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Abstract: Based on the Lewkowycz-Maldacena prescription and the fine structure anal-
ysis of holographic entanglement proposed in [1], we explicitly calculate the holographic
entanglement entropy for warped CFT that duals to AdS3 with a Dirichlet-Neumann type
of boundary conditions. We find that certain type of null geodesics emanating from the
entangling surface ∂A relate the field theory UV cutoff and the gravity IR cutoff. In-
spired by the construction, we furthermore propose an intrinsic prescription to calculate
the generalized gravitational entropy for general spacetimes with non-Lorentz invariant d-
uals. Compared with the RT formula, there are two main differences. Firstly, instead of
requiring that the bulk extremal surface E should be anchored on ∂A, we require the con-
sistency between the boundary and bulk causal structures to determine the corresponding
E . Secondly we use the null geodesics (or hypersurfaces) emanating from ∂A and normal
to E to regulate E in the bulk. We apply this prescription to flat space in three dimensions
and get the entanglement entropies straightforwardly.
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1 Introduction

Entanglement entropy, which describes the correlation structure of a quantum system,
has played a central role in the study of modern theoretical physics. In the context of
AdS/CFT correspondence [2–4], the Ryu-Takayanagi (RT) [5, 6] formula relates the entan-
glement entropy to a geometric quantity on the gravity side. More explicitly, for a static
subregion A in the boundary CFT and a minimal surface EA in the dual AdS bulk that
anchored on the boundary ∂A of A, the RT formula states that the entanglement entropy
of A is measured by the area of EA in Planck units,

SA =
Area(EA)

4G
. (1.1)

Soon the Hubeny-Rangamani-Takayanagi (HRT) [7] formula was proposed as the covariant
version of the RT formula. Accordingly the minimal surface is generalized to the extremal
surface in the HRT formula. The holographic picture of entanglement entropy has a huge
impact on our understanding of holography itself as well as the emergence of spacetime.

One way to understand the RT formula is the Rindler method, which is first proposed
in [8] and later generalized in [9, 10]. The key point of the Rindler method is to construct
a Rindler transformation, which is a symmetry of the theory, that maps the causal de-
velopment of a subregion to a thermal “Rindler space”. So the problem of calculating the
entanglement entropy of a subregion is replaced by the problem of calculating the thermal
entropy of the Rindler space. According to holography, the thermal entropy of the Rindler
space equals to the thermal entropy of its bulk dual, which is usually a hyperbolic black
hole (or black string). The horizon of the hyperbolic black hole is exactly what maps to
the RT surface under the Rindler transformations in the bulk.

The other way is to extend the replica trick into the bulk and calculate the entanglement
entropy using the partition function calculated by the path integral on the gravity side.
This prescription is explicitly carried out by Lewkowycz and Maldacena [11] (see [12] for
the covariant generalization). The entanglement entropy of a quantum system is defined as
the von Neumann entropy SA = −TrρA log ρA of the reduced density matrix ρA. Consider
a quantum field theory on B, the replica trick first calculates the Renyi entropy S

(n)
A =

1
1−n logTrρnA for n = Z+, then analytically continues n away from integers. We get the
entanglement entropy SA when n → 1. To calculate TrρnA, we can cut B open along A,
glue n copies of them cyclically into a new manifold Bn and then do path integral on Bn.
The entanglement entropy is calculated by

SA = −n∂n (logZn − n logZ1) |n=1 , (1.2)

where Zn is the partition function of the quantum field theory on Bn. Assuming holog-
raphy and the unbroken replica symmetry in the bulk, the LM (Lewkowycz-Maldacena)
prescription manages to construct the bulk dual of Bn, which is a replicated bulk geometry
Mn with its boundary being Bn. Then the partition function Zn can be calculated by the
path integral onMn on the gravity side. The two main results of [11, 12] are:
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• the holographic entanglement entropy is calculated by the area of the codimension
two surface E in Plank units, which is the set of all the fixed points of the bulk replica
symmetry,

• the codimension two surface E is an extremal surface1.

As was indicated in [11, 12], these results are quite general even for holographies beyond
AdS/CFT.

However the above results are not equivalent to the RT (or HRT) formula without
the homology constraint and the prescription to regulate the entanglement entropy via the
UV/IR cutoff relation [15] in AdS/CFT. The homology constraint requires the extremal
surface E to be anchored on ∂A and homologous to A [16–18], thus selects the right ex-
tremal surface that matches A. The prescription for regulation tells us how to regulate
the extremal surface E in the bulk when we regulate A on the boundary. Although the
homology constraint and prescription for regulation in the RT formula seems quite natural,
it has never been thoroughly studied in holographies beyond AdS/CFT.

In the context of AdS/CFT, since both of the boundary field theory and the bulk
gravity are relativistic, the causal structures near the entangling surface ∂A and the RT
surface E are consistent with each other. This naturally leads to the requirement that E
should be anchored on ∂A2. However, for holographies beyond AdS/CFT3, especially those
with non-Lorentz invariant field theory duals (for example non-relativistic theories, ultra-
relativistic theories or Lifshitz-type theories), it is reasonable to question the validity of the
homology constraint. Also the UV/IR cutoff relations and their application to regulate the
bulk extremal surface in more general holographies have not been discussed before. These
are crucial to the validity of the RT formula.

Recently a series of work [9, 10, 13] calculated the holographic entanglement entropy for
spacetimes that are not asymptotically AdS and found the corresponding geometric quan-
tities. Remarkably, these results challenge the validity of the RT formula. In the context
of (warped) AdS/warped CFT correspondence [28, 36] and 3-dimensional flat holography
[33–35], the geometric quantities EA, which calculate the entanglement entropy of a single
interval A in warped CFT (WCFT) [28] and BMS3 invariant field theories (BMSFTs), are
found [9, 10] respectively with the Rindler method. In both cases, the holographic calcula-
tions consist with the field theory results [37–40]. The corresponding geometric quantities

1 The extremal condition is the result of imposing the equations of motion and replica symmetry on all
the fields in the action. In [13], as the gauge fields are nondynamical and do not appear in the symplectic
structure, thus should not be imposed with the replica symmetry (or periodic) condition. As a result, in
that case the geometric quantity E that measures the entanglement entropy is not an extremal surface. See
[14] for a simpler discussion on the extremal condition.

2A proof for the homology constraint at topological level in AdS/CFT is given in [19]
3Although the AdS/CFT has attracted most of the attentions, the holographic principle is assumed to

be hold for general spacetimes. So far the holography beyond AdS/CFT that has been proposed include
the dS/CFT correspondence [20], the Lifshitz spacetime/Lifshitz-type field theory duality [21–24], the
Kerr/CFT correspondence [25], the WAdS/CFT [26, 27] or WAdS/WCFT [28, 29] correspondence, and flat
holography in four dimensions [30–32] and three dimensions [33–35].
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that satisfy (1.1) are spacelike geodesics in the bulk, thus consistent with the results in
[11, 12]. However, unlike the RT surfaces, the endpoints of EA are not anchored on ∂A.

For example, in 3-dimensional flat space, the endpoints of EA are in the bulk and
connected to ∂A± by two null geodesics γ± normal to EA [10]. Recent works related to
this geometric picture can be found in [41–43]. This new geometric picture of entanglement
entropy with the extra null geodesics γ± is reformulated in [41] following the HRT covariant
formulation [7].

For (warped) AdS3 which duals to a WCFT, the geometric picture for holographic
entanglement entropy is also a spcaelike geodesic EA with endpoints in the bulk [9]. We
will show that (which is not adressed in [9]) the endpoints of EA are also connected to the
endpoints of A at the cutoff boundary by two null geodesics γ±, which are normal to EA
(see Fig.1).

Figure 1. The blue solid line is the EA which is regulated from the spacelike geodesic E . The red
and green lines are the null geodesics γ± that connect the endpoints of EA and A.

The above results also imply that the prescription to regulate the E via the UV/IR
cutoff relations is different from the RT formula. Instead of being cut off at an infinitely
large radius, the IR cutoff of the curve E in these cases are at finite radius and in some
way controlled by the null geodesics γ± emanating from ∂A. In this paper we try to
understand this new geometric picture following the LM prescription [11]. We focus on
the case of AdS3/WCFT correspondence. In this holography the gravity side is AdS3 with
the Compere-Song-Strominger (CSS) [36] boundary conditions while the field theory side
is a WCFT. We study the replica story both on the boundary and in the bulk and try to
understand the role of the null geodesics γ± in the replica story.

We will not re-derive the two main results of [11, 12] listed above and admit they are
true in general holographies. However, to intrinsically determine the geometric picture for
holographic entanglement entropy we need to solve the remaining two problems:

• how to determine the bulk extremal surface E in the bulk that matches A if we do
not require E to be anchored on ∂A?

• how to regulate E in the bulk accordingly when we regulate A on the boundary?
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The above two problems are the main tasks of this paper. To solve the first problem, we need
to explicitly study the causal structure of the boundary field theory and find its match in
the bulk. In this paper we will not discuss topological ambiguities to determine E . To solve
the second problem, we use the prescription of [1] to study the fine structure in holographic
entanglement. More explicitly we use a new geometric quantity named the modular plane,
to slice the entanglement wedge. Under this construction we get a fine correspondence
between the points on A and the points on E . We will show that the point where we cut A
off and the point where we cut E off are just related by this fine correspondence.

The structure of this paper is in the following. In section 2 we present some interesting
observations from the Rindler method which partially inspire the intrinsic prescription we
will propose. Then we focus on the case of AdS3/warped CFT correspondence. In section
3 we apply the Rindler method to this case. In section 4 we will explicitly study the bulk
and boundary modular flows and define the modular planes. In section 5, we calculate the
generalized gravitational entropy for AdS3 with CSS boundary conditions with the help of
modular planes. The goal of this section is to understand how do the null geodesics (or
modular planes) relate the boundary and bulk cutoffs. Based on the above construction,
in section 6 we propose an intrinsic prescription of calculate the generalized gravitational
entropy for spacetimes with non-Lorentzian duals. At last, we apply our prescription to 3-
dimensional flat holography in section 7. In appendix A, we classify the spacelike geodesics
in AdS3. The appendix B and C are written for special readers, who are interested in the
saddle point condition for EA and the entanglement contour for WCFT.

2 New observations from the Rindler method

2.1 A brief introduction to Rindler method

In the field theory, the key step of the Rindler method is to construct a Rindler trans-
formation, a symmetry transformation which maps the calculation of entanglement entropy
to thermal entropy. The general strategy to construct Rindler transformations and their
bulk extensions by using the symmetries of the field theory and holographic dictionary,
is summarized in the section 2 of [10]. Here we just give the main points of the Rindler
method.

Consider a QFT on manifold B with the symmetry group G. The global symmetries,
whose generators are denoted by hj , form a subset of G. The Rindler transformations R,
which map a subregion D of B to a Rindler space B̃ with infinitely far away boundary, can
be constructed by imposing the following requirements:

1. The transformations R : x̃i = f(xi) should be a symmetry transformation of the
QFT.

2. The vectors ∂x̃i in the Rindler space should be a linear combination of the global
generators in the original space

∂x̃i =
∑
j

bijhj , (2.1)
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where bij are arbitrary constants.

The first requirement will give constraints on the coefficients bij . The remaining independent
coefficients will control the size, position of D and the thermal circle of B̃. Note that
the shape of D is determined by the symmetries and independent of the choice of bij .
The Rindler transformation R will be invariant under some imaginary identification of the
Rindler coordinates x̃i ∼ x̃i + iβ̃i. This identification can be referred to as a “thermal”
identification in B̃.

Our strategy to construct Rindler transformations only involves the global generators,
thus has a natural extension in the bulk. According to the holographic dictionary, the global
generators hi of the asymptotic symmetry group are dual to the isometries of the bulk
sapcetime. Then by replacing the hi generators with the generators of the bulk isometries
and requiring the Rindler bulk space to satisfy the same boundary conditions, we can get
the Rindler transformations in the bulk. The bulk extension of B̃ (or the Rindler bulk)
should have a horizon whose Bekenstein-Hawking entropy gives the thermal entropy of the
field theory on B̃. Using the inverse bulk Rindler transformations we can map this horizon
back to the bulk extension of the original field theory on B. The image of this mapping will
give the corresponding geometric quantity E . One can consult [9, 10] for explicit examples
of the Rindler method.

2.2 New observations from the Rindler method

In [10], with the inverse bulk Rindler transformations, the authors made several inter-
esting observations.

• Observation 1 : the horizon of the Rindler bulk space is mapped to two codimension
one null hypersurfaces N± in the original bulk space. The curve E that related to
entanglement entropy is the curve where N− intersect with N+,

E = N− ∩N+ . (2.2)

• Observation 2 : the Hamiltonian in the Rindler bulk space and boundary B̃ will be
mapped to the modular Hamiltonian in the original bulk and boundary respectively.
A modular flow kt (kbulkt ) is generated by the modular Hamiltonian. Then the curve
E is determined by

kbulkt (E) = 0 , (2.3)

which means E is the fixed points of the modular flow.

• Observation 3 : the two null hypersurfaces N± are normal to E . Furthermore their
intersection with the boundary B gives a decomposition on B, which is consistent with
the causal structure of the dual field theory.

Although these observations are made in 3d flat holography, the logic behind them
should work for general holographies. The first observation is just a mapping from the
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Rindler bulk to the original spacetime and follows the logic of Rindler method. The second
way is equivalent to the statement that E is the fixed points of the bulk replica symmetry
which is a key statement of the LM prescription [11]. In the third observation, the re-
quirement that the bulk and boundary causal structure should be consistent is obviously a
requirement of holography4. Later we will explicitly show that the above observations are
also true in the context of AdS3/WCFT.

Note that, the ways (2.2) and (2.3) to determine E are not intrinsic and rely on the ex-
plicit information of the Rindler transformations and locally defined modular Hamiltonian,
which may not even exist. However the third observation implies that, on the other way
around, E can be determined by the requirement that, the bulk causal decomposition by the
normal null hypersurfaces N± of E should reproduce the causal structure of the boundary
field theory associated to A, i.e.

E : N± ∩ B ⊃ ∂DA (2.4)

This prescription to determine E is intrinsic and can be applied for general spacetimes, thus
finishes our first task.

The above construction remind us of the construction of the light-sheet by Bousso [44].
In [7], using the light-sheets the authors propose a prescription to construct the covariant
geometric picture for entanglement entropy in the context of AdS/CFT. They require the
light-sheet associated to E should intersect with the boundary on the boundary light-sheet
associated to ∂A. This is equivalent to our requirement of the consistency between the bulk
and boundary causal structures (2.4).

3 Rindler method applied on the AdS3/WCFT correspondence

3.1 AdS3 with CSS boundary conditions

Let us give a quick review on the AdS3/WCFT correspondence. In the Fefferman-
Graham gauge, solutions to 3-dimensional Einstein gravity with a negative cosmological
are in the following,

ds2

`2
=
dη2

η2
+ η2

(
g

(0)
ab +

1

η2
g

(2)
ab +

1

η4
g

(4)
ab

)
dxadxb , (3.1)

where η is the radial direction, and xa, a = 1, 2 parametrize the boundary. Under the
Dirichlet boundary (Brown-Henneaux) conditions δg(0)

ab = 0, the asymptotic symmetry are
generated by two copies of Virasoro algebra [45], which indicates the dual field theory is a
CFT2.

In [36], a Dirichlet-Neumann type of boundary conditions

δg
(0)
±− = 0 , ∂−g

(0)
++ = 0 , δg

(2)
−− = 0 , (3.2)

is considered for AdS3 in Einstein gravity, which we refer as the CSS boundary conditions.
Under the CSS boundary conditions the metric on the boundary is no longer fixed and

4In the context of AdS/CFT this requirement has been discussed in detail in [18].

– 7 –



is allowed to fluctuate. Without a fixed background metric the usual way to determine
the causal structure of the boundary field theory with null geodesics (or hypersurfaces)
associated to ∂A is meaningless. In these cases, one can still define the causal development
DA as the subregion in B, which is mapped to the whole Rindler space B̃ under Rindler
transformations (see section 2.1). This definition of causal development is more general,
and will reduce to the definition using null lines when the boundary has a fixed background
metric.

Consider a BTZ metric

ds2 = `2
(
T 2
udu

2 + 2rdudv + T 2
v dv

2 +
dr2

4 (r2 − T 2
uT

2
v )

)
. (3.3)

When we impose the CSS boundary conditions, the asymptotic symmetry group is featured
by a Virasoro-Kac-Moody algebra [36],

[L̃n, L̃m] =(n−m)L̃n+m +
c̃

12
(n3 − n)δn+m ,

[L̃n, P̃m] =−mP̃m+n +mP̃0δn+m ,

[P̃n, P̃m] =
k̃

2
nδm+n , (3.4)

with the central charge and Kac-Moody level given by

c̃ =
3`

2G
, k̃ = −`T

2
v

G
. (3.5)

Here we have set Tv fixed to satisfy the boundary condition δg
(2)
−− = 0. Then u is the

direction that keeps the SL(2, R) global symmetry. Although the local isometries in the
bulk are still SL(2, R)×SL(2, R), only the SL(2, R)×U(1) part consists with the boundary
conditions.

The above asymptotic symmetry analysis indicates that the dual field theory is a WCFT
featured by the algebra (3.4). The WCFT has the following local symmetries [28]

u = f(u′) , v = v′ + g(u′) . (3.6)

A Similar story of asymptotic symmetry analysis happens for warped AdS3 [46], and the
WAdS/WCFT correspondence [28] is conjectured.

The (warped) AdS3/WCFT correspondence has passed several key tests by matching
the thermal entropy [28], entanglement entropy [9, 37], correlation functions [29] and one-
loop determinants [47]. See [48–50] for a few examples of WCFT models.

Note that the Kac-Moody level in (3.4) is charge dependent. This is different from
the canonical warped CFT algebra [28] which has a constant Kac-Moody level. These
two algebras can be related by a state dependent coordinate transformation. One can also
obtain the canonical algebra using the state-dependent asymptotic Killing vectors [51]. The
mapping between the entanglement entropies of the theories featured by these two algebras
is explicitly discussed in [9]. In this paper, by WCFT we mean the theory featured by the
algebra (3.4), and will not do the further mapping to the canonical ones.
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3.2 Rindler method for AdS3 with CSS boundary conditions

The global symmetries of the asymptotic symmetry group of AdS3 with CSS boundary
conditions are SL(2, R)× U(1), which consist of the following generators

J− = ∂u, J0 = u∂u − r∂r, J+ = u2∂u −
1

2r
∂v − 2ru∂r, J̄ = ∂v , (3.7)

Now we consider the AdS3 with Tu = 0, Tv = 1, and the AdS radius being ` = 1,

ds2 = 2rdudv + (dv)2 +
(dr)2

4r2
. (3.8)

On the boundary we choose the interval to be

A : {(− lu
2
,− lv

2
)→ (

lu
2
,
lv
2

)} , (3.9)

One can consult [9] for the cases with general temperatures.
Following the strategy presented in section 2.1, we can construct the most general

Rindler transformations (see appendix A in [9]). The coefficients bij control the position,
the size of D and the thermal circle of B̃. Here for simplicity, we settle down the position
of D and the thermal circle of B̃, which do not affect the entanglement entropy. Then we
get the Rindler transformations from the AdS3 (3.8) to a Rindler ÃdS3 with Tũ = Tṽ = 1

ds2 = dũ2 + 2r̃dũdṽ + dṽ2 +
dr̃2

4 (r̃2 − 1)
, (3.10)

The Rindler transformations are given by

ũ =
1

4
log

(
R2
− − 1

R2
+ − 1

)
,

ṽ =
1

4
log

(
(R+ − 1)(R− + 1)

(R+ + 1)(R− − 1)

)
+ v ,

r̃ =
(R+ − 1)(R− − 1)

R+ +R−
+ 1 , (3.11)

where

R± = r(lu ∓ 2u) . (3.12)

Asymptotically, we get

ũ = Arctanh
(

2u

lu

)
, ṽ = v , (3.13)

which, as expected, is a warped conformal mapping (3.6). We see that the (ũ, ṽ) coordinates
only cover a strip-like subregion

D : − lu
2
< u <

lu
2
. (3.14)
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We define this strip D as the causal development of the interval A (see also [37]) in WCFT.
The bulk Rindler transformations (3.11) map the horizon of the Rindler ÃdS3 at r̃ = 1

to two null hypersurfaces N±,

N+ : r =
1

lu − 2u
, N− : r =

1

lu + 2u
. (3.15)

We find N± intersect at a curve in the bulk

E = N− ∪N+ :

{
u = 0 , r =

1

lu

}
, (3.16)

which is just the curve found in [9] that related to the holographic entanglement entropy.
This is exactly the observation 1 we made from Rindler method.

Also it is easy to see that, N± intersect with the asymptotic boundary on u = ± lu
2 ,

thus enclose a strip − lu
2 < u < lu

2 on the boundary, which is just the strip region D (3.14).
This confirms our observation 3 if N± are normal to E (see section 4).

According to the logic of Rindler method, the thermal entropy for ÃdS3 gives the
entanglement entropy of A. Since the thermal entropy is infinite, we need to regulate the
interval A by a cutoff εu along the u direction, such that

Areg :

{
(− lu

2
+ εu,−

lv
2

)→ (
lu
2
− εu,

lv
2

)

}
. (3.17)

As a consequence the extension of the horizon in Rindler ÃdS3 and the curve E in the
original AdS3 are also regulated. We find the regulated E is given by [9]

Ereg :

{
(u, v, r)| u = 0, r =

1

lu
, v = `

(
lv + log

lu
εu

)
(η − 1

2
), η ∈ [0, 1]

}
. (3.18)

We see that E is cut off in the bulk at a finite radius r = 1
lu
, rather than the asymptotic

boundary. The holographic entanglement entropy is then given by

SEE =
Length(Ereg)

4G
=

1

4G

(
lv + log

lu
εu

)
. (3.19)

Note that there is no need to introduce the cutoff εv along the v direction since it can be
taken to be zero without introducing extra divergence to the entanglement entropy.

Before going on, let us comment on the case of WAdS3/WCFT. As was pointed out in
[9], the Rindler method applied on warped AdS3 is indeed the same as the above story on
AdS3, because the warping factor appears in neither the Rindler transformations nor the
thermodynamic quantities. For simplicity we only focus on the case of AdS3/WCFT.

4 Modular flows and modular planes

The Rindler method can also help us find the explicit formula for the modular flow.
The generator of the normal Hamiltonian in Rindler space or Rindler bulk, which maps to
the modular Hamiltonian in the original space, is the generator along the thermal circle,
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i.e. kt ≡ β̃i∂x̃i . Since ∂x̃i can be written as a linear combination of the global generators,
kt should have the same property. Using the holography dictionary, we can easily get the
bulk dual of kt, which we call kbulkt . In order to map it to the original space, we need to
solve the following differential equations

∂u = (∂uũ)∂ũ + (∂uṽ)∂ṽ + (∂ur̃)∂r̃ ,

∂v = (∂vũ)∂ũ + (∂vṽ)∂ṽ + (∂v r̃)∂r̃ ,

∂r = (∂rũ)∂ũ + (∂rṽ)∂ṽ + (∂rr̃)∂r̃ . (4.1)

So we can get ∂ũ, ∂ṽ, ∂r̃, and furthermore kbulkt , in terms of ∂u, ∂v, ∂r.
We plug (3.11) into (4.1). Solving the equations we get the bulk and boundary modular

flow

kbulkt = −β̃ũ∂ũ + β̃ṽ∂ṽ = π (∂ṽ − ∂ũ)

=
π
(
r−2 + 4u2 − l2u

)
2lu

∂u +

(
π − π

lur

)
∂v −

4πru

lu
∂r , (4.2)

kt =
π
(
4u2 − l2u

)
2lu

∂u + π∂v . (4.3)

It is easy to check that the curve E (3.16) we find by Rindler method can also be determined
by

kbulkt (E) = 0 . (4.4)

This means E is the fixed points of kbulkt (or the bulk replica symmetry) and confirms our
observation 2. Obviously the endpoints of A are neither the fixed points of kt nor kbulkt .
From the modular flow point of view, this means E should not be anchored on ∂A, thus
break the homology constraint.

We can get the explicit picture of the flow from (4.2) and (4.3). Solving the equation
(du(s)

ds , dv(s)
ds ) = kt we get the lines along modular flow on the boundary (see Fig.2),

Lv0 : v = v0 − arctanh
2u

lu
, (4.5)

where v0 is a integration constant that characterizes different modular flow lines. It is easy
to see that Lv0 is anti-symmetric with respect to its middle point (0, v0).

Similarly, by solving the equation (du(s)
ds , dv(s)

ds , dr(s)ds ) = kbulkt we get the functions of the
bulk modular flow lines L̄r0v̄0 that are described by the following two branches of solutions

branchA :
{ u(r) = − 1

2r

√
(r−r0)(l2urr0−1)

r0
,

v(r) = v̄0 + 1
2 log

(
1+lur+

√
(r−r0)(l2urr0−1)/r0

1+lur−
√

(r−r0)(l2urr0−1)/r0

)
,
− lu

2
< u ≤ 0 , (4.6)

branchB :
{ u(r) = 1

2r

√
(r−r0)(l2urr0−1)

r0
,

v(r) = v̄0 − 1
2 log

(
1+lur+

√
(r−r0)(l2urr0−1)/r0

1+lur−
√

(r−r0)(l2urr0−1)/r0

)
,

0 ≤ u < lu
2
. (4.7)
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Figure 2. The orange lines with arrows depict the trajectory of the modular flow in WCFT. Note
that the modular flow can never pass through ∂D, which is depicted by the two purple lines.

The constants r0 and v̄0 are the integration constants characterizing different bulk modular
flow lines. The A branch part and B branch part smoothly connected at the point (u, v, r) =

(0, v̄0, r0), which is the turning point of L̄r0v̄0 .
With the explicit picture of bulk and boundary modular flows, following [1] we then

define the geometric quantity which we call the modular plane. When r → ∞, all L̄r0v̄0
will anchor on the two lines u = ± lu

2 (or ∂D) at the boundary. However when we push
the boundary into the bulk a little, the class of L̄r0v̄0 with v̄0 = v0, will intersect with the
boundary on Lv0 . This class of bulk modular flow lines forms a codimension one surface in
the bulk, which we call the modular plane P(v0). In other words,

• the modular plane P(v0) is the orbit of the boundary modular flow line Lv0 under the
bulk modular flow.

The modular planes are in one-to-one correspondence with the boundary modular flow lines.
See Fig.3 for an explicit diagram for a modular plane. Later we will show that the modular
planes play a crucial role on how we regulate E in the bulk.

Another class of bulk modular flow lines are those with r0 = 1
lu
. The turning points

are just the fixed points of kbulkt on E . It is easy to check that these modular flow lines are
null and normal to E , thus form the two normal null hypersurfaces N± (3.15) emanating
from E . We denote this class of bulk modular flow lines as L̄v̄0

L̄v̄0 :
{ u = 1

2

(
1
r − lu

)
, v = v̄0 + 1

2 log(lur) , branch A ,

u = −1
2

(
1
r − lu

)
, v = v̄0 − 1

2 log(lur) , branch B .
(4.8)

5 Generalized gravitational entropy for AdS3 with CSS boundary con-
ditions

In this section we try to understand how the LM prescription [11, 12] works in AdS3

with the CSS boundary conditions. In the rest of this section, we will use the terminologies
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Figure 3. The left figure gives an explicit diagram for a modular plane P(v0). The blue line is Lv0

while the orange lines depict L̄r0
v̄0 with v̄0 = v0 , r >

1
lu
. The red line is L̄v0 with its turning point

denoted as E(v0). The other two black points are where Lv0 intersect with the red line at v = ±∞.
The right figure is just the projection of the left figure to a flat plane.

in [12]. For simplicity we will not repeat the Schwinger-Keldysh construction or time-folded
path integral as in [12], but calculate TrρA by performing the path integral over the whole
spacetime. The generalization to the time-folded path integral can be obtained following
the lines in [12]. We also try to extend the replica story of the boundary field theory into
the bulk, and assume the replica symmetry is unbroken in the bulk. We will use (2.4) to
determine the bulk extremal surface E , and use the modular planes to relate the bulk and
boundary cutoffs.

We will give the replica story for WCFT in subsection 5.1, then we construct the dual
bulk replica story in subsection 5.2. Then in subsection 5.3 we follow the prescription
in [1] to study the fine structure of the bulk story using the modular planes. With the
fine structure known, we will show the UV and IR cutoffs can be naturally related by
the modular planes. At last, based on the fine structure analysis, we propose an intrinsic
prescription of construct the geometric picture of entanglement entropy in subsection 5.4.

5.1 The replica story on the boundary

The field theory dual of AdS3 (3.8) with CSS boundary conditions is a WCFT with
the following thermal circle

(u, v) ∼ (u, v − πi) . (5.1)

The Rindler transformations decompose B into several regions with Rindler coordinates
(ũi, ṽi). Similar to the strategy in [12] we can simultaneously refer to all these spacetime
regions in question, by allowing the Rindler coordinates to be complex and assigning discrete
imaginary parts to each region. The subscript i denote different spacetime regions. Moving
along the modular flow and jump from one region to another, we hop from one imaginary
part to another. If eventually we jump back to our starting point, the imaginary parts we
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have gone through form a circle, which can be physically understood as the thermal circle
measured by the Rindler observer. Putting all the regions together, whose imaginary parts
form the total thermal circle, we should recover a pure state.

We cut the WCFT open along A then glue all the copies cyclically. We also need to
know how the thermal circle changes under this cyclical gluing. The key to understand
this is the assignment of the imaginary parts to all the spacetime regions. Since WCFT
is not a relativistic field theory, its causal structure is quite abnormal compared with the
relativistic ones, hence deserves discussion in detail.

For convenience, here we re-write the boundary Rindler transformation (3.13)

tanh (ũ) =
2u

lu
, tanh (ṽ) = tanh v . (5.2)

We write the second equation in such a way that the thermal circles in both of the original
and Rindler space are exhibited in the coordinate transformation, i.e. (5.1) and

(ũ, ṽ) ∼ (ũ+ πi, ṽ − πi) . (5.3)

Then it is convenient to confine

0 ≤ Im(ũ) ≤ iπ , −iπ ≤ Im(ṽ) ≤ 0 . (5.4)

Since the Rindler transformations divide the original spacetime B into three spacetime
regions, we require the assignment of imaginary parts should consist with the Rindler
transformations. In other words the Rindler transformations should map the Rindler space
(ũi, ṽi) with different imaginary parts to different spacetime regions on B. Furthermore we
require the imaginary part of each region should be unique under the confinement (5.4) and
different from the other regions.

Note that, the assignment is not uniquely determined by the above requirements. For
example, for the strip region we can chose either the assignment Im[(ũ, ṽ)] = (0, 0) or
Im[(ũ, ṽ)] = (0,−iπ). Both of the choices consist with the Rindler transformations. How-
ever all the choices satisfying our requirements can be related by a rotation or reversion
of the thermal circle, thus do not change the physical story. Here we choose the following
assignment for the three regions on B

Im[(ũ, ṽ)] =
{ (0, 0) , lu

2 < u < lu
2 ,

(πi2 , 0) , u < − lu
2 ,

(πi2 ,−πi) , u > lu
2 .

(5.5)

According to uniqueness requirement for the imaginary parts, there is no place on B
for the assignment Im[(ũ, ṽ)] = (0,−πi). This can be understood in the following way. The
state on B is already mixed, which indicates the complete thermal circle involves a region
outside B that purifies B. We denote this region as Bc and consider B∪Bc as the spacetime
that recovers the pure state. So the proper assignment should be

Bc : Im[(ũ, ṽ)] = (0,−πi) . (5.6)
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Figure 4. The causal decomposition for the WCFT, and the assignment of the imaginary parts
for each region.

We will see that the above assignment is quite natural in the gravity side story.
It will be more convenient to introduce the “Rindler time” τ = ũ− ṽ such that

τm = τ + (m− 1)
π

2
i . (5.7)

The thermal circle becomes τ ∼ τ +2πi and the three regions on B can be denoted by τ1, τ2

and τ4 (see the left figure in Fig.4), while the Bc can be denoted as τ3. For each time we
cross the “horizon”, we add a π

2 i to τ . We cut A open into A+ and A− then the strip region
is further divided into τ1, τ5 (see the right figure in Fig.4).

Then we construct the replica story on the field theory side. We consider n copies of B
and glue them cyclically

φI(A−) = φ(I+1)(A+) , φn(A−) = φ1(A+) , I = 1, · · · , n− 1 . (5.8)

to calculate Tr(ρnA). After the gluing we get a n-sheet manifold Bn with replica symmetry,
where we perform the path integral. For n = 1, the τ5 region is glued back to the τ1 region
at A, thus the thermal circle on B is τ ∼ τ + 2πi. Similarly we find the thermal circle on
Bn becomes τ ∼ τ + 2πni.

The fixed point of the thermal circle (or the replica symmetry) is where the thermal
circle shrinks. More explicitly it should be the joint point of all the spacetime regions.
However, unlike the case of CFT2 (or other relativistic theories), there is no such point
in WCFT. This is not surprising because Bc is outside B and kt (4.3) is nonvanishing
everywhere on B. In other words we have the replica symmetry, but there is no fixed point
for this symmetry on Bn.

5.2 The replica story in the bulk

In this subsection we try to construct the bulk extension of the boundary replica story.
As in [11, 12], we need to make the basic assumptions to extend the boundary replica story
into the bulk. We assume the AdS3/WCFT correspondence between the bulk and boundary
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theories and also we assume the replica symmetry can be extended into the bulk. According
to [11] the curve E that is fixed under the bulk replica symmetry is extremal. For a given
boundary subregion A and its causal development DA, we determine the corresponding
E by requiring that E and its null normal hypersurfaces N± should satisfy (2.4). The
N± decompose the bulk into four regions denoted by τm. Here τm parametrizes the bulk
modular flows in each region.

Following the above strategy we search the geodesics in the bulk (for details see ap-
pendix A) and find that the geodesic satisfying (2.4) exists and is just the curve E (3.16)
we found by Rindler method. This is not surprising since the N± (3.15) are formed by the
normal null geodesics associated to E and intersect with the boundary at ∂DA : u = ± lu

2 .
The bulk subregion enclosed by B and N± is the analogue of the entanglement wedge WA.

Figure 5. This figure shows the causal decomposition of the bulkM and the boundary B. The
two surfaces that intersect at E are N± and the brown line is the boundary interval A.

Now we try to construct the bulk replica story. We allow τm to be complex and refer
to all the bulk regions in question by defining τm = τ + (m−1)

2 iπ. The assignment5 of the
imaginary parts are explicitly shown in Fig.5. Note that the τ3 region in the bulk does not
overlap with the boundary B, thus confirms our statement that there is no τ3 region on B.
We expect the boundary branched cover structure inherent in the replica construction to
be inherited by the holographic map in the bulk. The bulk geometry should be a replicated
geometry glued cyclically from n copies of the bulk spacetime.

Before we go ahead, we briefly review the bulk replica story in AdS/CFT [12]. In this
case the RT surface E is anchored on ∂A. We denote the spacelike codimension one surface
enclosed by E and A as RA, which satisfies ∂RA = A ∪ E . Firstly, for each copy of bulk
MI , we cut them open along RIA into RIA+ and RIA−. Then we get the replicated geometry
by gluing the open cuts cyclically

RIA− = R(I+1)
A + , RnA− = R1

A+ . (5.9)

In the case of AdS/WCFT, in order to conduct the replica trick we also need to cut
the bulk open along some codimension one surface, which we also denote as RA. Since E is
supposed to be fixed under the replica symmetry, we require E ⊂ ∂RA. On the boundary,

5The assignment in the bulk can also be obtained from the bulk Rindler transformations, see also [52, 53]
for discussions related to the assignment.
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we require A ⊂ ∂RA to reproduce the boundary replica story. However, in this case E is not
anchored on ∂A, so ∂RA contains other parts. In addition, RA have two more boundaries
γ± that connect the two endpoints ∂A± of the boundary interval and the endpoints of E
at v = ±∞. Later we will argue that γ± should be the null geodesics on N±. In summary
we have

∂RA = A ∪ E ∪ γ+ ∪ γ− . (5.10)

With ∂RA settled down, the surface RA has the freedom to vibrate as long as we keep RA
spacelike everywhere except γ±. Then we cut RIA open to RIA+ and RIA− in each copy of
the bulk and then glue them cyclicly to the replicated geometryMn.

Figure 6. The red surface is the RA where we cut the bulk open.

Note that when we cut RA open we divide the τ1 region into two regions denoted by
τ1 and τ5 (see Fig. 6). Starting from some point in the τ1 region, we move along a bulk
modular flow line and cross the horizons N± for four times to arrive at the τ5 region. Then
we pass through RA and enter the next copy of bulk spacetime. The cyclic gluing of n
copies of the bulk makes us pass through the horizons for 4n times to get back to the
starting point. This induces the thermal circle τ ∼ τ + 2πni in Mn, which shrinks at E .
As expected the bulk replica story reproduces the boundary replica story.

5.3 Relating the UV and IR cutoffs with the modular planes (null geodesics)

Then we focus on our second task: how to regulate E when we regulate the boundary
interval A. In the case of AdS/CFT, the UV/IR relation [15] is used to regulate the
holographic entanglement entropy in the RT formula. This prescription for regulation is
also confirmed in [1] by using the modular planes as a slicing of the entanglement wedge.
The slicing gives a fine correspondence between the points on A and the points on the RT
surface E . [1] shows that the points where we cut off A and E should be related by this fine
correspondence.

In the case of AdS3/WCFT, the curve E (3.16) can not be regulated following the RT
formula. However, with the bulk and boundary modular flows clear, we can also define the
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modular planes as in [1] and perform the fine structure analysis to determine the cutoff
point in the bulk. As in the case of AdS3/CFT2 [1], we will show that the modular planes
can regulate E correctly when we regulate A.

The modular plane P(v0) is defined as the orbit of a boundary modular flow line
Lv0 under the bulk modular flow, which is a codimension one surface in the bulk. Its
construction in this case is discussed in details in section 4. The modular planes are in
one-to-one correspondence with the boundary modular flow lines Lv0 . By definition we
have

P(v0) ∩ B = Lv0 . (5.11)

As the boundary can be viewed as a slicing of modular flow lines Lv0 , the entanglement
wedge WA can also be viewed as a slicing of the modular planes P(v0). The normal null
geodesics on N± are also bulk modular flow lines, which indicates the modular planes will
intersect with N± on these normal null geodesics, i.e.

P(v0) ∩N± = L̄v0 . (5.12)

It is easy to see that L̄v0 (or P(v0)) intersect with E (3.16) at its turning point

P(v0) ∩ E = E(v0) : (u, v, r) = (0, v0,
1

lu
) . (5.13)

Also each modular plane will intersect with RA on a line

RA(v0) = P(v0) ∩RA . (5.14)

See Fig.3 for a typical modular plane.
Translation along a bulk modular flow line is a translation of the real part of τm while

keeping the imaginary part fixed. When we apply the replica trick, the bulk and boundary
are cyclically glued, the orbit of the modular flow changes, as well as the distribution of the
imaginary part Im[τ ]. Let us focus on the cyclic gluing of a single point A(v′0) and see how
it changes the modular flow picture both in the bulk and boundary. Here v′0 denote the v
coordinate of the point A(v′0). We denote the boundary modular flow line that passes this
point as Lv0 given by (4.5). On the boundary, Lv0 will enter the next copy of B when it
passes through A(v′0). By definition all the bulk modular flow lines that emanating from
Lv0 will return back to Lv0 . As Lv0 enters the next copy of B, the bulk modular flow
emanating from Lv0 also need to enter the next copy of bulk to get back to the same Lv0 .
Then the natural bulk extension of the cyclic gluing of the point A(v′0) is the cyclic gluing
of the modular plane P(v0) on RA(v0), i.e.

RIA−(v0) = RI+1
A+ (v0) , RnA−(v0) = R1

A+(v0) . (5.15)

We denote the cyclically glued modular plane as Pn(v0). Following the modular flows we
can keep track of the imaginary part of τ everywhere on Pn(v0) and find the thermal circle
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on Pn(v0) becomes τ ∼ τ+2πni. Accordingly the induced metric near the fixed point E(v0)

on Pn(v0) becomes

ds2 = n2dρ2 − ρ2dτ2 + · · · , (5.16)

where ρ denotes the distance from E(v0), and the dots means the higher order terms. See
Fig.7 for the replica story on the modular plane with n = 2. The whole bulk replica story
can be considered as a slicing of the replica stories on all the modular planes.

Figure 7. This figure is taken from [1] and shows the replica story for a cyclically glued modular
plane Pn(v0) with n = 2. In the first copy the boundary modular flow line Lv0 parametrized by τ1
(blue line) passes through A(v′0) and get into the next copy. The bulk flow (blue arrow) should also
go through RA(v0) (the green line) to the next copy then go back to Lv0 . A similar story happens
to the flow lines parametrized by τ5 (the red line and arrow). The dashed arrows shows the cyclic
gluing on RA(v0)1,2.

In summary, the cyclic gluing of a pointA(v′0) on the boundary interval induces a replica
story on Pn(v0). Following the calculations in [11, 12], this turns on nonzero contribution
to the entanglement entropy on the fixed point E(v0) where the modular plane intersect
with E . In other words, this gives an one-to-one correspondence between the points A(v′0)

on A and the points E(v0) on E (see the left figure of Fig.8). More explicitly, if we consider
A to be a straight line

A : u =
lu
lv
v , − lv

2
≤ v ≤ lv

2
, (5.17)

the two points that correspond to each other are related by

v′0 + arctanh
2v′0
lv

= v0 . (5.18)

When A(v′0) approaches ∂±A, i.e. v′0 = ± lv
2 , the partner points become E(v±0 )|v±0 =±∞.

Note that the endpoints ∂±A also lie on the null hypersurfaces N±, they can be connected
to their partners E(v±0 ) by the two null geodesics γ± = L̄v±0 . This indicates that all the
lines that connect these two pair of points will contain timelike part except the two null
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Figure 8. The right figure shows the correspondence between the point A(v′0) on A and its partner
E(v0) on E with v0 and v′0 satisfying (5.18). Also they are the points where the modular plane P(v0)

intersect with A and E . The green line is RA(v0). The left figure shows, in the same sense, an
arbitrary sub-interval A2 corresponds to a subinterval E2 on E .

lines γ±. Since we do not expect time-like parts on the surface RA, the only choice for
RA(v±0 ) are γ±. This is how we determine ∂RA to be (5.10).

In the same sense, an arbitrary sub-interval A2 of A correspond to a sub-interval E2

on E (see the right figure of Fig.8). We denote the v coordinate of the two endpoints of
A2 as v′1 and v′2 and denote the v coordinates of the two endpoints of E2 as v1 and v2.
Similarly they should be related by (5.18). According to our prescription, the contribution
from E2 to the total entanglement entropy SA is turned on by the cyclic gluing of A2 on
the boundary. Thus it is natural to propose that the length of E2 captures the contribution
from the sub-interval A2 to SA. We denote this contribution as sA(A2) (see (B.3))

sA(A2) =
Length(E2)

4G
. (5.19)

Let us go a step further and consider A2 = Areg. It is natural to interpret the regulated
entanglement entropy as the contribution from Areg. More explicitly we set6

v′1 = − lv
2

+ εu
lv
lu
, v′2 =

lv
2
− εu

lv
lu
. (5.20)

Then the end two points E(v1) and E(v2) of E2 = Ereg should be the points where the
geodesic E is cut off. Applying (5.18), we find

v1 = −1

2

(
lv + log

lu
εu

)
+O(εu) , v2 =

1

2

(
lv + log

lu
εu

)
+O(εu) , (5.21)

which are exactly the cutoff points we found by Rindler method. For an overall picture of
our prescription, see Fig.9. The regulated entanglement entropy is then given by

SA =
Length(Ereg)

4G
=

1

4G

(
lv + log

lu
εu

)
. (5.22)

6The additional terms proportional to εu in (5.20) appear because we regulate the u direction with εu
and keep the endpoints of Areg on the straight line (5.17).
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As expected the result coincide with the result (3.19) we get by the Rindler method.
As was pointed out by [1], the fine correspondence between the points on A and the

points on E defines an entanglement contour function that describes the distribution of the
entanglement on A. People who are interested in the entanglement contour should consult
appendix B, where we calculate the contour function based on this fine correspondence
(5.18), and furthermore we test the proposal [1] for entanglement contour function for
general theories.

Figure 9. The entanglement wedge is shown as a slicing of the modular planes. We denote the
thick blue line in the bulk as Ereg. We only depicted the modular planes that go through Areg. The
modular planes P(v1) and P(v2) intersect with A and E on the points where they are cut off.

5.4 The intrinsic construction of the geometric picture

The construction above is concrete but relies heavily on the explicit picture of the bulk
and boundary modular flows, which is complicated to calculate and only exists for special
cases. Then we come to the important question: is there a prescription to construct the
geometric picture intrinsically without the construction of Rindler transformations and the
information of the modular flows? Inspired by the above construction we try to propose
such a prescription for the case we study.

The prescription also involves a cutoff at large radius rI , which is related to the cutoff
εu in the WCFT by

rI =
1

εu
. (5.23)

In this case the radius cutoff is imposed on the two null geodesics γ± rather than the
spacelike geodesic E . However the way we impose this cutoff is a little tricky. The γ±
emanating from the boundary endpoints ∂±A at the real boundary will intersect with E at
v±0 = ±∞. So cutting off γ± at rI does not regulate the entanglement entropy.

The right way to do the regulation is in the following. We first need to push the WCFT
to the cutoff boundary at r = rI . During we push the boundary, we should keep ∂±A on N±
thus adapt to the bulk causal decomposition. Furthermore we should keep the v coordinate
of ∂±A fixed since there is no cutoff along the v direction. Then the two null geodesics that
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emanating from the ∂±A at r = rI will intersect with E on the right cutoff points (see Fig.
10).

Following the above prescription, the endpoints ∂±A are pushed to the following posi-
tions

∂±A : (± lu
2
∓ 1

2rI
,± lv

2
, rI) . (5.24)

Note that all the null geodesics L̄v̄0 lie on N± are given in (4.8) and v̄0 denotes the v
coordinate of the points where L̄v̄0 intersect with E . It is easy to find that the two null
geodesics γ± emanating from ∂±A (5.24) are just given by L̄v̄0 with v̄0 = ±( lv2 + 1

2 log(lurI)),
i.e.

γ± : u = ∓1

2

(
1

r
− lu

)
, v = ±

(
lv
2

+
1

2
log(lurI)

)
∓ 1

2
log(lur) . (5.25)

When r = 1
lu

we get the end points of Ereg. See Fig. 11 for an overall picture of our
construction. The length of the regulated curve Ereg is just

Length(Ereg) = lv + log(lurI) , (5.26)

which reproduces the result (5.22) with the UV/IR relation (5.23). In appendix C, we show
that, similar to the flat case [10], the Ereg is the saddle among all the geodesics that connect
γ± (5.25).

Figure 10. We assume E(v−0 ), with v−0 = −∞, is the point that connected to ∂−A on the real
boundary through the null geodesics γ−. When we push ∂−A to the cutoff boundary along N−,
the null geodesic γ− that goes through it will change accordingly as well as the intersection point
with E . In such a way the curve E is regulated through the null geodesics.

6 Towards the generalized gravitational entropy for spacetimes with non-
Lorentz duals

Based on the above discussions, we are ready to generalize our intrinsic prescription
to calculate the generalized gravitational entropy for general spacetimes with non-Lorentz
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Figure 11. In this figure the interval A is on the cutoff boundary r = rI and its endpoints ∂±A are
on N±. The two red lines are the two null geodesics (5.25) which intersect with E at the endpoints
of Ereg (the solid blue line).

invariant duals. As expected the prescription only evolves extremal surfaces E and their
associated normal null hypersurfaces N±, which are available when the bulk metric is given.

For a bulk spacetimeM and its asymptotic boundary B at r →∞, when a holography
is conjectured between the bulk gravity theory (here we only consider Einstein gravity) and
the field theory on B. The prescription is in the following

1. Firstly we should figure out the causal structure of the boundary field theory, using
either the boundary null geodesics (or hypersurfaces) when the metric background
is fixed, or the Rindler method. In other words, for a given subregion A we should
find out the corresponding causal development DA. For non-Lorentzian field theories,
the causal developments usually looks like a strip (or a solid cylinder) rather than a
diamond.

2. For a general spacelike extremal surface we study its normal null hypersurfaces N±.
As we have discussed before, the E can be determined by following requirement7

E : N± ∩ B ⊃ ∂DA , (6.1)

which is just the requirement for the consistency between the bulk and boundary
causal structures.

3. Then we push the dual field theory to the cutoff boundary at some large radius r = rI
8. During we push the boundary, it is crucial how the entangling surface ∂A moves.
The main requirement is that ∂A should adapt to the consistency of the bulk and
boundary causal structures on r = rI

9. For the cases with non-Lorentz invariant

7For spacetimes with relativistic duals, this requirement naturally lead to the requirement that E should
be anchored on ∂A.

8The cutoff radius rI should be properly related to the UV cutoff of the field theory, and the relation
should be discussed case by case.

9For example, in the relativistic holography cases where E is anchored on ∂A, the only way to satisfy
this requirement is to push ∂A along N+ ∪N− = E .
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duals, we should keep ∂A on N± and keep the coordinates, whose UV cutoff can be
taken to be zero, fixed.

4. On N±, there are null geodesics γ± (or codimension two null hypersufaces) emanating
from ∂A at the cutoff boundary r = rI . We cut off the extremal surface E at the
place where γ± intersect with E . Then we get the regulated extremal surface Ereg and
the regulated holographic entanglement entropy

SA =
Area (Ereg)

4G
. (6.2)

The first two steps show how to use the consistency of the causual structures to determine
the E corresponding to the boundary subregion A in question, while the last two steps tell
us how to regulate E using the null geodesics on N±. We conjuecture that way we push ∂A
will get it to the right modular plane that determines the regulation.

For the cases with locally defined modular Hamiltonian, the fine structure analysis with
the modular planes gives a strong support for the validity of our prescription. However in
more general cases, the modular Hamiltonian is usually non-local, so the modular planes
can no longer be described as certain bulk codimension one surfaces. Instead they should
be defined in a more abstract way. We would like to stress that, for the more general
cases our prescription is still applicable. Though in general the modular Hamiltonian is
non-local, effectively it can be locally defined in some special bulk and boundary regions:
the region near the N± and the region near ∂DA. This indicates the modular planes can
also be locally defined in these regions and intersect with N± on the null geodesics that
form N±. Note that our prescription is insensitive to how the modular planes look like
outside these regions, so with all the geometric quantities (including the cutoff points of A,
the extremal surface E and the null geodesics or hypersurfaces γ± on N±) we need to apply
our prescription inside these regions, our prescription is still applicable. We conjecture that
the result we get by applying our prescription is still the right holographic entanglement
entropy.

In the following we give an argument for this statement. When we need to do the
regulation, we can divide the A and E into two parts

A = Acut ∪ Areg , E = Ecut ∪ Ereg. (6.3)

Here Acut is the infinitesimal part of A we cut off. Also the total entanglement entropy can
be divided into two parts which are contributed from Acut and Areg respectively

SA = sA(Acut) + sA(Areg) =
Area(E)

4G
. (6.4)

Though the fine correspondence for the points on Areg no longer exists when the modular
Hamiltonian is non-local, it still holds between the points on Acut and the points on Ecut.
This is because Acut is in the near ∂D region, where the modular flow effectively has a
local description. So according to the fine correspondence Acut correspond to some part of
E which we call Ecut, such that

sA(Acut) =
Area(Ecut)

4G
. (6.5)
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Together with (6.4), we find the regulated entanglement entropy is given by

SregA = sA(Areg) =
Area(Ereg)

4G
. (6.6)

7 Generalised gravitational entropy for 3-dimensional flat space

In this section we apply our prescription to the case of 3-dimensional flat holography
[33–35]. In this holography, the 3-dimensional asymptotic flat spacetime is conjectured to
be dual to a field theory invariant under the BMS3 group (BMSFT). The BMS3 group
is the asymptotic symmetry group of flat space enhanced from the Poincaré group, and
the BMSFT can be considered as the ultra-relativistic limit of a CFT2. The holographic
calculation, as well as the geometric picture, of the entanglement entropy for BMSFTs
are given in [10] with the Rindler method. We will show that our prescription can easily
reproduce the results in [10] without the Rindler transformations and modular flows.

In particular we consider the following classical solutions of Einstein gravity with van-
ishing cosmological constant in Bondi gauge

ds2 = Mdu2 − 2dudr + Jdudφ+ r2dφ2. (7.1)

The above solutions are usually classified into three types:

• M = −1, J = 0: Global Minkowski, which duals to the zero temperature BMSFT on
the cylinder with φ ∼ φ+ 2π.

• M = J = 0: Null-orbifold, with φ decompactified this duals to the zero temperature
BMSFT on the plane.

• M > 0: Flat Space Cosmological solutions (FSC), which duals to BMSFT at finite
temperature.

The asymptotic boundary (null infinity) B settles at r = rI → ∞ with a fixed back-
ground metric

ds2 = 0du2 + dφ2 , (7.2)

which is degenerate. On B the null direction is characterized by u. The subregion we study
is a single interval

A : (−lu/2,−lφ/2)→ (lu/2, lφ/2) . (7.3)

Since u is the null direction, the domain of causality DA is just a strip along the u direction

DA : {−
lφ
2
≤ φ ≤

lφ
2
} . (7.4)

Asymptotically we should have

∂DA : φ = ±
lφ
2

+O
(

1

rI

)
, r = rI . (7.5)

It will be quite subtle to apply our prescription in the Bondi gauge, so we apply it in
the Cartesian coordinates. Another advantage of using the Cartesian coordinates is that
we do not need to solve the Einstein equations, because the geodesics and their null normal
hypersurfaces are just straight lines and null planes.
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7.1 Null-orbifold

We choose the coordinate transformation between the Null-orbifold and the Cartesian
coordinates to be

t =
lφ
4
r +

2

lφ
(u+

rφ2

2
) , (7.6)

x = (
lu
lφ

+ rφ) , (7.7)

y =
lφ
4
r − 2

lφ
(u+

rφ2

2
) . (7.8)

Here we have adjusted the transformation in advance by some proper Poincaré transfor-
mation and the coefficients are chosen to be related to the parameters lu and lφ which
characterize the boundary interval A, hence the curve E can be characterized by a single
coordinate y and settled at t = x = 0. Of course one can begin with free coefficients and
settle them down one by one through the matching condition (2.4). It is easy to check that,
up to a Poincaré transformation for the Cartesian coordinates, we have

ds2 = −2dudr + r2dφ2 = −dt2 + dx2 + dy2 . (7.9)

Then in Cartesian coordinates ∂DA (7.5) and the two endpoints ∂±A of A are given
by

∂DA : {t, x, y} =

{
lφ
2
rI +O

(
r0
I

)
,±

lφ
2
rI +O

(
r0
I

)
,−2u

lφ

}
, (7.10)

∂±A : {t, x, y} =

{
lφ
2
rI ±

lu
lφ
,±

lφ
2
rI +

lu
lφ
,∓ lu

lφ

}
. (7.11)

It is easy to see that the spacelike geodesic E and the associated N± that asymptotically
satisfy (2.4) are just given by

E : {x = 0, t = 0} , (7.12)

N± : {x = ±t} . (7.13)

Obviously N± (7.13) will asymptotically go through ∂DA (7.10).
Then we regulate E using null geodesics on N±. The two null geodesics γ± on N± that

emanating from ∂±A are given by

γ± :

{
x = ±t , y = ∓ lu

lφ

}
. (7.14)

Note that in this case there is no need to introduce UV cutoffs in the u and φ direction
since they can be taken to be zero without introducing divergence to the entanglement
entropy10. So when we push the boundary, we keep the u sand φ coordinate of ∂±A fixed.
This means ∂±A moves along γ± and the Ereg will be independent of the choice of rI . The
overall picture of our construction is shown in Fig. 12.

10However when we consider gravity with gravitational anomaly, for example the topological massive
gravity [54, 55], a divergent contribution will arise due to the anomaly [10].
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Figure 12. The two red lines are the null rays γ± emanating from ∂±A and normal to E . The
geodesic E is cut off where it intersect with γ±. The solid blue segment is just our Ereg.

According to our prescription, the points where γ± intersect with E are the place we
cut E off. Then we get

Ereg :

{
x = t = 0 , − lu

lφ
≤ y ≤ lu

lφ

}
. (7.15)

Accordingly we have

SA =
Area (Ereg)

4G
=

1

2G

lu
lφ
, (7.16)

which reproduces the results in [10, 39–41].

7.2 Global Minkowski

The global Minkowski space

ds2 = −du2 − 2dudr + r2dφ2 , (7.17)

can be transformed to the Cartesian coordinates by the following transformation

t =(r + u) csc
lφ
2

+
r cosφ

2

(
tan

lφ
4
− cot

lφ
4

)
,

x =r sinφ+
1

2
lu csc

lφ
2
,

y =r cosφ csc
lφ
2
− (r + u) cot

lφ
2
. (7.18)

Then in Cartesian coordinates we have

∂DA : {t, x, y} =

{
sin

lφ
2
rI +O

(
r0
I

)
,± sin

lφ
2
rI +O

(
r0
I

)
,−u cot

lφ
2

}
(7.19)

∂±A : {t, x, y} =

{
csc

lφ
2

2

(
lu ± 2rI sin2 lφ

2

)
,±rI sin

lφ
2
,∓

lu cot
lφ
2

2

}
(7.20)
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Similarly we get the spacelike geodesic E and the associated N± that asymptotically satisfy
the requirement (2.4)

E : {x = 0, t = 0} , (7.21)

N± : {x = ±t} . (7.22)

The two null geodesics γ± on N± that emanating from ∂±A are just given by

γ± :

{
x = ±t , y = ∓lu cot

lφ
2

}
. (7.23)

Quite straightforwardly we get

SA =
Area (Ereg)

4G
=

lu
2G

cot
lφ
2
. (7.24)

7.3 Flat Space Cosmological solutions

The coordinate transformations from FSC to the Minkowski space can be given by

r =
√
M(t′2 − x′2) + r2

c , (7.25)

φ = − 1√
M

log

√
M(t′ − x′)
r + J

2
√
M

, (7.26)

u =
1

M

(
r −
√
My′ − J

2
φ
)
. (7.27)

The above transformations show that the FSC can be considered as a quotient of the
Minkowski space, because the region outside the cosmological horizon rc = J

2
√
M

only
covers a quarter of the Minkowski space t′ ≥ |x′|.

As in the previous two cases, we can apply an additional Poincaré transformation to a
new set of Cartesian coordinates {t, x, y} thus the corresponding E and N± are just given by
(7.12) and (7.13). Under this requirement ∂DA (7.5) should asymptotically satisfy t = ±x,
then we find that the additional Poincaré transformation is just

t =t′ cosh η − y′ sinh η , (7.28)

x =x′ + s0 , (7.29)

y =y′ cosh η − t′ sinh η , (7.30)

where

η = arccosh

[
coth

lφ
√
M

2

]
, s0 =

(Jlφ + 2luM)csch lφ
√
M

2

4
√
M

. (7.31)

Then in Cartesian coordinates we have

∂DA : {t, x, y} =
{sinh

lφ
√
M

2√
M

rI +O
(
r0
I

)
,±

sinh
lφ
√
M

2√
M

rI +O
(
r0
I

)
,

±2J ∓
√
M (Jlφ ± 4Mu) coth

lφ
√
M

2

4M

}
, (7.32)

∂±A : y =
±2J ∓

√
M coth

(√
Mlφ
2

)
(Jlφ ± 2Mlu)

4M
. (7.33)
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For simplicity we only list the y coordinates of ∂±A. The two null geodesics γ± emanating
from ∂±A are given by

γ± :
{
x = ±t , y =

±2J ∓
√
M coth

(√
Mlφ
2

)
(Jlφ ± 2Mlu)

4M

}
. (7.34)

Again we reproduce the right result

SA =
Area (Ereg)

4G
=

1

4G

∣∣∣∣∣(Jlφ + 2Mlu)

2
√
M

coth

(√
Mlφ
2

)
− J

M

∣∣∣∣∣ . (7.35)

8 Discussion

In this paper we demonstrate how the RT formula fails to give the geometric picture of
the holographic entanglement entropy for spacetimes with non-Lorentz invariant duals. We
extend the discussion of [11] to holographies beyond AdS/CFT. The two main points which
are crucial for this extension include the requirement for the consistency between the bulk
and boundary causal structures, and the introduction of null geodesics (or hypersurfaces) to
control the regulation of entanglement entropy. Since γ± are null thus do not contribute to
the total length, one may consider a new E = Ereg ∪ γ+ ∪ γ− such that E is anchored on ∂A
as the RT formula. However we do not suggest to do that. First of all, Ereg is fixed under
the modular flow (or replica symmetry) while γ± are not. So they play totally different
roles in the replica story. Also they play different roles in the new extrapolate dictionary
(8.1) which we will discuss later. Secondly, the requirement that the new E is anchored on
∂A does not help to determine the geometric picture as the RT formula, because usually
the null geodesics emanating from ∂A are not unique. So we still need the help of (2.4) to
determine E . At last, unlike E , the null geodesics γ± depend on the cutoff ε.

Since the RT formula stimulates numerous insights in our understanding of the Ad-
S/CFT in many aspects, we expect the parallel discussions based on our prescription can
help us to better understand the holographies beyond AdS/CFT. In the following we list a
few interesting problems that may be solved based on our new geometric picture.

Holographic entanglement entropy for Lifshitz spacetime

One particular interesting class of non-Lorentzian field theories are those with Lifshitz
symmetries. The dual spacetime, which we call Lifshitz spacetimes, was proposed in [23, 24].
It has been shown in [56] that the normal null hypersurfaces emanating from the RT (or
HRT) surface in Lifshitz spacetime can not reach the boundary and thus fail to satisfy (2.4).
This implies the inconsistency between the bulk and boundary casual structures, so the RT
formula should fail in this case according to our discussion. This means the calculations
of the holographic entanglement entropies for Lifshitz-type theories [57–64] following the
RT formula should not be correct. Also they are not consistent with the recent numerical
results [65–68] of entanglement entropies for free Lifshitz-type theories11.

11However, the Lifshitz-type field theories which have gravity dual are supposed to be strongly coupled
and in the large N limit. Unlike the case of 2-d CFT, WCFT and BMSFT where there are much more
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Assuming the gravity dual is an Einstein gravity, our prescription can be applied to
the Lifshitz spacetimes and give new holographic predictions for the entanglement entropy
of holographic Lifshitz-type theories. Also it is argued in [69] that Horava-Lifshitz gravity
is the minimal holographic dual for Lifshitz field theories (see also [70] along this line). In
this case our prescription need corrections.

Holographic entanglement entropy in higher dimensional flat space

The geometric picture for holographic entanglement entropy in 3-dimensional flat holog-
raphy is carried out in [10] by Rindler method. It is then straightforward to ask whether
we can extend the calculation to the case of flat holography in 4-dimensions, which has
recently attracted lots of attention (see [71] for a recent review). Unfortunately the Rindler
method get much more complicated in higher dimensions. Since the prescription proposed
in this paper is intrinsic and has natural extension to higher dimensions, it will be more
promising to solve this problem by our prescription.

New extrapolate dictionary between boundary operators and bulk matter fields

Following the replica trick, the entanglement entropy in a field theory can be computed
by evaluating the two point function of twist operators located at the boundary endpoints.
So the new geometric picture of entanglement entropy with extra null geodesics gives a new
holographic description for the two point correlation functions. Motivated by this picture
and a similar prescription [47, 72] for calculating holographic conformal blocks in the probe
limit in AdS/CFT, the authors of [41] calculated the Poincaré blocks (or global BMS blocks)
for BMSFT holographically by extremizing the length of a network of geodesics connected
to the operators at the boundary through certain null geodesics. And the results match
with the calculations [73] on the field theory side.

Based on the above results, an extrapolate dictionary is proposed in [41] (see also [74])
for flat holography. More explicitly, to each boundary point x where we inject an operator,
we attach a null line γx, which is similar to the null lines γ± in our geometric picture for
entanglement entropy. The proposed extrapolate dictionary is then to attach a position
space Feynman diagram to the null lines and integrate the position of the legs over an
affine parameter along γx

〈O(x1)O(x2) · · · 〉 =

∫
γx1

dλ1

∫
γx2

dλ2 · · · 〈ψ(λ1)ψ(λ2) · · · 〉 . (8.1)

Here ψ denotes the bulk matter fields that correspond to the boundary operators O, and
λi parametrizes the null geodesic γxi emanating from the boundary point xi. The above
extrapolate dictionary in flat holography is totally different from the one [4] in AdS/CFT,
and gives another entry to study flat holography.

Our analysis shows that the geometric picture for holographic entanglement entropy
in spacetimes with non-Lorentzian duals should in general include the extra null geodesics

symmetries, the formula of the two point function (or entanglement entropy) cannot be determined by
symmetries in Lifshitz-type field theories. So the comparison with these numerical results may not make
much sence.
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(or null hypersurfaces). So in these cases, the right extrapolate dictionary for boundary
operators and bulk matter fields should be similar to (8.1) rather the one [4] in AdS/CFT.
It will be very interesting to test the dictionary (8.1) and calculate the correlation functions
holographically in other spacetimes with non-Lorentz invariant duals.
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A Spacelike geodesics in AdS3

The spacelike geodesics in the AdS3 (3.3) with Tu = 0 satisfy the following equations
of motion

c1

`2
= rv̇ , (A.1)

c2

`2
= ru̇+ T 2

v v̇ , (A.2)

1

`2
= T 2

v v̇
2 + 2ru̇v̇ +

ṙ2

4r2
, (A.3)

where we c1 and c2 are two integration constants, satisfying c1c2 > 0, and dot represent
differential with respect to the affine parameter s. From (A.1) and (A.2) we get

u̇ =
c2r − c1T

2
v

`2r2
, v̇ =

c1

r`2
. (A.4)

Substituting the above equations into (A.3) we get a radial equation

ṙ = ±2
√
r (`2r − 2c1c2) + T 2

v c
2
1

`
, (A.5)

We get three types of spacelike geodesics by adjusting the value of |c2|. Firstly when

|c2| > `Tv , (A.6)

we find ṙ = 0 at

r± =
c1c2 ±

√
c2

1

(
c2

2 − `2T 2
v

)
`2

> 0 . (A.7)

This type of geodesic is anchored on the boundary and has a turning points at r+, thus
belongs to the RT curves. The second type of geodesic satisfies |c2| < `Tv thus has no
turning points.
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Both of the above two types do not satisfy our requirement (2.4). The third type of
geodesic that never touches the boundary arises when

|c2| = `Tv . (A.8)

In this case we find that, at r = c1Tv
` ,

ṙ = u̇ = 0, v̇ =
1

c2
= ± 1

`Tv
. (A.9)

The corresponding geodesics E lies along the v direction at a fixed radius

E : {r =
c1Tv
`

, u = u0} , (A.10)

where u0 is an arbitrary constant. In the case (3.8) we study, we set Tv = 1. Note that,
for our coordinates (3.3), the global AdS correspond to Tu = Tv = i

2 and Poincaré AdS
correspond to Tu = Tv = 0. In these two cases there are no spacelike geodesics that do not
touch the boundary. For the given interval (3.9), the E that satisfies the requirement (2.4)
is just (A.10) with c1 = 1

lu
.

B Entanglement contour for WCFT

B.1 Entanglement contour from the fine structure

The entanglement contour function is a density function of entanglement. In other
words it describes the distribution of the contribution to the total entanglement entropy
from each point of A

SA =

∫
A
sA(v)dv . (B.1)

Here we parametrize A with the v coordinate. The authors of [75] proposed a set of
requirements for the contour functions12. Few analysis of the contour functions for bipartite
entanglement have been explored in [75–79]. Also its fundamental definition is still not
established.

In the previous section we propose that Length(E2) captures the contribution from
A2 to the entanglement entropy SA. In other words our fine structure analysis gives a
holographic interpretation for the contour function. Consider A to be a straight line (5.17),
according to the fine correspondence (5.18) we get the contour function sA(v) for SA

sA(v) =
1

4G

(
1 +

2lv
l2v − 4v2

)
. (B.2)

Let us define

sA(A2) =

∫
A2

sA(v)dv =
Length(E2)

4G
. (B.3)

12However the complete list of requirements that uniquely determines the contour is still not available.
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According to the fine correspondence (5.18) or the contour function (B.2), we have

sA(A2) =
1

4G

(
v′2 − v′1 + arctanh

2v′2
lv
− arctanh

2v′1
lv

)
(B.4)

where v′1 and v′2 are the v coordinates of the two endpoints of A2.
Furthermore we consider two intervals A and A′ that have the same causal development

DA = DA′ . The two arbitrary boundary modular flow lines Lv1 and Lv2 that divide A (A′)
into three part A1,A2 and A3 (A′1,A′2 and A′3). See Fig.13. According to our prescription,
any A2 that goes through the same bunch of modular planes should correspond to the same
E2 on E . Then we should have the following causal property for SA(A2)

SA(A2) = SA′(A′2) . (B.5)

Figure 13. The two blue lines are two modular flow lines Lv1 and Lv2 on the boundary. Here A2

and A′2 intersect with the same bunch of modular planes between P(v1) and P(v2).

B.2 Testing the entanglement contour proposal

It is proposed in [1] that in general theories the sA(A2) can be written as a linear
combination of the entanglement entropies of single subintervals inside A

sA(A2) =
1

2
(SA1∪A2 + SA2∪A3 − SA1 − SA3) . (B.6)

Here we would like to test this proposal for WCFT. Using (5.22) for all these sub-intervals
on the straight interval A (5.17) we have

sA(A2) =
c

6

(
v′2 − v′1 +

1

2
log

(v′2 + lv
2 )(v′1 − lv

2 )

(v′2 −
lv
2 )(v′1 + lv

2 )

)
=
c

6
(v2 − v1) , (B.7)

which coincide with the result (B.4) we get from the entanglement contour (B.2).
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Then we test the causal property (B.5) for the proposal (B.6). We let the two endpoints
of A2 run along the boundary modular flow lines Lv1 and Lv2 that passing trough them
(see Fig. 13),

(u′1, v
′
1) = (u′1, v1 − arctanh

2u′1
lu

) , (B.8)

(u′2, v
′
2) = (u′2, v2 − arctanh

2u′2
lu

) , (B.9)

The new subinterval A′2 passes through the same class of modular planes as A2, so satisfy
(B.5). With all the endpoints of subintervals known, we apply (5.22) and find

SA′1∪A′2 + SA′2∪A′3 − SA′1 − SA′3 =
c

3
(v2 − v1)

= SA1∪A2 + SA2∪A3 − SA1 − SA3 . (B.10)

This indicates that the linear combination in (B.6) reproduce the right causal property for
the contour function.

C The saddle that connect the two null curves γ±

Here we prove that the regulated curve Ereg is the saddle among all the geodesics that
connect γ± (5.25). To prove this we need to calculate the proper distances between arbitrary
two points in the bulk, then we fix the endpoints on γ+ and γ− respectively and find out
the saddle among all the geodesics. It is easier to start from calculating the proper length of
arbitrary two points in Poincaré AdS, then we rewrite the distance in terms of the variables
in the AdS space with nonzero temperatures via a coordinate transformation.

For simplicity we consider the Poincaré AdS3 spacetime

ds2 = `2
(dρ2

4ρ2
+ 2ρdUdV

)
. (C.1)

with the geodesics given by

U =
lU
2

tanh τ + cU , V =
lV
2

tanh τ + cV , ρ =
2 cosh2 τ

lU lV
. (C.2)

Here cU and cV are arbitrary constants, while lU and lV are the distances between the
endpoints on the boundary along the U and V directions respectively, τ is the parameter
that parametrize the geodesic. Along this line we have

ds2 = `2dτ2 (C.3)

so the proper length is just

LAdS = `(τ1 − τ2) (C.4)

Note that any two spacelike separated points, for example (U1, V1, ρ1) and (U2, V2, ρ2), in
the bulk can be connected by a geodesic line described by (C.2), thus the distance between
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them is just (C.4). Using (C.2), this proper length (C.4) can be expressed in terms of the
coordinates of the two endpoints

LAdS (U1, V1, ρ1, U2, V2, ρ2)

=
1

2
log

(
ρ2 (ρ2 +X) + ρ1 (ρ2Y (2ρ2 +X) +X) + (ρ1 + ρ2ρ1Y ) 2

2ρ1ρ2

)
(C.5)

where

Y =2 (U1 − U2) (V1 − V2)

X =
√
ρ2

1 + 2ρ2ρ1 (ρ1Y − 1) + (ρ2 + ρ1ρ2Y ) 2 (C.6)

Then we use the transformation from Poincaré AdS(U,V,ρ) to AdS(u,v,r) (3.3) with nonze-
ro temperatures Tu and Tv

U = e2Tuu

√
1− 2TuTv

r + TuTv
,

V = e2Tvv

√
1− 2TuTv

r + TuTv
,

ρ =
(r + TuTv)e

−2(Tuu+Tvv)

4TuTv
, (C.7)

to re-express the distance in terms of the coordinates of the two endpoints in AdS(u,v,r)

LAdS (u1, v1, r1, u2, v2, r2) . (C.8)

Then we set Tu = 0, Tv = 1 (note that we should not set Tu = 0 at first, or the first
equation in (C.7) will be trivial) and set the endpoints on the null geodesics (5.25). Finally
we find the distance LAdS (r1, r2) as a function of only r1 and r2. We will not write down
the explicit expression for LAdS (u1, v1, r1, u2, v2, r2) and LAdS (r1, r2) since they are very
complicated. Solving the saddle points equation

∂LAdS (r1, r2)

∂r1
=

1− r2lu√(
lu
(
r2
Ie

2lv − r1r2

)
+ r1 + r2

)
2 − 4r2

Ie
2lv

= 0 ,

∂LAdS (r1, r2)

∂r2
=

1− r1lu√(
lu
(
r2
Ie

2lv − r1r2

)
+ r1 + r2

)
2 − 4r2

Ie
2lv

= 0 , (C.9)

we get

r1 = r2 =
1

lu
. (C.10)

We see that the saddle is independent of rI and lv. It is clear to see that the saddle geodesic
is just our curve Ereg.
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