BCOV’S FEYNMAN RULE OF QUINTIC 3-FOLDS

HUAI-LIANG CHANG, SHUAI GUO, AND JUN LI

ABSTRACT. We prove the Bershadsky-Cecotti-Ooguri-Vafa’s conjecture for all genus Gromov-
Witten potentials of the quintic 3-folds, by identifying the Feynman graph sum with the
NMSP stable graph sum via an R-matrix action. The Yamaguchi-Yau functional equations
are direct consequences of the BCOV Feynman sum rule.
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0. INTRODUCTION

The landmark work of Witten [Wit92] and Candelas-Ossa-Green-Parkes have
initiated a new era of enumerating curves in projective (symplectic) manifolds. The mathemat-
ical foundation of this theory, called the Gromov-Witten (GW) theory, was laid by the work
of Ruan-Tian [RT95] for semi-positive symplectic manifolds, and by Li-Tian and Behrend-
Fantechi [LT98| [BF97] for projective manifolds.

Since then, a central problem is to find the explicit formulae for all genus GW generat-
ing functions Fy of the distinguished CY threefold, the quintic threefold ), among other CY
threefolds. For genus zero case, Fy is determined by the celebrated mirror symmetry con-
jecture [CAOGP91], which was mathematically proved by Givental [Giv96] and by Lian-Liu-
Yau [LLY97]. For higher genus cases, Bershadsky-Cecotti-Ooguri-Vafa (BCOV) conjectured a
Feynman rule for any CY threefold based on Super-Strings theories [BCOV94]. This rule gives
an algorithm which effectively calculated the GW potential Fy, for all g > 0, via the lower genus
GW-potentials and finitely many (yet to be determined) initial conditions. BCOV’s Feynman
rule is a cornerstone in the GW theory of CY threefolds.

The main result of this paper is (see §0.2 for a more explicit statement):

Main Theorem. The BCOV Conjecture for quintics holds for all genus.

0.1. Earlier developments. Using Mirror Symmetry Conjecture, String theorists have com-
puted the genus zero GW-invariants Fy for many CY threefolds, by effectively evaluating
certain variation of Hodge structures of the mirror CY at large complex structure limits, fol-
lowing the lead by Candelas et.al.. As we will be focusing on high genus GW-invariants, we
will bypass listing any references along this line of development.

The theory developed in [BCOV94] is fundamental in the study of higher genus GW-
invariants of CY threefolds. For a family of CY threefolds M, the authors used path integral
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to form a B-model topological partition function .7-";/‘/ (q,q) for its mirror CY threefold family
W, which is a non-holomorphic extension of the GW potential F) éM (¢). They further showed
that this B-model topological partition function satisfies the holomorphic anomaly equation.
Solving the equations and using mirror symmetry, they deduced their (BCOV) Feynman rule.

As will be demonstrated in the later part of the introduction, the BCOV’s Feynman rule
provides an effective algorithm to determine recursively all genus GW potentials of a CY
threefold M, after the finite many ambiguity can be found at each g.

Huang-Klemm-Quackenbush in [HKQO09] has pushed the work of [BCOV94] further, demon-
strating how to effectively find all initial conditions necessary for determining genus g < 51
GW generating function Fy for the quintic threefold Q.

The task of mathematically proving these formulas (algorithms) for F;; has progressed as
well. In [Kon93|, Kontsevich showed how to use a hyperplane property of genus zero GW-
invariants of Q to relate that of @ with that of P4, and to evaluate them using localization
via the C*-action on P*. Based on this, the genus zero formula of Candelas for Fy was proved
independently by Givental |Giv96] and Lian-Liu-Yau [LLY97].

For Fp, Li-Zinger developed a theory of reduced genus one GW-invariants of the quintics,
which made using C* localization to evaluation Fj possible [LZ09]. Shortly after, by over-
coming daunting obstacles, Zinger in [Zi09], using the results proved by Zagier-Zinger [ZZ08],
proved the explicit formula of F} obtained by BCOV. It is also worth mentioning that Kim
and Lho [KL18] gave an independent proof of BCOV’s formula for F}.

Another line of attacks on F, (for the quintic @)) is via using the algebraic relative GW-
invariants and the degeneration formula of GW-invariants [Li01, [Li02]. (For the symplectic
version, see [LRO1, TP04].) In [MP06] Maulik-Pandharipande developed an algorithm, which
in principle can evaluate all genus GW-invariants of the quintic (). They also proposed an
alternative approach, which was simplified in [Wul8] for genus 2 and 3, after combined with
that proposal in [Gat03]. In [FL17] via applying localization to a degeneration of P to @, Fan-
Lee obtained a recursive algorithm for F;, depending on some initial conditions. In [GJRIT],
Guo-Janda-Ruan have proved that a localization formula via compactifying the moduli of
stable maps with p-fields does give the F» of the quintic conjectured in [BCOV94].

0.2. BCOV’s Feynman rule. Let N, 4 be the genus g degree d GW-invariants of quintics
Q. The genus ¢ GW generating function (potential) F, of the @) takes the form:

5 25
Fy(q) == $0g0logq” — 15001 l0ga+ Y Ny g’ (0.1)
d>0

Here the log term comes from the degree zero “unstable” contributions.
The genus zero Fj can be computed by the celebrated genus zero mirror symmetry: Let

[e%s) 5d 3
o1 (OH +mz i 1—i
Hg.2) =2 Y g dmmt OISy gy iz
d=0 Hm:I(H + mz) i=0
be the I-function of the quintic threefold and let J;(q) := I;(q)/Io(q) for i = 0,--- ,3. Then
Theorem 0.1 (Mirror Theorem [Giv96, [LLY97]). The following formula for Fy holds
Fo(Q) = 2(log Q* = J1(0)?) + 3(Ji(q) J2(q) — J3(q)),  with Q = gexp Ji(q).

We now state BCOV’s conjecture, which extends the mirror symmetry to higher genus.
Let the three “propatators” introduced in [BCOV94] be T%%? T¥ and T € Q[q] (which are
essentially the genus zero invariants and explicitly defined in (1.5]), see also Remark . Let

Y=(1-5")"" and Li=1+qgt]. (0.2)
For 2g — 2 4+ m > 0, we introduce the “normalized” GW potential following [YY04]

(5y)g—1(111)m (Q d

P = —_-\" ‘
am =z (Qag) il e,

€ Q[q].- (0.3)
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We denote the state space by Hg :=span{t, ¢}, which is a linear span of the formal variables
¢ and 1. Let G4 be the set of genus g stable (dual) graphs. For each I' € G, we define a

contribution ContBCOv via the following construction:

. . 2.
(i) at each edge, we place a bi-vector in Q[q] ® Hg":
T +T? (pRYV+YP@p)+ TP ;
(ii) at each vertex, we place a multi-linear map Hg (min) _, Q[q]:
(2g+m+n—3),- Pym if 29—24+m >0
(n_l) (7_1) if (g7m):(la0)

where x = —200 and (a); :==a(a—1)---(a —k+1);
(iii.) we apply the map (ii) at each vertex to the placements (i) at the edges incident to
that vertex; we define ContFB to be the product over all vertices and edges.

2™ @ YE" — Py i= { (0.4)

Later, we will simply call (iii) the composition rule. The BCOV Conjecture is

Theorem 0.2 (BCOV’s Feynman rule). For g > 1, the Feynman graph sum

BCOV BCOV
f Z \Aut Cont , (0.5)
IeGy
which a priori is a power series in the Novikov variable q, is a polynomial in X := 1:5555qq of

degree at most 3g — 3.

This polynomial is called the ambiguity in the physics literature. Once it is known, the
F, is determined entirely by the lower genus Fj, 4. In Section |5, we will represent it via the
quantization of a symplectic transformation on the “small” phase space Hg.

Remark 0.3. In [BCOV94], there are also freedoms in choosing the propagators, which were
called “gauge”. They conjectured that, the Feynman rule will hold with a suitable choice of

gauge. In we give the most general freedoms for the gauges (1.4) and their explicit roles
in propagators (|1.3)). For this reason we regard Theorem (1| (given in §1.1)) as the most general

form of BCOV’s conjectures, with insertions, and with gauges (1.4)).

0.3. The algorithm. The BCOV’s Feynman rule provides a recursive algorithm for deter-
mining Fy, up to finite ambiguity. The set G, contains a distinguished “leading” graph Iy
which has only a single genus g vertex with contribution P,. Others I' € G,\{I'y} contribute
to products of Fyy ., and propagators {T%%,T%, T}, which are explicitly computable assuming
all Fyr4 are known. Then implies that

1 BCOV |, BCOV BCOV
P, =— Z m Conty +/y , and degy f, <39—-3.
reGy\{I'g}

This way, Fy is determined explicitly once we have found ffcov, which has 3g — 3 unknown
coefficients, as the constant term is given by the (known) degree zero GW-invariants.

To illustrate this, we apply the algorithm to find the genus two potential 5 (A more detailed
computation can be found in Appendix [B.2). There are 6 stable graphs in Go\{I'z}:

= o) ) K Db
The BCOV’s Feynman rule for g = 2 gives us
1 9 9 1
-P, = 5 (TWP1,1 +2T9Piog1Pia+ TP1’0’1> + 3 (TWP1,2 +T%P 1 + TP1,0,2)

1 1 1 1
+§ ((Tw)zpl,l + TWT¢P1,0,1) + 3 ((TW)QPOA + 4T¢) + 3 (T%%)% + B (T%%) + fOV.
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As Ny 1, Nao and Na 3 can be calculated classically (see Appendix , by using the definition
of Py in (0.4) and the genus one mirror formula [Zi09, KL18, [CGLZ18] E|

28 d 1 1 107
Pii=—2 . g% (logly) — ~T%% — — X — —+
1.1 3 qdq(Og 0) =3 12 60

we prove the genus two mirror formula conjectured in [BCOV94]:

Theorem 0.4. Let B := qd%(log Iy). The genus two GW potential Fy of quintics is

(T+e)?

. -13 [350T (25X+535 700 B 25TW’> 5 s, BB+ X4
2 = B —

T¢ L = (T%¢
51—-X)| 9 36 9 6 517 6

X2 446X +2129 25X X3 113X? 487X 11771
(65 +46 X 42129 25 +535B+?32)TW’+<— 3 87 7 )]

1440 T 356 210 7200 300 T 7200

0.4. The strategy of the proof. Our proof of BCOV’s Feynman rules is via applying the
NMSP theory, which was introduced in [NMSP1]. In its sequel [NMSP2], the property of the
NMSP theory was further studied, and the conjecture on the Yamaguchi-Yau ring was proved.
In this paper, we will continue to use the results proved in [NMSP1l, NMSP2].

We begin our paper with stating the generalized BCOV’s Feynman rule (Theorem 1). We
then introduce a parallel Feynman rule, derived from the NMSP theory, which we call the
NMSP Feynman rule (Theorem 2). We then state our Theorem 3, which says that the gener-
alized BCOV’s Feynman rule is equivalent to the NMSP Feynman rule.

In the first half of the paper, we will build the mentioned NMSP Feynman rule and prove
Theorem 2. To build the NMSP Feynman rule, we use the NMSP theory and its C* localiza-
tion. As is shown in [NMSPI], the organization of the C* localization of the NMSP theory is
governed by a class of graphs, whose vertices are categorized into level 0, 1 and oco; and among
these three vertices, level 0 vertices are G W-invariants of the quintic (). The key is that the
edges connecting level 0 vertices contribute (in the NMSP theory) exactly the BCOV propaga-
tors. This leads us to introduce the “NMSP-[0] theory”, given by summing the contributions
from graphs in the NMSP theory whose vertices are of level 0.

In [NMSP2], we have identified the NMSP-[0, 1] theory (constructed in [NMSP2|) with the
R matrix action on the CohFT of the union of the quintic Q with N points. We have proved
the polynomiality of the NMSP-[0,1] theory there. Based on these results, we prove the
polynomiality of “NMSP-[0] theory” in Proposition via Lemma (proved in . We
also identify (via the factorization (4.1)) the NMSP Feynman rule with the polynomiality of
“NMSP-[0] theory”, with the same controlled degree bound 3g — 3. So the NMSP Feynman
rule is proved simultaneously.

In the second half of the paper, we write the generalized BCOV’s Feynman rule in the form
of the operator quantization of the symplectic transformation R® on the B-model state space
Hgp. Here the RB-matrix is exactly the restriction of the RA-matrix that appears in the NMSP
Feynman rule(§5.1). We then introduce the “modified” Feynman rule via the factorization
of the quantization action(. Compared with the NMSP’s modified rule (§6.2), we prove
that the generalized BCOV’s Feynman rule is equivalent to the NMSP Feynman rule, hence
proving Theorem 3. Theorem 2 and 3 imply Theorem 1 directly, and provide a mathematical
proof of the BCOV’s Feynman rule.

As a further remark (in §7), we will show that Yamaguchi-Yau’s functional equations
and for quintic Calabi-Yau threefold [, can be derived from the operator formalism of
the BCOV Feynman sum rule (Theorem [7.3)). Indeed, J. Zhou and the authors of this paper
will give a geometric proof that for a general Calabi-Yau threefold its BCOV Feynman rule
implies Yamaguchi-Yau functional equations and (cf. [CGLZ]). For the quintic
Calabi-Yau threefold, we include here a direct proof.

L See also Example for a short proof of the genus 1 mirror formula via BCOV’s rule.
2 They are also called Holomorphic Anomaly Equations in the literature, c.f. [LhP18| [GJRIS].
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The paper is organized as follows. In §1, we make precise the statements of Theorem 1, 2
and 3. In §2, we recall the notion of CohFTs and R matrix actions. In §3 and §4, we prove the
NMSP Feynman rule, the Theorem 2. In §5 and §6, we prove the equivalence of two Feynman
rules, which is Theorem 3. In §7, we verify the Yamaguchi-Yau equations, and illustrate how
to apply our main theorems to find lower genus Fy<3

We believe that this approach should provide Feynman rules for complete intersection CY
threefolds in products of weighted projective spaces. This is our work in progress.

1. THE MAIN THEOREMS

In this section we give the statement of three theorems, respectively (i) generalized BCOV’s
Feynman rule, (ii) the NMSP Feynman rule, and (iii) their equivalence. We will prove (i) by
showing (ii) and (iii), in next sections.

Following [YY04], let D := qd% and we introduce the following generators
DrJ DP]J —5°
711((1), B, = 70((1), X = > (51 .
1 (q) Io(q) 1— 55
It is proved in [YY04] that the ring of five generators
R = Q[Ay, By, Bs, B3, X].

is closed under the differential operator D, and contains all the Ay>4 and Bj>2. Indeed, E|

Ay = (1.1)

2 7 24
_ 2 _ _ _X. Z = —
Ay =2B° ~24B 4B, - X-(A+ 2B+ 5), Bi=-X- (233+ By+ 2B+ 625) (1.2)

where we always denote A = A; and know that B = B;.
In [NMSP2], the finite generation property raised in [YY04] is proved. We state it now.

Theorem (Polynomial structure). For 2g —2+m >0, Py, lies in the ring R.

1.1. BCOV’s Feynman rule with insertions in general gauge. We now introduce a
Feynman rule generalizing that in [BCOV94]E|. First we introduce the propagators

Eg = B + c1gq, ng = A+ 2B1 + ¢y, ng = —By — ¢y B1 — ¢3,
2
Ejy = =By +(B—X): By~ = B1X + 1 Bf —2¢ B1 + s, (1.3)
which depend on the “gauge” G := (c1q4, c1p, €2, C3), Where
Cla, c1b € Q[X]1, 2 € Q[X]2, and c¢3 € QX]s. (1.4)

Here we denote by Q[X], the set of polynomials of degree < d. In the papers [BCOV94, [YY04],
the propagators were chosen with the following special “gauge”

g g g
(TQDQD’T(,D ) (Eapap7E¢4p7 Eqpq/;)’

(Clb7627c3) (%7_%7 125). (15)
Let G4, be the set of stable graphs of genus ¢g and n legs. Let Hp :=span{y, '} be the
B-model state space. We define the B-master potential via the graph sum formula

f ,m,n <SO 7Qp >g,m+n . F€;+ ’Aut(F)’ on I (SO 7¢ ) ( N )

3 Recall I1; was defined in . Here our choice of generators are slightly different from that in [YY04]
and [HKQO9], which comes out naturally from our approach through A-model theory.

4 Their proof relies on a “non-holomorphic completion” of the generators. For an algebraic proof of the first
equation see [ZZ08, Lemma 3]. The second equation follows directly from the Picard-Fuch equation.

5 See Appendix for a statement of this Feynman rule in the original language, and the relations with
our version. See also E for the Feynman grasph sum as a geometric quantization.
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Here for each I' € G, the contribution Cont?’g is defined via taking the product through
all vertices by the composition rule by the following placements:

e at each of the first m or last n legs, we place a vector
p— Ei ¥ or 1  respectively;
e at each edge, we place a bi-vector
Eop®@p+E] (0@ +90¢)+ Eg, v ®@¢;
e at each vertex, we place a multi-linear map :Hg Smtn) _, Q[q]:
m®w®n — < ®m w®n>
where we recall Py, , is defined in (0.4).

gm+tn’ _Pgmna

Theorem 1 (Extended BCOV’s Feynman rule with insertions in general gauge). For any
gauge satisfying (1.4), we have the following polynomial structure statement

fiu5 0 € QIX]3g-34m-

By taking g > 1, m = n = 0 and picking the special gauge (|1.5)) in Theorem (1} one recovers
Theorem in the introduction.

Convention 1.1. In this paper ¢ is the psi class of ﬂgﬂ, namely, the ancestor class.

Remark 1.2. After identification ¢ = Ipl11H, the correlation function Py, , matches the
normalized GW correlator of quintic CY threefolds. Namely let Y := 1 — X, then

(5Y)9~ ® @n\@
Pg,m,n = IQg 2+m< m’w n>g m+n
0
except for the “exceptional” cases when (g,m) = (1,0). Here
<711/J]f1,~- ,anln Z / evi(m) i U- - -Uevy (1, )pkn.
[(Mg,n (Q,d)]

For the exceptional cases, the BCOV’s correlators
PlOn = (n—l) (7_1)

differ from the corresponding GW correlators <w®”>1 L, = (n— 1)!25 by a “correction term”

—(n —1)!. This term is mysterious from the A-model side. In the proof of Theorem |3 I, we will
see how this term comes into play.

1.2. The NMSP Feynman rule. Let Ha be the A-model state space:
Ha :=span{po, - ,p3}[¥], ¢i:=1Ily- - I;H fori=0,---,3.
We introduce the propagator matrix with gauge G by

0 dj Elg;z /(/)2E 7/}3 E1w2
0 y-ES, ¢?. BY

RA9 ()™t =1~ Lev | € End Ha. 1.7
(®) 0 (1.7
0
Here besides the BCOV’s propagators , we introduce extra propagators
G . G G . g G G g ._ G g G
EY,, = Ew, B o E “Eg, — EW, Eh/f" = —E¢ . Egp Eww. (1.8)

We define the A-model master potential via the following graph sum formula

A 1 A
fg;A?b = <¢a1¢b1’ - a¢anwb”>;hg = Z m COntF 79(90&11/}@) (1‘9)

IeGyn
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g

where for each stable graph I', the contribution Contlé’ is defined via taking the composition

rule along the following placements’;

e at each leg [ with insertion 4,0@11/11”, we place the vector
RA9 () g, € Ha ;
e at each edge, we place the bi—vectorﬂ in Hyx ® Hp

AG n._ 1 4  pAGL -1, AGr i\ —1 AW
VAW = 5 (@ wrmi —RM) e 0 R )
e at each vertex, we place the map

n@) @ @m@) = S m (W), ), (1.10)

0

In particular, when a = 10" and b = 01", we define

A:
f 7mn - < <1®m’ (¢0¢)®n>g,n§+n' (111)
Theorem 2 (A-model NMSP Feynman rule). For any
Cla, c1p € Q[X]1, c2 € Q[X]s, and c3 € Q[X]s, (1.12)

we have the following polynomial structure statement

fg ;a,b S Q[ ]3g73+n72i b; -
Remark 1.3. Comparing with BCOV’s Feynman rule, we see that in the A-model case

e the state space is is of higher dimension; and we have 6 (instead of 3) types of edge
contributions (which we call extra propagators);

e there is no “correction term” in the g = 1 vertex (see Remark [1.2) - for more details);

. the master potential A9 is indeed the generating function of a CohFT RA9.Q% (c.f.
, where Q€ is the normalized CohFT of quintics (c.f. §2.5.3).

Remark 1.4. The NMSP Feynman rule essentially says that, in the orbit of the R-matrix
group action on the quintic CohF'T, there exists a “special” subset {QA’g : G} which is invariant
under BCOV’s “gauge” group, such that their genus g potential functions are simply degree
3g — 3 polynomials in X.

1.3. BCOV’s Feynman rule versus NMSP Feynman rule. We now state our final result.
Theorem [1]is a direct consequence of Theorem [2 and this result.

Theorem 3. For x = A or B we introduce the master potential function
9 (h,x,y) : Zhglgmnxm".
g,m,n

Then we have the identity

ng(ha z, y) = fBg(h) x, y) - ln(l - y)
Namely, the two types of graph sums are related by

AG _ BgG _’_5’157”70(”_1)[_

g?m?n g m n
6 Indeed, the graph sum defined here is the R*'9-matrix action, see t for more details.

7 A direct computation shows

VAI (") = EZ, (01 @ ¢1) + ELy (01 ® 0ot + 0ot ® ¢1) + Egy, (90t ® o)
+ EY 4y (90 @ 010" +019 @ 00) + Ef 2 (90 @ 0o (¥')* +00v” ® o) + B, (90 ® pa+92 @ o).
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Remark 1.5. Indeed, we will see that the graph sum definition of f;,’%n (for x = A or B) is
equivalent to the following quantization of R*-matrix action:

F29(h,x,y) = log (fi*'gP*(ﬁ; z, y))
where the generating function P*(h;x,y) are defined via
PB(h,z,y) = PA(hz,y) +In(1 —y) = > 9~ 12 m'n, Py (1.13)
g,m,n

See §5| for more details about the quantization of symplectic transformations.

2. COHOMOLOGICAL FIELD THEORY AND R-MATRIX ACTION

In this section, we investigate the CohFTs and the R-matrix actions. We will follow closely
the treatment developed by Pandharipande-Pixton-Zvionkone in [PPZ15].

We first fix notations. Let @ C P* be a smooth quintic CY threefold; let (7, ev,41) : C —
My, (Q,d) x Q be the universal family of the moduli of stable maps to @, and let

prd, : Mgn(Q,d) = Mgy, and  pry, : Mgk — Mgn

be the obvious the forgetful morphisms.

2.1. Definition of cohomological field theory. We recall the definition of a CohFT intro-
duced by Kontsevich-Manin [KM94].

Definition 2.1. A CohFT consists of a triple (V,7,1), where V is an F-linear spaceﬁ for an
integral domain F, n is a non-degenerate (super) symmetric bilinear form n : V.x V — T,
1 € V is called a unit, and S),-equivariant maps

Qgn VO - H* (Myn)®A, ¢g>0,29—2+n>0,

where A is an [F-algebra, called the coefficient ring, such that, for any basis {e;} of V' and its
dual basis {ek}ﬂ7 the maps Qg ,, satisfy the following properties (axioms):

(al) Fundamental Class Axiom:
Qo,3(1,71,72) = n(71,72),
Qgnt1(mn; 1) = (pr1) " Qg.n(Tn), Tn = (T1,+  Tn);
(a2) Splitting Axiom and Genus reduction axiom
S*le+92,n1+n2 (Tnl ) Tnz) = Zk le,nlJrl (7-1'11 ) ek) ’ Q9271+n2 (eka 7}12),
r*Qgr1in(m) = 4 Qg,n+2(7'n,ek,ek).
Here s and r are the obvious gluing maps.

Example 2.2 (CohFT of the GW theory of X). For a projective variety X, and a coefficient
field F, we introduce the triple and the maps by (with pr¥ defined as like prQ)

V = H"(X,F); (:v,y)Z/ny; 1€ H(X,F);
X
Q5 (r) =3 (prl,), (Hev 70 My (X, D™ ) € H* (M0, F)a].
d=0

8 By “a space over a domain F” we mean a locally free F module.
9 {ex} and {€"} satisfying n(ex, e’) = (—1)d ek dcgeln(ez,ek) = Oke.
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2.2. Shift and direct sum of CohFTs.

Definition 2.3 (The shifted CohFT Q7 of a given CohFT (0.). For 7 € V &5 A,
1 pe—
QF () =) Hprk*ggmmm, ™) € H*(Mgyn, A),
k>0
with the same triple (V, 7, 1) of Q. Here we assume that the infinite sum is well defined.
Definition 2.4 (The direct sum of CohFTs). Let Q% and Q° be two CohFTs with identical

coefficient ring A. We define their direct sum to be the CohFT with triple (V¢ @ VP, n® @
n®, 1% @ 1%), and with maps

(2" @ Q) gn(m) = Qg (1) + Qg () € H (Mg, A),
where 7; = (77, Tib) € V® @ VP, By iterating, we get a direct sum of finite copies of CohFTs.

It is easy to check that the direct sum of CohFTs so defined satisfies all the CohFT axioms,
and hence is a CohFT.

Example 2.5. Let Q¥ be as in Example For two smooth projective varieties X; and Xo,
we have QX15X2 = X1 g X2,

2.3. R-matrix action on CohFT. The R-matrix was first introduced in [Giv0lal [GivO1D]
to compute higher genus equivariant GW invariants. Its lifting to CohFTs was studied in
[Sh09, [Tel2]. In this section, we will mostly follow [PPZ15}H with a slight generalization.

Let © be a CohFT with the triple (V,7n,1). We consider another triple (V',7',1’), and a
formal power series

R(2) = Ry + Riz + Roz? + --- € End(V, V') ® A[#],
which satisfies the “symplectic condition”: H
R*(—2)R(z) =1 € End(V). (2.1)

Notice that implies that R(2) is injective and dimg V' < dimg V.

We define the R-matrix action following [PPZ15]. Let I' € G, be a genus g stable graph
with n legs. For each vertex v of I', we denote its genus by g, and its valence by n,. For each
" we associate it the space Mp 1= HUGV(F) Mg, n,, and define the contribution

Contr : V'® —s H*(Mp, A)
by the following construction
(1) at each leg [ of T', we place a map
R (=) : V! — V[yi];
(2) at each edge e = (v1,v2) of ', we place
Ypes@e’ =3, R (—Pen))en ® R (—(c.0y))e™
V(ewr) T Vie,va)

where {es} and {e},} are bases of V and V', with dual bases {¢”} and {€/®} respectively;
(3) at each vertex v of ', we place

ngnv : V®nv — H* (Mglhn’l)’A)'
Let &0 : Mp — ﬂg,n be the tautological morphism by gluing. We define

(RQ)g,n = Z L &*(Contp).

réa.., | Aut T'|

€ V[w(e,mﬂ ® V[w(e,vz)];

101y their paper, the authors give a careful proof that R-matrix actions preserve CohFTs.
L The symplectic condition is equivalent to : n(vi,v2) = 7’ (R(z)'ul7 R(—z)vg), for vi,v2 € V. It could not
deduce n(R*(z)v1, R*(—z)v2) = 1 (v1,v2) when dim V' # dim V.
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Let v; be the ancestor psi classes of ﬂngrk. For the given R-matrix, we associate
Tr(z) = 21 — zR(—2)*1" € ZzA[2] @ V;
we define its associated translation action by

TRQQ,H(_) = Z %(prk)*gg,n-i-k’(_? TR(¢R+1)> T 7TR(¢n+k))> (2'2)

k>0
assuming that the infinite sum makes sense in H*(M,,,) ® A. For example, if A = F[q] is
endowed with g-adic topology and

Tr(z) € 22A[] @V +qzAlZ] @V, (2.3)
then automatically converges. We call the g-adic conditions for Tr.
Definition 2.6. The R-matrix action on a CohFT ) is defined by

R.QY := RTRO.

2.4. Properties of CohFTs under R-matrix actions. Following [PPZ15], we have

Theorem 2.7. Let Q be a CohF'T with unit for the triple (V,n,1). Let A = F[q] be endowed
with q-adic topology. We have the followings.

(1) Let (V',n/,1") be another triple. Suppose R(z) € End(V,V')[z] is symplectic and
Tr satisfies the g-adic condition. Then TR is well-defined and is a CohFT, and
R.Q is also a CohFT. Furthermore, if R*(z) € End(V',V)[z] is symplectic (which is
equivalent to dimp V = dimp V'), R.Q is a CohFT with unit 1’ € V.
(2) Suppose (V" 1" 1" is another vector space with pairing and unit. Suppose
R.(2) € End(V,V")[z] and Ry(z) € End(V',V")[Z]
are symplectic, with Tg,,Tr, satisfying the q-adic conditions (2.3)). Then as CohFTs
on (V",n",1")
(RuRp).Q = Ra.(Ry.).
Proof. All statements can be proved by exactly the same arguments as in [PPZ15 Prop 2.12
and 2.14], except that for the axioms on unit in (1), the identity (RTQ)o3(1,71,72) = 7/(71, T2)
is shown in Lemma We leave other identities to readers. O

Remark 2.8. We remark that in [PPZ15] the authors used V =V’ and Ry = I. In the next
section we will use R actions in the case dimp V' < dimp V’. For more relations with [PPZ15],

see Example

2.5. Examples of CohFTs. In this subsection, we list some CohFTs used in this paper.

We consider the following CohFTs that arise in the localization of the NMSP theory. As
n [NMSP2], we pick a sufficiently large integer N; let G = (C*)N, and take H*(BG) =
Q[t1,- - ,tn] where t, is the a-th equivariant generator. In this paper, after equivariant
integration we will always specialize t, to —({t, where (N = e is the primitive N-th root of
unity. In this paper we always take F = Q((n)(¢) and A = F[q].

2.5.1. Twisted GW theory of a point QP'«"™ and its topological part wP'*™, The triple is
Hp, = HO(pty), (-, )Pe™, 1,:=1¢€ Hpt,)
where the inner product is given by
(2, )Pt = 5t [T g psa(ts — ta) ™ oy = may:
Let Ey ,, be the Hodge bundle over ﬂg,n; the maps are

w EY, ® (—ta))? N EY, ® (
Qgtﬁ,t () = (_1)1_96T( g, (—ta)) ot H ( Hﬁ'
’ (—tq)? er(Bgn ® 5tq) e (t/g — t

This gives us the CohF'T ngf{ A
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tw,

We introduce the CohFT wP'«*"V which is the topological part of tha’ : the triple is Hpy,,

with the same inner product and unit; the maps are defined by wy ; bo ’tw(1®") = (thiN )9
By [Mu83|, [EP00, [GivO1a], we have
Proposition 2.9. The following identity between CohFTs holds
QPttW — APta ( Pla:tW, (2.4)

where the R-matriz AP is given by

B 5 _
APte(2) :eXp<Z 2k(2k2k— 1) ((—ta)2k—1 (o)1 Z —tﬁ B l)z% 1)'

k>0

Remark 2.10. We see that the topological CohF'T wP'*" has the same vector space as that
of the CohFT QP's, but with different inner product. In fact if we define

APta(z) := /5/N - 17 CTN/Z APta(3),
then we have the CohFT identity{]
QPtart™ — APta (OPta

Convention 2.11. For simplicity, in the following we write Npt as the disjoint union of pt,,
1 <a <N, as in [NMSP2]. Accordingly, QNP6tW = @N_ Optatw - Npttw — N (;pla,tw et

2.5.2. CohFT Q%™ of the twisted GW theory of quintic threefold and the shifted CohFT
QW Tet @Q be a smooth quintic CY threefold. The CohFT Q% consists of the triple

- H* Q.tw _ LZ ﬂ — *
Ho=H"(Q), (2,9) /Ql_lgl(HHa) /Q—tN’ 10 :=1¢ H*(Q),

and the map

Q tw ( eVTTl eevy, n'n A vir
E g’ pr N [Mgn(Q, d)I™).
e [, e(Rmeevi, 1 0(1) - ta)
Remark 2.12. By dimension reason one calculates

Stw o N —1
Q?ﬁ (Tn) = (—t )(g )an<7'n)

g/ i=—q /N

By the fundamental class axiom, if 7 is a scalar multiple of the unit, Q7 = €, for any CohFT
Q. In particular QP* and QP%*" are not affected by any shift. Also, for 7 € Hg ®p A, we denote
by Q@7 the r-shifted CohFT of Q@

Convention 2.13. By abuse of notations, we denote QW = Q@™.70(@) from now on. Here
10(q) == Ji(q)H = 11(q)/1o(q)H is the mirror map.

2.5.3. CohF'T Q97 of “normalized” shifted GW theory of the quintic threefold. We consider
the following “normalized” CohFT

QP (=) == (V) Q8% (<), (v1,02)? = (5Y) (w1, v2)%.

Then the graph sum defined in is indeed an RA9-action on the normalized quintic CohF'T
Q97. In (L.10), the factor (5Y)9~! is from the above normalization factor, while I (29=2+n)
is obtained by applying dilaton equations to the tail contributions (c.f. equation (C.2)).
Further, with the change of variable ¢ — ¢’ := —q/ tN and by adding the normalized factor
(=5Y/tN)(1=9) we can identify these two CohFTs:
G (—) = [(=5y/M) 0= - Qe ()|

q—q=—q/tN" (2:5)

12 The T-action here is well-defined with suitable topology. We skip the argument as we don’t need it.
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2.5.4. CohFT QY and Q'°°. The following CohFT QX is a fundamental object in this paper:
Definition 2.14. For RN := ) U Npt, we define the CohFT's of the local theory to be

QN — QQ,tW ® wNpt,tW Qloc — QQ,tw ® QNpt,tW
where the triples are both H := H*(X), with the pairing and the unit

CoM = (s @)@ + Clpts - pt)P5™, 1=1p+ Y 1la.
(67

Here <[ : H — Ho and |4 : H — Hy := H*(pt,) are the projections.

Convention. Let G = (C*)N act on P**N via scaling the last N homogeneous coordinates of
PN Let p the equivariant-hyperplane class in HZ(PY*N). In this paper, we will view p’ as
their images in H® := H®V (N, A) C K.

Now we recall some basic facts in the setup from [NMSP2, Sect. 1.1]. Considering the
natural decomposition H = H @ H3(Q), we pick a basis {¢; := p'}1 5 of H® with dual
basis

3 2 N—1 ,N-2 0
0 .. HN+31 r- N _ 4N - N _ 4N p N _ 4N 1 N _ 4N N N
{6 0y = (BN =), BN ), 20N - ), s - M), P B B
By using the above basis, let [N] := {1,--- ,N} we have
tg+ P :
lazp—4 BT forac [N], and H’ :ﬁN(tN—pN) for j =0,1,2,3.
th ok 5~ ta t
The Poincare dual of {1, H, H?>, H3} U {1,}a=1,.. N is
—tN =N, =N N N2 ¢N
—H3 —H? —H, —HYU{1* = —_1,} 0y .. n.
{5 —H", —H —H"}U{ 5 ta=1, N
Remark 2.15. In [NMSP2] we use the notation
[~]5.n,  Where @ = “loc”, “Q,tw” or “pt,,tw” ,

to define certain classes. They are closely related to the CohFT notation 2° used here, with
a minor change: in Q3 , (—) descendents are not allowed, while in [~]? , they are.

3. EXPRESSING NMSP-[0, 1] THEORY viA COHFTS

The moduli of NMSP fields and their localizations are constructed in [NMSPI]. In this
paper we concentrate on the “NMSP-[0, 1] theory”: For 29 — 2+ n > 0 and 7; € H[z], we
introduce

[l = D00t 3 (o), ([T evin - Conte) € H' (M. 4). (3.1)

g’n
d>0 [0,1] 1=1
= 0eG,

where prg‘fn Wynd — ﬂg’n is the projection.and Contg are contributions from those NMSP
localization graphs supported on [0, 1] (see [NMSP2, Sect. 0.3] for details).

Definition 3.1. We define Q[go,;ll}(n, e Tp) = [T, )01 for 7 € K.

g7n ’

We first quote the results proved in [NMSP2] in terms of the CohFT and R matrix actions.
Let SM, 59 and SP'a be the S-matrices of the NMSP-[0, 1] theory, quintic and pt, respec-
tivelyﬁ and let ¢’ = —7&. We define R(z) € End H ® A[z] via the Birkhoff factorization

M diag{AP*(2)}a_, ) _ diag{ S (2) oy ‘
5%(gq,2) < 1) = R(z) SQ(Z) gd (3.2)

Then the main results in [NMSP2, Theorem 3 and Theorem 4] is the following

13 See [NMSP2, Sect. 1.3] for definitions of these S-matrices.
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Theorem 3.2. The NMSP-[0,1] theory Q%Y with 1 € 3 and (-,-)™, forms a CohFT satis-
fying

0l = R.ON
Furthermore, for 2g — 2 +mn > 0, the NMSP-[0, 1] (ancestor) correlator
[0,1]
<¢m17/}k17"' a¢mn¢kn> :/ @Z’]fllbﬁ"ﬁg%]@mu 7¢mn)
g.m (Mg.n]

18 a q-polynomial of degree < g — 1+ %Zplml

A few remarks on Theorem are in order. The whole argument [NMSP2| Sect. 3.5] is a
composition of R-matrix actions on CohFTs

IEB(@QAPtD‘) Rloc

N Qloc — QQ,tW ® QNpt,tw Q[O,l}.

Here R'°¢ is the R matrix for torus localizations (defined in [NMSP2, Sect. 1.4]), and APta is
from Grothendieck-Riemann-Roch(GRR) formula at pt, (c.f.(2.4)), see [Mu83, [FP00, [Giv0Ial).
The g-adic condition for the GRR’s R matrix holds since AP = 1 + O(z). The g¢-adic
condition for R'°® holds because its tail T lies in gA @ V by [NMSP2, Remark 3.4].
Thus Theorem implies R.ON = Q1 where R is the composition of these two actions

R(2) := R°°(2) - 1® A(2)"P') € End(H) @ A[z].
It satisfies the defining identity (3.2)) by [NMSP2, Remark 3.6].

3.1. Q%_-theory in terms of stable bipartite graphs of Q[ and Q['-theory. In this
section we decompose Q%1 into two subtheories, by restricting R(z) action on small blocks.

Definition 3.3. For ;, € H (i=1,--- ,n) and x =0 or 1 , we define
0 Q,tw _

QN — QQ,tW @ wNpt,tw

R[l] .wNpt,tw =1 )

where the R*-matrices are

RU/(2) = R(2)lg = R()lsg € Hom(3g, 30)[:],
RU(2) = R(2)Inpt = R(2) I3ty € Hom(Hpe, H)[2].
Notice that here the state spaces (where the R*-matrix acting on):
He = span{¢'} o & HE'? and  Hypi = span{g;} )
have dimensions strictly less than that of JH.
Remark 3.4. By the definition, for x = 0 or 1, we see that
QE:]n(Tl, c ) € HY (M)
is equal to the summation of those stable graph contributions in
(R.QN)gyn(Tl, Cee L Th)
whose vertices are all labeled by *.

Remark 3.5. In this paper, the R-matrices that we have used are all identity on odd classes
and send even classes to even classes. Hence we will only describe their action on even classes.

In this paper a stable graph is a graph whose vertices are decorated by genus, such that
2g, — 2 + n, > 0, where n, := |E,| + |L,| is the valence of the vertex v. A stable graph is
called bipartite if each vertex is further decorated by (level) 1 or 0, and each edge connects
vertices of different levels. Let Eg)ﬁ be the set of stable bipartite graphs, with total genus g
and n many legs. For a stable bipartite graph A, we use V(A), E(A) to denote the set of its

vertices, edges respectively; use Vp(A) to denote its level 0 vertices, etc..

11t §s easy to generalize such definition of subtheories to any R-matrix action on direct sum of CohFTs.
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Theorem 3.6. We have the following stable bipartite graph formula

A, = Y @ ® )R ( ® o)

AGE[?’}L] UGV()(A) 'UIGV1(A)
01
( @n Q@m &V <w,w'>) (3.3)
vEVH(A), W eVy (M), e=(v,v")
l€Ly VeL,, EE(A)

where the edge contribution VO(z,w) is given bylﬂ
() R (—w
VOl (z,w) = YO | FEERDCW) o R (w)1e, (3.4)

Proof. Just notice that for the graph sum formula of [0, 1]-CohFT (via the R-matrix action
on %), the contribution of an edge that connects a Vj vertex and a Vj vertex is given by

_ = N+3 —RI(—2)*¢;, @R (—w)* ¢
Contpy, = >0 Z+w

RON(—2)* (R(2)—R(—w) ) 1,®1* * *

where we have used the symplectic condition,
RO(—z)*RU(z) =0,  RW(—2)*RIM(2) =1 € End(Hnp)-

The graph sum formula then follows from the definition of the R-matrix action. U

Example 3.7. The following is an example of a stable bipartite graph of total genus 9 and
two insertions (71, 72):

0 1 2

3 2

Convention 3.8. In the remainder of this and the next section, we use K € {L,Y, X, I, A;, B; }
to mean the function K|, of ¢ := —q/tN. For example, L = (1 + 55%)%.
Convention 3.9. From now on, we assume N is a prime.
3.2. Polynomiality of [1]-theory. Let R(z) = >, Rz* and
V(z,w) =3, VigzFw! = > Ziw(qu ® ¢ — R(2)"1¢; @ R(w)~1¢7).
We start by a key Lemma proved in [NMSP2, Appendix CJ:

Lemma 3.10 ([NMSP2, Lemma C.1]). Let k,l > 0, a =0,1,--- ,N+3 and o, 5 € [N]. We
consider the entries

(Rp)® == L5 - L;"F(1% Ri¢a), with Lo =%t L.
e For the R-matriz, we have that (Ry)% does not depend on o, and
(Br)a := (Ri)q € QLX]pp 2. (3.5)
o For the V-matriz, we have that Vi|NptxNpt @5 of the following form

VialNptsnpt = LT3N Y N LS FLE T (V)P 1, @ 1,
a7/8 s

such that the entries (Viy)*®* are independent of o, 8 and
(Vi)™ € QX k141 (3.6)

15 The basis {1} and {1°} in (3.4) can be replaced by any basis of Hxp: and its dual. Also since the 0 and
1 are symmetric here, we can define V! in terms of RW_matrix as well.
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Definition 3.11. Let x = [0],[1] or [0, 1], we introduce the *-potential for a = (a1,--- ,an),
b= (b1, - ,bn)

ab / UQE:]n(Qsau'” 7¢an)'
Mgn

i= 1
Here 7 := %(|a| + |b| — n), and |a| := }_ a;.

Our goal is to study the [0] theory, using the [1] and the [0, 1] theories. We first study the
[1] theory by considering additional “special” insertions:

Fortab ey = L1 / Hl/’ H¢n+y

Mq n+m i=1

1 _ _
QE] ]ner (¢a17 R ¢an7 R(iﬂnﬂ)%g, R R(wn+m)¢a2)7

where a € {0,--- ,N+3}*" a’ € [N*", and {¢, := L~ N+3/23" (—1,)91,}N ;| is the “nor-
malized” basiﬂ Let [&] :=> | #]

Proposition 3 12. Let N > 3g — 3 +n + m be sufficiently large.

(1) If r == x(|la] +|a'| + [b| + |b/| = n — m) € Z, then
Y
(/) ) € QLX)
s a polynomial in X of degree mo more than

Bg—3+n+m—\b|—\b’\+L%J.

(2) Otherwise, f =0.

(a,b),(a’,b’) —

Proof. By definition of Q1) := R WNPbtwW the [1]-potential is given by the sum of the stable
graph contributions. For each graph I', the contribution is given via applying the composition
rule to the following placements:

(1) at each leg with insertion ¢,¢° (one of the first n legs), we put
RA(—1)gatf Inpr = 3 L7 % L (Re) G (— )Ryl 1,

a,k

(2) at each special leg with insertion R(¢l,)q§a;/¢b§/ (one of the last m legs), we put
. - Y, _N43 a b
R<_¢l’) R(lﬁw)%;/%} = ZL > L l/(_ta) llloﬂ/}l/l )

(3) at each edge, we put a bi-vector

V(z,w)|Npexnpt = D > LNLEFLs T (V)05 1, @ 15 (3.7)
a,fB k,l,s

(4) at each vertex of genus g with n-legs, we put a map
N+t3 (94, -2 1 t o tW
=)= ZL 2 (29 +”)§(Prs)*w§,n+s (_aTa(@Z})@S)a
(0%

where To(2) = L™ 301 (1%, REL)(—2) 10 = 0,0, Lk (R)G (—2)F 1.
Denote L, (resp. L) the set of ordinary legs (resp. special legs respectively) over v. We
estimate the degree of the legs, edges, tails contributions at each vertex of level pt,. By using
Lemma |3.10, we obtain that:

16 Recall the flat basis of Hpt is given by {¢a := p* = 3 (~ta)*1a}h 17, and notice that we can choose
o)1, k, as a basis of Hnpt for any k.
o =k+1 p y
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e the factor involving L., L and Y is

(—ta)(N+3)(g_1)L¥(2g“_2) HLgcl_kl . HLZZ/ . H (t . L)%Léik@f*kf . HL;kt
t

leL, el f=(e,v),
v ecEy

_ poen (D v e (@ thy =D+ e myS(em) N(go -1+ B2y N(gy—14 B2
= o b

where we have used n, = |L,| + |L,| 4+ |E,|, and

e the total X-degree of the tail, edge and leg contributions at the vertex is at most
E:tkt+‘§:f=@moﬁeﬂm(kf4‘%)*‘§:kﬂm(kl+‘L%J) (3.8)
=39, —3+n, + 5+ 2ter, LN = 2ier, bt = 2ver, b

For each graph we may forget the hour decoration of each vertex to obtain an “hour-free
graph”. For each vertex v in an “hour-free” graph, we may sum up its all possible hours
a=1,---,N and extract a multiplicative factor L]’ with

Ty i= %(ZlELU (al +b - 1) + Zl’EL; (al’ + b — 1) + ZeeEvs(e,v))'

By fixing a choice in each summand of (1)-(4) above, such extraction can be done for all vertices
at once. Since Y, L¥ vanishes unless N|k, we see that if some r, ¢ Z, the decomposition
summand of (1) — (4) contributed by an “hour-free graph” vanishes.

At each edge e = (v1,v2), by the form of (3.7), we see S(eo) T S(e,vo) = 0. This gives

ri=y Ty = %(]a] +|a’| + |b| + [b'| — n — m).

The argument above proves the second statement.
Now we evaluate the contributions of all the vertices together. After multiplying them over
all vertices we have

(1) the factor involving L and Y (using LY = (t L)N = N . Y1) becomes

(t L)NZwmo (¢ )20 Ngo—1HE/2) — (y /N)=(9-147).

(2) the total degree of X of contributions of I is the sum of (3.8)) over all vertices v, which
equals

3g—3+n+m+ L%J — |b] — |b'].
Multiply (1) with (2), and sum over all graphs. The first statement is proved. O
3.3. Vanishing properties of [0]-theory. Recall that we have computed
RO 1 = oo+ 0(zN3), and RU(2)*p = 2B o+ 1 + O(zN72), (3.9)
in [NMSP2, Example 5.2]. Furthermore, RI%(2)* satisfies the following “QDE”
2 DRU(z)* = RO (z)* . AM — AQ . RO (z)*, (3.10)

We have the following general property for R (z):

17 We recall the explicit formulas for A® € End Hg and AM € End K that were proved in [NMSP2]

10 . 1 ifi=j+1
AQ = " I 0 and (AM); =3 Cj+1q9 — (52',4tN if i = ] —N+1
22
I, 0 0 otherwise

where (¢j);j=n,... N+4 = (120,770, 1345, 770, 120). See [NMSP2, Sect. 1.5 and Appendix A] for more details.
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Lemma 3.13. We introduce the mod-N degrees by letting
degy =1, degy; =j = degg;.
Then, RO -matriz preserves the mod-N degree. Furthermore, let j := j — NL%J and @; =0
for § > 3, we have the following key property:
R (2)"¢; = c;qt%J 05+ 0(23_3) forj=0,--- ,N+3, (3.11)
where (c;-)jzoy...7N+3 =(1,---,1,—120,—890, —2235, —3005).

Proof. Recall RI%(z) = SM(2)S9(¢/, z). Since the local and global S-matrices preserve mod-N
degrees, the R%-matrix preserves the mod-N degree as well. Furthermore, because deg ¢; < 3,

we obtain the O(z773) in (8.11)). The leading term is from (3.10). O

The shape of RI% gives us control on fg[oga . The followings are the most direct ones.

?b)
Lemma 3.14. Ifr ¢ 7 then fg[;oga b) = 0.

Proof. First by Lemma each edge(in the RO action on Q@) contributes the mod-
N degree 2. Secondly, observe that, for quintic CohFT, fﬂgn an(@)?: 1¢aiwbi) = 0 unless

> ;(a; + b;) = n. The same statement holds when an is substituted by Qg%’,fw, by Remark
The lemma follows by summing up the mod-N degrees over vertices and edges in arbitrary
graph defining Q = R0} Q@tw, O

We will assmue 7 is an integer in the remainder of this paper.
Lemma 3.15. Suppose N > 3g — 3+ 3n. Let a:= (ai, - ,a,) with
aj:=a; —N|¥], and r~:=r—[&]= W.
We have r™ € Z>o; and if r~ # 0 then fﬂa’b) = 0. Namely,

= [0]
la| + |b| #n = fg7(a7b)
Proof. By N > 3g—3+3n and the stability condition 3g—3+n > 0, we have —N < —2n < —n.
Since r~ = r — | &] is an integer we must have r’ = W > |§¢) = 0. This proves the
first statement.

Next we prove the vanishing result. By definition, if »~ > 0

|a] =™ - N—(|b[ —n) = N —(|b[ —n).

=0.

0]

By definition of R-matrix action, we write fg[ (a,b) &S @ sum of stable graph contributions. At

each vertex v the contribution is of the form

/ 00 @ R0 @ i),

Mgy ny €Ly f=(en),e€E,

where C is from edge contributions. By using (3.11]), we see that, if ™~ > 0, the total degree
of psi-classes of all vertices is at least

|a| —3n+ |b| > N — 2n. (3.12)
On the other hand, the graph contribution vanishes if for any vertex v,
>ter, (@ —3+b) > 39, — 3+ n,.
Hence it vanishes if
la| =3n+|b| >>" (3gp —3+ny) =39g—3+n—|E|
By the condition N > 3g — 3 + 3n and we finish the proof. O
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Corollary 3.16. If f[ gab s nonzero, we have

- 1(|a|+|b|—n =3 (Y =#{ira >N},

l
Corollary 3.17. If fgoga b) s monzero, we have
g—14+r<3¢g—-3+r+n—|bl (3.13)

Proof. 1f g > 1, (3.13)) follows from the non-vanishing condition |b| < n. If g = 0, we have the
non-vanishing condition [b| <3¢g—-3+n=n—-3. Henceg—1+r=—-1+r <r—3+n—|b|.
We finish the proof. O

3.4. Polynomiality of [0]-theory. In the last subsection, we want to give the similar degree
estimate for [0]-theory as what we have done for [1]-theory in Proposition
We introduce the [0]-potential with special insertions:

0 0
f[ ga b),(a’, b’) / E]]n—l-m( ® ¢az ® aj, b, (¢n+l’>>a
Mg,n+m
where the indices a € {0,--- ,N+3}*", a’ € [N]*™, b € Zj, b" € Z{{" and
Eqy(¥) :== L - Coef 4 o (R(Y) — R(—z))¢" (3.14)
with the dual basis {¢%:= MZ (—ta) ¥ 13N _, of the “normalized” basis {$;}N_;.
Using VO (z,w) = ZN Mgf)a ® R(w)¢,, one has
VOl (z,w) = 0 s Bap(2)wb @ L R(w) . (3.15)
Lemma 3.18. We have L™"*(¢,, Rp¢?) € Q(tN)[X]kH%J and
(ba, Rkd®®) =0 if a—k#b mod N. (3.16)
Proof. Tt follows from Lemma and
(60, Rid’) = Yoo (—ta) PLEH (Rr)7 = o (CGRE) P (CRE L) (Ry)g.

Here we have used ) (({)™ = 0 unless N|m because N is a prime. O
Lemma 3.19. We have f (a,b),(a’.b) = 0, unless
ri= %(la| + [b| = [a/| = [b/| =+ 5) € Z.

Proof. Recall the mod-N degree introduced in Lemma Apply (3.16) to Rp¢® = ZN+3(Rk¢b 0s)0°
one sees the mod-N degree of Ry¢” is 3 — (k + a). One then calculates the mod-N degree of
Eqp is 2 — a —b. The same reasoning as proof of Lemma applies. O

When s = 0, we have f, g b),(al,b/) = fg[oga py and 7 = =(lal + o] — n).

Definition 3.20. For any (g,n), we introduce a statement

« n n 0] »
Sgn = “Vae{0,1,2,3" vbezl, (Y/tN) 1 € QX]sg ainpb)
We also introduce stronger statements
6;,71 = “Vk,s >0 with £ +s=n,Vae{0,1,2,3,N,--- ,N+31** a’ € [N]**, (b,b) € Z%,
N\g—1+r+s  [0] »
/)7 o amyarb) € QUXsg—s o254 2 - blb - (3.17)

One of the main result in the next section EL is the following lemma.

18 Gee for the proof
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Lemma 3.21. Suppose (g,n) satisfies 29 —2 +n > 0. Let N > 3g +n. If the statement
Spm holds for any (h,m) < (g,n) and 3h + m < 3g +n. Then for any (h,m) such that
(h,m) < (g,n) and 3h +m < 3g +n, the statement &}, holds.

By using the above two lemmas, we prove

Proposition 3.22. Let N > 3g +n. Then
Nyg—1+4r [0]
vabe N3, (YN0 e QX g e (318)

B is equal to a graph sum. In case (g,n) =

(0,3), there is only one graph with a single vertex and with no psi-classes insertions. In this

case r = y ;| % ]. By the property of Coef,0R%(2) (c.f. (3.9) and (3.11)), one calculates (for
any ap, as,as)

(V)0 f o = N (/N T B Ly O = C - X

for a C' € Q (which is a product of ¢;’s defined as in4.15)). This is a polynomial in X of degree

0 — 3+ 3+ 7. Here we have used (H, H, H)® = Inp/I1; and (1, H, H2>Q =1 (c.f. [NMSP2,
Appendix A]).

Proof. By definition of RI%-matrix action, fo[ogg

We now prove the proposition by induction on (g,n) under the lexicographical order. We
will use Proposition [3.12] Fix g,n such that 2g — 2 +n > 0, and from induction hypothesis
assume holds for any (h,m) < (g,n). Then &, ,, holds for any (h,m) < (g,n) and
3g+m < 3g+n.By Lemma G’hm holds for any (h,m) < (g,n) and also 3h+m < 3g+n.

Now for any a,b € [N + 3]*" we consider the [0, 1]-potential fg[o(’;]b). Suppose ngO(’gb)
vanishes, (3.18) holds. Suppose f{g?(’ib) # 0. By Corollary 3.16, ¢ — 1 + r € Z. Since
N>39g—3+n>>.b >0, we have %ﬂ_zbi < 1, which implies

lg— 1+ 739—3+§:i:1aij =g—1+nr

7;],,0) # 0 is a polynomial in X of degree degy fg[?(’ib) <g-—14+rc<

39 =3+ n—[b[+r (by (3.13)).

On the other hand we apply (3.3) to this [0, 1]-potential. There is a bipartite graph with
only a single genus g level 0 vertex, which we call the leading graph. It suffices to prove that
for any non-leading graph I', the contribution

Indeed, every [0] vertex of any non-leading graph is applicable for the statement 6;1,771' Apply

(3.15)) first, and Proposition at V1, and (3.17)) at V5, we obtain
e the degree of the total contribution of I' in X is given by (with n, := |E,| 4+ |L|)

3 <3gv —3+my+|Ey|+ ) (L%J —b) + ) b'(e,v))Jr

veVp lELy ecky

+3 (39=3+m+Y (155 =b) =3 bew) <39—3+n+15]— bl

veV] €Ly e€EF,

By Theorem fg[o(’

e the total factor involving (Y/tY) is given by
(Y/tN)gflJrr i H (Y/tN)f(gvflerJrS) H (Y/tN)*(g'u71+7”’u) =1.
veVy veVy
This finishes the induction. O



20 HUAI-LIANG CHANG, SHUAI GUO, AND JUN LI

4. FrRoM NMSP [0]-THEORY TO THE COHFT Q4 via RX-AcTION
Definition 4.1. We define the CohFT QA0 via the following R-matrix action
QAﬁ = RA’ﬁ-QQ7tWa with RAﬁ(Z) = RA7g‘Cla:CIb:C2283=07

where RAY defined in (I.7). For a; = 0,1,2,3 (i =1,--- ,n), We introduce
fgab‘:( SY/tNh 1/ w . -wbn QAO((pam"'ySOan)'

Remark 4.2. By the relation (2.5)) , we see that this definition matches with the graph sum
definition in (equation (1.9)), with gauge ¢14, = c1p = ¢a = ¢3 = 0 and with ¢ — ¢.

In this section we will prove the polynomiality of the Q4:0-theory, via the polynomiality of
the [0]-theory. In the end, we will prove Theorem

To extract information from the NMSP-[0] theory, we consider the following matrix factor-
ization which defines RX(2) : ﬂ

RO(2) = RX(2) - RAO(2), (4.1)
where the matrix is under the following basis
foto —20 (o — T {808
(Recall ; := Iglyy -+~ I;; H for i = 0,1,2,3.) By definition, we see
Q) = RX AT,

4.1. Properties of RX. The advantage of the factorization (4.1 is:
Lemma 4.3. Let RX(2) be the matriz defined by ([&.1)), then
RX(2)*¢o = wo + O(zN73) and Tprx(2) := zpg — 2RX (=2)*¢o = O(zN72). (4.2)
Furthermore, the following properties hold for k < N — 3.
1. if j #k+a mod N, then (d)j,R,)fgoa) =0;
. if 7 <N, we have ((;Sj,Rngpa) € XQ[Xk—1;

2
3. if § > N, we have (¢;, Bt o) € ¢Q[X]y;
4. the CX(2) € End(Hg, H)[2] defined below satisfies RX (—2)*C*X (2) = Ig € End Hg,

1 . uUX 2,24X .3, _576X2%2 24X
625 625 7390625 625
202X .2 [4848X2% | 226X
< 0 1 %" 625 ( 390625 T 625 )
7 (2) = 649 X
% 762
0 1

where the dots represent zeros.

Proof. The formula ([£.2) follows from the definition of R (z) (4.1)), the formula (3.9) and the

special form of RA0( 0(2 by .
To prove the propertles for R¥X(2)*¢; (i > 0), recall the QDE (3.10) for RI%(z) is

DRI (2)* = RO(z)* . AM — A9 . RIO(2)*,
Together with the definition RI0(z)* = RA’G(Z)*RX(z)*, we obtain
D(RM ()" R¥ (2)") = (RM(2)"R¥ (2)") - AM — A2 - (RM ()" R (2)").

19 Since RA0 is invertable, such matrix R™(z) exists and can be calculated.
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Then we see that R¥(2)* satisfies

RX(2)* - AM = zD(R*(2)*) + A% (z) - R¥(2)*, (4.3)
where a direct computation via Yamaguchi-Yau’s relations ([1.2]) shows that
0 0 0 —2X
X N) Q\ pALT, \* 1 0 %22 0
AX(2) == RAO(—y) [(ZD+A YRAD(2) ] - (4.4)
0 1 —Xz 0
0 0 1 Xz

Hence we have an algorithm which recursively compute RX(2)*¢; (i > 0) from RX(2)*¢g =
©o + O(2N73) . Furthermore, since the matrix in the algorithm always increases the mod N
degree (see definition in Lemma by 1 simultaneously, we see the first three statements
hold. The last one is obtained by direct computation of the leading term of R¥ (see Appendix
@ and using the vanishing properties of RX in the first three statements. U

4.2. Polynomiality of QAvﬁ—theory.

Lemma 4.4. We have f,‘f,‘fb =0 when ) ,(a; + b;) # n.

Proof. Just notice that the RAD action preserve degrees mod N. O

Proposition 4.5. Assume &y, ,, holds for any (h,m) < (g,n) and 3h +m < 3g+n. Then
Y(h,m) < (g,n),3h+m < 3g+n,Ya € {0,1,2,3}*™, f, € QX|sp_sim-x - (4.5
Proof. For a; € {0,1,2,3} we define

ol b= /M (RXQA0), o (CX (1) 0ay 00, -+, CX (1) Py ),

h,m

where recall that CX(2) := 22:0 CX2* is defined in §4.1|such that
RY(—2)*C*(2) = 1g.
Furthermore, C’,f satisfies the following property
(¢7,C¥py) vanishes, if j >3 orj#k+a  and (¢, Ci 0q) € Q[X]s.
By the above property of C’,f and the condition &, ,,,, we see
W € (/)P DQIX g, s s, (4.6)
We note that in the stable graph summation formula of f}[z?ll,b via the R¥-matrix action

on QA’a, there is this “leading” graph that is a single genus h vertex with m-insertions

goalz//l’l, o, Qa,,¥7™. This graph contributes to f,?fb. The contribution of any other non-
leading graph I" will be of the form

(® 20)(®eurt ® ® Vi), (47)

veV(T) ceE(T)
where fﬁjgv : HY™ — Q[q] are the linear maps fﬁjgv(—) = (—)‘;’gv and
Sino i ® ¢ — 3505 BX(—thu)" ¢ ® RN(—tu,)" ¢

Vx(e) = w +1/}

is a bivectoﬂ in Hpo ® Ha, for vy and vy incident to the edge e. Furthermore, by Lemma
and by using ¢’ = (5Y/tN)"lps_;, we have the following degree estimate:

Vki, ko (Y/tN) . Coefwsllwﬁg Vx(e) € H§2[X]k1+k2+1. (4.8)

20 We have used (¢i, p3—i) = 51314 I, = 5Y.
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We now prove the polynomiality by induction. First we see for (h,m) = (0, 3), the “leading”
graph is the only graph. The theorem for this case follows directly.

Next we assume the polynomiality (4.5)) for all genus b’ with m/ insertions with (h/,m’) <
(h,m) and 30" +m' < 3g + n. Recall is equal to the graph sum of . For a “non-
leading” graph I,

the factor o 7)) assoclated to 1" involving Y 1s in tota
1) the f f (4.7 iated to I' involving Y is i 1
[T0v/y= D vy = (=0

v

(2) the X-degree of (4.7)) associated to I is in total

Z(ggv -3+ Ny — Z b(e,q}) - Z bz) + Z (b(e,vl) + b(e,vz) + 1)

v e€E, 1€ Ly, e=(v1,v2)

=) 3gy) =3IV +3[E|+m—) b =3h—-3+m—) b

as desired. This finishes the induction and proves f,‘?fb € QX ]3h—34m-3, b;- O

4.3. Proof of Lemma We state the lemma we will use to prove Lemma

Lemma 4.6. We have the following degree estimate: whenever b < N — 3
(Y/t%) "= - Coef <“pa/l7RX(_Z)*Ea{b’(z)> € QX]p+v+1, (4.9)
where rg = %(a/+ b+ a” + b’ — N —2) and the LHS of (£.9) vanishes unless rg € Z.

Proof of Lemma[3.21] Assume &y, ,,, holds for all (h,m) < (g,n) and 3h +m < 3g + n. By
Proposition [£.5]

f}ﬁ:’)b € QX]zp-34m-x,b, V(h,m)<(g,n),3h +m <3g+mn, a; =0,1,2,3.
We now look at the statement of ('SQLM, under the assumption (h,m) < (g,n) and 3h +m <
3g+n. Letac {0,1,2,3,N,--- N+3}*and m = ¢ +s. By Qo = RX.QA’ﬁ, we obtain

[0] _ X A0 b
Tn(ap).a b)) —/Mh . (R*.Q )h,e+s(¢a1/1 ,Ea/,b/W))- (4.10)

By applying the RX-action, for each stable graph I € G}, n,, the contribution to (4.10) consists
of (using Lemma E

e at each leg | € L, we have an insertion 7]
(Spalfkljw?l—&—kl(_l)kl(Ré)*gﬁal) c ¢lbl+kl(Y/tN)fL%JQ[[X]]kZH%J;
e at each leg I’ € L', we have an insertion |§|
gt Coef (9 R¥(=2)" By 1y, (2)) € ¥ (V)50 - QIX Dy 413

where rg, = x(aj, + b}, +aj) + b}, — N —2);
e at each edge e = (v1, v2), we have a bivector Vx (e).

Here we have used the degree estimate in Lemma [4.6] Further we see

21 We will denote the set of first m (last s) legs by L (L' respectively).

22 Here we have used ki < ki + b < 3h — 3+ m, otherwise the contribution vanishes by dimension reason.
Hence we have k; < 3g — 3+ n < N — 3, and by this condition we see that the only integer a € [0, 3] making
a; — k; = a(modN) is a = a; — k; (i.e. we must have k; < a; < 3).

23 Here we have used b, <3h — 3+ m < N — 3 for the same reason as above.
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(1) the total factor of (Y/tN) in the contribution of graph I' to is given by
I(CO R VCO 1 (GO 1 (O C
l rer v e
where we have used ) (ay +0);) + > (ar + b)) = £+ ﬁ and
SvenTE, +r+s =Y %] = & X p(a+ b +a) + b —N-2)
x(lal+ bl —|a'| = [b'| =L+ s) +s=0;
(2) the total degree of the contribution of graph I" to in X is no more than

Z(Sh “3dne— Y (k)= D0 =Y ke

leL, el eck,
+ Z kl + L J Z (b;ll + bll + 1)) + Z(k(e,vl) + k(e,vg) + 1)
leL, ekl e

—3h—3+0+2s+ L%J — b| + b/|.
Here we have used the degree estimate (4.8)).

To summarize we obtain
h— 0
yholtrs f;[l ](ab )by € QUXsh-31e4254 2]~ bl+br)-
This finishes the proof of Lemma[3.21] and therefore (3.18) is correct by Proposition O
Lemma 4.7. We have (¢*, Coef v Ey 1y (2)) =0 unless @’ + a+ b +b=2 mod N.

Proof. By the definition (3.14]) of E, 4,

(¢a, CoefzbEa/,b/(z)) = L(N+3)/2 Za Lga/ (—1)b/ (¢a7 Rb’+b+1 1a) . (4.11)
By Lemma it vanishes unless @’ =a — (0’+ b+ 1) mod N. O

Proof of Lemma[.0. The vanishing result follows from Lemma [4.3] and [4.7}
For the degree estimate, we consider three cases:

(1) Fora=4,--- ,N—1: by Lemmafor any k' < N — 3, (note o/ = 0,1,2, 322

(—D)*(RS)a = (97", Coef_w RX(—2)*¢4) #0 only if a = a” + k', (4.12)
When it is nonzero, it is a degree k' polynomial in X. This implies that |§|
(Y/tN) 77 - Coef Ly (0", RY (=2)"6a) (6", Bwrr(2)) € QX ]y iprpr.  (413)

(2) Fora=0,---,3: by Lemma for any k' < N — 3 we still have (4.12). Further, when
it is nonzero, it is a degree k’ polynomial in X. This implies that [
(Y/EN) 77 - Coef Ly (0", RY(=2)76a) (6%, Burr(2)) € QX ]y 1pra. (414)
(3) Fora=N,--- N+ 3: by Lemma for any k' < N — 3,
(o, Coef v RN (—2)"¢a) #0 onlyifa—N=ad"+ k.

When it is nonzero, it is a degree k' polynomial in X multiplied by ¢. This implies
(by argument similar to (2))

Ny— " X
(Y/t5)7"E - Coef o (9, R (—2)"¢a) (6%, Earp (2)) € q QX ]y 1r741-
24 This identity follows from Lemma and the fact that Vx has cohomology degree two (by Lemma
see also for (D.3)) the explicit formula).
25 By using :4.11 ), $* =¢N+3-a/5 and the property (3.5) of (Rk)a, we have
Coef s (¢%, Ear v (2)) = %(Y/tN)rE(—1)b/(Rb+b/+1)N+37a € (Y/tN) QX ]pqpr41-
Then each contribution to LHS of (4.13) has degree < (b+b" + 1)+ k=0 +b" +1 (here b’ = b+ k').

26 By applying ¢ = (¢n+3—a—t"d3_a)/5 in {@.14)), the term ¢ni3_, contributes the same formula as (#.13)),
except that by (3.5) the X degree bound is increased by 1 = |22 | The second term t" ¢3_, contributes

Coef b (N P3—a, Bar pr (2)) =30 (X) B (—1)¥ (Royr41)3—a- Y. With ([E12) we obtain ([{.14).
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Sum up the process deducing (1),(2),(3). One obtains that, the LHS of (4.9) equals

Contri(1) + 32 (-1 F 2 ((BE)a(Ry)xssa — V(B )a(Ry)s—a + (/) (B sa(Ri)s o)

J+k=b/+b"" 41,
0<k<b,0<a<3

where we denote by (RY); := (cp“", (Rif)*¢:), and Contri(1) is a sum of terms of form
in case (1) (thus lies in Q[X]y4p7+1). By (2) and (3) the rest terms lie in Q[X]p4pr12. Now
we want to prove the top degree term indeed vanishes. The argument is similar to the one in
the proof of [NMSP2, Appendix C]. Recall [NMSP2, (C.4)], for a = N,--- N 4 3 we have

/

Coef xrr1(Rg)q = %Coeka (Rk)a—N, (c;)gig} = (—120, —890, —2235, —3005). (4.15)
Similar property holds for R¥ by using the explicit formula (D.2) : |Z|

fora=N,--- ,N+3 Coef (qil- (Ri()a) = ¢, - Coef yi (RX ) —N-
Then we obtain for a = 0,1,2,3 and for j + k=0 +0"+1

Coet s (=¥ (B )alRy)s-a + (BY)a(By)nss—a + Y/ (R N0 Ry)s-a)

_ <1 L Nia c’N+3—a) - Coef s ((RkX)a(Rj)g_a> —0.

55 59
where we have used Y = 1 — X and 5°Y ¢ = tNX. Hence the true degree in X is decreased by
1 and then we finish the proof. O

4.4. Choice of gauge and finish the proof of Theorem We consider the following
symplectic transformation:

0 z-clqg 22c0 2264

2
-1 _ 7 0 Z-Clp Z7 - Cy
G(z) " =1 R (4.16)
0
where ¢, = —ciqac1p — ¢2 and ¢y = —c14¢2 — c3. Then we are able to recover the family of
R-matrices R*9(2) defined in (I.7) via
RAG(2)" = RAD()~L . g(z) (4.17)

where the family of propagators EY. in RA’g(z) is related with the propagators Eg* = E9=0
in RAY(2) by the following

Eg = B} + c1a, EJ,=E, + cu, ng =EQ, —cip B — s,

ng = ES”ZJ + c1p (Eg})Q —2co By + c3.
Proof of Theorem[J Recall we have proved (Proposition 4.5

AQ
fg;a,b € Q[X]?)g—?)-i—n—zi b; -

Via (4.17)), we define the CohFT
0A9 .= g.oAT = RAG @,
Then we see the A-model master potential (1.11]) is indeed its generating functionlﬂ

A _
fA8 = (=5y /Ny - W U QAT (0ur, s pan)- (4.18)
h,n

27 Note that k < b’ <N —3 implies k < 3, for the same reason as stated in footnote
28 The assumption in the statement of Proposition is no longer needed after finishing the induction.
29 See more explanations at the end of this proof.
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We claim that with the condition (1.12)), the G-action will not change the polynomiality. We

can write down the graph sum formula for Q49 .= G QA via the G-action. For each graph
I, the contribution Contr to (4.18)) is given by the following construction

e at each leg [ with insertion @alwfl, we put >, QZ(—wl)kgoaﬂ/Jlbl;
e at each edge e = (v1,v2), we put

Vg(wvlaww) = m(l - g(¢v1)_1g(_¢v2)) — Y_l : Zk,l nglw wv2’
where degy Gi =k, degx Viy = k+1+ 1 and we have used ¢ = (5Y/tN)"lp3_; in the
last equility.
The total factor involving (—5Y/tY) in Contr is
(=5Y /)~ F T, (=5Y/#N) =0 =1) = (=5Y /1) ~lo=),
and the X-degree of total contribution of Contr is

Ev (3gv —3+ny — ZleLv (ki +br) — ZeeEv k ) + ZleL ki
+ e (v1,v2) EE(k(evvl) + k(eﬂa) +1) = 39 —3+n— ZleL bi.

This proves

fgab € Q[ ]39—3+n—2i b; - (419)

Pick ¢ such that tN = —1 and substitute it in ,thenq¢ =g¢ and QQ wTo(¢') QQ (@)
-

by Remark By using the identification (2.5]), he definition rnatches , and
(4.19)) becomes the statement of Theorem O

5. BCOV’s FEYNMAN GRAPH SUM VIA GEOMETRIC QUANTIZATION

In this section, we view BCOV’s Feynman graph sum as the quantization of a symplectic
transformation RB, which is a restriction of our A-model propagator matrix R in the smaller
phase space.

Convention 5.1. In this and the next section, we will omit the supscript G in Q%9 R*9 f*9
EY,, etc..

5.1. Quantization of the symplectic transformation in the small phase space. Let
{vitico123={p3272 —p2271, ¢1, 2}, with inner product given by
2

I 1
3% -Res,— 0(U1|zr—> za'Uy) <_1 -1 1 >

We consider the 4-dimensional symplectic subspace

Hg = span{v;} C Hglz, 27 ® A.

V; "Uj = —_=

By the explicit formula of the propagator matrix R, we see
RA(2)Hs C Hg.

Hence we can restrict the symplectic transformation RA(Z) to subspace Hg, which is denoted
by RB. Under the symplectic basis {vi}i=0,1,2,3, we have

1
A B —-F 1
B _ . ”
i <C D>' —Eop —Epp 1 : (5.1)
Evge Eroy By 1

For a vector in Hg under the symplectic basis {v;}, we write it in the form
U= (p,x) =pyvo + pyv1 + zv2 +yv3z € Hg

We define the quantization of the symplectic transformation RB as follows:
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Definition 5.2. We introduce the following quadratic form over Hg:

- 1 1 0 1 E, E
_ 1 = 1 N — Nt NN Y p
Q(x,p) =(D7x)-p' — 5 (D7CP) - p = (P) (Ew 1)X+2(p) <E¢w Ew)p

The quantization RB is defined via the following Feynman integra
(RBF)(h,x) := In / e (QEep) =" PN +E(hx) ot g (5.2)
R2xR2
The standard argument of Fourier transform deduces the following (we refer the reader to
[CPS13) Sect. 1.4] for detailed discussion of the geometric quantization).
Lemma 5.3. We have the following operator form for RB
(RBF)(h,x) = In (aWB(@xﬁ%F (ﬁ’D’l")), (5.3)
where the differential operator is defined by
1 _ 0. 1 E 0,
B — _ 1 x il e i x
VB (00 = — & (02.0,) (D7) (a) L (9.0,) ( P EW) (a) L 54
Now our Theorem [1| has an equivalent statement

Theorem 5.4 (BCOV’s Feynman rule). Recall PB(h,z,y) is defined in (1.13). The quanti-
zation of RB acting on PB defines the B-model master potential function, with the form

fB(h,x,y) = RBPB(h,2,y) =%, . 19ty - [B . (5.5)
Then for each (g,m,n), f;?mm s a degree 3g — 3 + m polynomials in X.
5.2. Modified Feynman rule. We introduce the following modified B-model correlators
Pg,m,n = <(90 Eq/ﬂ/J)@m w®n>g o (5.6)
and their generating function
- B xmyn -
PR(h,z,y) = SR By = PR(Ba,y — By o). (5.7)
g,m,n

It is not hard to see, if we replace Py, in the BCOV’s Feynman rule by Py, ,, then the
Feynman rule Theorem [1| I will still hold if we replace {Eyq, Epy, Eyy, By} by @

E<P<P = Eyp, Ecpw = ByEyp + Eyy, (5.8)
Eyy = E}Ey, +2EyEgy + Eyy, Ey=0.
More precisely, the Feynman graph sum is given by the following quantization
fB(h, w,y) = RB|, 5 PB(hz,y). (5.9)
Indeed, the change of variables can be written as a quantization
PB(h x,y) = EBPB(hja:,y)

of the symplectic transformation B defined by

1
—F 1
EB = Yo 1 . (5.10)

Ey, 1

Then the modified B-model propagator matrix RB| B..sB,, 1S given by

‘E**HE** = R®:=RP. (5B)_1

which matches (j5.8]).

30 This is a finite dimensional Gaussian integral, hence it is well-defined.
31 mo generalize Yamaguchi-Yau equations, similar modified propagators were defined in [ALOT] .
32 We can see for this case C' = 0 and by (5.4) there is no edge contribution.
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6. FroM NMSP FEYNMAN RULE TO BCOV’s FEYNMAN RULE

We have proved Theorem [2|in §4] and established the NMSP Feynman rule. In this section,
we will prove the equivalence of NMSP Feynman rule and BCOV’s Feynman rule (Theorem
3). This will finish the proof of the BCOV’s Feynman rule.

Notice that the A-model state space Ha has a higher dimension, with the B-model one Hg
as its subspace. In particular, we have 3 more extra propagators as edge contributions. We
first deal with the edge that contributes a bivector 1 ® ¢y (with propagator E,, = Ey). The
idea is to consider the similar factorization of the symplectic transformation as in

6.1. Decomposition of R*-matrix and modified quintic theory. We consider the fol-
lowing matrix factorization of R*-matrix:

RA(z) = RA(2) - €4(2), (6.1)
where (recall E1y, := Ey)
0 Eb@z

EA(z) =142 (
The modified quintic CohFT is defined via
Q@ .= gA.00.

Notice that here Q@ theory depends on the choice of the gauge G. (Recall by Convention
we always omit the supscript G in this section.)

0 Eb‘”) € End Ha. (6.2)

Convention 6.1. In this section, we will not distinguish the Q€ and the twisted theory Q@tV.
We identify them by setting t = 1 in this section.

Definition 6.2. For the following coordinate

t =201+ Yo +api +boo® + cpp € Ha,

we introduce modified normalized A-model potential for the quintic 3-fold

- - hI—1 (5Y )91 - "
PA(h;t) = PA(h,2,y,0,b,¢) = — (129)“"/ Q2 (tM). (6.3)
g,n Tt g:n

In particular, we define 3 3
PA(hsz,y) = PA(Bsz 1 + y poy)).

Lemma 6.3. String and dilaton equations hold for the theory Q9.
Proof. By the result of [Lee03], the R-matrix action preserve tautological equations. Hence
the Q@ theory satisfies string and dilation equation as well. O
Proposition 6.4. We have the following relation

PA(hyz,y) = PB(h,z,y) —In(1 —y). (6.4)

Proof. By Lemma [6.3] we can use dilaton equations to remove the ¢gt) insertions. Namely,

both sides of ([6.4) satisfylﬂ
2= (2ng+ed+ud)+3%  xq=-200.
It suffices to prove . .
PA(h,z,0) = PB(h,z,0). (6.5)
Now we apply the graph sum formula to Q% := EA4Q®. Notice that when there is an insertion
w2 = Il I H?, the quintic correlators are zero unless g = 0 (which is from degree 0 contri-
bution). It is not hard to see that in our case (the leg insertions are all ¢’s), the stable graph

will contribute zero unless it is a loop with [-vertices: at each vertex there is exactly one (1
leg insertion and several —E1,, @0t insertions, at each edge the bivector is E1,, 00 ® 2. This

33 one can check that the B-model correlators satisfy dilaton equations directly.
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only contributes to ¢ = 1 potential. Denoted by PlE the generating function of such “loop
type” contribution, we have

PA(h,z,0) = PA(h,x,—E1p,7) + PF(z).
By using the dilaton equation for each vertexlﬂ of the “loop type” graph, we obtain

I+n C 1\ l
B, x ontr (1—1)! .
o= S - 2 G TS B

I is a loop with I 1=1n,;>0
vertices and n + [ legs = (66)

E1 x
——In (1= 2% ) = (1 + Bypa).
A Gy Bk G

In the second equality above we used that there are (I — 1)! choices when we put [ different
vertices in a loop. Together with the following relations

PP(h,z,y) = PP(h,x,y - Ergyz), and  PA(hz,y) = PP(ha,y) — In(1 - y),
We obtain (6.5)), and hence finish the proof of this proposition. O

Remark 6.5. We can see the symplectic transformation ([5.10)) in §5.2]is exactly the restriction
of the £A-action to the B-model state space.

Next, we will use string equations proved in Lemma to write down any QQ—theory
invariants in terms of Q@-theory invariants with only insertions ¢ and . In this way, we deal
with the remaining two “extra” propagators.

6.2. Modified propagators and operator formallsm for the quantization action. By
the definition of R-matrix and the Q@ (c.f. and | . we see that the CohFT QA is
equal to the R9(z)-action on the CthT QQ

04 = RO.OC. (6.7)
Extending §5 ., for the edge contribution of R%-action, we have the modified propagators
EW - Ew’ Eww - EwEW + E«:wa
Eipy=Eigpy,  Eiye= B+ EyEr gy, (6.8)
Eyy = E}Ey, +2EyEyy + Eyy,  Ey=0.

(Note E.. s are E*g*’s defined via the same formulas.) Using , we write down the differ-
ential operator form of NMSP A-model potential and BCOV’s B-model potential.

Proposition 6.6. For x = A or B and u = zp1 + ypotp, we have
exp (f*(h,,y)) = exp (h- V*(0y,0)) exp (P*(h; £4)) =R ()~ 1u(w)
where the V-operator is defined by
B _ 1z 872 3 872 1z 872
VE (0, 0%) := QE“’“’aﬁ + E‘wﬁxay + 2E1"“’ay2’
0? 0?
Bt uge B e

Here the operator VE corresponds to edge contributions with extra propagators.

Proof. For the case x = A, the formula follows from (4.18)), and Givental’s quantization
formula [GivOla]. For the case x = B, the formula follows from the operator form of the
B-model quantization formuma (5.3] and . O

Lemma 6.7. We have

‘N/A(at,at) ZZVB(ahat)-FVE(auat), (3t,3t)

PA(hayabe) _ 175 agstbgy) PA(hay)

e el-y e

34 Suppose there are n; 1-insertions at the i-th vertices (i = 1,--- ,1), by forgotting all the t-insertions we
get a factor n;!.
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Proof. By string equations, we hav@
596 PA(hay.abe) ( ai + bay + y8c> A(hay,abe).
Then the Lemma follows from the initial condition
PA(ha r,y,a,b, C)|C:0 = PA(hv €L, y)
This proves the Lemma. O

6.3. Finish the proof of Theorem We first prove two identities.
Lemma 6.8. For any f(x,y), the following identities hold:

MO T T )| = S E@) (), (6.9)
ab,c= >0

efhf/B(Bt,Bt)(l _ y)flehf/B(Bt,Bt)(l _ y) _ Z E(at)kf(x,y), (610)
k>0

where E(0) 1= %(EN‘Wwa% + By 8%).
Proof. For the first identity, we have that the LHS of
02 8 \n/ «c 0 0 \"
Z n' ( Y9 Dade E)aac wQ 3b80> (1 - y( oz + C?y)> I(@y)
0 ~ o\ms 1 0 0 \"
=2 H(EIW% B ) (75 ta5 +o5p) 1@,

= (-

Here in the second equahty we have used the following: when expanding the differential
operators as power series, the contribution is non-zero only if V' (8, d;) lfy(a% + ba%)
appear in the form of the same powers.

For the second identity, by using Ew, + Eww =0, Eww + sz =0, and

a,b,c=0

g +E1w2 aay))nf(m:y)

o hVE (at,at)(l _ y)ehv (06,0t) _ eadWB(atﬁt)(l —y)
= (1—y) = [AVB (0, 0), 1 —y)] = (L= y) + h(Epyp s + Evp ),
we obtain (1 — y)_le_hvB(at’at)(l - y)ehf/B(at’at) = (1—-E(0))f(x,y), which is equivalent to
(6.10). O
By the above two identities, we obtain the following key Lemma.
Lemma 6.9. For any f(x,y) we have

(1 B ) hVB(at,at)+hVE(3t,at) (aaerb o) )f(x,y) — ehf/B(at,at)f(m7y). (611)

1-— Y la,b,c=0
Proof. Since VB commutes with VZ, and (6.10) imply

LHS = (1 — y) V2 @25 B(@y)F(1 —y)~' f(2,y) = RHS.

This proves the lemma. U

ely

Now we finish the last step of the proof of Theorem [3| By setting f(z,y) = PP hey) i
(6.11]) and by using Proposition u we have

VB (06,00)+h VE (8y,0;) b ) PA(hy)

e — (1 _ y)—]. ehf/ (8t,8t) (ﬁ x,y)

a,b,c=0

o750

Then by Lemma, the identity becomes

eh VB (6t76t)+h VE(at78t)€ﬁA(h7xvy7a7bvc) ‘ 1 FLV (atvat) (h Cl;‘7y)

a,b,c=0 - (1 B y)
Together with Proposition [6.6] we complete the proof.

35 Here since there is no (p2-insertions, the unstable contribution does not appear in the equation.
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7. REDUCTION OF GENERATORS, YAMAGUCHI-YAU’S EQUATIONS AND EXAMPLES

The modified propagators and were introduced to remove the (1, ¢2) edges in the
NMSP rule in order to prove Theorem [3| As a by-product, we find that four specific modified
propagators give exactly Yamaguchi-Yau’s generators, which generate a subring containing
the normalized quintic potentials Py~1.

Theorem 7.1. We consider the following modified propagators as genemtorslﬂ
& :=E0,=A+2B, & =ES, =B+ B(A+2B),
€ =ES, =By~ (B+X)By+ (A+2B)B? - %XB, (r1)
and we introduce the subring which is closed under the differential operator D:

R:=Q[E1,&,83,X] C R

Then for2g—2+m-+n >0, the Pg,myn defined in (5.6)) lie in R. In particular, we have the
reduction of generators which was originally conjectured in [YY04]:

P,eR  for g>1 (7.2)
Remark 7.2. Notice that
Eg@ =&1+c, ng = &9 + c9, ng = &3+ c3.
Hence the subring R is also independent of the choice of gauge.

Proof of Theorem[7.1} First, we prove R is closed under D

2 24
D& =-X (81—5)—8§+282, DEy=—XEy—E1E5 + &3, D83=@X—X€,3—8§.

Next by using the dilaton equation, Py, = (29 — 3 +m 4 n)Pymn_1, We see
Pym€R = PyancR (7.3)
Now we prove pg,m eR by induction. Initially we have
Pio1=x/24—1 and P3=1 € R

Assume P,; € R for (h,1) < (g,m). By using the modified Feynman rule (see §5.2)), for

29 — 24+ m > 0, we have ffr’no € Q[X]3g—34m is equal to the sum over contributions of stable
graphs I' € Gy .

Except for the “leading graph” (which has a single genus g vertex with m-legs), the vertices
in the other graphs all satisfy (g,,n,) < (g, m). By induction assumptions and , these
vertices contributions ng,mv n, all lie in the ring R. Together with that the edge contributions

&p € R for k = 1,2, 3, we deduce ngm € R and finish the induction. O
Theorem 7.3. The Yamaguchi-Yau equations hold:
1 1
—07P, = §Pg_1,2 + 3 Z Pgl,lpgg,la (74)
g1+g2=g
( — 204+ dp + (A+2B)dp, + (B — X)(A+2B) — By — %X)833>Pg = 0. (7.5)

Indeed, the second equation (7.5)) is equivalent to the reduction of generators (7.2)).

36 Our generator &, is related with the v; defined in [YY04] as follows: v1 = —&1, va = —&2, v3 = E3— X &s.
In a sense, we give a geometric explanation for Yamaguchi-Yau’s generators v;: they are edge contributions
(propagators) of the modified Feynmann rule introduced in

37 This follows from a direct computation by using the relations (T:2), which is proved in [YY04]. See also
which gives equivalent relations.
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Proof. In the end, we prove (7.4)). By using Theorem M the definition of VB (5.4) and the
definition of quantization action ([5.3) we have

exp PB(h,z,y) = e~V (9x,0%) exp fB(h,z,y). (7.6)
Note both sides lie in the ring R[[h, A~!,2,y]]. By applying the partial derivative 0 €
span{0da, 0p, 0B,, 0B, } on both sides of , we see
— 8PB(h,x, Y) exp PB(h, x,y) = h(?VB(ax, 8x)e*hVB(a"’a") exp fB(h,x,y), (7.7)
where we have used [0V ? V8] =0, 0fB = 0, and we recall
VB (0, 04) 1= 3 Bppis + Epuypl; + 3B

with E,, defined in (1.3]). We claim (7.7 will give us PDEs for Py, ,: Let 0 = 04 we have
9aVPB = 102. Then (7.7) becomes the following PDE

1 1 2
— 04PP(h,z,y) = SOPP(h,,y) + 5 (9 PP(hzy)) (7.8)

In particular by setting x = y = 0, for g > 2 the coefficient of 9! gives exactly (7.4). Let O
be the differential operator on the LHS of (7.5)), we see it kills VB. By using similar argument,

we deduce ([7.5)). O

The proof of Theorem indeed gives another algorithm which computes the genus g
potential P, recursively from the lower genus potentials, by using the modified Feynman rule
(5.9). The advantage of this algorithm is that only four generators/propagators (instead of
five) are involved, expressing P, in simpler terms.

For any g > 1, suppose the master potential is given by

A0 B,0  —3g-3

g =Jfg = fo(X):= Zkg:o fg,ka,
then one can solve the genus g “normalized” GW potential P, from the low genus by using
(either NMSP or BCOV’s, modified or original) graph sum formulae.

Example 7.4. In terms of the generators ([7.1), a maple program gives
350 &3 N 25818 58 6258 25827 25X &, X & 13X3%¢, N 167X &, N 625 &,

P= = 6 21 " 36 210 " 36 6 ' o 720 288
+f2(X), with fo(X) = —ﬁxr’ - %)@ %X - 1%54; (7.9)
P, = 8225¢€2 N 275818283 293758283 1858385  575E32¢&, N 29375€1€3  10450€3  3595E%¢€3
27 3 108 24 24 864 81 72
_ 35758185 | 1437585  35&1€;  A0T5E{E,  8125€E; | 15625€:€x  5ET  25€f  3125¢f
54 288 3 144 432 1728 4 6 576
15625€3 .(11758283 398285 7849883 1397882 277382 1687838, 1616382¢,
5184 108 8 2160 54 2160 144 1080
21433818 23&] 310781  5893EF 820918%) 2‘(6118183 160383 1897€%¢€s
8640 12 720 1728 86400 864 864 432
_4363€18>  7T31ET 1460987 514735%) B 3'(3258182 2305¢,° 4337812) _p*p. &
2880 576 8640 86400 576 5184 17280 2
198, | €7 25&; 11X Er\ |, 47&s 258, | X°€&; 138, | €7 | 19&;
+DP (R + D+ S - )+ S st + = T +X( e 12)
FH0, With f3(X) = S8 X4 (7.10)

Here f,0 = (5)971 N, is computed by using and the ambiguity polynomial fo(X) is
deduced from the lower degree GW invariants computed in Appendix [A]

These formulae , match the physicists’ predictions [BCOV94, [YY04] for the
potential functions of the quintic 3-folds up to the “ambiguity” {f;=3}
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APPENDIX A. LOW DEGREE GW-INVARIANTS

Recall Ny 4 are the genus g and degree d GW-invariants of quintic threefolds. The degree
zero invariants are computed in [FP00] :

1)V -y Bl |Bon
970:2( 2) X ‘ 2g| ‘ 2g 2‘ (Al)
+29-(29—2) - (29 — 2)!

In this appendix, we will show

Proposition A.1. The low degree genus two GW-invariants are given by

2875 575 5125 7930375
Nl,l = ?, 2,1 = E’ N2,2 = ?, and N2,3 = T

We let Q C P* be a general quintic threefold. For a smooth curve E C Q, we denote by
Ng/q the normal bundle of E in @, and call E rigid if hO(NE/Q) =0.

We let f: C' — @ be a stable map from a genus 2 curve C to @ of degree d < 3. We let
E = f(C) be the image curve.

Lemma A.2. Let the notation be as stated. Then E either is a smooth rigid rational curve
or a smooth rigid elliptic curve.

Proof. Because deg f < 3, the image curve E has degree at most three. In case F is a union
of rational curves, by [Kat86) [JKO8], E is irreducible, smooth and rigid.

Now suppose E contains an elliptic curve. As elliptic curves in P* have degree at least 3, F
is irreducible and has degree three. Thus F must be an irreducible component of Q N L, the
intersection of @ with a plane L C P*. This way, Q N L = E U E’, where E’ is rational and
of degree 2. By the rigidity proved in [Kat86l [JKO0§|, there is no infinitesimal deformation of
E’ in Q. As E' determines L, there is no infinitesimal deformation of E in @, thus £ C Q is
rigid. U

We recall the following results from [FP00, Pan99]. We let Cy(h,d) be the contribution to
Np de from a rigid degree e smooth rational curve E C (). Then for any d > 1,

i(]o(h, 1) 12 = (Smt%z))z and  Co(h,d) = d2=3Cy(h, 1).
h=0

In particular, for any d > 1, Co(1,1) = 137 and Cp(2,d) = ﬁdo'
We let Ci(h,1) be the contribution to Njyp . from a rigid degree e smooth elliptic curve

E C Q. Then
Cy(h,1) =0.

Proof of Proposition[A.1. By multiple cover formula of Ny g4, and the known Ny 4<3, we see
that the general quintic @ has exactly ny = 2,875, no = 609, 250 and n3 = 317,206, 375 many
degree one, two and three rational curves, all rigid, smooth, and mutually disjoint. Applying
the proceeding arguments, we get

N271 = ’I’LlCo(2, 1), N272 = 11100(2, 2) + n200(2, 1) N273 = 7’L100(2, 3) + TL300(2, 1)

)
Plugging the numbers, we get Naj = %, Noo = %, and No3 = %. We obtain

Ny,1 = 25 for the same reason. n

APPENDIX B. ORIGINAL FORMS OF FEYNMAN RULES IN THE PAPER OF BCOV

The original form of Feynman graphs in [BCOV94] took a slightly different shape of edges,
with certain freedom of gauges. We present BCOV’s original form, and the generalization
with insertions in the original style in this section, for the readers who are more familiar with
the B-model theory. We also give g = 1 and 2 examples in the original forms.
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B.1. Original statement of BCOV’s Feynman rule. In [BCOV94| the authors considered
all ¢ B-model topological partition function F, W(q7 q) for an arbitrary compact Calabi-Yau
threefold W. Its definition uses path integral, and it is a non-holomorphic extension of the
GW potential F, 5\/[ (q) of the mirror Calabi-Yau threefold M of W:

. w N _ M
lim 75" (¢, 9) = £y (9)- (B.1)

One of the primary result in [BCOV94] is that ]-"gv satisfies “holomorphic anomaly equa-
tion” (HAE). When W is a one-dimensional mirror family, the equation is

0 (0.0) = C0 (DI 0+ Y DFN @)D FY (0.),
g1+g2=g
where Dy is certain covariant derivative and C’gq is certain three point function (Yukawa
coupling) that can be calcuated by B side special geometry. Using integrations by parts,
[BCOV94, Sect. 6] solves HAE and express its solutions }";’V via Feynman rules. We state here
the BCOV’s Feynman rules for the limit F (B.1)), with M being the quintic 3-fold.

BCOV’s Feynman graph: For any g > 1, we consider the set GECOV of genus g stable
graphs with three types of edges: solid lines; half dotted half solid lines, and dotted lines. For
each graph I", we do the following:

Edge: at each edge drawn as solid lines, half dotted lines and dotted lines, we place one of
the opagators (T¥¥,T%,T) defined in respectively;

Vertex: at each vertex of genus g, with m solid half edges and n dotted half edges, we
place Py, (defined in (0.4)).

We define Contr to be the product of the edge and the vertex placements; and define

1

PeGBCOV

fBCOV

Conjecture B.1. For g > 1, ffcov 15 a degree 3g — 3 polynomial in X.

This original BCOV’s rule can be generalized to allow legs:

BCOV’s Feynman graph with legs: We consider the set G/ of genus g, n-leg stable
graphs with three types of edges (as above) and two types of legs: solid half lines and dotted
half lines. Besides what we do for edges and vertices as above, furthermore

Leg: at each leg, we place one of the following 2-types of propogators

Ey:=1, and —E}“:=-B-ci (B.2)

BCOV
Ggn

according to the types of the edge: ¢ goes with solid half line and v goes with half dotted
line. Here ¢y, can be any polynomial of X with degree no more than 1.

We define Contr to be the product of the legs, edges and vertices placements, and define
1
BCOV
= E ——— Contp.
Toum Au(®)] "
FeGBCOV

g,m
Conjecture B.2. For2g—2+n >0, fBCOv s a degree 3g — 3 + n polynomial in X.

By setting m = 0 and picking the gauge (c1p,c2,c3) = (%, —%, —1#35) in Theorem |1, we
recover the statement in Conjecture[B.2} furthermore by setting n = 0 we recover the statement

in Conjecture

B.2. Example of BCOV’s original Feynman rule. We illustrate how BCOV’s Feynman
rules compute genus ¢ GW potential from lowers genus GW potentials.

Example B.3 (g =1,n = 1). In this case, the BCOV’s Feynman graphs are

Be gy B g
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BCOV’s rule gives us (note by definition (0.4)), P11 = 95— 1.)

Ey-Pii+ (—Ey) - Prog+ 2E T Pos = fPYOV(X) € QX (B.3)
By using the initial data Nj g, N1 (see Appendix , and setting c¢;, = 0 we obtain
JROOV(X) =~ X — W = Py~ B (-B)+ 5(A+2B+ 1),
Hence we solve P; ; that matches Zinger’s formula [Zi09] (also c.f. [KL18], [CGLZ18])
Pi=—-3A- - X -2 (B.4)

Example B.4 (9 =2,n=0). In this case, the BCOV’S Feynman rule becomes

1 1 1 1
P+ = 5 T#% P} 1t 3 5 T"D@Pl 2+ = 5 (TW’) P+ 3 (T?9)? Py 4 + 3 (T#%)3 + 2

1 1 x ,x BCOV
+—T“"P + - = T“”TW+ nNT = X X B.5
24 L1t 5 o0 224(24 ) 2 (X) € Q[X]s, (B.5)

accroding to the BCOV’s Feynman graphs listed below:

(1)’

P,

— o 11’712,1"11%07 l131,2'TSW7
g=1 g=1 2 g=1 2
1/x 2

P -T*’.(i—1) 7(7_1) T

A Y b 24 ’ e 2 \24 ’
R 1/ x

N b - (7 - 1) T
1,1 9 . 2 24 )

1 1/ x
2P - (T??)2. P —(——1)~T“°~P STe*
o @ 5 11 ( ) 0,3 5 o * 5 (34 0,3 )

% P0’4 : (T¢¢)2 I

1 2 3 1 2 3
S P2, (T? = P2y (T%%
g lo3 ( ) g:n@g:o 19103 ( )

The list of stable g = 2 decorated graphs, thirteen of them.

By using the genus 1 formula (B.4), the divisor equation P 3 = (D — A)P; 1, together with
the initial data Nag, N2 1, No2, No H one obtains

BCOV _ 1 y3 113 y2 | 487 11771
f2 (X) = =225 X" + 7200 X~ + 500 X — 7200 -
Hence one solves from (B.5))

350 B3 (25.4 425 B 625) B 5A4% 65A%2B 1045 AB%? 865 B3
- 2

“h=- 6 9 36

9 o1 T 12 T 3 9
L5 (Ai2 L 49AB 1674 37B® 1811B 4758, 5759)X
144 6 36 720 18 120 12 3600
25 A% TT5AB  350B% 625 134 13B 41 X3
=~ (A+2B A | G
T T T o 7 288( +2B) + <288 RSV 3600) 20

This is exactly the formula in Theorem Here we just rewrite the propagators in terms of
Yamaguchi-Yau’s generators via (|1.5).

38 These are originally conjectured by physicists by using some “boundary” behavior of Fj;. A mathematical
computation of them is put in Appendix
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APPENDIX C. REMARKS ON THE R-MATRIX ACTIONS ON CoOHFTSs

C.1. Unit axiom. We prove that the R-matrix action preserves the unit axiom if it is invert-
ible, as stated in Theorem

Lemma C.1. Let Q be a CohF'T with the triple (V,n,1). We consider another triple (V',n',1’)
with dimp V' = dimp V', and a symplectic transformation R(z) € End(V, V') ® A[z] acting on
Q. We have
R~QO73(1/7 «, /B) = 77/(047 /8)
Proof. By definition of the R-matrix action, we have
1 _ _ _
RQo3(1,0,8) =) 71 ()« 0,34k (Ro ', Ryta, Ry B, (Tow)k)7

k>0

where T'(2) := 21 — R™!(2)1' = Tz + O(z?), and hence the second equality holds simply for
dimensional reason.

Let w be the topological part of Q2 (i.e. the part of degree zero classes, c.f. [PPZ15]). By
the axiom of CohFT, it is uniquely determined by the quantum product. In particular,

wo,nt2(Tn, B1, B2) = D qwWont1(Tn, €a) - wo,3(€%, B1, B2) = wont1(Tn, B1 * B2),

where we have used the spliting axiom in the first equality and the definition of the quantum
product in the second equality. Hence

R.Q(Lg(].l, «, ﬂ) = ZkZO %w0,3+k ( R811/7 Rala) Ralﬁ7 (To)k) (prk)*(w‘L t '¢k+3)
oo (30 By 1+ (To)™, Ry o, g ' B)
—wo3(1, Ryl By'8) = (Ry'a, Rg'8).

—1 * *
where we have used fﬂm% Y1 = kland 30,5 Ry~ 1'% (Th) k= (1=To)*> 450(To) k=1
in the third equality; and the fundamental class axiom in the last equality. Furthermore, since
Ry is invertible, Ry Lis symplectic as well, hence we finish the proof. O

C.2. Dilaton flow. Let 2 be an arbitrary CohFT with triple (V,7, 1) and the coefficient adic
ring A = F[q]. Let R(z) € End(V, V') ® A[z] be symplectic.
We consider an arbitrary nonzero “scaling constant” ¢ € 1 4+ ¢A, and we let

R Y2)=c'RY2) and T(z)=z2(1-R(2)1). (C.1)
For any 2g — 2 +n > 0, using pry,¥n+1 = 29 — 2 + n, we have
TrQgn(—) = Zkzo %prk*Qg,n—i—k(_vT(w)k)
=D 0m>0 DT e gt em (=, [(1 = €)1], [T (¥)]™)
= Sz0 I pr, Qi (), @)™, (C2)

We see that, usually if (2.2) converges , then (C.2) converges as well. For example, if ([2.3)
holds , then T'(z) also lies in 2?A2] ® V + ¢z A[2] ® V. Then ¢ — 1 € gA makes the infinite
sum converges in the g-adic topology.

In the end, we give an example that how the Dilaton flow relates the R-matrix actions with
general Ry to the one defined in [PPZ15] for the semi-simple cases.

Example C.2. For a semi-simple CohFT € ,, we can state Givental-Teleman’s reconstruc-
tion theorem in a slightly different form: there exists an R-matrix such that

Q=R.(), R=Ry+ Riz+ - € End F" ® A[z]
where the state space of € is still F™ as a linear space; the unit of €2 is also the same one:
1:=>"_,¢€a, eq is the unit of each copy of Ip;

and the pairing is different in general, which we will denote by (-, -)™.
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Indeed, since we require R to be symplectic, the pairing of ) is indeed determined by Ry
(note the pairing in Ql?t" is the standard pairing of F™) . Let ¢, := (eq, Ry '1), and
U .= diag({c;'}"_), o = Ve, = c; e,
Then the inner product of €2 is given by
(easep)™ := dapc? or (Ea,8)™ 1= dup.

We define the normalized R-matrix via

R(z) = R(=)07" =1+ 0(2),
which is indeed the R-matrix defined in [PPZ15]. By using Dilaton flow, one checks

Q = R(V.(I5") = Ruw,
where the U-matrix transforms the trivial CohFT [ Si" with standard pairing, to the topological

part w of  with the twisted pairing (, )"
wg:n(eal’ e 76an) = 50&17" C_(Zg_2)'

HOn Co

Here 64, ... 0, = 1 if a1 = -+ = o, otherwise it is zero.

APPENDIX D. EXPLICIT FORMULAE FOR R-MATRICES

First we give the explicit formulae for the leading terms of RI%. We hope they can make
the arguments in the §3 and §4 more clear, though we do not really use them in our proof.

Lemma D.1. We have the following explicit formula (with understanding that R%(z) is
identity operator on odd classes

lo 1 —120q
0]/ \* IoIi ) 1 —890q
R (Z) o Iol11122 1 —2235¢
IoIf, Izo 1 —3005¢
—q(890B
0 B J(i120) \

—2235 +2B

tz A R

0 B—-X _320(1
0 —2X
—5q (447Bo+
0 0 Bz zg2B+242)
0 0 (A42B)(B—-X) 3005¢ (B2+%X7%
+ Z2 “B2-5X —(A+2B)(B+5849 _x))
0 0 —(2B—2X
+I)x
0 0 —6X 447
0 0 0 Bs —5qJ<rs20216115;3++2%932
2(A+ZB)(B—X+T7O)
3 0 0 0 —2By—$X+2
t+z —6(B—X+75)X
0 0 0 10
+H(B-X)+8
0 0 0  Bleox?
—66X+13)
4
+0(2Y), (D.1)
under the basis {qu}j:JrO?’ and {H'}3_,, where --- are all zeros.

Proof. By using the QDE (B.10) of R’ (z) and the initial data RI%(2)*1 in (3.9), RI%(2) can
be computed recursively. A direct computation shows this lemma. O

Next, we give the explicit formulae for the leading terms of R¥(z), as defined in (4.1)).

39 in this paper all operators from Hg to H or conversely H to Hqg are assumed to be identity on odd

classes. Thus we only describe their action on even classes.
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Lemma D.2. We have the following explicit form of R (2)* : H — Hg[z] @ A in terms of
basis {¢;} for H and {p;}3_, respectively:

1 —120q
X * 1 —890q
R (z) - 1 —2235q (D'2)
1 e —3005¢
0 0 ... —120q
0 0 —1010¢
+z 0 -X . 5q(601X — 649)
0 —2Xx
0 0 0 —120q
2 0 0 —2X —2q(601X — 565)
+z 0 5 (10X —7)
X/8 (30X —17)
0 0 gy
0 0 0 0 —120q
3 0 o % 4
+ 2z 0 0 —(30x2-3sy +O(Z ),
+9)-X/5 R
—2X(60X2%— .
0 0 0 66X+13)/5
where -+ - are all zeros.

Proof. The R¥X-matrix can be computed by using the algorithm introduced in the proof of
Lemma which starts from R¥(2)*¢9 = 1+ O(zN73) and computes RX(2)*¢;(j > 0)

recursively by using the equation (4.3]). O
3 i i N+3 RX o \* A RX _ * 1]
Corollary D.3. Recall Vx(z,w) := Lizo iS¢ T2 Z+1E} 2 OR(~w)'é , we have
Y - Vx(z,w) = (D.3)
(24 w?—24 2w+242%) X _ (24w-242)X 24X 0
- 625 625 625
(24w—242)X 202X 0 0 . N—i
o +)0(z)0(wN™).
o3 0 0 i
0 0 0 0

Proof. By Lemma the coefficients of z'w’ for i + j < N is non-zero only when i + j < 3.
Then the matrix can be computed directly by (D.2]). O

LIST OF SYMBOLS

N a prime that will be taken large

ta to = —({t for a =1,--- N, where (n is the primitive N-th root of unity
P the equivariant hyperplane class ¢1(Opain (1))

H the hyperplane class of the quintic 3-fold @

F, A the base field F = Q(¢) and coefficient ring A = Q(¢)[¢] for all CohFTs
T we abbreviate 7, 1= (71, , Tp)

Y, X rational functions of ¢: Y = (1 -5%)" !, X :=1-Y

L Let D := g, then Iy = Is3 = 1+ DJy, Ip = Y/I3 I},

A, B Yamaguchi-Yau’s generators , we abbreviate A := Ay, B := By

g the gauge G := (14, C1p, C2, c3) satisfying , as a group action it is
EY, BCOV’s propogators and extra propagators

E** modified propogators defined in and (see Convention )

bi the basis {¢; := p'}? of H with dual basis {¢'}1 2.

i the normalized basis {¢; := Io- - I;; H'} of H¢g with dual basis {¢'}3_,

(0 in this paper ¥, always denote ancestors, i.e. pullback of psi-classes in mg,n
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Q[X], the set of polynomials in X of degree < d, by definition Q[X], = Q[Y],
Hp, Hp the state spaces: Ha := span{yy, - ,¢3}[¢)] and Hg:=span{vy, ¢} C Ha
RA RB the symplectic transformation defined in and
pPA pB the type A, B “normalized” generating function for the quintic theory
A fB the generating function for the type A, B “master” theory ,
N the union of quintic and N points: X = Q U Npt, where Npt := UN_, {pt,}
H the state space H*(R, Q) with unit 1 and pairing (, )™ (c.f. Def.
0x the CohFT defined by the Gromov-Witten class of a projective variety X
wX the topological part of the CohFT QX (restriction to HO(M,,,))
o the CohFT QF := QW qwNettv where Q*™ are CohFTs of certain twisted

theories which naturally appear in the localization (c.f. Sect.
QA9 the CohFT Q49 := RAY QW of type A “master” theory
R(z) the R-matrix action (3.2)), which transform Q to the [0, 1]-CohFT Qlo1
RO Rl the restriction of the R-matrix to Hg, Hnpt respectively
QI ol the CohFT defined via R, RM-action : Q0 .= RO Q@tw QI .— R ,Npttw
flo1 ¢l the generating function for the [0], [1]-theory (Def.
pry, the map Mg,n—l—k — Hg,n defined by forgetting last & markings
prg"/n the natural projection Wy, 4 — My,
prf;%n the natural projection My, (Q,d) = Myn
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