−−−→ TN /Dg

n−−−−→ υ∗TQ/Dg

+1−−−−→

(5.7)

Now let U :=N −Q; it is open in N , and has the property that both σ0 and σ ′0 are

surjective on U . By the octahedral axiom, we have a commutative diagram

OU [−1]
=−−−−→ OU [−1]�⏐⏐ �⏐⏐

EN /Q|U −−−−→ EN /Dg |U
h|U−−−−→ υ∗EQ/Dg |U +1−−−−→�⏐⏐χQ

�⏐⏐χ

�⏐⏐||
E′U/Q −−−−→ E′U/Dg

hχ :=h|U ◦χ−−−−−→ υ∗EQ/Dg |U +1−−−−→

(5.8)

where all rows and columns are distinguished triangles, and the two vertical arrows to

OU [−1] are induced by σ0 and σ ′0, respectively. We show that the perfect obstruction the-

ories of N →Q and N →Dg restricted to U can be lifted to E′U/Q and E′U/Dg
, respectively.

Lemma 5.4. There are perfect relative obstruction theories φ′U/Q of U/Q and φ′U/Dg
of

U/Dg that fit into a compatible diagram

E′U/Q
θE−−−−→ E′U/Dg

hχ−−−−→ (υ∗EQ/Dg)|U�⏐⏐φ′U/Q

�⏐⏐φ′U/Dg

�⏐⏐υ∗φ≤1
Q/Dg

|U

T
≤1
U/Q

θ−−−−→ T
≤1
U/Dg

n′:=n≤1|U−−−−−→ (υ∗TQ/Dg)|≤1
U

(5.9)
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and whose composition with the lower row of arrows in (5.8) is the τ [0,1] truncation of

(5.7) restricted over U . �

Proof. Applying the truncation functor τ≤1 to φN /Dg |U , we obtain

φ
≤1
N /Dg
|U : T

≤1
N /Dg
|U −→EN /Dg |U .

Then arguing similarly to Lemma 3.6, we conclude that in the commutative diagram

T
≤1
N /Dg
|U

φ
≤1
N /Dg

|U−−−−→ EN /Dg |U⏐⏐� ⏐⏐�
H1(TN /Dg |U ) −−−−→ ObN /Dg |U

the composition of φ
≤1
N /Dg
|U with EN /Dg |U→OU [−1] vanishes. Hence φ

≤1
N /Dg
|U = χ ◦ φ′U/Dg

for some

φ′U/Dg
: T
≤1
U/Dg
−→E′U/Dg

.

It is direct to check that φ′U/Dg
is a perfect obstruction theory, and the middle square of

the diagram (5.9) commutes.

By similar reason the τ≤1 truncation of φN /Q|U ,

φN /Q|U : T
≤1
U/Q −→EN /Q|U ,

has the property that its composition with EN /Q|U →OU [−1] vanishes and lifts to a

φ′U/Q : T
≤1
U/Q −→EU/Dg,

such that φN /Q|U = χQ ◦ φ′U/Q. The map Δ := θE ◦ φ′U/Q − φ′U/Dg
◦ θ in (5.9) thus satisfies

χ ◦Δ= 0, hence Δ factors through a morphism OU [−2]−→E′U/Dg
; because after applying

the truncation functor τ≤1, we have τ≤1(Δ)=Δ and τ≤1(OU [−2])= 0, and we conclude

Δ= 0. This proves that the left square is commutative. �

To proceed, we apply the work of Kim–Kresch–Pantev on deformation of intrinsic

normal cone [16]. (It is recalled in the Appendix.) Let h1/h0(c0(h̃)) be the bundle stack over

N × P1 introduced in Lemma A.3. Following [16], it is a deformation of h1/h0(EN /Dg) to
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42 H.-L. Chang and J. Li

h1/h0(υ∗EQ/Dg)×N h1/h0(EN /Q) (cf. Definition A.1). By (A.5) and Lemma A.3, the diagram

(5.7) induces an inclusion of cone-stacks

CN×P1/M0
Q/Dg
⊂ h1/h0(c0(ñ))⊂ h1/h0(c0(h̃)), (5.10)

thus giving a cycle

[CN×P1/M0
Q/Dg

] ∈ Z∗h1/h0(c0(h̃)). (5.11)

We next introduce a cosection of H1(c0(h̃)). Composing the cosection

σ0 : ObN /Dg→ON (cf. (5.2)) with H1(EN /Q)→ H1(EN /Dg), we obtain

σ ′0 : ObN /Q := H1(EN /Q)−→ON . (5.12)

Arguing similar to Proposition 5.1, one sees that the degeneracy locus of σ ′0 equals

Q⊂N , and the same argument as in Lemma 3.6 shows that the composite of σ ′0 with

H1(TN /Q)→ H1(EN /Q) is trivial. Thus σ ′0 lifts to a cosection of ObN .

We remark that the σ0 defined earlier is the extension of σ ′0 by sending elements

in υ∗ObQ/Dg to zero:

σ0 : H1(EN /Q)∼= υ∗ObQ/Dg ⊕ObN /Q→ON . (5.13)

Since υ∗ObQ/Dg ⊕ObN /Q = H1(υ∗EQ/Dg ⊕ EN /Dg), by Definition 3.7, we have the

kernel cone-stack

h1/h0(υ∗EQ/Dg ⊕ EN /Dg)σ0 ⊂ h1/h0(υ∗EQ/Dg ⊕ EN /Dg). (5.14)

Using the construction after (A.3), we have the distinguished triangle

c0(h̃)−→ υ∗EQ/Dg ⊕ EN /Dg

h̃−→ υ∗EQ/Dg(1)
+1−→. (5.15)

We define

σh : H1(c0(h̃))−→ON×P1 , (5.16)

to be the composite of H1(c0(h̃))→ H1(υ∗EQ/Dg ⊕ EN /Dg) induced by the first arrow in

(5.15) with σ0. By

H1(EN /Q)∼= υ∗ObQ/Dg ⊕ObN /Q,
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we have a canonical isomorphism

H1(c0(h̃))∼= p∗N (υ∗ObQ/Dg ⊕ObN /Q)

of ON×P1 -modules, where pN : N × P1→N is the projection, and under this isomorphism

σh is the pull-back of σ0.

Using that σh is a cosection of H1(c0(h̃)), we form the kernel cone-stack

h1/h0(c0(h̃))σh ⊂ h1/h0(c0(h̃))

as defined in Definition 3.7.

Lemma 5.5. The cycle [CN×P1/M0
Q/Dg

] in (5.11) is a cycle in Z∗h1/h0(c0(h̃))σh. �

Proof. Applying Lemma A.3 to the n′ in (5.9), and to the restriction n|U in (5.7), we have

h1/h0(c0(ñ))|U ∼= h1/h0(c0(ñ′)). Let

Z∗(h1/h0(c0(ñ
′)))−→ Z∗(h1/h0(c0(h̃))|U ) (5.17)

be the composite of Z∗(h1/h0(c0(ñ′)))→ Z∗(h1/h0(c0(h̃χ ))) induced by (5.9) with the tauto-

logical embedding Z∗(h1/h0(c0(h̃χ )))→ Z∗(h1/h0(c0(h̃))|U ) induced by the lower two rows

of (5.8).

By Lemma 5.4, the morphism

Z∗(h1/h0(c0(ñ))|U )−→ Z∗(h1/h0(c0(h̃))|U )

induced by (5.7), factors through (5.17). (The induced homomorphism between the cycle

groups Z∗h1/h0(c0(g̃)) and Z∗h1/h0(c0(k̃)) does not depend on the choice of morphisms

between mapping cones c0(g̃)→ c0(k̃).) Since we have

h1/h0(c0(h̃χ ))∼= h1/h0(co(h̃))σh|U ,

we conclude that [CN×P1/M0
Q/Dg
|U ] lies inside (h1/h0(co(h̃))σh)|U . This implies that

[CN×P1/M0
Q/Dg

] ∈ Z∗h1/h0(c0(h̃))σh. �
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We now quote the virtual pull-back construction of Manolache in [22, Section 2.1,

Construction 1]. First the compatibility diagram (5.7) fits into the condition 2 in the

construction of Manolache [22]. Let CN /Q be the intrinsic normal cone of N relative to Q
and let

i : CN /Q→ h1/h0(EN /Q)

be the inclusion by the relative perfect obstruction theory φN /Q. Using the cosection σ ′0
(cf. (5.12)) and following Definition 3.7, we form the kernel cone-stack

h1/h0(EN /Q)σ ′0 ⊂ h1/h0(EN /Q).

It is direct to check that in diagram (5.3) the cosection σ ′0 is the composi-

tion of a cosection σC of H1(EC/Dg) with H1(EN /Q)∼= γ ∗H1(EC/Dg). By the same argu-

ment as in the proof of Proposition 3.8, the cycle [CC/Dg ] lies inside h1/h0(EC/Dg)σC
(cf.

[15, Proposition 4.3]). Since the diagram (5.3) implies that the support of CN /Q lies inside

the support of γ ∗CC/Dg , we have

i∗[CN /Q] ∈ Z∗h1/h0(EN /Q)σ ′0 . (5.18)

In the following, we define G = h1/h0(EN /Q)σ ′0 . Generalizing the intrinsic pull-

back of [22], we construct a virtual pull-back morphism of cosection localized classes

υ!
G : A∗Q−→ A∗Q

defined as follows. We let ζ be the map that sends a cycle
∑

ni[Vi] ∈ Z∗Q to the cycle class∑
ni[CVi×QN /Vi ]. It preserves rational equivalence, and defines a map ζ : A∗Q→ A∗CN /Q.

Because of (5.18), the push-forward i∗ factors through A∗G ⊂ h1/h0((EN /Q). We then let

0!
σ ′0,loc be the localized Gysin map defined in [15]. The υ!

G is the composite

υ!
G : A∗Q ζ−→ A∗CN /Q

i∗−→ A∗G ′
0!

σ ′0,loc−→ A∗Q. (5.19)

We prove an analog result to [22, Theorem 4 and Corollary 4].

Theorem 5.6. We have υ!
G ′([Q]vir)= [Mg(N, d)p]vir

σ0
∈ A0Q. �
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For convenience, we define C :=CN×P1/M0
Q/Dg

. The proof of [22, Theorem 4] can be

applied here without change except that we need to use the cosection localized Gysin

map 0!
σh

, applied to the cone cycle [C]. In order to prove that the identities in [22] hold

after replacing the ordinary Gysin map by the localized Gysin map, we need to check

that the rational equivalences used all lie in the kernel of the (family) cosection σh over

N × P1. For x∈ P1 we define Cx=C×P1 x.

Proof. Lemma 5.5 shows the first rational equivalence C used in the proof of [22,

Theorem 4] lies in the kernel of σh. We analyze other rational equivalences now.

Let pP1 : N × P1→ P1 be the projection. We first extend σh to

σ̃h : H1(c0(h̃))⊕ p∗
P1 TP1 −→ON×P1

by setting σ̃h|p∗
P1 T

P1 = 0. The degeneracy locus D(σ̃h)=Q× P1. Restricting σ̃h to

N × x⊂N × P1, we obtain

σ̃h|x : H1(c0(h̃)|N×x)⊕ Lx−→ON×x,

where Lx= p∗
P1 TP1 |N×x. Over a= [0, 1], σ̃h|a is the extension of σ0 to

σ̃0 := σ̃h|a : υ∗ObQ/Dg ⊕ObN /Q ⊕ La−→ON

by setting σ̃0|La = 0. The kernel cone-stack of σ̃0 (as defined in (3.15)) takes the form

(cf. (5.13) and (5.14))

h1/h0(c0(h̃)|N×a⊕ La[−1])σ̃0 = υ∗h1/h0(EQ/Dg)×N h1/h0(EN /Q)σ ′0 ×N La.

For convenience, in the following we call a cycle in h1/h0(c0(h̃)|N×x ⊕ Lx[−1])

annihilated by σ̃h|x if it lies in h1/h0(c0(h̃)|N×x ⊕ Lx[−1])σ̃h|x . Over N × x, the normal cone

CCx/C ⊂Cx ×N Lx to Cx :=C×N×P1 (N × x) in C) is annihilated by σ̃h|x; applying the local-

ized Gysin map

0!
σ̃h|x,loc

: Z∗h1/h0(c0(h̃)|N×x ⊕ Lx[−1])−→ A∗Q,

we obtain the cosection localized class

0!
σ̃h|x,loc

([CCx/C]) ∈ A∗(Q). (5.20)

For x �= a∈ P1, C is flat over P1 near x∈ P1, CCx/C =Cx ×N Lx, which implies that

the class (5.20) is [Mg(N, d)p)]vir
σ0

. For x= a the class (5.20) is 0!
σ̃0,loc

([CCa/C]). Applying
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[15, Theorem 4.5], the classes (5.20) are independent of x∈ P1. Hence we have

[Mg(N, d)p)]vir
σ0
= 0!

σ̃h|x,loc
([CCx/C])= 0!

σ̃0,loc
([CCa/C]) ∈ A∗(Q).

By [15, 18] we have a rational equivalence R∈W∗(Ca×N La) that gives

∂ R= [CCa/C]− [CN /CQ/Dg
×N La] ∈ Z∗(Ca×N La). (5.21)

Lemma 5.5 implies that Ca is annihilated by σ0. Hence Ca×N La is annihilated by σ̃0,

which implies that

R∈W∗h1/h0(c0(h̃)|N×a⊕ La[−1])σ̃0 . (5.22)

Since the localized Gysin map preserves rational equivalences in (5.22), (5.21) implies

0!
σ̃0,loc

([CCa/C])= 0!
σ̃0,loc

([CN /CQ/Dg
×N La])= 0!

σ0,loc
([CN /CQ/Dg

]).

It remains to show that

0!
σ0,loc

([CN /CQ/Dg
])= υ!

G ′([Q]vir). (5.23)

For brevity we define K = h1/h0(EQ/Dg). We let s : Q→ K be the zero section. We have

morphisms

N ν−→Q s−→ K, (5.24)

and, by CQ/K
∼= K, we obtain a canonical embedding

i′′ : CN /K ⊂CN /Q ×N υ∗K ⊂ h1/h0(EN /Q)×Q K (5.25)

(denoted by i′′).

We define (cf. 5.14)

G ′′ := h1/h0(υ∗EQ/Dg ⊕ EN /Dg)σ ′′0 .

By (5.18) we have

(i′′)∗[CN /K ] ∈ Z∗G ′′.
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Mimicking the definition of υ!
G , we define

(s ◦ υ)!
G ′′ : A∗K −→ A∗Q

to be the composite

A∗HQ
ζ ′′−→ A∗CN /HQ

i′′∗−→ A∗G ′′
0!

σ0,loc−→ A∗Q, (5.26)

where N → K is via (5.24); 0!
σ0,loc is the localized Gysin map; and ζ ′′ sends cycles

∑
ni[Vi]

to the cycle classes
∑

ni[CVi×KN /Vi ]. In this way, the left-hand side of (5.23) is

0!
σ0,loc

([CN /CQ/Dg
])= (s ◦ υ)!

G ′′(CQ/Dg).

Since [Q]vir is zero-dimensional, we can write [Q]vir =∑ ri[pi] ∈ A0(Q), ri ∈Q, and

pi are closed points in h1/h0(EQ/Dg). Let m : K→Q be the projection to the base, and

denote by m−1 pi = K ×Q pi. Since [Q]vir = 0![CQ/Dg ], we have a rational equivalence R′′ ∈
W∗(K) such that

∂ R′′ = [CQ/Dg ]−
∑

ri[m
−1 pi] ∈ Z∗(K). (5.27)

Hence

(s ◦ υ)!
G ′′([CQ/Dg ])= (s ◦ υ)!

G ′′

(∑
ri[m

−1 pi]
)
=
∑

ri0
!
σ0,loc

([Cm−1 pi×KN /m−1 pi ])

= 0!
σ ′0,loc

(∑
ri[Cpi×QN /pi ]

)
= ν!

G([Q]vir),

where N → K is via (5.24), and the third identity follows from

Cm−1 pi×KN /m−1 pi =Cpi×QN /pi ×m−1 pi ⊂CN /Dg ×N υ∗K.

This proves the theorem. �

Remark: Our proof can be generalized to show

(s ◦ υ)!
G ′′(α)= υ!

G ◦ s!(α), α ∈ A∗HQ, (5.28)

where s! : A∗(K)→ A∗(Q) is the shriek operation by the regular embedding s in (5.24).

The above formula (5.28) is the analog of [22, Theorem 4] for cosection localized virtual

pull-back.
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Theorem 5.7. We have

Ng(d)
p
P4 = Ng(d)KNQ

= (−1)5d+1−g · Ng(d)Q. �

Proof. We first compute the degree of the zero cycle υ!
G([ξ ]) ∈ A0Q, where ξ is any closed

point in Q. Let ξ be [u, C ] ∈Q. We define

V1 = H0(C , u∗O(5)), V2 = H0(C , u∗O(−5)⊗ ωC ), V = V1 ⊕ V2.

Note that when ξ varies, the dimension of Vi, V also varies. The fiber of υ : N →Q can be

described as

υ−1ξ :=N ×Q ξ ∼= V, G|υ−1ξ
∼= [V × V∨/V ],

where the action of V on V × V∨ is via the zero homomorphism 0 : V→ V × V∨. One also

checks that the cosection σ ′0 restricted to υ−1ξ is induced by

σξ : V × V∨ = (V1 ⊕ V2)× (V∨1 ⊕ V∨2 )−→C,

given by dual parings Vi × V∨i →C.

Applying the composition (5.26) step by step, from

ζ([ξ ])= [CV/ξ ] ∈ A∗(G ′|ξ ),

we have

υ!
G([ξ ])= 0!

σξ ,loc(CV/ξ )= (−1)rankV [ξ ]= (−1)5d+1−g[ξ ] ∈ A0Q.

Here the second equality follows from

CV/ξ = [V × 0/V ]⊂ [V × V∨/V ]=G|v−1ξ ,

and [15, Example 2.9]. The third equality follows from

rankV ≡ χ(u∗O(5))+ 2h1(u∗O(5))≡ 5d+ 1− g mod 2.

Taking degrees,

deg υ!
G([ξ ])= (−1)5d+1−g.
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Since both [Q]vir and [Mg(N, d)p]vir
σ0

in Lemma 5.6 are zero-dimensional, taking degrees,

we obtain

deg [Mg(N, d)p]vir
σ0
= deg υ!

G([ξ ]) · deg [Q]vir = (−1)5d+1−gNg(d)Q.

This proves the second identity in the statement of the theorem. The first identity is

Theorem 5.3. �
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Appendix A

We recall some useful facts known to the experts.

A.1 Kresch–Kim–Pantev’s construction

Let S be a stack.

Convention. For a complex (derived object) G on S, we define G(k) without further

commenting to be

G(k) := p∗SG⊗ p∗
P1O(k);

further, whenever we see a complex over S appearing in a sequence involving complexes

over S× P1, we understand the complex as its pull-back from S.

Definition A.1. Let E1
b−→E2 −→E3

+1−→ be a distinguished triangle of objects in D(S)

with cohomologies concentrated at nonpositive degrees. Assume that E1 is of amplitude
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in [−1,∞]. Let [x, y] be the homogeneous coordinates of P1, and let

b̄ : E1(−1)→E1 ⊕ E2

be defined by (x · 1, y · b). We form the mapping cone c(b̄) of b̄, which fits into the distin-

guished triangle

E1(−1)
b̄−→E1 ⊕ E2 −→ c(b̄)

+1−→.

Applying the h1/h0 construction to c(b̄)∨, we obtain h1/h0(c(b̄)∨), which is a cone-stack

over S× P1 [1]. Following [16], we call it the deformation of h1/h0(E∨2 ) to h1/h0(E∨1 )×S

h1/h0(E∨3 ). �

Let i : X→Y and j : Y→ Z be morphisms of relative Deligne–Mumford type,

between stacks. Let

i∗LY/Z
β−→LX/Z −→LX/Y

+1−→ (A.1)

be the induced distinguished triangle of cotangent complexes. We quote the main

theorem of [16].

Proposition A.2. [16] We have a natural isomorphism

NX×P1/M◦Y/Z
∼= h1/h0(c(β̄)∨). �

Now we state a truncated version which is dual to Definition A.1.

Lemma A.3. Let

T
≤1
X/Y −→T

≤1
X/Z

k−→ i∗T≤1
Y/Z

be the truncation by τ≤1 of the dual of the distinguished triangle (A.1). (It is not a distin-

guished triangle.) Let c0(k̃) be defined by making

c0(k̃)−→ i∗T≤1
Y/Z ⊕ T

≤1
X/Z

k̃−→ i∗T≤1
Y/Z ⊗ OP1(1)

a distinguished triangle, where k̃= (x, y · k) as in Definition A.1. Then there is a natural

isomorphism

h1/h0(c(β̄)∨)∼= h1/h0(c0(k̃)). �
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Proof. Using the simplicial resolution of Illusie, we can represent ı∗LY/Z and LX/Z by

perfect complex (over X globally) of amplitude [−∞, 0] such that β : i∗LY/Z→LX/Z is given

by a homomorphism between these two complexes. From this it is direct to show that

the canonical morphism

c0(k̃)−→ c(β̄)∨ (A.2)

induces isomorphisms on H1 and H0 of the two complexes in (A.2). Hence their trun-

cations by τ≤1 are isomorphic under this arrow, which shows that the cone-stacks of

the h1/h0 constructions of the two complexes in (A.2) are isomorphic under the arrow

induced by (A.2). �

A.2 Application

We recall the rational equivalence inside the deformations of ambient cone-stacks

constructed by Kim et al. [16].

Let Z be an Artin stack, locally of finite type and of pure dimension. Let Y be a

stack and Y→ Z be a morphism of relative Deligne–Mumford type in the derived cate-

gory of coherent sheaves on X. Let E∨ (respectively F∨, V∨) be a perfect relative obstruc-

tion theory of X/Z (respectively Y/Z , X/Y).

Definition A.4. We say F and E are truncated-compatible (verses (V, s)) if there exists

a commutative diagram

V −−−−→ E
g−−−−→ F|X +1−−−−→�⏐⏐ �⏐⏐ �⏐⏐

T
≤1
X/Y −−−−→ T

≤1
X/Z

k−−−−→ TY/Z |≤−1
X

(A.3)

such that its top row is a distinguished triangle, and its bottom row is the first line in

Lemma A.3. �

Accordingly, the morphisms g and k in (A.3) induce homomorphisms g̃ and k̃,

respectively, that fit into a homomorphism of distinguished triangle’s

c0(g̃) −−−−→ F|X ⊕ E
g̃−−−−→ F|X(1)

+1−−−−→�⏐⏐ �⏐⏐ �⏐⏐
c0(k̃) −−−−→ T

≤1
Y/Z |X ⊕ T

≤1
X/Z

k̃−−−−→ T
≤1
Y/Z |X ⊗ OP1(1)

+1−−−−→
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where c0(g̃) is to make the first row a distinguished triangle as c0(k̃) did in Lemma A.3.

We let M0
Y/Z be the deformation of Z to the normal cone CY/Z , let CX×P1/M0

Y/Z
be the normal

cone to X × P1 in M0
Y/Z , and let NX×P1/M0

Y/Z
be the normal sheaf of X × P1 in M0

Y/Z . By the

functoriality of the h1/h0 construction, we have

D :=CX×P1/M0
Y/Z
⊂ NX×P1/M0

Y/Z
∼= h1/h0(c0(k̃)), (A.4)

where the isomorphism is proved in [16] and Lemma A.3. We also have the inclusion

h1/h0(c0(k̃))⊂ h1/h0(c0(g̃))∼= h1/h0(c(g∨)∨), (A.5)

where h1/h0(c(g∨)∨) is the deformation of h1/h0(E) to h1/h0(F|X)×X h1/h0(V) as in

Definition A.1. This shows that the truncated compatibility (A.3) is sufficient to apply

the Kresch–Kim–Pantev construction of rational equivalence.

A.3 Obstruction class assignments

Assume that there is a smooth morphism of Artin stacks H→W. Suppose T ⊂ T ′ is a pair

of affine schemes such that J := IT/T ′ and J2 = 0. Fix a morphism T ′ →Dg, which pulls

back πDg : CDg→Dg to πT : CT→ T and πT ′ : CT ′ → T ′. Assume that there is a commutative

diagram

CT
e−−−−→ H⏐⏐� ⏐⏐�

CT ′ −−−−→ W

(A.6)

Since the ideal sheaf of CT ⊂ CT ′ is π∗T ′ J, it is a square zero extension. We define

VT := e∗Ω∨H/W; then VT is a locally free sheaf over CT . The diagram (A.6) provides a

morphism

V∨T ∼= e∗LH/W −→LCT /CT ′ = π∗TLT/T ′ −→L
≥−1
CT /CT ′

= π∗T J[1], (A.7)

(here e∗ denotes a derived pull-back) which defines an element

ω(e, H, W) ∈Ext1
CT

(V∨T , π∗T J)∼= H1(CT , VT ⊗ π∗T J).

Lemma A.5. ω(e, H, W)= 0 if and only if the diagram (A.6) admits a lifting CT ′ → H that

commutes with the diagram. �
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Proof. We form the diagram

X0 := CT
i−−−−→ X := CT ′⏐⏐�ē

Y0 := H ×W CT
j−−−−→ Y := H ×W CT ′⏐⏐�Δ

⏐⏐�
CT

⊂−−−−→ S := CT ′

(A.8)

where i and j are extensions over S. By construction the associated homomorphism of

sheaves

v : ē∗ IY0/Y −→ IX0/X = π∗T J

is an isomorphism. If ē lifts to a CT ′-morphism ē′ : X→Y, then the X→ CT ′ is an

isomorphism.

Following the steps in the proof of [14, Theorem 2.1.7], the obstruction to the

existence of such ē′ (in the notation of [14]) are constructed as follows. First one has a

sequence of cotangent complexes

LX0/Y0 [−1]−→ ē∗LY0/S −→ ē∗LY0/Y −→ ē∗L≥−1
Y0/Y −→ π∗T J[1], (A.9)

where the first (left) morphism comes from the triple X0→Y0→ S; the middle morphism

is induced by LY0/S→LY0/Y.

Using LX0/Y0 = V∨T [1], this sequence associates an element

ω(ē, j) ∈Ext2
X0

(LX0/Y0 , π
∗
T J)=Ext1

X0
(V∨T , π∗T J)= H1(CT , VT ⊗ π∗T J).

The argument in [14, Theorem 2.1.7] shows that ω(ē, j)= 0 if and only if a lift ē′ : X→Y

exists in the diagram (A.8). Such a lift exists if and only if a lift e′ : CT ′ → H exists in the

diagram (A.6). Hence we only need to verify that ω(ē, j)=ω(e, H, W).

To this end, we verify the commutativity of the following diagram:

LX0/Y0 [−1] −−−−→ ē∗LY0/S −−−−→ ē∗LY0/Y⏐⏐�∼= �⏐⏐ �⏐⏐∼=
ē∗LY0/X0

∼=←−−−− ē∗j∗LY/S −−−−→ LX0/S

(A.10)
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where the first vertical arrow is an isomorphism because LX0 = 0; the left square is

commutative because the canonical LY0/S→LY0/X0 induces a ē∗LY0/S→ ē∗LY0/X0 that splits

the left square into two commutative triangles of cotangent complexes; the third ver-

tical arrow is composing LX0/S
∼= ē∗Δ∗LX0/S with the isomorphism Δ∗LX0/S

∼=−→LY0/Y. The

right square is commutative because one has a canonical pull-back ē∗LY0/S→LX0/S and

a commutative diagram
ē∗LY0/S −−−−→ ē∗LY0/Y⏐⏐� �⏐⏐∼=
LX0/S

∼=←−−−− ē∗Δ∗LX0/S

The upper and lower rows of the diagram (A.10) are, respectively, sequence (A.7) and

(A.9). Thus the commutative diagram (A.10) implies ω(ē, j)=ω(e, H, W). �
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