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An approximation to δ′ couplings on graphs
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We discuss a general parametrization for vertices of quantum graphs

and show, in particular, how the δ′s and δ′ coupling at an n edge

vertex can be approximated by means of n+1 couplings of the δ type

provided the latter are properly scaled.

Quantum graphs became in the last decade a useful and versatile tool to de-
scribe several classes of physical systems, in particular, various combinations
of quantum wires. There are numerous papers devoted to the subject and
we restrict ourselves to mentioning the bibliography given in [KS99, Ku04],
where also basic concepts of theory are discussed.

The purpose of this letter is twofold. First of all we want to draw attention
to useful parametrization of a general coupling at graph vertices whose ad-
vantages in the present context remained so far unnoticed. Second and more
important, we address the question of physical meaning of such a coupling
and suggest an answer illustrating it on a pair of simple nontrivial examples
of the so-called δ′s and δ

′ couplings [Ex95, Ex96a].
We consider a free spinless particle on a graph, with the Hamiltonian

which acts as Hψj = −ψ′′

j , where ψj denotes the wave function at the jth
edge. Since early times it has been known that a vertex joining n graph
edges can be characterized by n2 real parameters [EŠ89] characterizing the
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boundary condition at the vertex. We use the symbol Ψ(0) for the column
vector of the boundary values at the vertex (identified conventionally with
the origin of the coordinates), and analogously Ψ′(0) for the vector of the
derivatives, taken all in the outgoing direction.

The boundary conditions have to be chosen to make the Hamiltonian
self-adjoint, or in physical terms, to ensure conservation of the probability
current at the vertex. A general form of such a coupling was found in [KS99].
It is described by a pair of n × n matrices A,B such that rank (A,B) = n

and AB∗ is self-adjoint; the boundary values have to satisfy the conditions

AΨ(0) +BΨ′(0) = 0 . (1)

They have an advantage in comparison to earlier parameterizations relating
Ψ(0) and Ψ′(0) by a single matrix, because the latter is typically singular for
a subset of parameters, albeit a zero-measure one.

On the other hand, the matrix pair in (1) is non-unique; one would prefer
to have a condition analogous to ψ(0) cos θ + ψ′(0) sin θ = 0 is case of a
single edge end. Such conditions exist, they were obtained independently in
[FT00, CFT01] for a generalized point interaction, n = 2, and in [Ha00] for
any n ≥ 1. It is easy to derive them: the self-adjointness requires vanishing
of the boundary form,

∑n
j=1(ψ̄jψ

′

j − ψ̄
′

jψj)(0) = 0, which occurs iff the norms
‖Ψ(0)± iℓΨ′(0)‖Cn with a fixed nonzero ℓ coincide, so the two vectors must
be related by an n×n unitary matrix. The length parameter is not important
because matrices corresponding to two different values are related by

U ′ =
(ℓ+ ℓ′)U + ℓ− ℓ′

(ℓ− ℓ′)U + ℓ+ ℓ′
. (2)

Thus we set ℓ = 1, which means a choice of the length scale, and put

A = U − I , B = i(U + I) ; (3)

the edges are obviously fully decoupled at the vertex iff U is diagonal. It is
easy to check that any such pair satisfies the above quoted requirements from
[KS99]. Conversely, to any A,B with these properties there is a U ∈ U(n)
and an invertible C such that U = C(A− iB). Indeed, such a U must satisfy
UU∗ = C(BB∗ + AA∗)C∗ since AB∗ = BA∗ by assumption. The matrix
BB∗ + AA∗ is strictly positive because its null space is

kerA∗ ∩ kerB∗ = (ranA)⊥ ∩ (ranB)⊥ = (ranA ∪ ranB)⊥ = {0} . (4)
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In particular, it is Hermitean so C := (BB∗ + AA∗)−1/2 makes sense, it is
Hermitean and invertible.

The parametrization (3) simplifies various previous results. For instance,
the eigenspace of U with eigenvalue −1 gives the projection P = P1 in
[Ku04] which makes Lemma 4 and the following claims of this paper rather
transparent. Likewise, the on-shell scattering matrix for a star graph of n
halflines with the considered coupling equals

SU(k) =
(k − 1)I + (k + 1)U

(k + 1)I + (k − 1)U
, (5)

which makes a discussion of its properties simpler than in Sec. 2 of [KS99].
To give an example of the parametrization (3), denote by J the n × n

matrix whose all entries are equal to one. It is a straightforward exercise to
check that U = 2

n+iα
J − I describes the standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,

n
∑

j=1

ψ′

j(0) = αψ(0) (6)

with α ∈ R; the case α = 0 corresponds to the “free motion” at the vertex,
so-called Kirchhoff boundary conditions, while α = ∞ gives U = −I, the full
Dirichlet decoupling. In a similar way, U = I − 2

n−iβ
J describes the singular

counterpart, so-called δ′s coupling [Ex95, Ex96a],

ψ′

j(0) = ψ′

k(0) =: ψ′(0) , j, k = 1, . . . , n ,
n

∑

j=1

ψj(0) = βψ′(0) (7)

with β ∈ R; for β = ∞ we get U = I, the full Neumann decoupling.
Let us mention another “dual” pair of vertex couplings in which the wave

functions exhibit permutation symmetry. The more regular one of these is
the “permuted” δ, or δp coupling, given by the boundary conditions

n
∑

j=1

ψj(0) = 0 , ψ′

j(0)− ψ′

k(0) =
α

n
(ψj(0)− ψk(0)) , j, k = 1, . . . , n , (8)

with α ∈ R. It generalizes the δs interaction of [TFC01] and one can check
easily that the corresponding matrix equals U = n−iα

n+iα
I − 2

n+iα
J . Its coun-

terpart is the so-called δ′ coupling [Ex95, Ex96a],

n
∑

j=1

ψ′

j(0) = 0 , ψj(0)− ψk(0) =
β

n
(ψ′

j(0)− ψ′

k(0)) , j, k = 1, . . . , n , (9)
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with β ∈ R, which corresponds to U = −n+iβ
n−iβ

I + 2
n−iβ

J . The infinite values
of the parameters refer again to the Dirichlet and Neumann decoupling of
the graph edges, respectively.

Note that in these four examples, the connection condition at the origin
is totally symmetric with respect to the interchange of edge indices. Conse-
quently, their U are constructed from symmetric matrices I and J .

If one wants to continue analysis of such graphs, the first question to be
answered is about the physical meaning and possible use of the whole family
of such general couplings. What concerns the second part, a recent inspira-
tion comes from the domain of quantum computing, where the generalized
point interactions parameterized by elements of the group U(2) have been
proposed as an alternative realization of a qubit [CFT04]; an extension to
higher degree vertices opens, of course, interesting possibilities. To make use
of them, however, one has to understand whether there is a meaningful way
to “construct” vertices with different couplings.

The currently available results suggest that this goal cannot be achieved
in a purely geometrical way, by squeezing a system of branching tubes with
the same topology as the graph. Several such approximations was analyzed
recently [KZ01, RS01, Sa01, EP03]; they all lead either to trivial (Kirchhoff)
boundary conditions, or to graphs having an extended state Hilbert space
with extra dimensions due to the vertices. Their common feature was that
the transverse ground state was a constant function. Hence a nontrivial
results might be obtained through tubes with Dirichlet boundaries, but this
problem is open for a long time and notoriously difficult.

Approximations using potentials scaled in the usual way, i.e. preserving
their integrals, do yield nontrivial results [Ex96b] but only for couplings with
wave functions continuous at the junction, which is just the family (6). This
is not sufficient and more singular coupling need other means. Our main
aim here is to explore a natural alternative with approximating interactions
scaled in a nonlinear way as a generalization of the procedure proposed in
[CS98a, CS98b] and analyzed from the viewpoint of the convergence topology
in [AN00, ENZ01]. To keep things simple we will analyze here the δ′s and δ

′

couplings leaving the general case to a subsequent paper.
Consider first the HamiltonianHβ on the graph Γ consisting on n halflines

coupled at a single vertex by the conditions (7). Consider further the same
graph with additional vertices of degree two at each arm, all at the same
distance a > 0 from the common junction. The approximating family will be
constructed as follows. The operators act, of course, as ψj 7→ −ψ′′

j at each
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Figure 1: Scheme of the approximation. For simplicity the graph is featured
as planar; the vertical bars denote the δ coupling strength.

arm; the wave functions satisfy the δ conditions (6) at the central vertex with
a coupling parameter α = b, to be specified later, and another δ coupling (6),
this time with the parameter c, at each of the additional vertices – see Fig 1.
We call such an operator Hb,c(a).

The crucial feature that allows us to simplify the treatment in the present
situation is a symmetry. Each of the Hamiltonians Hβ and Hb,c(a) decom-
poses into a nontrivial part which acts on the one-dimensional subspace of
H =

⊕n
j=1L

2(R+) consisting of functions symmetric with respect to permu-
tations, ψj(x) = ψk(x) for all j, k, and the (n−1)-dimensional part corre-
sponding to Dirichlet and Neumann condition at the central vertex for the δ
and δ′s coupling, respectively. Notice that the matrices U corresponding to
these coupling have each one simple eigenvalue and another one equal to ∓1,
respectively, of multiplicity n− 1.

To see what the choice of the effective coupling constants b, c should be,
let us first modify to our problem the argument of [CS98a]. As we have said,
in the nontrivial sector all the functions are the same, so we may drop the
arm index. The boundary values at x = 0 and x = a are related by

ψ(a) = ψ(0) + aψ′(0) +O(a2) , ψ′(a−) = ψ′(0+) +O(a) , (10)
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ψ′(a+) = ψ′(a−) + cψ(a) , ψ′(0+) = bψ(0) . (11)

Eliminating ψ(0) and ψ′(0+) from here, we get in the leading order the
relation B(a)ψ(a) = ψ′(a+), where

B(a) := c+
b

1 + ab
; (12)

hence the needed limit, βψ′(0+) = nψ(0), is achieved as a→ 0+ if we choose

b(a) := −
β

na2
, c(a) := −

1

a
. (13)

In the orthogonal complement to the permutation-symmetric subspace one
we can again drop the index, because the operators act in the same way on
all the linear combinations of

∑n
j=1 djψj(x) which we can choose as the basis

here, i.e. those satisfying
∑n

j=1 dj = 0. The second one of the conditions (11)
is now replaced by ψ(0) = 0. Eliminating then the boundary values at x = 0
we get in the leading order the relation ψ′(a+) = (c+ a−1)ψ(a) +O(a). The
right-hand side vanishes with the parameter choice (13), giving Neumann
condition, ψ′(0+) = 0, in the limit.

Now we can state and prove our main result.

Theorem 1 Hb,c(a) → Hβ as a→ 0+ in the norm-resolvent sense provided
the coupling constants b, c are chosen in correspondence with (13).

Proof: By the same symmetry argument as above we can again reduce the
problem to investigation of a pair of halfline problems. Let us start with the
one having Dirichlet condition at the origin, so the free Green’s function at
energy k2 is

Gk(x, y) =
sin kx<
k

eikx> , (14)

where as usual x< is the smaller one of the values x, y and vice versa. The
Green’s function of the operator with the δ interaction at x = a is obtained
easily by Krein’s formula [AGHH, Appendix A]

Gc
k(x, y) = Gk(x, y) +

Gk(x, a)Gk(a, y)

−c−1 −Gk(a, a)
. (15)

On the other hand, the Green’s function referring to Neumann boundary is

GN
k (x, y) =

cos kx<
k

eikx> ; (16)
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our aim is to show that the last two converge to each other for some k2 ∈ C.
It is convenient to choose k = iκ with κ > 0; we will see below that the
denominator of the last term at the right-hand side of (15) is then nonzero for
a small enough. Since the functions involved are uniformly bounded around
zero, it is sufficient to compute the difference in the case when neither of
the arguments is smaller than a. For the sake of definiteness suppose that
a ≤ x ≤ y; then (15) and (16) give

Gc
iκ(x, y)−GN

iκ(x, y) =
e−κxe−κy

κ

[

−1 +
sinh2 κa

−κc−1 − e−κx sinh2 κa

]

. (17)

If c = −a−1 the last term behaves as 1 +O(a) for a→ 0+, so

lim
a→0+

Gc
iκ(x, y) = GN

iκ(x, y) (18)

holds for all x, y > 0.
Consider next the case with the δ coupling at the origin using the same

parameter values, namely k = iκ and a ≤ x ≤ y. We are interested in the
following two Green’s functions,

Gb
iκ(x, y) =

e−κy

κ(b+ κ)
(b sinh κx+ κ cosh κx) , (19)

G
β
iκ(x, y) =

e−κy

κ(n+ βκ)
(n sinh κx+ βκ coshκx) , (20)

which replace (14) and (16), respectively, in the present case. The first of
them determines the full approximating Green’s function by Krein’s formula,

G
b,c
k (x, y) = Gb

k(x, y) +
Gb

k(x, a)G
b
k(a, y

−c−1 −Gb
k(a, a)

. (21)

Using the relations (13) we express the difference

G
b,c
iκ (x, y)−G

β
iκ(x, y) =

e−κy

κ

[

b sinh κx+ κ cosh κx

b+ κ

+

e−κx

(b+κ)2
(b sinh κx+ κ cosh κx)2

κa− e−κa

b+κ
(b sinh κx+ κ cosh κx)

−
n sinh κx+ βκ cosh κx

n+ βκ

]

(22)

The first term in the bracket tends to sinh κx as a→ 0+, while the third one
is independent of a, so their sum in the limit gives

−
βκ e−κx

n+ βκ
. (23)
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Next we take the middle term without the factor e−κx and expand the nu-
merator and denominator to the second power in a; this gives its limit which
differs just by the sign from (23), in other words

lim
a→0+

G
b,c
iκ (x, y) = G

β
iκ(x, y) (24)

holds again for all x, y > 0. To conclude the proof we have just to realize
that as functions of x, y the differences (17) and (22) decay exponentially, so
the corresponding resolvent differences converge to zero even in the Hilbert-
Schmidt norm. �

Let us add that the proven result opens way to approximation of Hβ by
Hamiltonians with more regular interactions. We have mentioned that the
central δ in Hb,c(a) can be approximated by a family of potentials scaled in
the usual way, the same is true for the δ interactions at the points xj = a. As
in the related problem discussed in [ENZ01], the question then is how fast
have these approximating potentials to shrink with respect to a.

Consider finally the case of δ′ coupling, i.e. the Hamiltonian H̃β on our
star graph with the boundary conditions (9) at the vertex. The approximat-
ing family will be constructed in a similar way as above; the difference is that
now the wave functions will satisfy the δp conditions (8) at the central vertex
with a coupling parameter α = b, to be specified. The rest is the same, there
is another δ coupling (6) with the parameter called again c at each of the
additional vertices; we denote such an operator H̃b,c(a).

To realize that this problem can be again reduced to a one-dimensional
analysis, denote ε := e2πi/n and introduce

Gr :=
{

(ψ(x), εrψ(x), . . . , εr(n−1)ψ(x)) : ψ ∈ L2(R+)
}

. (25)

The graph state Hilbert space can be written as H =
⊕n−1

r=0 Gr. Indeed, any
vector of H is a unique linear combination of the vectors from Gr, because
the determinant of the corresponding linear system is the Vandermond de-
terminant of 1, ε, . . . , εn−1, which is nonzero because the latter are mutually
different. It is straightforward to see that the subspaces Gr are invariant un-
der the Hamiltonians in question; the δp and δ′ couplings acts “trivially” at
the origin corresponding to Dirichlet and Neumann condition, respectively,
while on each of the subspaces Gr, r = 1, . . . , n, these boundary conditions
are replaced by ψ′(0) = α

n
ψ(0) and ψ(0) = β

n
ψ′(0). Thus we can choose

b(a) := −
β

a2
, c(a) := −

1

a
, (26)
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and repeat the above considerations, arriving at the following conclusion.

Theorem 2 H̃b,c(a) → H̃β holds in the norm-resolvent sense as a→ 0+ if
the coupling constant families b, c are given by (26).
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