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We explore the fine structure of the holographic entanglement entropy proposal (the Ryu-
Takayanagi formula) in AdS3/CFT2. With the guidance from the boundary and bulk modular flows
we find a natural slicing of the entanglement wedge with the modular planes, which are co-dimension
one bulk surfaces tangent to the modular flow everywhere. This gives an one-to-one correspondence
between the points on the boundary interval A and the points on the Ryu-Takayanagi (RT) surface
EA. In the same sense an arbitrary subinterval A2 of A will correspond to a subinterval E2 of EA.
This fine correspondence indicates that the length of E2 captures the contribution sA(A2) from
A2 to the entanglement entropy SA, hence gives the contour function for entanglement entropy.
Furthermore we propose that sA(A2) in general can be written as a simple linear combination of
entanglement entropies of single intervals inside A. This proposal passes several non-trivial tests.
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I. INTRODUCTION

The study of entanglement entropy, which describes
the correlation structure of a quantum system, has played
a central role in the study of modern theoretical physics
in the last decade. Large amount of interest is stimulated
by the Ryu-Takayanagi (RT) [1, 2] formula in the context
of AdS/CFT correspondence [3–5]. More explicitly, for
a static sub-region A in the boundary CFT and a min-
imal surface EA in the dual AdS bulk that anchored on
the boundary ∂A of A, the RT formula states that the
entanglement entropy of A is measured by the area of EA
in Planck units,

SEE =
Area(EA)

4G
. (1)

The covariant version of the RT formula is proposed in
[6] with the minimal surface generalized to the extremal
surface.

The are two main strategies to derive the RT formu-
la based on the AdS/CFT. The first one is the Rindler
method whose physical logic is first proposed in [7]. Lat-
er the authors of [8, 9] find a general way to construc-
t Rindler transformations using the symmetries of the
quantum field theory thus generalize the Rindler method
to holographic models beyond AdS/CFT. The key point
of the Rindler method is to construct a Rindler trans-
formation which is a symmetry of the theory and maps
the causal development of a sub-region to a thermal-
ized “Rindler space”. Thus the problem of calculat-
ing the entanglement entropy is replaced by the prob-
lem of calculating the thermal entropy of the “Rindler
space”. According to holography, the thermal entropy of
the “Rindler space” is given by the thermal entropy of
its bulk dual, which is just a hyperbolic black hole. The
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horizon of the hyperbolic black hole is exactly what maps
to the RT surface under the bulk extended Rindler trans-
formations. An useful by-product of the Rindler method
is the picture of boundary and bulk modular flows (see
[9]), which play a crucial role in this paper.

The second way is the Lewkowycz-Maldacena (LM)
prescription [10] (see [11] for its covariant generaliza-
tion) which extend the replica trick [12] into the bulk,
and calculate the entanglement entropy using the on-
shell partition function on the replicated bulk geome-
try. The entanglement entropy is defined as the von
Neumann entropy SA = −TrρA log ρA of the reduced
density matrix ρA. Consider a quantum field theory
on B, the replica trick first calculate the Rényi entropy

S
(n)
A = 1

1−n log TrρnA for n = Z+, then analytically con-
tinue n away from integers. When n → 1, we get the
entanglement entropy SA. To calculate ρnA, we cut B
open along A, glue n copies of them cyclically, then do
path integral on the newly glued manifold Bn. The en-
tanglement entropy is calculated by

SA = −n∂n (logZn − n logZ1) |n=1 , (2)

where Zn is the partition function of the quantum field
theory on Bn. Assuming holography and the unbroken
replica symmetry in the bulk, the LM prescription man-
ages to construct the bulk dual of Bn, which is a repli-
cated bulk geometry Mn with its boundary being Bn.
Then Zn can be calculated by path integral on Mn on
the gravity side.

In this paper, based on the above two stories, we ex-
plore the fine correspondence between the points on the
boundary interval A and the points on the according RT
surface EA with the guidance of modular flows. Then
we relate the fine structure to the entanglement contour,
which characterizes the spatial structure of entanglement
entropy.
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II. BOUNDARY AND BULK MODULAR
FLOWS

We consider a straight interval

A : {(− lu
2
,− lv

2
)→ (

lu
2
,
lv
2

)} (3)

at the boundary of the Poincaré AdS3

ds2 = 2rdudv +
dr2

4r2
. (4)

Here we have set the AdS radius ` = 1. We can go back

to the usual Poincaré coordinates ds2 = dx2+dz2−dt2
dz2 by

setting

u =
t+ x

2
, v =

x− t
2

, r =
2

z2
. (5)

The causal development DA of A is given by

DA : − lu
2
< u <

lu
2
, − lv

2
< v <

lv
2
. (6)

Accordingly the extremal surface EA and the correspond-
ing two normal null hypersurfaces N± are given by

EA :

{
v =

lvu

lu
, r =

2lu
l2ulv − 4lvu2

, − lu
2
< u <

lu
2

}
,

(7)

N± : r =
2

(lu ± 2u)(lv ∓ 2v)
. (8)

The entanglement wedge WA [13] is the bulk region en-
closed by DA and N±.

Following the strategy in [9], we can construct a
Rindler transformation on the boundary, which is a con-
formal mapping that maps DA to a “Rindler space” B̃
with coordinates (ũ, ṽ) and infinitely faraway boundary.
The strategy requires the translation along the new co-
ordinates to be a linear combination of the global gener-
ators of the boundary CFT. Since the global generators
are dual to the bulk isometries, we can naturally extend
the Rindler transformations into the bulk by replacing
the global generators of the CFT with the isometries of
AdS3. The bulk extended Rindler transformations map
the entanglement wedge WA to the exterior of the un-

compactified horizon of a Rindler ÃdS3 spacetime with
a thermal circle (ũ, ṽ) ∼ (ũ+ iβ̃ũ, ṽ + iβ̃ṽ).

We can write the reduced density matrix as ρA =
e−HA , where HA is known as the Modular Hamiltoni-
an. The state in the “Rindler space” B̃ is a thermal
state with the thermal density matrix ρB̃ = e−βHτ /Z,

where Z = tr e−βHτ and Hτ is the ordinary Hamiltonian
in B̃. The modular flow in B̃ is just the ordinary time
translation along the thermal circle kt = β̃i∂x̃i . Similarly
we can extend kt into the bulk and get a bulk modular
flow kbulkt . With the inverse Rindler transformations, we

get the bulk and boundary modular flows,

kt =

(
2πu2

lu
− πlu

2

)
∂u +

1

2
π

(
−4v2

lv
+ lv

)
∂v

kbulkt =

(
2πu2

lu
− πlu

2
+

π

lvr

)
∂u +

π

2

(
lv −

2

lur
− 4v2

lv

)
∂v

+ 4πr

(
v

lv
− u

lu

)
∂r , (9)

which is generated by the modular Hamiltonian HA in
the original Poincaré AdS3. We present the details of the
Rindler transformations and the derivation of modular
flows in appendix A. It is easy to check that kbulkt |EA = 0,
which indicates the extremal surface is the fixed points
of the bulk modular flow (or bulk replica symmetry).

FIG. 1: The left figure shows the modular flow in the causal
development DA on B. The brown line is the interval A. The
right figure shows the modular plane P(u0) which is the bulk
extension of the boundary modular flow line Lu0 . The red
and orange arrows depict the direction of the boundary and
bulk modular flows respectively.

Solving the equations (∂u(s)
∂s , ∂v(s)

∂s ) = kt and

(∂u(s)
∂s , ∂v(s)

∂s , ∂r(s)∂s ) = kbulkt respectively, we can get the
functions of the modular flow lines both on the bound-
ary and in the bulk. From now on we consider the static
case with lu = lv = l/2. On the boundary, up to a
reparametrization, the modular flow lines Lu0

are given
by

Lu0 :
{ u(λ) = lu

2 tanh
(

tanh−1( 2u0

lu
) + log(λ)

)
,

v(λ) = lu
2 tanh

(
tanh−1( 2u0

lu
)− log(λ)

)
,

(10)

where λ parametrizes Lu0
and u0 characterize different

modular flow lines by being the u coordinate of the point
where Lu0

intersect with A (see the left figure in Fig.1).
In the bulk, one can easily check that the normal null
geodesics L̄±ū0

on N± (which is also studied in [13]) are
also modular flow lines in the bulk, which are given by
(for details see appendix B)

L̄+
ū0

:
{ u(r) = lu

2 −
lu−2ū0√

2r
√
l2u−4ū2

0

,

v(r) = − lu2 + 2ū0+lu√
2r
√
l2u−4ū2

0

.
(11)

L̄−ū0
:
{ u(r) = − lu2 + 2ū0+lu√

2r
√
l2u−4ū2

0

,

v(r) = lu
2 −

lu−2ū0√
2r
√
l2u−4ū2

0

,
(12)
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where ū0 characterize different modular flow lines by be-
ing the u coordinate of the point where L̄±ū0

(r) intersect
with EA.

III. SLICING THE ENTANGLEMENT WEDGE
WITH MODULAR PLANES

FIG. 2: This figure shows a typical modular plane P(u0) in
the entanglement wedge. We depict P(u0) as the blue surface
that intersect with B and N± on Lu0 , L̄±ū0

, which are depicted
as the three red lines, respectively. The green line is Ru0

A
where the modular plane P(u0) intersect with RA.

For a given u = u0 with −lu/2 < u0 < lu/2, we de-
fine the modular plane P(u0) as the orbit of the bound-
ary modular flow line Lu0 under the bulk modular flow.
P(u0) is a co-dimension one surface in the bulk (see the
right figure in Fig.1). It is nice to know that for ev-
ery point Lu0

(λ) on Lu0
, its orbit under kbulkt will return

back to Lu0
on another point, which indicates that P(u0)

and Lu0
are in one-to-one correspondence. With Lu0

and
kbulkt known, the modular plane can be uniquely deter-
mined. We define the two points

A(u0) : (u, v, r) =(u0, u0,∞) ,

E(ū0) : (u, v, r) =(ū0, ū0,
2

l2u − 4ū2
0

) (13)

as the points where P(u0) intersect with A and EA re-
spectively (see Fig.2). By definition we have

P(u0) ∩ B = Lu0
, P(u0) ∩N± = L̄±ū0

. (14)

Define the homology surface RA as a co-dimension one
space-like surface in WA which satisfies ∂RA = A ∪ EA.
The prescription of [11] to construct the corresponding
bulk replicated geometry is in the following. Firstly, for
each copy of bulk MI , where I = 1, 2, · · · , n denote the
Ith copy of the bulk, we cut them open along RIA to
RIA+ and RIA−. Then we get the replicated geometry by
gluing the open cuts cyclically

RIA− = R(I+1)
A+ , RnA− = R1

A+ . (15)

Similar to [11], we use bulk Rindler coordinates τm to
denote all the bulk regions. We allow τm to be complex
and refer to all the bulk regions in question by using

τm = τ +
(m− 1)

2
iπ . (16)

Here τ parameterizes the modular flow in the bulk with a
thermal circle τ ∼ τ + 2πi. Note that when we translate
along a modular flow, only Re[τ ] changes while Im[τ ] is
fixed. When we apply the replica trick in the bulk, the
orbit of modular flows changes accordingly as well as the
distribution of Im[τ ].

Let us focus on the cyclic gluing of one point A(u0)
on A. On the boundary Lu0

passes through A(u0) then
enter the next copy of B. The natural bulk extension of
the cyclic gluing of A(u0) should be the cyclic gluing of
Ru0

A on the modular planes, where Ru0

A = P(u0) ∩ RA.
In other words, we cut P(u0) open along Ru0

A to Ru0

A+
and Ru0

A− then impose the following boundary conditions

ψI(Ru0

A−) = ψ(I+1)(Ru0

A+) ,

ψn(Ru0

A−) = ψ1(Ru0

A+) , (17)

where ψ denotes all the bulk metric and matter fields.
Note that the definition of modular plane indicates that
all the bulk modular flow lines emanate from Lu0 always
lie in P(u0). Following the modular flows we can keep
track of the value of Im[τ ] everywhere on the cyclical-
ly glued modular plane Pn(u0) (see Fig.3 for the case
of n = 2). We find that the cyclic gluing of A(u0) on
the boundary induces a thermal circle τ ∼ τ + 2πni on
Pn(u0).

FIG. 3: The replica story on the modular plane P(u0) with
n = 2. The left and right figures are the first and second
copies of P(u0), and the green line is the Ru0

A which is cut
open and glued cyclically. The gluing is depicted by the two
dashed arrows. Through Ru0

A , the modular flow τ1 flows from
one subregion of the first copy to a subregion on the second
copy (see the blue arrows). The subregion on the second copy
should have the same Im[τ ], thus also denoted as τ1. It is easy
to see that on the cyclically glued P2(u0), the thermal circle
becomes τ1 → τ2 · · · → τ8 → τ1 or in other words τ ∼ τ+4πi.

In summary, following the modular flow, the cyclic glu-
ing of a point A(u0) on the boundary interval effective-
ly induces a replica story on the corresponding modular
plane P(u0). Following the calculation in [10, 11], this
turns on non-zero contribution to the entanglement en-
tropy SA on E(ū0). The whole bulk replica story can be
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considered as a slicing of replica stories on all the modu-
lar planes. In this sense a point on the boundary interval
is related to a unique point on the RT surface. For the
specific choice of A as a straight interval, we find the two
points in (13) are related by (for details see appendix B)

ū0 =
2l2uu0

4u2
0 + l2u

. (18)

FIG. 4: The left figure shows the subinterval to subinterval
correspondence, where the brown line is the boundary interval
A while the blue line is the RT surface EA. Here A is divid-
ed into three subintervals A1,A2 and A3 and the two green
lines are Ru1

A and Ru2
A respectively. The right figure depicts

another interval A′ which is homologous to A, and divided
into three subintervals A′1,A′2 and A′3. We require that the
end points of A′2 and A2 are anchored on the same boundary
modular flow lines.

We want to address that, according to our prescrip-
tion the cyclic gluing of an arbitrary point on Lu0 would
induce the same replica story on P(u0). In other words
E(ū0) correspond to all the points on Lu0 in the same
sense as A(u0).

IV. ENTANGLEMENT CONTOUR FROM THE
FINE STRUCTURE

In the same sense, the cyclic gluing of an arbitrary
subinterval A2 = A(u1)A(u2) on A turns on the contri-
bution to the entanglement entropy from the subinterval
E2 = E(ū1)E(ū2) of the RT surface (see the left figure
of Fig.4). We use l, l1, l2, l3 to denote the length of the
intervals A,A1,A2 and A3 respectively. It is natural to
propose that Length(E2) captures the contribution from
A2 to the entanglement entropy SA. In other words we
get the contour function sA(x) for SA which describes the
distribution of contribution to entanglement from each
point of A and satisfies

SA =

∫
A
sA(x)dx . (19)

The authors of [14] proposed a set of requirements for
the contour functions. Few analysis of the contour func-
tions for bipartite entanglement have been explored in
[14–18]. However the complete list of requirements that
uniquely determines the contour is still not available. Al-
so its fundamental definition is still not established. Our

fine structure analysis gives a holographic definition for
the contour function. According to (18) we have

sA(x) =
1

4G

4l

l2 − 4x2
, (20)

which is consistent with the results in [14, 17]. Also we
get

sA(A2) =

∫
A2

sA(x)dx =
Length(E2)

4G
(21)

=
c

6
log

(
(l1 + l2)(l2 + l3)

l1l3

)
,

where we have used c = 3`
2G . In appendix C, we compare

sA(A2) with the mutual information and show that they
are not the same thing.

We consider A′ as an arbitrary space-like interval ho-
mologous to A, and A′2 as the sub-interval that ends on
the same two modular flow lines Lu1

and Lu2
as A2 (see

the right figure of Fig.4). Since A2 and A′2 go through
the same modular planes, according to our prescription,
they should both correspond to E2, thus we should have

sA(A2) = sA(A′2) , (22)

which means the entanglement contour is invariant under
the boundary modular flow. This requirement should
be satisfied in more general cases with locally defined
modular Hamiltonians, and is new compared with the
requirements in [14].

It is also interesting to consider the limit l1 = l3 = ε→
0, as expected we find

SA = sA(A2)|A2→A =
c

3
log

l

ε
+O(ε) . (23)

Under this limit the property (22) naturally reduce to the
causal property SA = SA′ of entanglement entropy. Note

that the proposal SA= I(A2,Ac)
2 |A2→A [19] that involves

mutual information can not reproduce the right causal
property of SA. The points E(ū1) and E(ū2), where E2 is
cut off, satisfy z = ε, thus relates the boundary and bulk
cutoffs in a natural way. This is because the modular
planes are defined in a holographic way.

V. A SIMPLE PROPOSAL FOR THE
CONTOUR FUNCTION

One interesting observation in our special case is that
sA(A2) can be expressed as a linear combination of the
entanglement entropy of single intervals inside A

sA(A2) =
1

2
(SA1∪A2

+ SA2∪A3
− SA1

− SA3
) . (24)

Here we would like to propose that the above simple com-
bination gives the contour function of entanglement en-
tropy in general 1+1 dimensional theories. We will show
that:
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1. sA(A2) defined by (24) is in general additive by
definition, and positive from strong subadditivity
[20, 21],

2. as required by [14], it is invariant under local uni-
tary transformations UA2 which acts only at the
subset A2, furthermore it is invariant under the
modular flow (ie. satisfy (22)) in our special case,

SA1∪A2
+ SA2∪A3

− SA1
− SA3

=SA′1∪A′2 + SA′2∪A′3 − SA′1 − SA′3 , (25)

3. it also reproduces the right contour function for
CFT2 with a thermal (spatial) circle, and Warped
CFT [22].

Furthermore [14] requires the contour function to sat-
isfy a constraint implementing the consistency with any
spatial symmetry of the subsystem, and a bound mean-
ing that sA(A2) must be smaller or equal than the en-
tanglement of any factor space of HA which contains the
Hilbert space HA2

of A2. We leave these for future dis-
cussions.

For quantum systems whose entanglement entropies
satisfy the volume law, the proposal (24) gives a flat en-
tanglement contour function. For systems that satisfy
area law, (24) also captures the feature that the leading
order contribution to the entanglement entropy comes
from the boundary.

A. Additivity and positivity

We can divide the sub-interval A2 into two parts such
that

A2 = Aa2 ∪ Ab2 . (26)

According to (24) we have

sA(Aa2) =
1

2

(
SA1∪Aa2 + SA2∪A3

− SA1
− SAb2∪A3

)
,

sA(Ab2) =
1

2

(
SA1∪A2

+ SAb2∪A3
− SA1∪Aa2 − SA3

)
,

(27)

then we find that

sA(A2) = sA(Aa2) + sA(Ab2) . (28)

We can continue to do the division such that A2 is di-
vided into all the sites inside A2, the additivity actually
determines a function s(x) on A that does not depend
on the choice of A2 and satisfies

sA(A2) =

∫
A2

s(x)dx . (29)

Further more, since

SA = sA(A2)|A2→A , (30)

we have

SA =

∫
A
s(x)dx , (31)

which is a crucial property for the contour function.

The positivity of is directly given by the strong subad-
ditivity. For example, if we consider holographic CFT2

and a static interval A, we see from Fig.5 that [23]

SA1∪A2 + SA2∪A3 − SA1 − SA3 > 0 . (32)

According to (24) and the additivity, the above inequality
indicates that the contour function is positive everywhere
inside A

sA(x) > 0. (33)

Note that we only used the definition (24) of sA(A2)
and the strong subadditivity of entanglement entropy, so
the above properties (31) and (33) of (24) should hold
for general cases.

FIG. 5: The RT surfaces associated to SA1∪A2 and SA2∪A3

intersect at the point P. We divide these two RT surfaces
by P, then the combination of their left parts is a surface
homological to A1 and its length should be larger than the
RT surface associated to SA1 as SA1 is minimal. The same
logical applies to the combination of the right parts. Then we
get (32).

B. Invariance under local unitary transformations
and the modular flow

The causal property of entanglement entropy tells us
that SA1∪A2

and SA2∪A3
are invariant under local uni-

tary transformations UA2 that only acts on the subset
A2, then the sA(A2) defined by (24) is also invariant
under UA2 thus satisfies the requirement of [14]. Fur-
thermore, (24) is also invariant under the local unitary
transformations UA1 and UA3 .

Our fine structure analysis indicates that even under
modular flow, the contour function should be invariant in
the sense of (22). Remarkably we show that the sA(A2)
defined by (24) is also invariant under the modular flow in
our special case. According to (A17), the entanglement
entropy for an arbitrary interval is determinant by the
coordinate differences (∆u,∆v) of the two end points

SEE =
c

6
log

∆u∆v

εuεv
. (34)

Now we consider an arbitrary space-like intervalA′ which
is homologous to A and intersect with Lu1

and Lu2
at
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(u′1, v
′
1) =

{
lu
2

tanh

(
1

2
log

(
λ2

1(lu + 2u1)

lu − 2u1

))
,
lu
2

tanh

(
1

2
log

(
lu + 2u1

λ2
1lu − 2λ2

1u1

))}
(u′2, v

′
2) =

{
lu
2

tanh

(
1

2
log

(
λ2

2(lu + 2u2)

lu − 2u2

))
,
lu
2

tanh

(
1

2
log

(
lu + 2u2

λ2
2lu − 2λ2

2u2

))}
(35)

Since we have already known the coordinates of the two end points of A′, using (34) and (35) we can calculate

SA′1∪A′2 + SA′2∪A′3 − SA′1 − SA′3

=
c

6

(
log

(u′2 + lu/2)(lu/2− u′1)

(u′1 + lu/1)(lu/2− u′2)
+ log

(v′2 + lv/2)(lv/2− v′1)

(v′1 + lv/1)(lv/2− v′2)

)
=
c

3
log

(lu − 2u1)(lu + 2u2)

(lu + 2u1)(lu − 2u2)
,

=SA1∪A2 + SA2∪A3 − SA1 − SA3 (36)

where we have used lu = lv in the third line. Remarkably we find the result is independent of the choice of λ1 and
λ2, thus we derived (25).

C. Reproducing the contour function for CFT2

with a thermal (spatial) circle

Here we consider a CFT2 with the inverse tempera-
ture β. The entanglement entropy for an arbitrary static
interval is given by

S∆x =
c

3
log

(
β

πε
sinh

(
π∆x

β

))
(37)

where ∆x is the length of the interval. According to (24)
we have

sA(A2) =
c

3
log
[

sinh

(
π(l1 + l2)

β

)
×

sinh

(
π(l2 + l3)

β

)
csch

(
πl1
β

)
csch

(
πl3
β

)]
, (38)

Define F (x) =
∫
sA(x)dx, then we should have

sA(A2) = F (x2)− F (x1) , (39)

where

x1 =
1

2
(l1 − l2 − l3) ,

x2 =
1

2
(l1 + l2 − l3) , (40)

are the two end points of A2. It is easy to see that (38)
can be written in the form of (39) with F (x) given by

F (x) =
c

3
log

(
sinh

(
π(l + 2x)

2β

)
csch

(
π(l − 2x)

2β

))
.

(41)

Thus we get the contour function for CFT2 with finite
temperature

sA(x) =
c

3

π sinh lπ
β

β sinh
(
π(l−2x)

2β

)
sinh

(
π(l+2x)

2β

) . (42)

Similarly we can get the contour function for the zero
temperature CFT2 with a spatial circle x ∼ x+ L,

sA(x) =
c

3

π sin lπ
L

L sin
(
π(l−2x)

2L

)
sin
(
π(l+2x)

2L

) . (43)

The above results (42) and (43) are consistent with the
results proposed in [17], which are also inspired by the
locally defined modular Hamiltonian [7, 24–26].

VI. DISCUSSION

The modular Hamiltonian absolutely contains more in-
formation than the entanglement entropy. This work
shows that a fine correspondence between quantum en-
tanglement and space-time geometry can be extracted
from the RT formula by the bulk and boundary modular
flows. This fine correspondence is indeed the holograph-
ic picture of the entanglement contour, which probes the
locality of entanglement and gives more information (see
discussions in [14]) than the total entanglement entor-
py. Our prescription, although relies on the construction
of Rindler transformations, should work for general cases
with a locally defined modular Hamiltonian, for example,
the covariant case by setting lu 6= lv, the global AdS3,
AdS3 with a black hole, AdS space in higher dimension-
s (for spherical subregions Rindler transformations has
been constructed in [7]), and even the cases [8, 9] beyond
AdS/CFT (see [22] for another explicit case in the con-
text of warped AdS3/warped CFT correspondence [27]).
For cases with non-local modular Hamiltonian, one may
find clues from the more general discussions on bulk and
boundary modular flows in [28–30] to define the modular
planes in a more abstract way.

On the other hand we give a simple proposal (24)
for the entanglement contour function for general cases,
which only involves entanglement entropies of single sub-
intervals inside A and does not depend on the construc-
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tion of the Rindler transformations. It also passes several
non-trivial tests. The fine correspondence in holographic
entanglement together with the proposal (24) allow us
to interpret the length of bulk intervals in terms of en-
tanglement entropies of the dual field theory (see [31] for
a recent application along this line). On the other way
around, we can get the information of the modular flow
from the entanglement entropy based on this proposal.

The fine structure also gives a good explanation [22]
for the appearance of null geodesics in the new geometric
pictures [8, 9] of entanglement entropy in non-AdS holo-
graphies. The RT formula has a very deep impact on
our understanding of holography itself and the origin of
spacetime geometry [32–35]. Its fine description[43] may
help us better understand these grand questions.
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APPENDIX A: RINDLER METHOD AND
MODULAR FLOWS IN ADS3/CFT2

The general strategy to construct Rindler transforma-
tions and their bulk extensions by using the symmetries
of a QFT and holographic dictionary, is summarised in
section 2 of [9]. In the case of AdS3/CFT2, the Rindler
transformations are constructed by imposing the follow-
ing requirements

• The Rindler transformation x̃ = f(x) should be a
symmetry transformation, which, in this case, is a
conformal mapping

ũ = f(u) , ṽ = g(v) , (A1)

with f and g being arbitrary functions.

• The vectors ∂x̃i should be a linear combination of
the global generators hi in the original CFT. In
other words

∂x̃i =
∑
j

bijhj , (A2)

where bij are arbitrary constants.

• The bulk extension of the Rindler transformation
is obtained by replacing the global generators hj
in (A2) with their bulk duals, which are just the
isometries of the Poincaré AdS3. Furthermore we

require the metric of the Rindler ÃdS3 to satisfy
the same boundary conditions.

The global generators hi of the boundary CFT2 are
L0,± and L̄0,±, whose bulk dual are the isometries of the
Poincaré AdS3

J− = ∂u, J0 = u∂u − r∂r, J+ = u2∂u −
1

2r
∂v − 2ru∂r,

J̄− = ∂v, J̄0 = v∂v − r∂r, J̄+ = v2∂v −
1

2r
∂u − 2rv∂r.

(A3)

The normalization are chosen to satisfy the standard
SL(2, R)× SL(2, R) algebra

[J−, J+] = 2J0, [J0, J±] = ±J±,
[J̄−, J̄+] = 2J̄0, [J̄0, J̄±] = ±J̄± . (A4)

Now we try to construct a Rindler coordinate transfor-
mation that satisfies the above requirements, to obtain a
new coordinate system. Define

∂ũ = a0J0 + a+J+ + a−J− ,

∂ṽ = ā0J̄0 + ā+J̄+ + ā−J̄− , (A5)

where a0, a+, a−, ā0, ā+, ā− are arbitrary constants which
controls the size, position of DA on B and the two pa-
rameters β̃ũ, β̃ṽ that characterize the thermal circle in B̃.
Note that the shape of DA is determined by the symme-
tries of the CFT thus can not be adjusted. Only the two
parameters that characterize the size of DA can affect
the entanglement entropy. Furthermore by requiring the

metric of the Rindler ÃdS3 to have the formula of (A8) ,
or equivalently r̃ ≡ gũṽ, determines the other coordinate
r̃.

For simplicity we can settle down the position of DA
and the thermal circle of the Rindler ÃdS3. This leaves
only two parameters lu and lv, which characterize the
size of DA. By choosing

a0 = 0 , a+ = − 2

lu
, a− =

lu
2
,

ā0 = 0 , ā+ = − 2

lv
, ā− =

lv
2
, (A6)

we find the bulk Rindler transformations from Poincaré
AdS3

ds2 = 2rdudv +
dr2

4r2
, (A7)

to a Rindler ÃdS3

ds2 = dũ2 + 2r̃dũdṽ + dṽ2 +
dr̃2

4(r̃2 − 1)
, (A8)

are given by

ũ =
1

4
log

(
4(rv(lu + 2u) + 1)2 − l2vr2(lu + 2u)2

4(rv(lu − 2u)− 1)2 − l2vr2(lu − 2u)2

)
,

(A9)

ṽ =
1

4
log

(
l2ur

2(lv + 2v)2 − 4(lvru+ 2ruv + 1)2

l2ur
2(lv − 2v)2 − 4(−lvru+ 2ruv + 1)2

)
,

(A10)

r̃ =
r2
(
l2u
(
l2v − 4v2

)
− 4l2vu

2
)

+ 4(2ruv + 1)2

4lulvr
. (A11)
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Here we have set down the parameters β̃ũ = −β̃ṽ = −π
and the position of DA, which do not affect the entan-
glement entropy. Asymptotically, we have

ũ = arctanh
2u

lu
, ṽ = arctanh

2v

lv
, (A12)

which is as expected a conformal mapping. The (ũ, ṽ)
coordinates covers a diamond shape subregion DA on the
original (u, v) coordinates

DA : − lu
2
< u <

lu
2
, − lv

2
< v <

lv
2
. (A13)

which is the causal development of the interval A

A : {(− lu
2
,− lv

2
)→ (

lu
2
,
lv
2

)} , (A14)

on the boundary CFT. The causal development (A13)
constructed by only using Rindler transformations is con-
sistent with the causal development DA defined with null
lines associated to ∂A on B.

According to (A11), the horizon of the Rindler ÃdS3 at
r̃ = 1 maps to two null hypersurfaces N± in the original
space

N+ : r =
2

(lu + 2u)(lv − 2v)
,

N− : r =
2

(lu − 2u)(lv + 2v)
. (A15)

We see that N± intersect at

EA :

{
v =

lvu

lu
, r =

2lu
l2ulv − 4lvu2

, − lu
2
< u <

lu
2

}
.

(A16)

which anchors on the boundary end points ∂A± =(
± lu2 ,±

lv
2

)
. It is easy to check that the E is just the

extremal surface. The entanglement entropy is given by

SA =
1

4G
log

lulv
εuεv

, (A17)

where εu and εv are the cutoffs along the u and v direc-
tions.

On the other hand, one can also check that the normal
null hyper-surfaces emanating from EA (A16) are justN±
(A15). This means the normal null hypersurfaces N± of

EA play the role of the horizon in Rindler ÃdS3. The
above picture is just the light-sheet [36] construction of
the HRT surface first proposed in [6]. The entanglement
wedge WA is the bulk region enclosed by N± and B.
The Rindler transformation (A9) maps this WA to the

exterior of the horizon in Rindler ÃdS3. The bulk causal
decomposition associate with EA is given by the left figure
in Fig.6. It is easy to see that the followed boundary
decomposition is consistent with the causal structure for
a CFT2, which is given by the right figure of Fig.6.

The generator of the normal Hamiltonian in Rindler
space or Rindler bulk (A8), which maps to the modular
Hamiltonian in the original space, is the generator along

FIG. 6: The left figure shows the causal decomposition for
AdS3 associated with a RT surface. The right figure shows
the causal structure associated with an interval A of CFT2.

the thermal circle kt ≡ β̃i∂x̃i . In order to map it to the
original space, we need to solve the following differential
equations

∂u = (∂uũ)∂ũ + (∂uṽ)∂ṽ + (∂ur̃)∂r̃ ,

∂v = (∂vũ)∂ũ + (∂v ṽ)∂ṽ + (∂v r̃)∂r̃ ,

∂r = (∂rũ)∂ũ + (∂rṽ)∂ṽ + (∂r r̃)∂r̃ . (A18)

Then we get ∂ũ, ∂ṽ, ∂r̃, and furthermore kt, in terms of
∂u, ∂v, ∂r.

We plug the bulk Rindler transformations (A9) into the
differential equations (A18) then solve them. In Rindler

ÃdS3 the generator of the Hamiltonian is just the trans-
lation along the thermal circle. Mapping it to the original
space, we get the modular flow in the bulk

kbulkt =β̃ũ∂ũ + β̃ṽ∂ṽ

=π (∂ṽ − ∂ũ)

=

(
2πu2

lu
− πlu

2
+

π

lvr

)
∂u + 4πr

(
v

lv
− u

lu

)
∂r

+
1

2
π

(
− 2

lur
− 4v2

lv
+ lv

)
∂v .(A19)

The modular flow on the boundary is given by

kt =

(
2πu2

lu
− πlu

2

)
∂u +

1

2
π

(
−4v2

lv
+ lv

)
∂v . (A20)

One can easily check that

kt|∂A± = 0 , kbulkt |EA = 0 . (A21)

The above equations mean that EA is the fixed points of
kbulkt (or the bulk extended replica symmetry), and EA
should go through the end points ∂A± of the boundary
interval.
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APPENDIX B: DETAILS TO DERIVE THE EQUATIONS (11) (12) AND (18)

1. Normal null geodesics on N± as bulk modular flow lines

One can check that the following bulk flow lines

{u(s), v(s), r(s)} =

{
lu
(
b
(
e2πs − b

)
+ 1
)

2 (−b2 + e2πs + 1)
,
lu
(
b
(
b+ e2πs

)
− 1
)

2 (−b2 + e2πs + 1)
,−

2e−4πs
(
−b2 + e2πs + 1

)2
(b2 − 1) l2u

}
(B1)

satisfy the equation (∂u(s)
∂s , ∂v(s)

∂s , ∂r(s)∂s ) = kbulkt , where b is an integration constant. These are the bulk modular flow
lines on N+, one can also check that they are the null geodesics normal to EA, which are also studied in [13].

We define

b =
2ū0

lu
, e−2πs =

2l2u − 8ū2
0 +
√

2

√
r (l2u − 4ū2

0)
3

l2u (l2ur − 4rū2
0 − 2)

, (B2)

then we reparametrize the null bulk modular flow lines with r and ū0

L̄+
ū0

:
{ u(r) = lu

2 −
lu−2ū0√

2r
√
l2u−4ū2

0

,

v(r) = − lu2 + 2ū0+lu√
2r
√
l2u−4ū2

0

.
(B3)

To get the null bulk modular flow lines on N−, we can just map (u, v) to (−u,−v), thus we derived (11) and (12).

2. Deriving equation (18)

On the real boundary r = ∞, all the bulk modular flow lines (11) intersect with the boundary modular flow lines
(10) at the tips (u, v) = (± lu2 ,∓

lv
2 ) of the casual development DA. Our construction of modular planes indicates

that for each boundary modular flow line Lu0 , there are two bulk modular flow lines L̄±ū0
on N± that lie in the same

modular plane P(u0). To get the relation (18), we need to push the boundary with modular flows (10) to a finite
r = rI , then for each Lu0 there will be a L̄+

ū0
that intersect with Lu0

at some finite λ. More explicitly we solve the
equation

lu
2

tanh

(
tanh−1

(
2u0

lu

)
+ log(λ)

)
=
lu
2
− lu − 2ū0√

2r
√
l2u − 4ū2

0

,

lu
2

tanh

(
tanh−1

(
2u0

lu

)
− log(λ)

)
= − lu

2
+

lu + 2ū0√
2r
√
l2u − 4ū2

0

, (B4)

and get the intersecting point at

ū0 =
2λ2l2uu0

(λ2 + 1)l2u + 4(λ2 − 1)u2
0

,

rI =
λ2
(

cosh(2 log(λ)) + cosh
(

2 tanh−1
(

2u0

lu

)))
l2u

. (B5)

Then we take the limit λ→∞ and get

ū0 =
2l2uu0

l2u + 4u2
0

+O
(

1

λ2

)
, (B6)

rI =
λ4

2l2u
+
λ2 cosh

(
2 tanh−1

(
2u0

lu

))
l2u

+O(1) , (B7)

which give the relation (18).
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APPENDIX C: ENTANGLEMENT CONTOUR COMPARED WITH MUTUAL INFORMATION

We define I(A2,Ac) = 2sA(A2) and compare it with the mutual information

I(A2,Ac) = SA2
+ SAc − SA2∪Ac , (C1)

which is claimed to capture the correlation between A2 and Ac. The evaluation of the mutual information involves
the calculation of the entanglement entropy of two disconnected intervals, which is still a formidable task. If we follow
the proposal of [12, 37]

SA1∪A3
= SA1

+ SA2
+ SA3

+ SA − SA1∪A2
− SA2∪A3

, (C2)

then we find exactly I(A2,Ac) = I(A2,Ac) which holds for general A′. Though there do exist cases [19, 38–40] that
apply (C2), it is shown in the added note of [12] that the result is in general not correct.

One may also calculate SA1∪A3
by applying the RT formula to two disconnected intervals as advocated in [41] thus

the mutual information (C1) is given by

I(A2,Ac) =
{ c

3 log l2l
l1l3

, l2 > l1l3/l ,
0 , l2 ≤ l1l3/l ,

(C3)

which undergoes a phase transition at l2 = l1l3/l. When l2 > l1l3/l we have the simple relation

eI(A2,Ac) = eI(A2,Ac) + 1 . (C4)

However this relation does not hold for general A′, because I(A2,Ac) (C3) is not invariant under the modular flow.
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