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Abstract. In [CL31] and [CL32], the notion of Mixed-Spin-P fields is intro-
duced and their moduli space Wg,γ,d is constructed together with a C∗ action.
By applying virtual localization to their virtual classes [Wg,γ,d]vir, polynomial
relations among Gromov Witten(GW) and Fan-Jarvis-Ruan-Witten(FJRW)
invariants of Fermat quintics are derived. In this paper, we prove a vanish-

ing of a class of terms in [(Wg,γ,d)C
∗
]vir. This vanishing plays a key role in

[CL32]’s proof that in Witten’s gauged linear sigma model for Fermat quin-
tics, the FJRW invariants with insertions 2/5 determine the GW invariants of
quintic Calabi-Yau threefolds through CY-LG phase transitions.

1. Introduction

In [CL31], the authors introduced the notion of Mixed-Spin-P fields (abbr. MSP
fields), and constructed the properly supported Gm-equivariant virtual cycles of
their moduli spaces. Applying virtual localization [GP], they obtained a vanishing
of the sum of the contributions indexed by the set of localization graphs.

The set of localization graphs are divided into regular and irregular graphs.
The contributions of regular graphs are polynomials of the GW invariants of
the quintic CY threefolds, and of the FJRW invariants of the Fermat quintics.
Provided that the contributions from the irregular graphs all vanish, the sum
of these polynomials (of the GW and FJRW invariants mentioned) indexed by
the regular graphs will provide relations ([CL32]) that determine, up to finite
ambiguity, the full GW (resp. FJRW) invariants of the quintic threefolds (resp.
the quintic singularities) via recursions on genus and degree.

Later in [NMSP1, NMSP2, NMSP3], built up on [CL31, CL32] and this ir-
regular vanishing property, it is proved that the GW potential Fg of quintics
satisfies (i) the finite generation conjecture of Yamaguchi and Yau [YY], (ii) the
Yamaguchi-Yau (functional) equations, (iii) convergence with a positive radius,
and (iv) BCOV’s Feynman rules [BCOV] which determine every Fg explicitly and
recursively, based on 3g − 3 initial data.

This paper sets out to prove such an “irregular vanishing” (Theorem 1.2).
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Recall that an MSP field is a collection of objects

(1.1) ξ = (ΣC,C,L,N, ϕ, ρ, ν1, ν2),

consisting of a pointed twisted curve ΣC ⊂ C, invertible sheaves L and N, and a
collection of fields (ϕ, ρ, ν1, ν2) (cf. Definition 2.1). The MSP field ξ comes with
numerical invariants: the genus g of C, the monodromy γi of L at the i-th marking
ΣC
i , and the bi-degrees d0 = degL⊗N and d∞ = degN.
Given g, γ = (γ1, · · · , γ`) and d = (d0, d∞), we let W be the moduli of stable

MSP fields of numerical data (g, γ,d). W is a separated DM stack, locally of
finite type. (The data (g, γ,d) will be fixed throughout this paper.)

As shown in [CL31, CL32], W is a T = Gm DM stack (cf. (2.3)), admits a
T -equivariant perfect obstruction theory and an invariant cosection σW : ObW →
OW , giving rise to a cosection-localized virtual cycle [KL]

[W]vir
loc ∈ AT∗W−,

where W− is the vanishing locus of σ. In [CL31]), it is proved that W− is proper
and of finite type.

Following [CL32], we decompose the fixed locus WT into disjoint open and
closed substacks

WT =
∐

Γ∈∆fl

W(Γ),

indexed by a set of (flat) decorated graphs ∆fl. By the virtual localization [GP,
CKL], after inverting the generator t ∈ A1

T (pt),

(1.2) [W]vir
loc =

∑
Γ

[W(Γ)]
vir
loc

e(NW(Γ)/W)
∈
(
AT∗W−

)
t
.

We call a graph a pure loop if it has no legs and no stable vertices, and every
vertex has exactly two edges attached to it. In [CL32], we divided the set ∆fl into
regular and irregular graphs (Definition 2.8).

Definition 1.1. Let Z ⊂ WT be a proper closed substack, viewed as a T -stack
with the trivial T action. We say α ∈ AT∗ Z is weakly trivial, denoted by α ∼ 0,
if there is a closed proper substack Z ′ ⊂ WT with Z ⊂ Z ′ so that α is mapped to
zero under the induced homomorphism AT∗ Z → AT∗ Z

′.

We will prove Theorem 1.2 below.

Theorem 1.2. Let Γ be an irregular graph and not a pure loop. Then [W(Γ)]
vir
loc ∼

0.

Let [·]0 : AT∗W− → A0(pt) be the proper pushforward induced by W → pt.
Then Theorem 1.2 implies that for the Γ as stated in Theorem 1.2, and for any
β ∈ A∗TW, [

β ∩
[W(Γ)]

vir
loc

e(NW(Γ)/W)

]
0

= 0.
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This vanishing theorem implies that the only quintic FJRW invariants that
contribute to the relations derived from the theory of MSP fields are those with
pure insertions 2/5 (see [CL32, Thm. 1.1]).

If one considers the MSP moduli for a general Fermat hypersurface which may
not be a CY threefold(quintic), one can determine the GW invariants of the Fer-
mat hypersurface using MSP recursions as in [CL32, (1.2)]. In these recursions,
irregular graphs will possibly have nonzero contributions. Calculating these con-
tributions requires a generalization of Theorem 1.2.

2. Irregular graphs

In this section, we recall the notions of MSP fields and decorated graphs associ-
ated with T -invariant MSP fields. These notions were first introduced in [CL32].

2.1. MSP fields. Let µ5 = 〈ζ5〉 ≤ Gm be the subgroup of fifth-roots of unity,

generated by ζ5 = exp(2π
√
−1

5 ). Let

µna
5 = {(1, ρ), (1, ϕ), ζ5, · · · , ζ4

5} and µbr
5 = {(1, ρ), (1, ϕ)} ∪ µ5.

Here (1, ϕ) and (1, ρ) are symbols, and they function as the identity elements with
special properties; thus the subgroup they generate 〈(1, ρ)〉 = 〈(1, ϕ)〉 = {1} ≤ Gm

is the trivial subgroup. Note that µna
5 obtained by removing 1 from µbr

5 . The data
in µna

5 are called narrow, while the 1 in µbr
5 is called broad.

Let
g ≥ 0, γ = (γ1, · · · , γ`) ∈ (µbr

5 )×`, d = (d0, d∞) ∈ Q×2.

For an `-pointed twisted curve ΣC ⊂ C, and for α ∈ µbr
5 , we denote

ωlog
C/S = ωC/S(ΣC), and ΣC

α =
∐
γi=α

ΣC
i .

Definition 2.1 ([CL31]). A (g, γ,d) MSP field ξ is (ΣC,C,L,N, ϕ, ρ, ν) (as in
(1.1)) such that

(1) ∪`i=1ΣC
i = ΣC ⊂ C is an `-pointed, genus g, twisted curve such that the i-th

marking ΣC
i is banded by the group 〈γi〉 ≤ Gm;

(2) L and N are invertible sheaves on C, L⊕N is representable, degL⊗N = d0,
degN = d∞, and the monodromy of L along ΣC

i is γi when 〈γi〉 6= 〈1〉;
(3) ν = (ν1, ν2) ∈ H0(L⊗N)⊕H0(N), and (ν1, ν2) is nowhere zero;
(4) ϕ = (ϕ1, . . . , ϕ5) ∈ H0(L)⊕5, (ϕ, ν1) is nowhere zero, and ϕ|ΣC

(1,ϕ)
= 0;

(5) ρ ∈ H0(L∨⊗5 ⊗ ωlog
C/S), (ρ, ν2) is nowhere zero, and ρ|ΣC

(1,ρ)
= 0.

We call ξ (or γ) narrow if γ ∈ (µna
5 )`. We call ξ stable if |Aut(ξ)| <∞.

The definition of monodromy can be found, for example, in [FJR, CLL]. A
typical example of monodromy is as follows. Consider C = [A1/µ5], where µ5 acts
on A1 = SpecC[x] via ζ5 ·x = ζ−1

5 x. Then the OC-module x−2C[x] has monodromy
ζ2

5 at the stacky point.
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Throughout this paper, unless otherwise stated, by an MSP field ξ we mean
ξ = (ΣC,C,L, · · · ) as given in (1.1) with narrow γ.

By the main theorem of [CL31], the category W of families of MSP fields of
data (g, γ,d) is a separated DM stack. The group T = Gm acts on W via

(2.1) t · (C,ΣC,L,N, ϕ, ρ, ν1, ν2) = (C,ΣC,L,N, ϕ, ρ, tν1, ν2).

The structure of T -invariant MSP fields can be summarized as follows. Let
ξ ∈ W T . Then there is a homomorphism h and T -linearizations (τt, τ

′
t)

(2.2) h : T −→ Aut(C,ΣC), τt : ht∗L −→ L and τ ′t : ht∗N −→ N

such that

(2.3) t · (ϕ, ρ, ν1, ν2) = (τt, τ
′
t)(ht∗ϕ, ht∗ρ, t · ht∗ν1, ht∗ν2), t ∈ T.

(Here we allow fractional weight for the T actions on curves and bundles.) Since
ξ ∈ WT is stable, such (h, τt, τ

′
t) is unique. We call h, τt, τ

′
t the T -actions and

linearizations induced from ξ ∈ W T .
Let Lk be the one-dimensional weight k T -representation. Let

(2.4) Llog = L(−ΣC
(1,ϕ)) and Plog = L−5 ⊗ ωlog

C (−ΣC
(1,ρ)).

Then (2.3) can be rephrased as

(2.5) (ϕ, ρ, ν1, ν2) ∈ H0((Llog)⊕5 ⊕ Plog ⊕ L⊗N ⊗ L1 ⊕N)T .

2.2. Decorated graphs of T -MSP fields. We describe the structure of W T ,
following [CL32]. Let ξ ∈ W T , with domain curve C, etc., as in (1.1). We
decompose C as follows: Let

C0 = (ν1 = 0)red, C∞ = (ν2 = 0)red, C1 = (ρ = ϕ = 0)red ⊂ C;

let A be the set of irreducible components of C− C0 ∪ C1 ∪ C∞. Also let

C01 =
⋃

Ca∈A, ρ|Ca=0

Ca, C1∞ =
⋃

Ca∈A, ϕ|Ca=0

, C0∞ =
⋃

Ca∈A, ρ|Ca 6=0, ϕ|Ca 6=0

Ca.

We know that C0, C1 and C∞ are mutually disjoint, and the action h : T →
Aut(C,ΣC) acts trivially on C0, C1 and C∞. We also know that every irreducible
component Ca ⊂ C01 (resp. Ca ⊂ C1∞; resp. Ca ⊂ C0∞) is a smooth rational
twisted curve with two T -fixed points lying on C0 and C1 (resp. C1 and C∞; resp.
C0 and C∞).

We associate a decorated graph with each ξ ∈ W T . For a graph Γ, besides its
vertices V (Γ), edges E(Γ) and legs L(Γ), its set of flags is

F (Γ) = {(e, v) ∈ E(Γ)× V (Γ) : v ∈ e}.
Given ξ ∈ WT , let π : Cnor → C be its normalization. For any y ∈ π−1(Csing), we
denote by γy the monodromy of π∗L along y.

Definition 2.2. With ξ ∈ WT we associate a graph Γξ as follows:
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(1) (vertex) Let V0(Γξ), V1(Γξ), and V∞(Γξ) be the set of connected compo-
nents of C0, C1, and C∞ respectively, and let V (Γξ) be their union;

(2) (edge) Let E0(Γξ), E∞(Γξ) and E0∞(Γξ) be the set of irreducible compo-
nents of C01, C1∞ and C0∞ respectively, and let E(Γξ) be their union;

(3) (leg) Let L(Γξ) ∼= {1, · · · , `} be the ordered set of markings of ΣC where

i ∈ L(Γξ) is attached to v ∈ V (Γξ) if ΣC
i ∈ Cv;

(4) (flag) (e, v) ∈ F (Γξ) if and only if Ce ∩ Cv 6= ∅.
We call v ∈ V (Γξ) stable if Cv ⊂ C is one-dimensional, otherwise it is unstable.

We now specify the decorations. In the following, let V S(Γξ) ⊂ V (Γξ) be the
set of stable vertices. Given v ∈ V (Γξ), let

Sv = {ΣC
j ∈ Cv | ΣC

j ∈ ΣC} and Ev = {e ∈ E(Γξ) : (e, v) ∈ F (Γξ)},

consist of the markings on Cv and of the edges attached to v, respectively.
For v ∈ V S(Γξ), we define

(2.6) ΣCv
inn = ΣC ∩ Cv, ΣCv

out = (C− Cv) ∩ Cv, and ΣCv = ΣCv
inn ∪ ΣCv

out,

called the inner, outer, and total markings of Cv, respectively, and indexed by Sv,
Ev and Sv ∪ Ev.

We adopt the following convention: for a ∈ V (Γξ) ∪ E(Γξ), we define

d0a = degL⊗N|Ca , d∞a = degN|Ca , and da = degL|Ca = d0a − d∞a.

(This is consistent with d0 = degL⊗N and d∞ = degN.) For e ∈ Ev, we assign
γ(e,v) according to the following rule:

(1) when de 6∈ Z, assign γ(e,v) = e−2π
√
−1de ;

(2) when de ∈ Z and v ∈ V∞(Γξ) ∪ V1(Γξ), assign γ(e,v) = (1, ϕ);
(3) when de ∈ Z and v ∈ V0(Γξ), assign γ(e,v) = (1, ρ).

Definition 2.3. We endow the graph Γξ with the following decorations:

(a) (genus) Define ~g : V (Γξ)→ Z≥0 by ~g(v) = h1(OCv).

(b) (degree) Define ~d : E(Γξ) ∪ V (Γξ)→ Q⊕2 by ~d(a) = (d0a, d∞a).

(c) (marking) Define ~S : V (Γξ)→ 2L(Γξ) by v 7→ Sv ⊂ L(Γξ).

(d) (monodromy) Define ~γ : L(Γξ)→ µna
5 by ~γ(ΣC

i ) = γi.
(e) (level) Define lev : V (Γξ)→ {0, 1,∞} by lev(v) = a for v ∈ Va(Γξ).

We form

(2.7) V a,b(Γξ) = {v ∈ V (Γξ)− V S(Γξ) : |Sv| = a, |Ev| = b},

and adopt the convention V S
j (Γξ) = Vj(Γξ)∩V S(Γξ); we do the same for V a,b

j (Γξ).
We say Γξ ∼ Γξ′ if there is an isomorphism of graphs Γξ and Γξ′ that preserves

the decorations (a)-(e). We define

∆ = {Γξ | ξ ∈ WT }/ ∼ .
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2.3. Decomposition along nodes. We describe the decomposition of a T -MSP
field along its T -unbalanced nodes.

Definition 2.4. Let C be a T -twisted curve (i.e. a twisted curve with a T -action)

and q be a node of C. Let Ĉ1 and Ĉ2 be the two branches of the formal completion

of C along q. We call q T -balanced if TqĈ1 ⊗ TqĈ2
∼= L0 as T -representations.

For Γ ∈ ∆, we let

(2.8) N(Γ) = V 0,2(Γ) ∪ {(e, v) ∈ F (Γ) | v ∈ V S(Γ)}.
(Recall v ∈ V 0,2(Γ) when Cv is a node in C.) Note that every a ∈ N(Γξ) has its
associated node qa of C.

Definition 2.5. We call a ∈ N(Γξ) T -balanced if the associated node qa is a
T -balanced node in C. Let N(Γξ)

un ⊂ N(Γξ) be the subset of T -unbalanced nodes.

Clearly, if v ∈ N(Γξ) is T -balanced, then v ∈ V 0,2
1 (Γξ). Recall de = degL|Ce .

Lemma 2.6 ([CL32, Lemm. 2.14]). For v ∈ V 0,2
1 (Γξ) with (distinct) (e, v) and

(e′, v) ∈ F (Γξ), and letting qv = Ce ∩ Ce′ be the associated node, then qv is T -
balanced if and only if de + de′ = 0, and (Ce ∪ Ce′) ∩ C∞ is a node or a marking
of C.

Although a T -balanced a ∈ N(Γξ) is characterized by qa being T -balanced, the
previous reasoning shows that it can also be characterized by the information of
the graph Γξ. Thus for any Γ ∈ ∆, we can talk about N(Γ)un ⊂ N(Γ) without
referring to any ξ.

We now introduce flat graphs and regular graphs. We call a graph Γ ∈ ∆ flat if
N(Γ)un = N(Γ). Let ∆fl ⊂ ∆ be the set of flat graphs. In case N(Γ)un ( N(Γ),
we will associate a unique flat Γfl, called the flattening of Γ, as follows. For each
T -balanced v ∈ N(Γ), which lies in V 0,2

1 (Γ), we eliminate the vertex v from Γ,
replace the two edges e ∈ E∞(Γ) and e′ ∈ E0(Γ) incident to v by a single edge ẽ
incident to the other two vertices that are incident to e or e′, and demand that
ẽ lies in E0∞. For the decorations, we set ~g(ẽ) = 0 and (d0ẽ, d∞ẽ) = (d∞e, d∞e)
(since d0e′ = d∞e, using d0e = d∞e′ = 0), while keeping the rest unchanged. Let Γfl

be the resulting decorated graph after applying this procedure to all T -balanced
v in N(Γ). Then Γfl is flat. We introduce

∆fl = {Γfl | Γ ∈ ∆}/ ∼ .
Indeed, it is easy to check that ∆fl = {Γ ∈ ∆ | Γ is flat}.

Given a flat Γ ∈ ∆fl, we define a Γ-framed T -MSP field to be a pair (ξ, ε), where
ε : Γfl

ξ
∼= Γ is an isomorphism (of decorated graphs). As in [CL32], we can make

sense of families of Γ-framed T -MSP fields (cf. [CL32, Section 2.4]). We then
form the groupoid WΓ of Γ-framed T -MSP fields with obviously defined arrows;
WΓ is a DM stack, with a forgetful morphism

ιΓ :WΓ −→W T .
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Let W(Γ) be the image of ιΓ; it is an open and closed substack of W T . The
factored morphism WΓ →W(Γ) is an Aut(Γ)-torsor.

The cosection-localized virtual cycles [W(Γ)]
vir
loc are the terms appearing in the

localization formula (1.2). Because WΓ →W(Γ) is an Aut(Γ)-torsor, the similarly

defined virtual cycle [WΓ]vir
loc has ([CL32, Coro. 3.8])

[WΓ]vir
loc = |Aut(Γ)| · [W(Γ)]

vir
loc.

For a vertex v ∈ V∞(Γ) with γv = {ζa1
5 , · · · , ζac5 }, we abbreviate γv = (0e0 · · · 4e4),

where ei is the number of times i appear in {a1, · · · , ac}. (We require aj ∈ [0, 4].)

Definition 2.7. We call a vertex v ∈ V S
∞(Γ) exceptional if gv = 0 and γv =

(12+k4) or (11+k23), for some k ≥ 0.

Definition 2.8. We call a vertex v ∈ V∞(Γ) regular if the followings hold:

(1) In case v is stable, then either v is exceptional, or for every a ∈ Sv and
e ∈ Ev, we have γa and γ(e,v) ∈ {ζ5, ζ

2
5}.

(2) In case v is unstable and Cv is a scheme point, then Cv is a non-marking
smooth point of C.

We call Γ regular if it is flat, and all its vertices v ∈ V∞(Γ) are regular. We call
Γ irregular if it is not regular.

Remark 2.9. Suppose v ∈ V∞(Γ) is an unstable scheme point, and assume v is
exactly the intersection q := Ce1 ∩ Ce2 for e1, e2 ∈ E∞(Γ). Then [WΓ]vir

loc = 0 by
the following reason. We may assume C = Ce1 ∪Ce2 by our factorization of virtual
cycles. Then degL|Cei < 0 for i = 1, 2 implies H0(Cei ,L

⊕5) = 0, and thus WΓ is
a gerbe and hence of dimension zero. Then we have an exact sequence

H0(Ce1 ,L
⊕5)⊕H0(Ce2 ,L

⊕5)
r−→L⊕5|q −→ H1(C,L⊕5).

Since H0(Cei ,L
⊕5) = 0, r = 0. The sequence, after taking the invariant part,

becomes an inclusion

L⊕5|q −→ H1(C,L⊕5)T = ObTφ ,

whose family version exhibits a rank five subbundle and thus [WΓ]vir
loc = 0.

Theorem 1.2 states that for a non-pure loop irregular Γ, [WΓ]vir
loc ∼ 0. We prove

an easy and useful corollary of Lemma 2.6.

Corollary 2.10. Let Γ ∈ ∆fl be a flat graph that contains an e ∈ E0∞(Γ). Suppose
[WΓ]vir

loc 6= 0, then de = 0 and Ce ∩ C∞ is a node or a marking of C.

Proof. Since [WΓ]vir
loc ∈ AT∗ (WΓ ∩ W−), [WΓ]vir

loc 6= 0 implies that WΓ ∩ W− 6= ∅.
Let ξ ∈ WΓ ∩ W−, then E0∞(Γξ) = ∅. Thus the e ∈ E0∞(Γ) must come from
flattening a pair of edges in E0(Γξ) and E∞(Γξ). By applying Lemma 2.6, the
corollary is proved. �
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3. The Virtual cycle [WΓ]vir
loc

We begin by recalling the construction of the cosection-localized virtual cycle
[WΓ]vir

loc. Let D be the stack of flat families of (ΣC,C,L,N), where ΣC ⊂ C are
pointed twisted curves, and L and N are invertible sheaves on C. The stack
D is a smooth Artin stack, with a forgetful morphism W → D. By [CL31],
we have a perfect relative obstruction theory TW/D → EW/D and a cosection
σ : ObW/D → OW . Let EW = cone(TD[−1] → EW/D) be the mapping cone,
and let σ̄ be the lift of σ. This way, we obtain a perfect obstruction theory and
cosection

φ∨W : TW −→ EW and σ̄ : ObW = H1(EW) −→ OW .
1

Let ιΓ : WΓ → WT be the tautological finite étale morphism, which factor
through an Aut(Γ)-torsor WΓ → W(Γ), with W(Γ) ⊂ WT ⊂ W open and closed.
Taking the T -fixed part of the obstruction theory ofW, and using the tautological
TWΓ

→ TW , we obtain another obstruction theory (c.f. [GP, Prop. 1])

(3.1) φ∨WΓ
: TWΓ

−→ EWΓ
.

We then restrict ι∗Γσ̄ to the T -fixed part of ι∗ΓObW to obtain a cosection

ι∗Γσ̄
T : ObWΓ

= (ι∗ΓObW)T −→ OWΓ
.

Let W−Γ =WΓ ∩W− be the degeneracy locus of ι∗Γσ̄
T .

Applying the cosection-localized Gysin map in [KL], we obtain

(3.2) [WΓ]vir
loc = 0!

loc[CWΓ
] ∈ AT∗ (W−Γ ),

where CWΓ
∈ h1/h0(EWΓ

) is the intrinsic normal cone.

In the remainder of this section, we assume that Γ is an irregular graph with
V1(Γ) = ∅. To prove the desired vanishing [WΓ]vir

loc ∼ 0, we will work with a
construction of [WΓ]vir

loc via the obstruction theories ofWΓ relative to the auxiliary

stack of Γ-framed curves (C,ΣC,L,N) (in D).
As we will be working with T -curves extensively, we set the following con-

vention. Let (ΣC,C) be a pointed T -curve, meaning that T acts on the pointed
twisted curve (ΣC,C). Denote by CT,dec the curve after decomposing C along all
its T -unbalanced nodes. Recall that given a flat Γ and a (ξ, ε) ∈ WΓ, where
ξ = (C,L,N, ϕ, · · · ), etc., we not only have an identification of the T -unbalanced
nodes of C with N(Γ), but also an identification of the connected components
of CT,dec with V S(Γ) ∪ E(Γ). Further the T -linearizations of C and of (L,N)
restricted to each component Ca in CT,dec are specified by the data in Γ.

Definition 3.1. A Γ-framed (twisted) curve is a T -equivariant (C,ΣC,L,N) (in
D), together with an identification ε identifying

(1) the marking ΣC with the legs of Γ,

1As argued in [CL32, Section 3.1], φ∨W is an arrow in D+
qcoh(O[W/T ]); and σ̄ is T -equivariant.

(See [CL32, Section 3.1] for notation.)
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(2) the T -unbalanced nodes of C with N(Γ), and
(3) the connected components of CT,dec with V S(Γ) ∪ E(Γ),

so that these are consistent with the geometry of (C,ΣC), and the T -linearization
of L and N restricted to each component Ca in CT,dec, as specified by the data in
Γ,

(4) when e ∈ E0∞(Γ), either Ce is irreducible and then Ce ∼= P1, or Ce is
reducible and then Ce = Ce−∪Ce+ is a union of two P1’s so that, Ce−∩C0 6=
∅, Ce+ ∩ C∞ 6= ∅, and L⊗N ⊗ L1|Ce+ ∼= OCe+ and N|Ce−

∼= OCe−.

Because the conditions in these definitions are open, we can speak of flat families
of Γ-framed curves. Let DΓ be the stack of flat families of Γ-framed curves,
where arrows are T -equivariant arrows in D that preserve the data of Γ-framings.
Clearly, DΓ is a smooth Artin stack, with a forgetful morphism WΓ → DΓ.

Definition 3.2. A Γ-framed gauged twisted curve is a collection of T -equivariant
objects η = (C,ΣC,L,N, ν1, ν2) with an identification ε such that

(1) ((C,ΣC,L,N), ε) ∈ DΓ;
(2) (ν1, ν2) ∈ H0(L⊗ N ⊗ L1)T ⊕H0(N)T , such that ν1|C0 = ν2|C∞ = 0, and

ν1|C∞ and ν2|C0 are nowhere vanishing;
(3) in case of (4) in Definition 3.1, ν1|Ce+ and ν2|Ce− are nowhere vanishing.

Note that the conditions (2) and (3) are dictated by (3)-(5) of Definition 2.1
in the presence of the fields (ϕ, ρ). Because of (3), The T -action on the domain
curve of any ξ ∈ DΓ or DΓ,ν are completely determined by Γ.

Similarly we can speak of flat families of Γ-framed gauged curves. Let DΓ,ν be
the stack of flat families of Γ-framed gauged twisted curves as in Definition 3.2.
This stack is a smooth Artin stack. By forgetting the ν fields, the ϕ fields and
the ρ fields, we obtain the forgetful morphisms DΓ,ν → DΓ.

Let DΓ,[ν] ⊂ DΓ be the image stack of the forgetful DΓ,ν → DT . Let

(3.3) DΓ,ν
p1−→DΓ,[ν]

p2−→DΓ

be the induced morphisms.

Lemma 3.3. All stacks in (3.3) are smooth. The morphism p1 is smooth of DM
type and the morphism p2 is a closed embedding. Assuming V1(Γ) = ∅, then the
fiber dimension of p1 is |V (Γ)|, and the codimension of image(p2) is

∑
v∈V S(Γ) gv.

Proof. The proof that all stacks in (3.3) are smooth, p1 is smooth and p2 is a closed
embedding is straightforward and hence omitted. Let ξ = (ΣC,C,L,N, ν1, ν2) be
a closed point in DΓ,ν . In case V1(Γ) = ∅, then the fiber dimension of p1 at ξ is
the dimension of choices of locally constant sections ν1|C0 and ν2|C∞ , namely the
number of connected components of C0∪C∞, which is |V0(Γ)|+ |V∞(Γ)| = |V (Γ)|.

The proof of the codimension is similar, and hence omitted. �
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Let (C,ΣC ,L,N , ϕ, ρ, ν) with π : C → WΓ be the universal family of WΓ. Let

Llog = L(−ΣC(1,ϕ)), P log = L−5 ⊗ ωlog
C/WΓ

(−ΣC(1,ρ)), and

(3.4) U = (Llog)⊕5 ⊕ P log and V = L ⊗N ⊗ L1 ⊕N .

Using the T -invariant version of [CL2, Prop. 2.5], the standard relative obstruction
theory of WΓ → DΓ is given by

φ∨WΓ/DΓ
: TWΓ/DΓ

−→ EWΓ/DΓ
:= RπT∗ (U ⊕ V);

the standard relative obstruction theory of WΓ → DΓ,ν is given by

φ∨WΓ/DΓ,ν
: TWΓ/DΓ,ν

−→ EWΓ/DΓ,ν
:= RπT∗ U .

Like the discussion before (3.2), using their respective standard cosections, we ob-
tain their localized virtual cycles [WΓ]vir

loc,Γ of φWΓ/DΓ
and [WΓ]vir

loc,Γ,ν of φWΓ/DΓ,ν
.

Let W−Γ be the vanishing locus of the cosection of φWΓ
mentioned before (3.2).

We will show that the vanishing locus of the cosections of φWΓ/DΓ
and of φWΓ/DΓ,ν

are identical to W−Γ .

Proposition 3.4. Let Γ be irregular. Then

[WΓ]vir
loc = [WΓ]vir

loc,Γ = [WΓ]vir
loc,Γ,ν ∈ A∗W−Γ .

Proof. We will choose a relative perfect obstruction theory

φ∨WΓ/DΓ,[ν]
: TWΓ/DΓ,[ν]

−→ EWΓ/DΓ,[ν]
,

and show that its associated localized virtual cycle [WΓ]vir
loc,Γ,[ν] fits with the iden-

tities

(3.5) [WΓ]vir
loc,Γ,ν = [WΓ]vir

loc,Γ,[ν] = [WΓ]vir
loc,Γ = [WΓ]vir

loc.

We begin with constructing φWΓ/DΓ,[ν]
. First, because p1 : DΓ,ν → DΓ,[ν] is

smooth, TDΓ,ν/DΓ,[ν]
is a locally free sheaf. Let

(3.6) TWΓ/DΓ,ν
−→ TWΓ/DΓ,[ν]

−→ q∗TDΓ,ν/DΓ,[ν]

+1−→

be the d.t. associated withWΓ → DΓ,ν → DΓ,[ν]. Here q is the forgetful morphism
fromWΓ to either DΓ,ν orDΓ,[ν], whose meaning will be apparent from the context.
We claim that this d.t. splits naturally via a

(3.7) τ : q∗TDΓ,ν/DΓ,[ν]
→ TWΓ/DΓ,[ν]

.

Indeed, let ξ ∈ WΓ be any closed point, represented by (ΣC,C,L,N, ϕ, ρ, ν1, ν2).
Let ξ̄ = (ΣC,C,L,N, ν1, ν2) be its image in DΓ,ν . Then any x ∈ TDΓ,ν/DΓ,[ν]

|ξ̄ is

represented by an extension (ν̃1, ν̃2) of (ν1, ν2) as a section of (L,N) × B2 over
(ΣC,C)× B2, where B2 = SpecC[ε]/(ε2). We define τ(ξ)(x) ∈ TWΓ/DΓ,[ν]

|ξ as the

family (
(ΣC,C,L,N, ϕ, ρ)×B2, ν̃1, ν̃2

)
.
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This definition extends in the family version and gives a homomorphism τ as in
(3.7) that splits (3.6). It follows that q∗TDΓ,ν/DΓ,[ν]

→ TWΓ/DΓ,ν
[1] is zero, and

(3.8) TWΓ/DΓ,[ν]
= TWΓ/DΓ,ν

⊕ q∗TDΓ,ν/DΓ,[ν]
.

By the construction of DΓ,ν → DΓ,[ν], we see that canonically we have

(3.9) q∗φ∨DΓ,ν/DΓ,[ν]
: q∗TDΓ,ν/DΓ,[ν]

∼=−→πT∗ V.

This together with (3.8) gives us

φ∨WΓ/DΓ,[ν]
= φ∨WΓ/DΓ,ν

⊕ q∗φDΓ,ν/DΓ,[ν]
: TWΓ/DΓ,[ν]

−→ EWΓ/DΓ,[ν]
:= RπT∗ U ⊕ πT∗ V

that fits into the following homomorphism of d.t.s:

(3.10)

EWΓ/DΓ,ν
−−−−→ EWΓ/DΓ,[ν]

−−−−→ πT∗ V
+1−−−−→xφ∨WΓ/DΓ,ν

xφ∨WΓ/DΓ,[ν]

xq∗φDΓ,ν/DΓ,[ν]

TWΓ/DΓ,ν
−−−−→ TWΓ/DΓ,[ν]

−−−−→ q∗TDΓ,ν/DΓ,[ν]

+1−−−−→ .

Note that by our construction, πT∗ V is a locally free sheaf of rank |V (Γ)|. By
inspection, as q∗TDΓ,ν/DΓ,[ν]

is a sheaf, we can easily see that q∗φDΓ,ν/DΓ,[ν]
is an

isomorphism.
We form the following diagram:

(3.11)

EWΓ/DΓ,[ν]
−−−−→ EWΓ/DΓ

−−−−→ R1πT∗ V[−1]
+1−−−−→xφ∨WΓ/DΓ,[ν]

xφ∨WΓ/DΓ

xζ
TWΓ/DΓ,[ν]

−−−−→ TWΓ/DΓ
−−−−→ q∗TDΓ,[ν]/DΓ

+1−−−−→ ,

where the top line is induced by πT∗ V → RπT∗ V → R1πT∗ V, and the bottom line
is induced by WΓ → DΓ,[ν] → DΓ. The arrow ζ is the one making the above a
homomorphism of d.t.s after we have shown that the left square is commutative.

We now show that the left square in (3.11) is commutative. Using the direct
sum (3.8), and the definition of φ∨WΓ/DΓ,[ν]

, we see that the desired commutativity

follows from the commutativity of the following two squares:

(3.12)

EWΓ/DΓ,ν
−−−−→ EWΓ/DΓxφ∨WΓ/DΓ,ν

xφ∨WΓ/DΓ

TWΓ/DΓ,ν
−−−−→ TWΓ/DΓ

πT∗ V −−−−→ RπT∗ Vxq∗φ∨DΓ,ν/DΓ,[ν]

xpr2 ◦φ∨WΓ/DΓ

q∗TDΓ,ν/DΓ,[ν]

e−−−−→ TWΓ/DΓ
,

where the horizontal arrow e is defined via the canonical

q∗TDΓ,ν/DΓ,[ν]
= H0(q∗TDΓ,ν/DΓ,[ν]

)→ H0(q∗TDΓ,ν/DΓ
)→ H0(TWΓ/DΓ

)→ TWΓ/DΓ
.

We will prove that the left square is commutative in Proposition 7.2. For the other
square, by the construction of the obstruction theory φ∨WΓ/DΓ

, and because both

RiπT∗ V are locally free, we conclude that the second square is also commutative.
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We also need to show that ζ is an isomorphism. We first check that for any
closed ξ ∈ WΓ, H1(ζ|ξ) is injective. Then because both H1(TDΓ,ν/DΓ,[ν]

) and

R1πT∗ V are locally free of identical rank, we conclude that H1(ζ) is an isomor-
phism. Because H i 6=1(ζ) = 0, ζ is proved to be an isomorphism.

Let ξ be any closed point in WΓ, represented by (ΣC,C,L,N, ϕ, ρ, ν1, ν2). Let
x 6= 0 ∈ H1(q∗TDΓ,[ν]/DΓ

|ξ), which is represented by a first-order deformation

of (ΣC,C,L,N) so that (ΣC,C) remains constant, and (L,N) is deformed so that
(ν1, ν2) cannot be extended. Then for the same first-order deformation of (ΣC,C,L,N),
(ϕ, ρ, ν1, ν2) does not extend. Then by [BF, Thm. 4.5], H1(φ∨WΓ/DΓ

|ξ)(x) is the

obstruction to the existence of such an extension, thus

H1(φ∨WΓ/DΓ
|ξ)(x) 6= 0 ∈ H1(EWΓ/DΓ

|ξ).

On the other hand, because the existence of the extensions of these four fields
are independent of each other, and because extending (ν1, ν2) is already ob-
structed, by the construction of the relative obstruction theory φWΓ/DΓ

,

H1(ζ|ξ)(x) = pr2

(
H1(φ∨WΓ/DΓ

|ξ)(x)
)
6= 0 ∈ H1(R1πT∗ V[−1]|ξ).

This proves that H1(ζ|ξ) is injective, thus ζ is an isomorphism.

We now show the first identity in (3.5), namely [WΓ]vir
loc,Γ,ν = [WΓ]vir

loc,Γ,[ν]. We

first apply [BF, Prop. 2.7] to (3.10) to obtain a commutative diagram of cone
stacks

h1/h0(πT∗ V[−1]) −−−−→ h1/h0(EWΓ/DΓ,ν
)

λ−−−−→ h1/h0(EWΓ/DΓ,[ν]
)x∼= x(φ∨WΓ/DΓ,ν

)∗

x(φ∨WΓ/DΓ,[ν]
)∗

h1/h0(πT∗ V[−1]) −−−−→ h1/h0(TWΓ/DΓ,ν
) −−−−→ h1/h0(TWΓ/DΓ,[ν]

),

where both rows are exact sequences of abelian cone stacks. Let

CWΓ/DΓ,ν
⊂ h1/h0(EWΓ/DΓ,ν

) and CWΓ/DΓ,[ν]
⊂ h1/h0(EWΓ/DΓ,[ν]

)

be their respective virtual normal cones [BF, LT]. Applying an argument analo-
gous to [CL2, Coro. 2.9] (see also [KKP, Prop. 3]), we conclude that λ∗(CWΓ/DΓ,[ν]

) =

CWΓ/DΓ,ν
. Because the two cosections of ObWΓ/DΓ,ν

and ObWΓ/DΓ,[ν]
can be lift to

the same cosection of the absolute obstruction sheaf ObWΓ
, we conclude that the

first identity in (3.5) holds.
We prove the second identity in (3.5). By the same reasoning, from (3.11) we

obtain a commutative diagram of cone stacks

h1/h0(EWΓ/DΓ,[ν]
)

λ′−−−−→ h1/h0(EWΓ/DΓ
) −−−−→ h1/h0(R1πT∗ V[−1])xh1/h0(φ∨WΓ/DΓ,[ν]

)
xh1/h0(φ∨WΓ/DΓ

)

x∼=
h1/h0(TWΓ/DΓ,[ν]

) −−−−→ h1/h0(TWΓ/DΓ
) −−−−→ h1/h0(q∗TDΓ,[ν]/DΓ

)
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whose first row is exact. Notice that DΓ,[ν] → DΓ is a smooth closed embedding

with normal bundle R1πT∗ V, and λ′ is a regular embedding whose normal bundle
is isomorphic to R1πT∗ V.

By the normal cone construction [Ful], we see that λ′
(
h1/h0(EWΓ/DΓ,[ν]

)
)

in-

tersects CWΓ/DΓ
transversally, and λ′−1(CWΓ/DΓ

) = CWΓ/DΓ,[ν]
. Because the two

cosections of ObWΓ/DΓ,[ν]
and ObWΓ/DΓ

lift to the same cosection of the absolute

obstruction sheaf ObWΓ
, we conclude that the second identity in (3.5) holds.

Finally, we prove the third identity in (3.5). From the canonical diagram

(3.13)

WΓ
ιΓ−−−−→ Wyq yq̃

DΓ
p−−−−→ D,

we have the following commutative diagram

(3.14)

EWΓ/DΓ
= (ι∗ΓEW/D)T

⊂−−−−→ ι∗ΓEW/Dxφ∨WΓ/DΓ

xφ∨W/D
TWΓ/DΓ

−−−−→ ι∗ΓTW/D.

By the construction of the cosection, σWΓ/DΓ
= (ι∗ΓσW/D)T . Further (3.13) in-

duces an arrow q∗TDΓ
[−1] → TWΓ/DΓ

, which when composed with φ∨WΓ/DΓ
in

(3.14) defines the arrow c below:

(3.15)

−−−−→ q∗TDΓ
[−1]

c−−−−→ EWΓ/DΓ
−−−−→ EWΓ

+1−−−−→yε ∥∥∥ yε′
−−−−→ (ι∗Γq̃

∗TD)T [−1] −−−−→ (ι∗ΓEW/D)T −−−−→ (ι∗ΓEW)T
+1−−−−→ .

Let ε be the tautological homomorphism. By the construction of EWΓ
and EW ,

both rows are d.t.s. We chose the third vertical arrow ε′ to be the one making
(3.15) a homomorphism of d.t.s. It is an isomorphism after ε is shown to be an
isomorphism.

The proof that ε is an isomorphism can be achieved with the aid of the stackM,
which is the stack of pointed twisted nodal curves. LetMT be the stack of pointed
twisted nodal curves together with T -actions. As the composites DΓ

p→D f→M
and DΓ

h→MT →M are identical, we obtain the following homomorphism of d.t.s:

(3.16)

(p∗TD/M)T −−−−→ (p∗TD)T −−−−→ (p∗f∗TM)T
+1−−−−→xα1

xα2

xα3

TDΓ/MT
−−−−→ TDΓ

−−−−→ h∗TMT

+1−−−−→ .
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We can then easily verify that both α1 and α3 are isomorphisms. By the five
lemma, α2 is an isomorphism. This proves that ε in (3.15) is an isomorphism.

By (3.14) and [GP, Prop. 1], the composite TWΓ
→ TW → ι∗ΓEW lifts to an

obstruction theory φ∨WΓ
, making the following square commutative:

(3.17)

EWΓ/DΓ
−−−−→ EWΓxφ∨WΓ/DΓ

xφ∨WΓ

TWΓ/DΓ
−−−−→ TWΓ

.

We then take H1 of the third column in (3.15) to obtain ObWΓ
∼=(ι∗ΓObW)T . Fur-

ther we can easily check that the two cosections coincide, which implies that they
have identical vanishing locus W−Γ . By the same reasoning as before, we conclude

that the localized virtual class [WΓ]vir
loc defined in (3.2) is identical to the class

0!
loc[CWΓ/DΓ

] (also see [KKP, Prop. 3]). This proves the lemma. �

4. The vanishing in no-string cases

We first prove a special case of Theorem 1.2. Let Γ ∈ ∆fl. A string of Γ is an
e ∈ E0∞(Γ) so that the vertex v of e lying in V0(Γ) is unstable and has no other
edge attached to it.

Proposition 4.1. Let Γ ∈ ∆fl be irregular and not a pure loop. Suppose it does
not contain strings, then [WΓ]vir

loc = 0.

Remark 4.2. Recall the convention on flat graphs. Let ξ = (C,ΣC, · · · ) ∈ WΓ

be any closed point. Note that Γ might be different from Γξ, which happens when
Γξ is not flat, while Γ is the flattening of Γξ. In the case V1(Γ) = ∅, then this
happens when every v ∈ V1(Γξ) has two edges ev− and ev+ attached to it, and
{v, ev−, ev+} in Γξ is replaced by a single edge e(v) ∈ E0∞(Γ). Our convention is
that Ce(v) = Cev− ∪ Cev+.

We say Γ is bare if V1(Γ) = ∅. We begin with a special case.

Lemma 4.3. Let the situation be as in Proposition 4.1. Suppose V1(Γ) = ∅ and
V0(Γ) 6= ∅. Then [WΓ]vir

loc = 0.

Proof. Since Γ is fixed throughout this proof, for simplicity we will use V , E, etc.,
to denote V (Γ), E(Γ), etc. Recall that for v ∈ V S(= V S(Γ)), Ev is the set of
nodes Cv ∩ (∪e∈ECe), and Sv is the set of legs incident to v (cf. (2.6)).

We introduce more notations. Let ξ = (C,ΣC, · · · ) ∈ WΓ be a closed point;
let v ∈ V . For a ∈ Sv, in case 〈γa〉 6= {1}, let ma ∈ [1, 4] so that γa = ζma5 .
Let S1

v ⊂ Sv be the subset of legs decorated with (1, ϕ) or (1, ρ). (Since γ is
narrow, no legs are decorated by 1.) We denote S1 = ∪v∈V S1

v , S1
∞ = ∪v∈V∞S1

v ,

etc. Similarly, we denote S 6=1
v = Sv − S1

v , and S 6=1 = ∪v∈V S 6=1
v . By the definition

of MSP fields, S 6=1
v = ∅ when v /∈ V∞, implying S 6=1 = ∪v∈V∞S

6=1
v .
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We calculate vir. dimWΓ. Because the perfect obstruction theory of WΓ is the
one relative to DΓ, we have

(4.1) vir. dimWΓ = vir. dimWΓ/DΓ + dimDΓ

where

(4.2) dimDΓ =
∑
v∈V S

(3gv − 3 + |Ev|+ |Sv|) +
∑
v∈V S

2gv + 2h1(Γ)− |E| − 2.

Here 3gv − 3 + |Ev| + |Sv| represents deformations of ΣCv ⊂ Cv (where ΣCv is
defined in (2.6)).

∑
v∈V S 2gv represents deformations of L and N restricting to C0

and C∞. The term 2h1(Γ) is the deformations of L and N attributed to loops in
Γ; |E| represents automorphisms of C; and −2 is due to the automorphisms of L
and N.

Next, using the relative perfect obstruction theory of WΓ/DΓ, we know that
vir. dimWΓ/DΓ is the sum of (4.3) and (4.4):

(4.3) χT (L⊗N ⊗ L1) + χT (N);

(4.4) χT
(
L(−ΣC

(1,ϕ))
⊕5
)

+ χT
(
L∨⊗5 ⊗ ωlog

C (−ΣC
(1,ρ))

)
.

Next, since ν1|C∞ = ν2|C0 = 1, as T sheaves we have N|C0
∼= OC0 and L ⊗ N ⊗

L1|C∞ ∼= OC∞ . Let e ∈ E0∞(Γ) be such that the associated curve Ce ∼= P1, and
let q0 = Ce ∩ C0 and q∞ = Ce ∩ C∞. Then using ν1|q0 = 0, the invariance of
ν1 implies that T acts non-trivially on Ce, thus forcing T to act non-trivially on
L ⊗ N ⊗ L1|q0 . Then as ν2|q∞ = 0, T also acts non-trivially on N|q∞ . In case Ce
is a union of two P1’s, a parallel argument shows that the same conclusion holds.
Thus as Γ is connected,

(4.3) = χ(L⊗N ⊗ L1|C∞) + χ(N|C0) =
∑
v∈V0

(1− gv) +
∑
v∈V∞

(1− gv).

Here when Cv is a point, we set gv = 0.
To proceed, we let ξ = (C,ΣC, · · · ) ∈ WΓ as before. Let χT of a T -sheaf be the

T -equivariant χ of the sheaf. We claim

χT
(
L(−ΣC

(1,ϕ))
)

= χ
(
L(−ΣC

(1,ϕ))
)
.(4.5)

Indeed, let v ∈ V0(Γ), then because ϕ|Cv 6= 0 and since T -acts trivially on Cv, T
acts trivially on L|Cv . For the same reason, for v ∈ V∞(Γ), T acts trivially on both
Cv and L|Cv . On the other hand, suppose E0∞(Γ) = {e} has only one element,
with the associated curve Ce. In case Ce ∼= P1, by Lemma 2.6 we have L|Ce ∼= OCe .
Then (4.5) follows. In case Ce consists of two P1’s, write Ce = Ce− ∪ Ce+, with
q = Ce− ∩ Ce+, y− = Ce− ∩ C0 and y+ = Ce+ ∩ C∞. By Lemma 2.6, degL|Ce− =
−degL|Ce+ > 0, thus

H i
T

(
L(−ΣC

(1,ϕ))
)

= H i
(
L|C∞(−ye+)

)
⊕H i

(
L(−ΣC

(1,ϕ))|C0

)
,
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and consequently (4.5) follows. The case where E0∞(Γ) contains many edges is
similar. This proves (4.5).

We next claim that (4.5) holds with L(−ΣC
(1,ϕ)) replaced by L∨⊗5⊗ωlog

C (−ΣC
(1,ρ)).

As before, we first consider the case E0∞(Γ) = {e}. Because Γ contains no strings,
Ce ∩ C0 is a node of C. By Lemma 2.6, Ce ∩ C∞ is also a node of C. Thus

degL∨⊗5⊗ωlog
C |Ce = 0. Then the proof of (4.5) shows that the claim holds in this

case. The case |E0∞(Γ)| > 1 can be treated similarly. This proves the claim.

Consequently,

(4.4) = 5 · χ
(
L(−ΣC

(1,ϕ))
)

+ χ
(
L∨⊗5 ⊗ ωlog

C (−ΣC
(1,ρ))

)
= −5|ΣC

(1,ϕ)|+ 5
(
degL + 1− g −

∑
a∈S 6=1

ma

5

)
+

+
(
2g − 2 + |S| − 5 degL− |ΣC

1,%|+ 1− g
)

= 4(1− g)− 4|S1
∞| −

∑
a∈S 6=1

(ma − 1).

Because Γ is bare, V S = V S
0 ∪V S

∞; because Γ has no string, V 1,1
0 = ∅. Therefore

ΣC
(1,ρ) = ∪v∈V0Sv = ∪v∈V S0 Sv. Similarly, for any v ∈ V U

∞(= V∞ − V S
∞) that has a

leg attached to it, v has exactly one edge e attached to it, which must lie in E0∞
as V1 = ∅. By Corollary 2.10, the leg of v must be a scheme marked point (i.e.

in Σ(1,ϕ)). Thus S 6=1 = ∪v∈V∞S
6=1
v is the same as ∪v∈V S∞S

6=1
v . Putting the above

together we obtain

(4.6)
∑
v∈V S

|Sv| = |ΣC
(1,ρ)|+ |S

6=1|+
∑
v∈V S∞

|S1
v |.

Assumption I. No leg of Γ is decorated by (1, ρ), and ma 6= 1 for every a ∈ S 6=1.

Under this assumption, we have the Euler equation |E| − |V | = h1(Γ) − 1,
g =

∑
v∈V S gv + h1(Γ), and ΣC

(1,ρ) = ∅. Using (4.1), and adding (4.2), (4.3) and

(4.4), we obtain

(4.7) vir. dimWΓ =
( ∑
v∈V S

|Ev|−4|S1
∞|+

∑
v∈V S∞

|S1
v |
)
−3(|E|−|V U |)−

∑
a∈S 6=1

(ma−2).

Note that when Γ is a pure loop, it is zero. We now prove that under the as-
sumption of the Proposition 4.1, (4.7) is negative when [W(Γ)]

vir
loc 6= 0, which is

impossible.
We first consider the case where V S = ∅. Since Γ is not a pure loop, C is a

chain of P1’s connecting two vertices v and v′. Since V1 = ∅, E = E0∞. Since Γ
has no strings, both v and v′ ∈ V∞. Then by Corollary 2.10, each v and v′ each
has one leg in Σ(1,ϕ) attached to it. Thus |S1

∞| = 2 and |E| −V U | = −1, implying
that (4.7) is −4 · 2 + 3 < 0.
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We now assume V S 6= ∅. Our strategy is to divide the contribution in (4.7)
by looking at the maximal simple chains in Γ. Here a simple chain in Γ consists
of distinct edges E1, · · · , Ek and vertices v0, · · · , vk so that Ei has vertices vi−1

and vi, and v0<i<k are unstable. Since Γ is not a pure loop and |V S | > 0, if
{E1, · · · , Ek} is a maximal simple chain in Γ, then one of {v0, vk} must be stable.

Clearly maximal simple chains give partitions of E and V U . Now let {E1, · · · , Ek}
be a maximal simple chain in Γ. Suppose v0 is stable but vk is not, then vk ∈ V U

∞
because Γ contains no strings. Thus |S1

vk
| = 1 by Corollary 2.10. Therefore the

contribution to (4.7) from {E1, · · ·Ek, v1, · · · , vk} is

(4.8) 1− 4|S1
vk
| = −3.

The other case is when both v0 and vk are stable in the maximal chain. Then the
contribution to (4.7) from {E1, · · ·Ek, v1, · · · , vk−1} is

(4.9) 2− 3 = −1.

We now show that (4.7) is non-positive. Let Γ′ be the graph resulting from
removing all edges, all unstable vertices, and all legs attached to unstable vertices.
Because every e ∈ E or v ∈ V U is contained in exactly one maximal simple chain,
the previous argument shows that

vir.dimWΓ ≤ vir.dimWΓ′ .

Applying formula (4.7) to vir.dimWΓ′ , we see that it contains terms of the fol-
lowing kind: (i) terms associated with elements in ∪v∈V SS1

v , each contributing
−4 + 1 = −3; (ii) terms associated with elements in ∪v∈V US1

v , each contributing
−4; and (iii) terms associated with elements a ∈ S 6=1, each contributing ma−2 ≤ 0
since ma ≥ 2 by our simplifying assumption. This shows that (4.7) is ≤ 0.

When (4.7) is zero, we must have E = V U = S1 = ∅, and ma = 2 for every
a ∈ S 6=1. But this is impossible because Γ is irregular. This proves that under the
simplifying assumption and when Γ is not a pure loop, vir.dimWΓ < 0, implying
[WΓ]vir

loc = 0.

We now prove the proposition without making Assumption I. First, suppose
Γ has a leg i0 (i0-th leg) decorated by γi0 = ζ5 attached to v ∈ V∞. We claim
that v is stable. Indeed, if v is not stable, it would have an edge e attached to
it. Since Γ is bare e ∈ E0∞(Γ); but by Lemma 2.6 de ∈ Z, which contradicts to
the assumption that i0 is decorated by ζ5. Thus v is stable. We let Γ′ be the
graph obtained by removing the leg i0 from Γ, as long as Γ is not an one vertex
graph with (gv, |Sv|) = (0, 3). (Note that since Γ is irregular, (gv, |Sv|) = (1, 1)
is impossible.) Note that if gv = 0, |Sv| + |Ev| = 3, and v has at least one edge,
then v in Γ′ becomes unstable.

Following [CLL, Thm. 4.5], we have a forgetful morphism

F :WΓ −→WΓ′

that sends ξ = (ΣC,C, · · · ) ∈ WΓ to ξ′ = (ΣC′ ,C′, · · · ) ∈ WΓ′ by forgetting the
marking and stabilizing.
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Marking forgetting and stabilizing. The curve C′ is obtained from C by for-
getting the marking ΣC

i0
, making C scheme along ΣC

i0
, and stabilizing if necessary,

with C′ as the resulting curve; ΣC′ is ΣC with ΣC
i0

deleted; let ε : C → C′ be the
resulting morphism, and let L′ = ε∗L and L′ ⊗N′ = ε∗(L⊗N), while ϕ′, etc., is
the pushforward of ϕ, etc., respectively.

We next compare the virtual cycles [WΓ]vir
loc and [WΓ′ ]

vir
loc. First, by marking

forgetting and stabilizing, we obtain a morphism f : DΓ → DΓ′ , which fits into
the following commutative square:

(4.10)

WΓ
F−−−−→ WΓ′y y

DΓ
f−−−−→ DΓ′ .

Let (C,ΣC ,L, · · · ) and (C′,ΣC′ ,L′, · · · ) be the universal families of WΓ and
WΓ′ , respectively, with π : C → WΓ and π′ : C′ → WΓ′ their projections. The
stabilization defines the Ψ below

C Ψ−−−−→ C′ ×WΓ′ WΓ
pr−−−−→ C′yπ yπ̃ yπ′

WΓ WΓ
F−−−−→ WΓ′ .

It is easy to check that we have canonical isomorphisms pr∗ L′ ∼= Ψ∗L, and
R1Ψ∗L = 0. This implies

RπT∗ L(−ΣC(1,ϕ)) ∼= Rπ̃T∗ Ψ∗L(−ΣC(1,ϕ)) ∼= F∗Rπ′T∗ L′(−ΣC
′

(1,ϕ)),

and similar isomorphisms with L(−ΣC(1,ϕ)) replaced by L−5⊗ωC/WΓ
(−ΣC(1,ρ)), etc.

As in [CLL], the above shows that the relative obstruction theory ofWΓ′ → DΓ′

is pulled back to that of WΓ → DΓ, and the cosection of ObWΓ′/DΓ′
is pulled back

to that of ObWΓ/DΓ
. Thus, letting θ = F|W−Γ :W−Γ →W

−
Γ′ , we have

(4.11) θ∗[WΓ′ ]
vir
loc = [WΓ]vir

loc.

In case Γ has a leg decorated by (1, ρ), we remove this leg from Γ, resulting
in a new graph Γ′. (In this case since Γ is irregular, Γ cannot be a single vertex
graph.) Then we have a similarly defined forgetful morphism F : WΓ → WΓ′

(with stabilization if necessary) and θ as before so that (4.11) holds.
By repeating this procedure (of removing legs labeled by ζ5 or (1, ρ)), we obtain

a graph Γ′ and morphisms F and θ as before so that (4.11) holds. As Γ′ is bare,
not a pure-loop and satisfies Assumption I, we have [WΓ′ ]

vir
loc = 0. By (4.11),

[WΓ]vir
loc = 0. This proves the lemma. �

Proof of Proposition 4.1. By a result proved at the end of [CL32, Section 3], we

know that [WΓ]vir
loc = 0 if there is a v ∈ V 0,2

∞ (Γ) so that the two edges e in Γ
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incident to v both lie in E∞(Γ) and have de = degL|Ce ∈ Z. We now suppose
that Γ has no such vertices.

We next trim all edges of Γ in E0(Γ) ∪ E∞(Γ). For e ∈ E0(Γ), in case e is
incident to a stable v ∈ V S

0 (Γ), or in case e is incident to an unstable v ∈ V U
0 (Γ)

so that another edge in E(Γ) is also incident to v, we remove e and add a new leg
decorated by (1, ρ) and attach it to v; otherwise we remove e, v, and any other
legs incident to v.

For e ∈ E∞(Γ), in case e is incident to a stable v ∈ V S
∞(Γ), or in case e is

incident to an unstable v ∈ V U
0 (Γ) so that another edge in E(Γ) is also incident

to v, we remove e and add a new leg decorated by γ(e,v)
2 and attach it to v;

otherwise we remove e, v, and any other legs incident to v. After performing
these operations on all e in E0(Γ) and E∞(Γ), and after discarding all vertices in
V1(Γ), we obtain a new graph Γ′. Let {Γi} be the connected components of Γ′.

Applying the discussion [CL32, Section 3] to this situation, we conclude that if
[WΓ′ ]

vir
loc = 0, then [WΓ]vir

loc = 0. By our assumption on Γ, we know that all Γi in
{Γi} are non-loop and bare; and at least one such Γi is irregular. Because

[WΓ′ ]
vir
loc =

∏
[WΓi ]

vir
loc,

by applying Lemma 4.3, we have that [WΓ′ ]
vir
loc = 0. This proves the proposition.

�

Corollary 4.4. In case Γ consists of a single stable vertex v ∈ V∞(Γ) such that
its legs are decorated by γ1, · · · , γ` ∈ µ5 − {1} and that at least one γi ∈ {ζ3

5 , ζ
4
5},

then [WΓ]vir
loc = 0 except when gv = 0 and γ = (11+k23) or = (12+k4), for a k ≥ 0.

5. Reduction to no-string cases

The proof of the general case is by reduction to no-string cases. To this end,
we introduce the operation trimming a leaf edge from a graph.3

Definition 5.1. Let Γ ∈ ∆fl and let e ∈ E0∞(Γ) be a string (thus a leaf edge).
Let v− ∈ V0(Γ) and v+ ∈ V∞(Γ) be its vertices. The edge e is trimmed from Γ by
first removing e, v− and all legs attached to v−, and then attaching a leg, called
the distinguished leg, decorated by (1, ϕ) to v+.

In the following, we will apply induction on the number of strings to prove
Theorem 1.2. We fix a Γ with a string e, and its two associated vertices v±, as in
Definition 5.1. We assume [WΓ]vir

loc 6= 0, and shall derive a contradiction toward
the end. We denote by Γ′ the graph after trimming e from Γ.

As before, let DΓ,ν be the stack of Γ-framed gauged curves ((C,ΣC,L,N, ν), ε).

For any family (C,ΣC ,L,N , ν) (with ε implicitly understood) in DΓ,ν , because e is
a string of Γ, the correspondence a = (e, v+) ∈ F (Γ) is associated with a section

2We assign γ(e,v) = (1, ϕ) in case de ∈ Z, otherwise γ(e,v) = e−2π
√
−1de (cf. before Defi. 2.3).

3A leaf edge is an edge so that one of its vertex is unstable and has only one edge attached
to it.
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of nodes Ra ⊂ C that splits off a family of rational curves Ce ⊂ C (associated with
e), called the e-tail of C.4 We let

C� = C − Ce ⊂ C
be the complement of Ce in C.

We consider the family

(5.1) (C�,ΣC ∩ C� +Ra,L|C� ,N|C� , ν|C�).
Together with the induced framing, (5.1) is a family in DΓ′,ν . As this construction
is canonical, we obtain a forgetful morphism

DΓ,ν −→ DΓ′,ν .

We need another stack of elements in DΓ,ν paired with fields on its e-tail. Given

(C,ΣC,L,N, ν) ∈ DΓ,ν , we abbreviate

Llog = L(−ΣC
(1,ϕ)), and Plog = L∨⊗5 ⊗ ωlog

C (−ΣC
(1,ρ)).

Definition 5.2. Let (C,ΣC,L,N, ν) ∈ DΓ,ν . A (ϕ, ρ)-field on its e-tail is

(ϕe, ρe) = (ϕe1, · · · , ϕe5, ρe) ∈ H0(Llog|Ce)⊕5 ⊕H0(Plog
Ce ).

A partial e-field on a Γ-framed gauged curve consists of a ζ ∈ DΓ,ν and a (ϕ, ρ)-
field on its e-tail.

We let YΓ,ν,e be the groupoid of families of partial e-fields on Γ-framed gauged

curves. That is, elements in YΓ,ν,e are (C,ΣC,L,N, ν, ϕe, ρe) (with the Γ-framing
implicitly understood) as in Definition 5.2.

Let (C,ΣC ,L,N , ϕ, ρ, ν) to be the universal family on WΓ. As before, the flag
a = (e, v+) ∈ F (Γ) is associated with a section of nodes Ra ⊂ C that splits C into
two subfamilies Ce and Ce◦. The family

(C,ΣC ,L,N , ν, ϕ|Ce , ρ|Ce)
then is a family in YΓ,ν,e, which induces a forgetful morphism δ : WΓ → YΓ,ν,e.
Of course, by forgetting the fields on the e-tail, we obtain a forgetful morphism
ζ : YΓ,ν,e → DΓ,ν .

To proceed, let ē be the graph which is an edge e with two vertices v− and v+,
together with the decorations on e and the legs on v− (if any), plus a new leg
decorated by 1 = ζ0

5 attached to v+. Note that because of the decoration 1, ē is
of the broad type (cf. the first paragraph in section 2.1).

Let WΓ′ and Wē be the moduli stack of stable Γ′ and ē-framed MSP fields,
respectively. By restricting the universal family of YΓ,ν,e to its e-tails, we obtain
a family on Ce, which induces a morphism YΓ,ν,e →Wē. We list these morphisms
together:

(5.2) WΓ
δ−→YΓ,ν,e −→Wē and YΓ,ν,e

ζ−→DΓ,ν .

4Fibers of Ce can be one P1, or a union of two P1’s. See Remark 4.2.
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By restricting the universal family of WΓ to C�, we would like to obtain a
family in WΓ′ , thereby obtaining a morphism from WΓ to WΓ′ . Unfortunately,
this in general is not possible because ϕ|Ra might not vanish identically, thus the
restriction does not necessarily induce a morphism WΓ → WΓ′ . (Recall that Ra
is associated with a marking of Γ′ labeled by (1, ϕ).)

To remedy this situation, let Wµ
ē = (Wē)red be Wē with the reduced stack

structure; let

(5.3) YµΓ,ν,e = YΓ,ν,e ×Wē W
µ
ē , and Wµ

Γ =WΓ ×Wē W
µ
ē .

Lemma 5.3. The stackWē has pure dimension four; it has hypersurface singular-
ities, and is acted on by the group GL(5,C). The coarse moduli of Wµ

ē = (Wē)red

is isomorphic to P4, and the induced GL(5,C) action on this coarse moduli is the
standard GL(5,C) action on P4.

Proof. We begin by classifying the closed points of Wē. Let ξ = (C,ΣC, · · · ) ∈ Wē

be a closed point, and let Γξ be its associated graph. We claim that Γξ 6= Γfl
ξ .

Indeed, in case Γξ = Γfl
ξ , then C ∼= P1 and T acts on C with two fixed points, p−

and p+, associated with the vertices v− ∈ V0(Γξ) and v+ ∈ V∞(Γξ), respectively.
Because we have assumed that [WΓ]vir

loc 6= 0, by Corollary 2.10, we have degL = 0.
Since p+ is a marking decorated by 1, and p− is either a non-marking or a marking

decorated by (1, ρ), we have ωlog
C (−ΣC

(1,ρ))
∼= OP1(−1), forcing ρ = 0, contradicting

ρ|p+ 6= 0. This proves Γξ 6= Γfl
ξ .

When Γξ 6= Γfl
ξ , Γξ contains two edges: e+ ∈ E∞(Γξ) and e− ∈ E0(Γξ). Let

C± ⊂ C be the irreducible component associated with e±. Then C = C−∪C+ with
one node q associated with the vertex in V1(Γξ). Let p± ∈ C± ⊂ C be the two T
fixed points (other than q) as before. Then by the definition of MSP fields, N|C−
and L ⊗ N|C+ are trivial. Adding degL = 0 and degN = c, where c = d∞e, we
get L|C− ∼= OC−(c), L|C+

∼= OC+(−c) and N|C+
∼= OC+(c). Consequently,

(5.4) ϕ|C+ = ρ|C− = 0,

and because ϕ|p− and ρ|p+ are non-trivial,

ϕ|C− ∈ H0(OC−(c)⊕5)T − 0 ∼= C5 − 0, ρ|C+ ∈ H0(OC−)T − 0 ∼= C− 0.

Because ν1 and ν2 are non-trivial and unique up to scaling (T -equivariant), we
see that ξ is uniquely parameterized by

[ϕ1(p−), · · · , ϕ5(p−)] ∈ P4.

Repeating a family version of this argument, we prove that the coarse moduli of
Wµ
ē is isomorphic to P4.
The mentioned GL(5,C) action on Wē is an obvious one. Given any family

in Wē, which is given by (C,ΣC ,L,N , ϕ, ρ, ν), we define σ · (C,ΣC ,L,N , ϕ, ρ, ν)
to be (C,ΣC ,L,N , σ · ϕ, ρ, ν), where σ · ϕ is the standard matrix multiplication
after viewing ϕ as a column vector with component ϕi, and viewing σ as a 5× 5
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invertible matrix. This defines a GL(5,C) action on Wē, and its action on the
coarse moduli of (Wē)red

∼= P4 is the standard action of GL(5,C) on P4.
Finally, we prove that Wē has hypersurface singularity. First, we calculate

the tangent space and the obstruction space of Wē at its closed points. Let
ξ = (C,ΣC,L, · · · ) be a closed point of Wē. As argued before, C = C− ∪ C+, with
degL|C± = ∓c for a c ∈ Z+, degN|C− = 0 and degN|C+ = c. A direct calculation
shows that

H1(L⊗N ⊗ L1)T = H1(N)T = H1(Llog)T = 0, and H1(Plog) = C.
This shows that the obstruction space to deformations of ξ ∈ Wē is always one
dimensional. Because Wē has pure dimension 4, we conclude that dimTξWē = 5
and that Wē is locally defined by one equation in a smooth 5-fold, and thus Wē

has hypersurface singularities. �

We now compare the stacksWµ
Γ , YµΓ,ν,e, etc. We first show that the family (5.1)

together with (ϕ, ρ)|C� defines a morphism

(5.5) Wµ
Γ :=WΓ ×YΓ,ν,e

YµΓ,ν,e −→WΓ′ .

Indeed, by the prior discussion, it suffices to show that

(5.6) ϕ|Ra×YΓ,ν,e
YµΓ,ν,e

= 0.

By the vanishing ϕ|C+ = 0 in (5.4), the ϕ-field of any closed ξ ∈ Wē restricted to
v+ ∈ C vanishes. This shows that (5.6) holds, and the morphism (5.5) exists.

Next, by definition, the composite morphism Wµ
Γ → WΓ → Wē (cf. (5.2))

factors through Wµ
Γ →W

µ
ē . Pairing it with (5.5), we obtain a morphism β shown

as follows:

(5.7)

Wµ
Γ

β−−−−→ WΓ′ ×Wµ
ēy y

YµΓ,ν,e
β′−−−−→ DΓ′,ν ×Wµ

ē

and

YΓ,ν,e
Re−−−−→ Wēy y

DΓ,ν
re−−−−→ Dē,ν .

The other arrows in (5.7) are as follows. Let CYΓ,ν,e
be the domain curve of the

universal family of YΓ,ν,e. Because curves in the family CYΓ,ν,e
are Γ-framed, the

family contains a distinguished section of nodes Ra ⊂ CYΓ,ν,e
, where a = (e, v+),

which splits off the e-tails CeYΓ,ν,e
of CYΓ,ν,e

. The universal family of YΓ,ν,e restricted

to CeYΓ,ν,e
induces the morphism Re : YΓ,ν,e →Wē. The similar construction gives

re as shown. Next, by removing the ϕe and ρe from the universal family of
YΓ,ν,e and then restricting the remaining part to C�YΓ,ν,e

, we obtain a family in

DΓ′,ν , which defines a morphism YµΓ,ν,e → DΓ′,ν . Paired this morphism with the

tautological YµΓ,ν,e → W
µ
ē , we obtain the β′ in (5.7). By constructions, these two

squares are commutative.

Lemma 5.4. The horizontal arrows in (5.7) are smooth. The morphisms β is a
µ5-torsor, and the square involving Re and re is Cartesian.
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Proof. We prove that β is a µ5-torsor. Following the construction, we see that β
is surjective. We now show that it is a µ5-torsor. Indeed, given any closed point

z = ((C′,ΣC′ ,L, · · · ), (Ce,ΣCe ,Le, · · · )) ∈ WΓ′ ×Wµ
ē ,

any point in β−1(z) is obtained by gluing C′ and Ce along the markings in C′

and Ce associated with (e+, v+), and gluing the L’s and N’s on C′ and Ce. As
the markings are scheme points, the gluing of markings is unique. Because the
section ν1 is non-vanishing at the markings, the gluing of L ⊗ N is also unique.
On the other hand, the gluing of L is constrained by the non-vanishing of ρ’s.
When one restricts ρ to the marking to be glued, it becomes a section of L∨⊗5 at
the marking. Thus the gluing of L is unique up to µ5. As this argument works
for the family, we have shown that β is a µ5-torsor.

The other conclusions can be proved similarly and are thus omitted. �

Following [CL2, Prop. 2.5] as before, we endowWΓ′ andWē with their tautolog-
ical perfect relative obstruction theories, relative to DΓ,ν and Dē, respectively. For
Wē, as it is proper by Lemma 5.3, we let [Wē]

vir ∈ A∗Wē be its virtual class. For
WΓ′ , likeWΓ, we form its standard cosection σΓ′,ν : ObWΓ′/DΓ′,ν

→ OWΓ′ , which is

liftable to a cosection of ObWΓ′ . LetW−Γ′ ⊂ WΓ′ be its degeneracy locus (with the

reduced structure), and let [WΓ′ ]
vir
loc ∈ A∗W

−
Γ′ be its associated cosection-localized

virtual class.
Let

W∼Γ =Wµ
Γ ×κ,WΓ′ W

−
Γ′ ⊂ W

µ
Γ ,

where κ :Wµ
Γ

β−→WΓ′ ×Wµ
ē

pr−→WΓ′ is the composite. Let

(5.8) κ̃ :W∼Γ −→W−Γ′
be induced by κ. Because β is a µ5-torsor, κ̃ is flat. Because Wν

ē is proper, κ is
a proper morphism.

Proposition 5.5. The stack W∼Γ is proper, and contains W−Γ as its closed sub-

stack. Let  : W−Γ → W∼Γ be the inclusion. Then there is a rational c ∈ Q such
that

∗[WΓ]vir
loc = c · κ̃∗[WΓ′ ]

vir
loc ∈ A∗(W∼Γ ).

We prove Theorem 1.2 by assuming Proposition 5.5 is true.

Proof of Theorem 1.2. Let Γ ∈ ∆fl be irregular and not a pure loop. In case Γ
has no strings, then the vanishing follows from Proposition 4.1.

Now assume Γ has strings. Let e be a string of Γ, and let Γ′ be the result after
trimming e from Γ. In case Γ′ = ∅, by Lemma 2.6, the marking Cv+ is a scheme
marking of type (1, φ). Thus vir dimWΓ = vir dimWē − 5 = 3− 5 < 0, implying
[WΓ]vir

loc = 0.

Otherwise Γ′ ∈ ∆fl is irregular, not a pure loop, and has one less string than Γ.
Thus by induction, we have [WΓ′ ]

vir
loc ∼ 0. By Proposition 5.5, we get ∗[WΓ]vir

loc ∼ 0.

In other words, there is a proper substack Z ′, W−Γ′ ⊂ Z
′ ⊂ WΓ′ , so that the cycle
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[WΓ′ ]
vir
loc pushed forward to A∗Z ′ is zero. Let Z = κ−1(Z ′). Since κ is proper, Z

is also proper. Also, W−Γ ⊂ Z. Then Theorem 5.5 implies that the pushforward

of [WΓ]vir
loc to A∗Z is zero. This proves [WΓ]vir

loc ∼ 0. �

6. Proof of Proposition 5.5

We continue to denote by δ : WΓ → YΓ,ν,e the (representable) morphism in-
duced by restriction. The relative obstruction theory of YΓ,ν,e → DΓ,ν pullback
to WΓ takes the form

δ∗φ∨YΓ,ν,e/DΓ,ν
: δ∗TYΓ,ν,e/DΓ,ν

−→ δ∗EYΓ,ν,e/DΓ,ν
= RπT∗ (U|Ce).

Here Ce and C� ⊂ C are the two families of subcurves (of the universal curve C of
WΓ) after decomposing C along Ra, where a = (e, v+); U is defined in (3.4). Let

EWΓ/YΓ,ν,e
= RπT∗

(
U|C�(−Ra)

)
.

Recall EWΓ/DΓ,ν
= RπT∗ U . Using the exact sequence U|C�(−Ra) → U → U|Ce

and the pair δ :WΓ → YΓ,ν,e, we form the top and the bottom d.t.s

(6.1)

EWΓ/YΓ,ν,e

α−−−−→ EWΓ/DΓ,ν

β−−−−→ δ∗EYΓ,ν,e/DΓ,ν

+1−−−−→xφ̃∨WΓ/YΓ,ν,e

xφ∨WΓ/DΓ,ν

xδ∗φ∨YΓ,ν,e/DΓ,ν

TWΓ/YΓ,ν,e

α̃−−−−→ TWΓ/DΓ,ν

β̃−−−−→ δ∗TYΓ,ν,e/DΓ,ν

+1−−−−→

where the second and the third vertical arrows are the perfect obstruction theories
constructed by direct image cones, and the square is commutative because of
Proposition 7.5. Let φ̃∨WΓ/YΓ,ν,e

be the one making (6.1) a morphism of d.t.s.

Applying the five lemma, φ̃∨WΓ/YΓ,ν,e
is also a perfect obstruction theory.

Let σΓ,ν be the cosection of ObWΓ/DΓ,ν
mentioned after Definition 3.2; let

(6.2) σ̃Γ,ν := σΓ,ν ◦H1(α) : ObWΓ/YΓ,ν,e
−→ OWΓ

.

Lemma 6.1. The degeneracy locus D(σ̃Γ,ν) = {ξ ∈ WΓ | σ̃Γ,ν |ξ = 0} is proper.

Proof. The construction of σΓ,ν is as in [CLL], where it is proved that σΓ,ν can be
lift to σ̄Γ,ν : ObWΓ

→ OWΓ
(cf. [CLL, Prop. 3.4]).

We now show that D(σ̃Γ,ν) is proper. Let ξ ∈ WΓ be a closed point, represented

by ξ = (C,ΣC, · · · , ν). Let Ra ⊂ C be the node associated with a = (e, v+) ∈
F (Γ), which decomposes C into subcurves C� and Ce. By the description of the
obstruction theory of WΓ → YΓ,ν,e,

ObWΓ/YΓ,ν,e
|ξ = H1

(
Llog|C�(−Ra)⊕5 ⊕ Plog|C�(−Ra)

)T
,

where Llog and Plog are as defined before (3.4).
Let

ξ� := (C�,ΣC� = ΣC ∩ C� + Ra,L|C� , · · · , ν2|C�),
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where the marking Ra is decorated by (1, ϕ). Then ξ� is a point inWΓ′ . Following
the construction of the obstruction theory of WΓ/DΓ,ν , we see that

ObWΓ′/DΓ′,ν
|ξ� = H1

(
L|C�(−ΣC�

(1,ϕ))
⊕5 ⊕ L∨⊗5|C� ⊗ ωlog

C� (−ΣC�

(1,ρ))
)T
.

Because of the identities

P|C� = L|∨⊗5
C� ⊗ ω

log
C� , ΣC

(1,ρ)|C� = ΣC�

(1,ρ), and ΣC
(1,ϕ)|C� + Ra = ΣC�

(1,ϕ),

we have L(−ΣC
(1,ϕ))|C�(−Ra) = L|C�(−ΣC�

(1,ϕ)), and the exact sequence

(6.3) 0 −→ Plog|C�(−Ra)−→L|∨⊗5
C� ⊗ ω

log
C� (−ΣC�

(1,ρ)) −→ Plog|Ra −→ 0.

Therefore we get the induced surjective

(6.4) r : ObWΓ/YΓ,ν,e
|ξ −→ObWΓ′/DΓ′,ν

|ξ� .

By the definition of the cosections σΓ,ν |ξ and σΓ′,ν |ξ� , we see that (cf. (6.2))

ObWΓ/YΓ,ν,e
|ξ

r−−−−→ ObWΓ′/DΓ′,ν
|ξ�yσ̃Γ,ν |ξ

yσΓ′,ν |ξ�

C C
is commutative. Therefore, σ̃Γ,ν |ξ = 0 implies that κ(ξ) ∈ D(σΓ′,ν). (cf. κ :
Wµ

Γ →WΓ′ is defined before (5.8).) This proves that

D(σ̃Γ,ν) ⊂ κ−1(D(σΓ′,ν)).

As D(σΓ′,ν) is proper ([CL31]) and κ is proper, D(σ̃Γ′,ν) is also proper. �

Let

CWΓ/YΓ,ν,e
⊂ h1/h0

(
TWΓ/YΓ,ν,e

)
⊂ AΓ,e := h1/h0(EWΓ/YΓ,ν,e

)

be the virtual normal cone (cf. [BF]). Following [KL], the cosection σ̃Γ,ν defines
a bundle stack homomorphism σ̃Γ,ν : AΓ,e → OWΓ

. Let AΓ,e(σ̃Γ,ν) ⊂ AΓ,e be the
kernel stack of σ̃Γ,ν , which is a closed substack of AΓ,e defined via

(6.5) AΓ,e(σ̃Γ,ν) :=
∐
ξ∈WΓ

ker{σ̃Γ,ν |ξ : AΓ,e|ξ −→ C},

endowed with the reduced stack structure.

Lemma 6.2. We have (CWΓ/YΓ,ν,e
)red ⊂ AΓ,e(σ̃Γ,ν).

Proof. Let

CWΓ/DΓ,ν
⊂ h1/h0

(
TWΓ/DΓ,ν

)
⊂ AΓ := h1/h0(EWΓ/DΓ,ν

)

be the similarly defined virtual normal cone. By [KL],

(CWΓ/DΓ,ν
)red ⊂ AΓ(σΓ,ν),
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where AΓ(σΓ,ν) ⊂ AΓ is the kernel stack of σΓ,ν . Applying the functoriality of the
h1/h0 construction to (6.1), we obtain the commutative diagram

(6.6)

CWΓ/YΓ,ν,e

⊂−−−−→ h1/h0(TWΓ/YΓ,ν,e
)

⊂−−−−→ AΓ,e = h1/h0(EWΓ/YΓ,ν,e
)y y yh1/h0(α)

CWΓ/DΓ,ν

⊂−−−−→ h1/h0(TWΓ/DΓ,ν
)

⊂−−−−→ AΓ = h1/h0(EWΓ/DΓ,ν
).

Because (CWΓ/DΓ,ν
)red ⊂ AΓ(σΓ,ν), by the definition of σ̃Γ,ν (cf. (6.2)) we conclude

that (CWΓ/YΓ,ν,e
)red ⊂ AΓ,e(σ̃Γ,ν). �

Our next step is to use the virtual pullback of [CKL, Def. 2.8] (also [Man,
Constr. 3.6]) to re-express the cycle [WΓ]vir

loc. For this, we need a description of the
virtual normal cone of YΓ,ν,e → DΓ,ν :

(6.7) CYΓ,ν,e/DΓ,ν
⊆ h1/h0

(
TYΓ,ν,e/DΓ,ν

)
⊆ B := h1/h0(EYΓ,ν,e/DΓ,ν

).

We show that the identities in (6.7) hold.
Indeed, by Lemma 5.3,Wē has pure dimension 4, equaling the expected dimen-

sion ofWē, and has local complete intersection singularities. The intrinsic normal
cone CWē/Dē,ν equals the bundle stack Aē as shown below.

(6.8) CWē/Dē,ν = Aē := h1/h0(EWē/Dē,ν ).

Because the second square in (5.7) is a Cartesian square, we have

(6.9) CYΓ,ν,e/DΓ,ν
= CWē/Dē,ν ×Wē YΓ,ν,e = Aē ×Wē YΓ,ν,e = B.

We form Cartesian products and projections as follows

(6.10)

AΓ,e|B := AΓ,e ×YΓ,ν,e
B

π2−−−−→ WΓ|B :=WΓ ×YΓ,ν,e
B −−−−→ By yπ1

y
AΓ,e

β−−−−→ WΓ −−−−→ YΓ,ν,e.

Note that π2 is the pullback of β via π1. Viewing σ̃Γ,ν : AΓ,e → OWΓ
as a bundle

stack homomorphism, its pullback

π∗1(σ̃Γ,ν) : AΓ,e|B −→ OWΓ|B

is also a bundle stack homomorphism. Its degeneracy locus is then

(6.11) D(π∗1(σ̃Γ,ν)) = D(σ̃Γ,ν)×YΓ,ν,e
B ⊂ WΓ|B,

and its associated kernel stack AΓ,e|B(π∗1σ̃Γ,ν) (cf. (6.5)) is

AΓ,e|B(π∗1σ̃Γ,ν) = A(σ̃Γ,ν)×WΓ
WΓ|B ⊂ AΓ,e|B.

We denote the inclusion by ι:

(6.12) ι : (CWΓ|B/B)red ⊂ (CWΓ/YΓ,ν,e
×YΓ,ν,e

B)red ⊂ AΓ,e|B(σ̃Γ,ν),
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where the first inclusion follows from the definition ofWΓ|B and the second follows
from Lemma 6.2.

To proceed, let us recall the virtual pullbacks introduced in [Man]. Following
[Man], we form the composite

(6.13) f ! : A∗B
ε−→A∗AΓ,e|B

0!
π2−→A∗WΓ|B

0!
π1−→A∗WΓ.

Here the arrow ε is defined as follows. Let ε̄′ : Z∗B → Z∗(CWΓ|B/B) be the

linear map defined via ε̄′([V ]) = [CV×BWΓ|B/V ]. Since WΓ is a DM stack, both

WΓ → YΓ,ν,e and WΓ|B → B are of DM type. Applying the proof of [Man,
Thm. 2.31] to [Man, Constr. 3.6], we conclude that ε̄′ descends to the ε̄ in (6.14).
Let ῑ∗ : A∗CWΓ|B/B → A∗AΓ,e|B be induced by the inclusion (6.12). We define ε

to be the composite

(6.14) ε : A∗B
ε̄−→A∗(CWΓ|B/B)

ῑ∗−→A∗AΓ,e|B.

The arrows 0!
π1

and 0!
π2

in (6.13) are Gysin maps after intersecting with the zero
sections of the bundle stacks π1 and π2, respectively.

The version we will use is the localized analogue of (6.13):

(6.15) f !
loc : A∗B

ε̃−→A∗(AΓ,e|B(π∗1σ̃Γ,ν))
0!
π2,loc−→ A∗(D(π∗1σ̃Γ,ν))

0!
π1−→A∗(D(σ̃Γ,ν)).

By (6.12), the ε in (6.13) (cf. (6.14)) factors through A∗(AΓ,e|B(σ̃Γ,ν)), giving the

ε̃ in (6.15). Since D(π∗1σ̃Γ,ν) is proper, the last arrow 0!
π1

is the ordinary Gysin
map of the bundle stack π1.

Proposition 6.3. Let  : D(σΓ,ν)→ D(σ̃Γ,ν) be the inclusion, then

f !
loc[CYΓ,ν,e/DΓ,ν

] = ∗[WΓ]vir
loc ∈ A∗(D(σ̃Γ,ν)).

Proof. We quote the relative version of cosection-localized pullback in [CKL,
Prop. 2.11], stated in [CKL, Remark 2.12]. The proof of [CKL, Prop. 2.11] ap-
plies word for word to our case, such asWΓ/YΓ,ν,e satisfies the “virtually smooth”
condition in [CKL, (2.1)] because of (6.1). The cosection setup is also consistent.
Proposition 6.3 follows. �

We are now ready to prove Proposition 5.5. Let

Aµē = Aē ×Wē W
µ
ē and Bµ = B×YΓ,ν,e

YµΓ,ν,e.

By Lemma 5.3, Aµē is a bundle stack over Wē, where the latter is irreducible.
Thus for a rational number c, [Aē] = c · [Aµē ]. Because the second square in (5.7)
is Cartesian, using (6.9), we conclude that

[B] = [CYΓ,ν,e/DΓ,ν
] = [Aē ×Wē YΓ,ν,e] = c · [Aµē ×Wē YΓ,ν,e] = c · [Bµ].

Therefore by (6.9),

(6.16) f !
loc([CYΓ,ν,e/DΓ,ν

]) = f !
loc([B]) = c · f !

loc([B
µ]).
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Let κ : Wµ
Γ → WΓ′ be induced by the β (in (5.7)); let κ̃ : W∼Γ → W

−
Γ′ be that

induced by κ, as defined in (5.8). Let

θ : AΓ,e|Wµ
Γ

= h1/h0(EWΓ/YΓ,ν,e
)|Wµ

Γ
−→ κ∗h1/h0(EWΓ′/DΓ′,ν

)

be induced by (6.3) and the identity before (6.3); it is a smooth morphism. We
claim that (as cycles)

(6.17) [CWµ
Γ/Y

µ
Γ,ν,e

] = θ∗[CWΓ′/DΓ′,ν
] ∈ Z∗

(
h1/h0(EWµ

Γ/Y
µ
Γ,ν,e

)
)
.

To prove (6.17), we introduce a new stack DΓ′,ν,� consisting of objects (ξ, ρ�),

where ξ = (C,ΣC ,L,N , · · · ) ∈ DΓ′,ν(S), and a nowhere vanishing ρ� ∈ H0(ωlog
C ⊗

L∨⊗5)|R), where R ⊂ C is the section of the marking associated with the distin-
guished 1ϕ-leg of Γ′. (The distinguished leg is the one added after trimming the
edge e; see definition 5.1.)

For any family (C,ΣC ,L,N , ν, φe, ρe) in YµΓ,ν,e(S), let R ⊂ C be the section of

nodes that separate C into C� and Ce (cf. (5.1)). Then by adding ρ|R to the family
(5.1) we obtain a family in DΓ′,ν,�. This defines the morphism ζ1 below. Let α
shown below be the morphism defined similarly. They form the (left) commutative
diagram

(6.18)

Wµ
Γ

κ−−−−→ WΓ′
=−−−−→ WΓ′y yα y

YµΓ,ν,e
ζ1−−−−→ DΓ′,ν,�

ζ2−−−−→ DΓ′,ν

Let ζ2 be the forgetful morphism. This morphism fits into the right commutative
diagram above. Because for family (C, · · · , φe, ρe) in YµΓ,ν,e(S), φe|R = 0, one
checks directly that the left square above is a fiber product.

By its construction, ζ2 is smooth. Thus

(6.19)

CWΓ′/DΓ′,ν,�
−−−−→ CWΓ′/DΓ′,νy y

h1/h0(TWΓ′/DΓ′,ν,�
) −−−−→ h1/h0(TWΓ′/DΓ′,ν

)

is a fiber product. This implies

(6.20) TWµ
Γ/Y

µ
Γ,ν,e

∼= κ∗TWΓ′/DΓ′,ν,�
and CWµ

Γ/Y
µ
Γ,ν,e

∼= κ∗CWΓ′/DΓ′,ν,�
.

By (6.19) and (6.20), the following square is a fiber product:

(6.21)

CWµ
Γ/Y

µ
Γ,ν,e

−−−−→ κ∗CWΓ′/DΓ′,νy y
h1/h0(TWµ

Γ/Y
µ
Γ,ν,e

) −−−−→ κ∗h1/h0(TWΓ′/DΓ′,ν
).
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We next look at their deformation complexes. To begin with, the family version
of (6.4) gives an exact sequence

(6.22) κ∗α∗TDΓ′,ν,�/DΓ′,ν
−→ ObWµ

Γ/Y
µ
Γ,ν,e
−→ κ∗ObWΓ′/DΓ′,ν

−→ 0.

Note that TDΓ′,ν,�/DΓ′,ν
is an invertible sheaf whose fibers are (ωlog

C ⊗ L∨⊗5)|R.

This sequence is the cohomology of the top row in

(6.23)

TDΓ′,ν,�/DΓ′,ν
[−1] −−−−→ EWµ

Γ/Y
µ
Γ,ν,e

−−−−→ κ∗EWΓ′/DΓ′,ν

+1−−−−→∥∥∥ xφ∨Wµ
Γ
/Yµ

Γ,ν,e

xφ∨WΓ′/DΓ′,ν

TDΓ′,ν,�/DΓ′,ν
[−1] −−−−→ TWµ

Γ/Y
µ
Γ,ν,e

−−−−→ κ∗TWΓ′/DΓ′,ν

+1−−−−→ .

Here the upper row is induced by the derived push-forward of the family version
of (6.3) and the lower row by (6.18) and (6.20). Hence both rows are distin-
guished triangles. The arrow φ∨WΓ′/DΓ′,ν

is induced by the ordinary construction

and φ∨Wµ
Γ/Y

µ
Γ,ν,e

is induced by the same process which derives the first vertical arrow

in (7.11) using (7.10)’s blow up construction. Both vertical arrows use direct im-
age cone constructions. The commutativity of the second square in (6.23) follows
from the natural arrow between the two universal families and the two evaluations
maps directly.

Taking h1/h0 of the diagram we obtain

(6.24)

TDΓ′,ν,�/DΓ′,ν
−−−−→ h1/h0(EWµ

Γ/Y
µ
Γ,ν,e

)
θ−−−−→ κ∗h1/h0(EWΓ′/DΓ′,ν

)∥∥∥ xh1/h0(φ∨
Wµ

Γ
/Yµ

Γ,ν,e

)
xh1/h0(φ∨WΓ′/DΓ′,ν

)

TDΓ′,ν,�/DΓ′,ν
−−−−→ h1/h0(TWµ

Γ/Y
µ
Γ,ν,e

) −−−−→ κ∗h1/h0(TWΓ′/DΓ′,ν
).

By [BF, Prop. 2.7], both rows are exact sequences of cone stacks. Therefore the
second square of (6.24) is a fiber product. By Proposition 7.5, we know that

φ̃∨Wµ
Γ/Y

µ
Γ,ν,e

(in (6.1)) is ν-equivalent to φ∨Wµ
Γ/Y

µ
Γ,ν,e

(cf. [CL1, Def. 2.9]), thus the

cycle [CWµ
Γ/Y

µ
Γ,ν,e

] induced by φ̃∨Wµ
Γ/Y

µ
Γ,ν,e

is identical to that induced by φ∨Wµ
Γ/Y

µ
Γ,ν,e

(cf. [CL1, Prop. 2.10] and [CL1, Lemm. 2.3]). Combining the above with (6.21),
the claim (6.17) is proved.

We consider πµ1 (compare with π1 in (6.10))

πµ1 := π|Wµ
Γ|B

:Wµ
Γ|B :=Wµ

Γ ×YΓ,ν,e
B =Wµ

Γ ×Wē A
µ
ē −→W

µ
Γ ,

where Aµē = Aē ×Wē W
µ
ē . Let

ψ :Wµ
Γ|B =Wµ

Γ ×Wē A
µ
ē −→W

µ
Γ

be the first projection.
Then by the definition of ε̃ (cf. (6.15) and (6.14)),

ε̃[Bµ] = [CWµ
Γ/Y

µ
Γ,ν,e
×Wµ

Γ
Aµē ] = ψ∗θ∗[CWΓ′/DΓ′,ν

].



30 HUAI-LIANG CHANG AND JUN LI

Applying 0!
π∗1 σ̃Γ,ν ,loc, we obtain

0!
π∗1 σ̃Γ,ν ,loc

(
ψ∗θ∗[CWΓ′/DΓ′,ν

]
)

= ψ∗κ̃∗
(
0!
σ̃Γ′,ν ,loc[CWΓ′/DΓ′,ν

]
)

= ψ∗κ̃∗[WΓ′ ]
vir
loc.

(Recall that κ̃ :W∼Γ →W
−
Γ′ is defined in (5.8).) By adding

0!
π1

(ψ∗κ̃∗[WΓ′ ]
vir
loc) = κ̃∗[WΓ′ ]

vir
loc ∈ A∗W∼Γ = A∗D(σ̃Γ,ν),

we have proven that

f !
loc[B

µ] = κ̃∗[WΓ′ ]
vir
loc ∈ A∗D(σ̃Γ,ν).

This proves Proposition 5.5.

7. Appendix

Let X be an Artin stack; let π : C → X be a flat family of twisted nodal curves,
and let V → C be a smooth morphism of quasi-projective type. We denote by
C(π∗V) the groupoid defined as follows: for any scheme S, C(π∗V)(S) consists
of all (σ, s), where σ : S → X is a morphism, Cσ = C ×X S and Vσ = V ×C Cσ,
and s : S → Vσ is an S-morphism (a section of Vσ → S). An arrow between two
objects (σ, s) and (σ′, s′) is an arrow between σ and σ′ so that s = s′ under the
induced isomorphism Vσ ∼= Vσ′ .

We abbreviate W = C(π∗V). Let πW : CW → W be the pullback of C → X ,
and let ev : CW → V be the tautological evaluation map (induced by the section
s), which fits into the commutative diagrams

(7.1)

W πW←−−−− CW
ev−−−−→ Vy y y

X ←−−−− C C.
Applying the projection formula to π∗WTW/X ∼= TCW/C → ev∗TV/C and using
TW/X −→ RπW∗π

∗
WTW/X , we obtain

(7.2) φ∨W/X : TW/X −→ EW/X := RπW∗ev∗TV/C .

By [CL2, Prop. 1.1], (7.2) is a perfect obstruction theory.5

In the following, we assume V → C is a (fixed) vector bundle. We consider two
cases. The first case is when V = V1 ⊕ V2 is a direct sum of two vector bundles.
We continue to denote W = C(π∗V). We introduce Wi = C(π∗Vi). Then the
direct sum V = V1⊕V2 induces a morphism W −→W1×X W2, which by a direct
check is an isomorphism.

There is another way to interpret this isomorphism. Let CW2 := C ×X W2; use
(the same) π : CW2 →W2 to denote its projection; and denote V1,W2 = V1×C CW2 .

Lemma 7.1. We have canonical isomorphisms W ∼= C(π∗(V1,W2)) ∼=W1×X W2.

5This construction of φ∨W/X applies to arbitrary representable V → C. We restrict ourselves

to the bundle case for notational simplicity.
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Let q2 :W →W2 be the projection, as in the above lemma. Let φ∨W/W2
, φ∨W/X , φ

∨
W2/X

be similarly defined perfect obstruction theories shown as follows,

(7.3)

EW/W2
−−−−→ EW/X −−−−→ q∗2EW2/X

+1−−−−→xφ∨W/W2

xφ∨W/X xφ∨W2/X

TW/W2
−−−−→ TW/X −−−−→ q∗2TW2/X

+1−−−−→ ,

where the top line is the d.t. induced by V = V1⊕V2, and the lower line is induced
by W →W2 → X .

Proposition 7.2. The diagram (7.3) is a morphism between d.t.s.

Proof. We form the diagram

(7.4)

CW
ev−−−−→ V γ1−−−−→ V1yq̃2 yγ2

y
CW2

ev2−−−−→ V2 −−−−→ C,

where γi are projections induced by the direct sum V = V1⊕V2; and q̃2 is the lift
of q2 :W →W2. This diagram induces a homomorphism between d.t.s

(7.5)

ev∗TV/V2
−−−−→ ev∗TV/C −−−−→ q̃∗2ev∗2TV2/C

+1−−−−→xψ x x
TCW/CW2

−−−−→ TCW/C −−−−→ q̃∗2TCW2
/C

+1−−−−→ .

As C → X is flat, the second row is equal to the pull back via πW : CW → W of
the tangent complexes d.t. of the triple W →W2 → X . Applying the projection
formula to (7.5), we obtain the following morphism of d.t.s

RπW∗ev∗TV/V2
−−−−→ RπW∗ev∗TV/C −−−−→ RπW∗q̃

∗
2ev∗2TV2/C

+1−−−−→xψ1

xψ2

xψ3

TW/W2
−−−−→ TW/X −−−−→ q∗2TW2/X

+1−−−−→

Note that by definition, EW2/X = RπW∗ev∗2TV2/C and EW/X = RπW∗ev∗TV/C .
Because of the identity

RπW∗q̃
∗
2ev∗2TV2/C = q∗2RπW∗ev∗2TV2/C ,

we see that ψ2 = φ∨W/X and ψ3 = q∗2φ
∨
W2/X .
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It remains to be shown that ψ1 = φ∨W/W2
. Observe that ψ1 is induced by the

left square in (7.4), and that square is identical to the left square in

(7.6)

CW
ev′−−−−→ V1,W2

pr−−−−→ V1y y y
CW2 CW2 −−−−→ C.

Here ev′ is the universal evaluation associated with the canonicalW ∼= C(π∗(V1,W2)).
Thus we have pr ◦ev′ = γ1 ◦ ev, where γ1 : V → V1 is defined in (7.4).

Since V1 → C is a bundle and hence flat, we have TV/V2
∼= γ∗1TV1/C ; thus the

arrow ψ1 equals

(7.7) TCW/CW2
−→ ev∗γ∗1TV1/C = pr∗(ev′)∗TV1/C = (ev′)∗TV1,W2

/CW2
.

Here the last isomorphism comes from pr∗ TV1/C
∼= TV1,W2

/CW2
, as V1 → C is

smooth. On the other hand, it is evident that (7.7) is induced by ev′. Therefore,

EW/W2
:= RπW∗(ev′)∗TV1,W2

/CW2
= RπW∗ev∗TV/V2

,

and ψ1 = φ∨W/W2
. This proves the proposition. �

Remark 7.3. The natural diagram (7.3) is commutative when V1 and V2 are
arbitrary Artin stacks representable and quasi-projective over C, and V1 → C is
flat. The proof is identical to the above.

The second case is when there is a (scheme) section of nodes R ⊂ C that
decomposes C into a union of two X -families C1 and C2. We denote the (same)
projection by π : Ci → X . Let Vi = V|Ci(= V ×C Ci), and define W1 = C(π∗V1).
Let

φ∨W1/X : TW1/X −→ EW1/X

be the similarly defined perfect obstruction theory. Note that for any S-family
(σ, s) in W(S), letting C1,σ = C1 ×C Cσ, then the family (σ, s|C1,σ) is a family in
W1(S). This defines a morphism

(7.8) τ :W −→W1.

To proceed, we rewrite τ along the line of a similar construction. For i = 1 and
2, let

Ci,W1 = Ci ×X W1, and Vi,W1 = Vi ×Ci Ci,W1 ,

with π : Ci,W1 →W1 to be the projection.

Let S1 ∈ Γ(V1,W1) be the universal section of W1. Let R̃ = R ×C C1,W1 be
the section (of C1,W1 → W1) associated with R ⊂ C. Then S1|R̃ is a section of
V1,W1 |R̃. Using R = C1 ∩C2, we have R×C C1,W2 = R×C C2,W1 . As V1 and V2 are
restrictions of V, S1|R̃ is also a section of V2,W1 |R̃ = V1,W1 |R̃. Let Σ ⊂ V2,W1 be
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the substack Σ = S1|R̃ ⊂ V2,W1 |R̃ ⊂ V2,W1 . Let BlΣ(V2,W1) be the blowing-up of
V2,W1 along Σ. Let

(7.9) V2/1 = BlΣ(V2,W1)− {the proper transform of V2,W1 |R̃ ⊂ V2,W1}.

Let π : V2/1 →W1 be the induced projection; we define

(7.10) W2/1 = C(π∗V2/1).

Note that V2/1 is smooth over C2,W1 .
We now construct a canonical (restriction)W1-morphism ı :W →W2/1. Given

any φ : S → W associated with (σ, s) ∈ W(S), restricting s to C1 ×X S gives a
family (σ, s|C1×XS) ∈ W1(S) associated with the morphism τ(φ) : S → W1. The
other part s|C2×XS is a section of the bundle

V2 ×X S = (τ(φ))∗(V2,W1) = V2,W1 ×τ(φ),W1
S.

Because s|C1×XS and s|C2×XS are identical along R ×X S, the section s|C2×XS
lifts to a section of (τ(φ))∗(V2/1). This defines a morphism ı(φ) : S −→ W2/1,
commuting with φ : S → W, τ : W → W1, and the projection W2/1 → W1. As
ι(φ) is canonical, it defines a W1-morphism ı :W −→W2/1.

Lemma 7.4. The morphism ı is an isomorphism. Let pr : W2/1 → W1 be the
tautological projection, then pr ◦ı = τ .

Proof. The proof follows directly from the construction. �

In the following, we will not distinguish between W and W2/1 because of ı.
Because W =W2/1 →W1, W → X and W1 → X all use the construction stated
at the beginning of the Appendix, we have perfect obstruction theories φ∨•/• shown

as follows:

(7.11)

EW/W1

λ1−−−−→ EW/X
λ2−−−−→ τ∗EW1/X

+1−−−−→xφ∨W/W1

xφ∨W/X xτ∗φ∨W1/X

TW/W1
−−−−→ TW/X −−−−→ τ∗TW1/X

+1−−−−→ .

Here the lower sequence is the one induced byW =W2/1 →W1 → X . The arrow
λ1 is induced by the canonical composite V2/1 → V, and λ2 by the restriction of
sheaves (bundles) V → V2.

Proposition 7.5. The two rows in (7.11) are d.t.s; the two squares in (7.11) are
commutative. Further, taking base change of (7.11) via any ξ ∈ W(C) and taking
long exact sequences of cohomology groups of the two rows, the vertical arrows
induce a morphism between the two complexes of vector spaces.
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Proof. We denote by ev1 : C1,W → V1 and ev : CW → V the obvious evaluation
maps. We have the following obvious fiber diagram

C1,W
ev1−−−−→ V1 −−−−→ C1yj y y

CW
ev−−−−→ V −−−−→ C,

where the vertical arrows are closed embeddings. This implies that the square

(7.12)

TC1,W/C1
d(ev1)−−−−→ ev∗1V1yu1

yu2

j∗TCW/C
j∗d(ev)−−−−→ j∗ev∗V

is commutative. Since C1,W ⊂ CW is the fiber product of C1 ⊂ C with W → X ,
that C and C1 are flat over X implies that TC1,W/C1 and TCW/C are pullbacks of
TW/X ; thus u1 is an isomorphism. Similarly, u2 is an isomorphism. This implies
that the following square is commutative

TCW/C
d(ev)−−−−→ ev∗TV/C = ev∗Vyu−1

1 ◦j∗
yu−1

2 ◦j∗

j∗TC1,W/C1
d(ev1)−−−−→ j∗ev∗1TV1/C1 = j∗ev∗1V1.

Let ζ : V2/1 → V2,W1 → V2 → V be the composite of the obvious morphisms.
Then we have the commutative square

C2,W := C2 ×X W
ev2/1−−−−→ V2/1y yζ

CW
ev−−−−→ V.

Here ev2/1 is defined using the universal section of W2/1(=W).
The above two squares induce the following two commutative squares of objects

in Db(OCW ): (letting π2 : C2,W →W be the projection, and letting 1 : C1,W1 ×W1

W → CW and 2 : C2,W → CW be the obvious inclusions)

(7.13)

2∗ev
∗
2/1TV2/1/C2,W1

−−−−→ ev∗TV/C −−−−→ 1∗ev
∗
1TV1/C1x x x

2∗π
∗
2TW/W1

= TC2,W/C2,W1
−−−−→ TCW/C −−−−→ 1∗τ̃

∗TC1,W1
/C1 ,

where τ̃ : C1,W → C1,W1 is the projection lifting τ :W →W1. (cf. (7.8).)
Taking π : CW →W and π1 : C1,W1 →W1 as the respective projections, letting

ēv1 : C1,W1 → V1 be the evaluation using the universal section ofW1, and applying
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Rπ∗ to (7.13), we obtain commutative diagrams

(7.14)

Rπ2∗ev
∗
2/1TV2/1/C2,W1

−−−−→ Rπ∗ev
∗TV/C −−−−→ τ∗Rπ1∗ēv

∗
1TV1/C1x x x

Rπ2∗π
∗
2TW/W1

−−−−→ Rπ∗TCW/C −−−−→ τ∗Rπ1∗TC1,W1
/C1x x x

TW/W1
−−−−→ TW/X −−−−→ τ∗TW1/X .

Note that the first row of (7.14) is identical to the first row of (7.11), and the three
composed vertical arrows in (7.14) are φ∨W/W1

, φ∨W/X and τ∗φ∨W1/X in (7.11).

On the other hand, we have canonical ev∗2/1TV2/1/C2,W1

∼= ev∗(V|C2(−R)) (due

to the blowing up construction). The first row of (7.13) equals

(7.15) 0 −→ ev∗(V|C2(−R)) −→ ev∗V −→ ev∗(V|C1) −→ 0,

and thus is a distinguished triangle. Therefore, the first row of (7.14), which is the
first row of (7.11), is a distinguished triangle. Finally, the rest of the proposition
is implied by the commutativity of the following diagram

h0(EW1/X |τ(ξ)) −−−−→ h1(EW/W1
|ξ)xh1(φ∨W1/X

|ξ)
xh1(φ∨W/W1

|ξ)

h0(TW1/X |τ(ξ)) −−−−→ h1(TW/W1
|ξ)

which can be checked by Čech cohomology description of the obstruction class
assignment. We leave this to the reader. �
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