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We show how the von Neumann theory of self-adjoint extensions can be used to investigate 
quantum systems the configuration space of which can be decomposed into parts of different 
dimensionalities. The method can be applied in many situations; we illustrate it on examples 
including point contact spectroscopy, nanotube systems, microwave resonators, or spin conductance 
oscillations. 
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1. Introduction 

Looking back it is usually not difficult to distinguish great ideas, in particular, 
because they have a long and twisted life, and usually make impact in areas of 
which their authors knew nothing. The work of John von Neumann, the centenary 
of whom we are commemorating, offers various examples. The most striking one 
is probably his ground breaking contribution to the theory and practice of digital 
computers; it is hardly necessary to explain numerous ways in which this concept 
changed the lifestyle of the whole society. 

In this paper we want to discuss a "later life" of another von Neumann's 
great idea coming from his early work on. foundations of quantum mechanics. To 
give a proper meaning to the heuristic concept of  hermiticity he distinguished the 
class of self-adjoint operators as those which can play role of quantum mechanical 
observables. On the way he created--somehow en passant--the theory of self-adjoint 
extensions of symmetric operators, without paying much attention to its possible 
physical applications. 

For three decades the theory remained mostly a nice piece of. mathematics. 
Its first important physical application is due to Berezin and Faddeev [4] who 
used it to explain the concept of point interaction which can be traced back to 

*Lecture given at the von Neumann Centennial Conference, Budapest, October 15-20, 2003. 

[79] 
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Fermi [16]. The extension approach proved to be very useful and many works 
followed; a comprehensive review of the point-interaction theory can be found in 
the monograph [1]. In the second half of the eighties similar techniques based 
on self-adjoint extensions were applied to more complicated quantum systems in 
which different "parts" interacted through a singular coupling. It is more than a 
coincidence that at the same time experimental physicists learned how to produce 
various structures for which such models offered a reasonable if idealized theoretical 
description. In a decade and a half which passed since then a substantial progress 
was achieved on both the experimental and theoretical side. Our aim in this review 
is to describe some of these new developments. 

2. Systems with a decomposable state space 

In both classical and quantum mechanics there are systems with constraints which 
make the configuration space a nontrivial subset of I~ n. Sometimes it happens that 
one can idealize it as a union of  components coupled through sets of  a lower 
dimension as in the examples of Fig. 1. In classical mechanics it is not a big 
problem. It is not that one could not find examples of such a behaviour, rather 
the "local" character of classical motion allows always to "magnify" the junction 
region and to study trajectories there in more detail. 

In contrast, quantum mechanics offers various examples of physical importance. 
To name just a few, recall for instance: 

• quantum graphs, i.e. tiny graph-like structures built from various materials: metallic, 
semiconductor, carbon, etc., 

• the point-contact spectroscopy, in which material properties are deduced from 
current through a junction between a surface and a needle, or alternatively 
between two thin films separated by an insulating layer in which a small crack 
is made, 

• STEM-type microscopes, which are again based on measuring the current between 
a tip and a surface, 

• compositions of nanotubes with fullerene molecules, etc. 

Moreover, some classical electromagnetic systems, such as flat microwave resonators 
with attached antenna, can be described by the same equations and thus discussed 
simultaneously--see Section 7 below. 

How such a singular coupling can be constructed? Consider a general case 
in which quantum dynamics on M1 t_J M2 should interact through a point contact 

Fig. 1. Examples of systems with singularly coupled "parts". 
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x0 ~ M1 f3 ME. Take first Hamiltonians Hj on the isolated manifolds Mj and 
restrict them to functions vanishing in the vicinity of the point x0. The operator 
H0 := HE0 ~ H2,0 obtained in this way is symmetric, but in general not self-adjoint. 
The idea is to seek Hamiltonian of the coupled system among self-adjoint extensions 
of H0. 

Naturally, it is not a priori ensured that such a construction will give a nontrivial 
result. In the nonrelativistic quantum mechanics which we consider here, where Hj 
is a second-order differential operator, the method works for dim Mj < 3, or more 
generally, the codimension of the contact should not exceed three, since otherwise 
the restriction H0 is e.s.a., and as such it has just the trivial extension given by 
the closure. For Dirac operators the dimensional restriction is even more strict: the 
codimension have to be at most one. On the other hand, apart of the trivial case, 
the construction does not give a unique result because in general there are many 
self-adjoint extensions. A junction where n configuration-space components meet 
contributes typically by n to the deficiency indices of the restricted operator H0, and 
thus--by von Neumann theory--it adds n 2 parameters to the resulting Hamiltonian 
class. The choice of a "true" extension is a nontrivial physical problem, to be 
discussed in each particular model separately--see Section 6 below. 

The most common example of such system is represented by quantum graphs 
mentioned above where the components Mj can be identified with curve segments, 
finite or infinite. There are many works devoted to this subject and we restrict 
ourselves to quoting some recent work like [19] or [20] and other papers in the 
same issue for a bibliography. Our aim here is to discuss some less known systems 
including cases when the components Mj can be of different dimensions. 

3. Coupling dimensions one and two 

For simplicity we use "rational" units, in particular, the Hamiltonian acts at each 
configuration component as - A ,  or more generally as Laplace-Beltrami operator if 
Mj has a nontrivial metric. An archetypal example of a system in which dimensions 
one and two are coupled corresponds to the first picture in Fig. 1. In other 
words, the state Hilbert space is ~ = L2(]~_)~ L2(1~2), so the wave functions 
are pairs q~ := (~12) of square integrable functions on the halfline and the plane, 
respectively. 

d2 
Let us apply the described construction. Restricting (-~--~)D~ ( - A )  to functions 

vanishing in the vicinity of the junction we get a symmetric operator with deficiency 
indices (2, 2). The corresponding four-parameter family of extensions can be obtained 
using von Neumann's general prescription [14]. It is practical to characterize it by 
means of boundary conditions expressed in terms of generalized boundary values* 

~(£) 
L0(~) := lim - -  L1 (~P) := lim [~(£) - L0(~p) In r ] .  

r->0 ln r ' r~0 

*In a similar way one can couple dimensions one and three, then L0 would be the coefficient at the pole 
singularity and the definition of L 1 would be appropriately modified. 
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Typical boundary conditions determining a self-adjoint extension are* 

4)' 1 ( 0 - )  = Aepl ( 0 - )  + B Lo(d~2), 

Ll(d~2)  = C ~ 1 ( 0 - )  + DLo(~2),  

where A, D e ~ and B = 2zrC. The allowed values of the coefficients can be 
checked easily by computing the boundary form of H~. Recall that the last named 
operator is given by the same differential expression as H0 and that only the s-wave 
part of • in the plane, qbE(r, tp) = (2zr)-l/2q~2(r) can be coupled nontrivially to the 
hairline, because in other partial waves the restriction is e.s.a. Integration by parts 
gives 

(q~, H~ ip) - (H~,~, @) = ~'I (O)~fl (0) -- ~I (O) l~t~ (0) 

+ lim e (~2(e ) ,p~(e ) -~ (e )@2(e) ) ,  
e--+O+ 

and using the asymptotic behaviour 

~2(e )  = ~ [ L 0 ( d P 2 ) l n e  + Ll(qb2)  d- O ( e )  ] ,  

we can express the above limit term as 

2~r [Ll(qbE)L0(~2) --  Lo (qb2 )L l (q J2 ) ] ,  

so the form vanishes if the coefficients are as indicated above. 
Consider now a transport through the point contact. Using the boundary condi- 

tions we can match the plane wave solution eikx+ r(k)e -ikx on the halfline with 

t(k)Qrkr/2)l/EH~ol)(kr) in the plane obtaining 

79_ 2i C k 
r(k) -- t(k) = 

D+' 79+ 

with 
[ 2 i (  ~ ) ]  2i 

79± := (A + ik) 1 + - -  ~ - D + l n  + - -  BC, 
7[ 7/" 

(c D) is where FE ~ 0.5772 is Euler's number. The scattering is nontrivial if .A = a B 
not diagonal. With any choice of the self-adjoint extension, however, the on-shell 
S-matrix is unitary, in particular, we have Ir(k)l z + It(k)l z = 1. The most important 
feature of this system is that reflection dominates at high energies: notice that 
I t(k)12- - O((lnk) -2) holds as k ~ o¢. 

4. Single-mode geometric scatterers 
Consider a sphere with a pair of leads attached (Fig. 2). For the sake of simplicity 

we suppose that the coupling at both vertices is given by the same coefficient 

/ 3 ( ~  = 0, see [14] for details, in *The full description of the coupling can be given in the form .A(L~) + 'LI '  
the generical case described here we may put B = - I .  
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*1 X2 

Fig. 2. A single-mode geometric scatterer. 

matrix .,4; three different one-parameter families of such .,4 were investigated in [7, 
13, 18]. 

It appears that scattering properties en gross are not very sensitive to the coupling: 
the system has numerous resonances and in the background reflection dominates as 
k --+ oo. 

Let us describe the argument in detail: construction of generalized eigenfunctions 
means to couple plane-wave solution at the leads with 

u(x) = alG(x,  xl; k) + a2G(x, x2; k), 

where G(., .; k) is Green's function of ALB on the sphere. The latter has a logarithmic 
singularity so Lj(u)  express in terms of g := G(Xl, x2; k) and 

l n l x - x j [ ]  
~ j - - ~ ( x j ; k )  := lim G(x, x j ; k ) +  

x-~ x i 2zr J 

D" 
Introduce Zj := ~-~ +~j  and A := g 2  ZIZ2, and consider, for instance, the coupling 

,Aj = ( <2a)-1 <2zrla)l/2~ 

(2zra) -1/2 - - lna  J 

with a > 0; we will explain below that it is in a sense a natural choice. Then the 
solution of the matching conditions yields the reflection and transmission amplitudes 
for this system, 

~r A + Z1 + Z2 - Jr -1 + 2ika(Z2 - Z1) + 4rrkZa 2A 
r(k) = 

zrA + Z1 q- Z2 - Jr -1 + 2ika(Z1 + Z2 + 2zrA) - 4zrk2a2A' 

4ikag 

t(k) = - z r A  + Z1 + Z2 - ~r -1 + 2ika(Zl  + Z2+2zrA) - 4zrk2a2A" 

So far the result is valid for any compact manifold G; to make use of it we need 
to know g, Zt, Z2, A. The spectrum { ,},,=1 of ALB on G is purely discrete with 
eigenfunctions {¢(X)n}~=l; then we find easily 

Oo ~ n ( X l ) ~ n ( X 2 )  
g(k) Z., ~ ._  k 2 

n=l  

and 
oo \ -~n ~ l qbn ( x j )12 4 zr ) = 

n=l  
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where c(G) depends on the manifold only*. Using these formulae for a sphere with 
the leads attached at poles, one can prove the following result. 

THEOREM 4.1 ([18, 13]). For any l large enough the interval ( l ( l - 1 ) , l ( l + l ) )  
contains a point Izt such that A(qC~) = 0. Let e(.) be a positive, strictly increasing 
function which tends to c~ and obeys the inequality le(x)l _< x lnx for x > 1. 
Furthermore, denote 

oo 

K~ := ~ \ U (/zl - e(1)(lnl) -2, I~l + e(l)(lnl)-2).  
1=2 

Then there is a positive c such that the transmission probability satisfies 

It(k)l 2 _< ce(1) -2 

in the background, i.e. for k 2 E K~ fq ( l ( l - 1 ) , l ( l + l ) )  and any l large enough. On 
the other hand, there are resonance peaks localized at K~ with the property 

It(~/~)l  2 =  l + ( 9 ( ( l n l )  -1) as l - ~ o o .  

This can be illustrated by calculating the transmission probability numerically. 
Fig. 3 shows its shape for a sphere of unit radius and a = 10 -2. Notice that the 
high-energy behaviour shares features with strongly singular interaction such as 8', 
for which It(k)[ 2 = O(k-2). We conjecture that coarse-grained transmission through 
our "bubble" has the same decay as k ~ c~; the comparison given in the lower 
graph supports this guess. 

Notice also that while the general features mentioned above are expected to be 
the same if the angular distance of junctions is less than zr, the detailed shape of 
the transmission plot changes--see [7] for examples. Let us also mention that in 
a similar way one can construct a general scattering theory on such "hedgehog" 
manifolds composed of compact scatterers, connecting edges and external leads [6]. 

5. Arrays of geometric scatterers 

Consider next infinite periodic systems of such geometric scatterers which can 
be naturally treated by the usual Floquet-Bloch decomposition-see Fig. 4. Examples 
of the band spectrum worked out numerically for different parameter values can be 
found in [13]. 

One can naturally ask whether the scattering properties of such junctions are 
reflected in gap behaviour of periodic families of geometric scatterers at high 
energies? To explain, why such a question is of a non-negligible interest, recall the 
properties of singular Wannier-Stark systems with the Hamiltonian given formally 

by d 2 
+ ~ ~ 6 r ( x  - na) - Fx,  

- -  dx~" ~ 
ne Z  

*Notice that changing c(G) is equivalent to a coupling constant renormalization. 
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Fig. 4. Floquet treatment of geometric scatterer arrays. 
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where the 8' interaction is defined by means of appropriate boundary conditions 
[1]. They have counterintuitive properties: their absolute continuous spectrum is void 
[3, 9], and even more surprisingly, for "most" parameter values* the spectrum is 
pure point [2]. The reason behind are large gaps of 8' Kronig-Penney systems; this 
explains the above question. 

We will thus consider periodic combinations o f  spheres and segments and adopt 
the following assumptions: 

• periodicity in one or two directions (it is illustrative to speak about "loose bead 
arrays" and "loose bead carpets", respectively), 

• angular distance between the contacts equals Jr or ~r/2, 
• the simplest sphere-segment coupling, 

Moreover, we allow also a tight coupling when the spheres touch each other. The 
corresponding boundary conditions are then generically of the form 

LI (~ I )  --- AL0(q~l) + CLo(~2) ,  

L1(~2) = CL0(O1) + DL0(~2) 

with A, D ~ R, C ~ C, which ensures the self-adjointness; for the sake of simplicity 
we put A = D = 0. Denote by Bn, G,  the widths of the nth band and gap, 
respectively; then we have the following result. 

THEOREM 5.1 ([5]). There is a positive constant c such that 

Bn 
_ _  < c n  - E  
G n  - 

holds as n --~ ~ fo r  loosely connected systems, where E = fo r  arrays and ~ = ~ 
f o r  carpets. For tightly coupled systems to any E ~ (0, 1) there is a ~ > 0 such  
that the inequality B , / G ,  < ~ (lnn) -~ holds as n ~ ~ .  

It is conjectured that similar results hold for other couplings and angular distances 
of the junctions. The problem is just technical; the dispersion curves determining the 
band spectra are less regular in general which makes the analysis rather complicated. 

6. How to choose the self-adjoint extension 

At a glance this question is simple: one should start from a more realistic model, 
for instance, one in which the manifolds involved have a finite thickness and the 
Hamiltonian is defined without any ambiguity, and to look what happens when the 
width tends to zero. Unfortunately this problem is more difficult than it seems. 

*It is conjectured that this is true for any nonzero F and/~.  
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It has been studied on graphs, approximated by a family of "fat graphs" which 
support Laplacian with Neumann boundary conditions [21-23], and also more general 
"sleeve-shaped" manifolds have been considered [12], however, the physically most 
important situation with Dirichlet boundary conditions remains an open problem. 

For the graph-like manifolds of the first two classes mentioned above which 
are compact the shrinking limit can be worked out: one finds that eigenvalues at 
the bottom of the spectrum tend to those of the graph Laplacian with Kirchhoff 
boundary conditions, which mean continuity of the wave function at each vertex vk 
of the graph together with 

=o;  
edges meeting at v k 

in a sense these conditions describe a "free motion" on the graph. On can try to get 
other coupling by using a more general squeezing limit, for instance by supposing 
that the edge and vertex parts of the approximating manifolds shrink at different 
rates, say, e versus e ~ with /z < 1, however, this again does not lead to a nontrivial 
vertex coupling [12]. It seems that a solution to the problem would require more 
than the geometry, for instance, to introduce additionally families of potentials, in 
general with a nonlinear scaling as recent approximation results on graphs suggest 
[8, 10]. 

Since for our problem with different dimension even such partial results are 
absent, we will try something else and describe a heuristic way to choose coupling 
in the plane-and-hairline system. To this aim we compare low-energy scattering in 
the problem of Section 3 to the situation when the hairline is replaced by a tube 
of radius a as sketched in Fig. 5; we disregard at that the effect of the sharp edge 
at interface of the two parts. 

Rotational symmetry allows us again to treat each partial wave separately,. Given 
orbital quantum number £ one has to match smoothly the corresponding radial parts 
of the solutions 

e ikx + r(ae)(t)e "ikx for x <_ 0, 
t - - - - - .  

x / ~ -  t(ae)(k)H(el)(kr) for r _> a. 

This yields 

Fig. 5. A tube and plane system. 
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with 

rff)(k) = _ ~ '  t f f)(k) = 4i ~ k a  (19+)_1 

79± := (1 q-2ika)l-l(e 1) ( k a ) +  2ka (H~I)) ' a (ka). 

The Wronskian relation W(J~(z) ,  Y~(z)) = 2/zrz implies unitarity of the scattering, 
in particular, it shows that 

Irff)(k)12+ Itff)(k)l 2 = 1. 

Using asymptotic properties of Bessel functions for small values of the argument, 
ka << 1, we get 

4rr ( ~ ) 2 , - 1  
Itff )(k)12 "~ ((£ - ] ) ! ) 2  

for £ y~ 0, so the transmission probability vanishes fast as k ~ 0 in the higher 
partial waves. The situation is different for e = 0 where 

2 i (  ka t H0 ( 1 ) ( z ) = l +  - -  y +  l n ~  + O ( z  21nz).  
7~ 

A comparison shows that t~ °)(k) coincides, in the leading order as k ~ 0, with the 
corresponding expression for the plane-and-halfline system provided 

1 
A := - -  D := - l n a ,  B = 2zrC = ; 

2a '  
this justifies a posteriori the coupling choice we made in Section 4. The parameter 
of this extension family has a natural meaning, namely the radius of the junction-- 
similarly as the "coupling constant" of the two-dimensional 8 interaction is intimately 
related to its scattering length [1]. 

7. Illustration on microwave experiments 

As we have mentioned the models discussed here do not apply to quantum 
mechanical systems only. Consider an electromagnetic resonator. If it is very fiat, 
the Maxwell equations simplify: TE modes effectively decouple from TM ones and 
we can describe them by Helmholz equation. Let the resonator be equipped with 
an antenna which serves as a source. Such a system has many resonances; it is 
natural to ask about distribution of their spacings. 

The reflection amplitude for a compact manifold with one lead attached at x0 
is found as above: we have 

r~Z(k)(1 - 2ika)  - 1 
r(k)  = - 

zrZ(k)(1 + 2ika)  - 1' 
1 where Z ( k ) : =  ~ ( ~ 0 ; k ) -  ~ l n a .  Suppose that the resonator is rectangular. To 

evaluate regularized Green's function as in Section 4 we use eigenvalues and 
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eigenfunctions of Dirichlet Laplacian in G = [0, Cl] x [0, c2] , namely 

~nm(X ,y ) - - - - c~  ~ sin n x sin 

n 2 ~  2 m27r 2 

~ , n m  - -  - - " ~  - -  

Resonances are given by complex zeros of the denominator of r(k), i.e. by solutions 
of the algebraic equation 

lna 1 
~(~0, k) -- + 

27r :r(1 + ika)" 

Their distribution computed from the model can be compared with experimental 
results obtained at University of Marburg in a setting with a = 1 mm and different 
resonator sizes and antenna positions; we average over x0 and cl, c2 = 20 ~ 50cm. 
The result adopted from [15] is shown in Fig. 6. 
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Fig. 6. The bins show experimental results, the dashed line is the theoretical result; both are averaged over 
different experiment geometries. 

A comment is needed, however. The excellent agreement shown in the figure 
is achieved with the lower third of the actually measured frequencies; using all 
experimental data we get a mismatch. This is not a flaw; it confirms the validity of 
the above described approximation, since the shorter wavelengths in this experiment 
are already comparable with the antenna radius a and approximation condition 
ka << 1 is no longer valid. 

8. Spin conductance oscillations 

In our final example we want to illustrate that the manifolds we consider need 
not be separate spatial entities, but rather copies of the configuration space labelled 
by an internal quantum number. To this aim we employ a spin conductance problem. 
Recently the authors of [17] measured conductance of polarized electrons through 
an InAs sample; they came to a surprising conclusion that the results depended 



9 0  P. EXNER 

ideal lead scattering ideal lead 

8 z  

/ 

i I  1 ~ t l  ~ 

/ ~ ~ .'! ..... ~ 8 z / 

/ 

L 

Fig. 7. A model of spin flip on impurity atoms. 

on length L of  the semiconductor "bar", an moreover, that the spin-flip processes 
dominated for some values of  L. 

The physical mechanism of  the spin flip is clearly based on the spin-orbit 
interaction with impurity atoms. However, the corresponding equations are complicated 
and no realistic transport theory of  that type is likely to be constructed soon. 
This inspired us to construct a model in which spin-flip interaction has a point 
character. Semiconductor bar is described as two strips coupled at. the impurity 
sites as sketched in Fig. 7; a point coupling between the strips (understood as 
two-dimensional manifolds with a boundary) is described by the boundary condition 
we have used in Section 5. Such a system can be treated by means of  Krein's 
formula, in analogy with description of  two-dimensional point interaction in a single 
strip---cf. [11]. 

In fact we can use results of  the last mentioned paper directly if  we adopt an 
additional assumption, namely that the impurities are randomly distributed, however, 
they all have the same coupling, A = D and C e ]~. Then we can instead study a 

l i l i  ' I ' I i ,  l ' I ' I ' I ' 

0 . 6  / .  : \ AG i~ , 

Go I. \ , 
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\ i '  
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x ~..~...-. .............. 

-0 .2  

i i i t I i i ~ i I i i i a I i t 
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Fig. 8. Spin conductance vs. the sample length. 
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pair of decoupled strips described by the symmetric and antisymmetric combinations 
of the wave functions. The coupling becomes 

L l ( q b l  -4- 1:I)2) = (A -4- C ) L 0 ( ~ I  -4- 1:I)2) , 

i.e. in each strip we have a set of point interactions, which have different effective 
coupling and naturally also different localizations lengths. 

Returning to the original functions O j, we expect that superposition of the above 
solutions may produce spin conductance oscillations. This is indeed the case; if we 
choose realistic values of the parameters and take also into account the coupling 
between the mesoscopic sample and the macroscopic leads we arrive at the result 
[24] shown in Fig. 8. In the vertical axis there is the difference of non-spin-flip 
and spin-flip conductances, normalized to the total conductance. The curves refer 
to several values of the coupling constants; they all show spin-flip dominance in a 
certain range of lengths. 

9. Some open questions 

The list of applications of the singular coupling technique we have discussed in 
this paper is by no means exhaustive. Moreover, the experimental solid state physics 
is developing rapidly and many new systems of complicated geometry are reported 
every year; this allows us to expect that there are many more applications of this 
technique to come. 

We prefer to finish this survey with a short list of open questions. We believe 
that this is very much in the spirit of John von Neumann whom the centennial 
conference and this proceedings volume are commemorating. 

• General geometric scatterer systems: we are interested in the asymptotic behaviour 
at high energies, in particular, localization of the resonances and background 
dominance. While these properties are expected to hold universally, the detailed 
resonance properties may depend crucially on the scatterer geometry. 

• Reduced Green's function on a compact manifold: the expression for the function 
~(x, k) is Section 4 contains the constant c(G). In Section 7 we found a match 
with the experiment assuming that for a rectangle we have c ( G ) =  0. Is it true 
generally, and if not, how does the constant depend on the manifold G? 

• Wannier-Stark systems: a comparison with 8' systems and Theorem 5.1 suggest 
the question how does the spectrum of sphere arrays look like when a linear 
potential is added? One can conjecture that it is pure point, but the problem is 
obviously difficult. 

• General periodic systems: is the gap behaviour as k --~ oo we have found in 
Section 5 a universal property for periodic systems of manifolds connected with 
elements of a lower dimension? 

• And finally, the coupling parameter choice: it is natural to ask whether one can 
formulate the heuristic argument of Section 6 rigorously. More generally, it would 
be useful to know whether other junction couplings can be also obtained by 
approximations with additional potentials and a different contact geometry. 
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