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CONVERGENCE OF RESONANCES ON THIN BRANCHED

QUANTUM WAVE GUIDES

PAVEL EXNER AND OLAF POST

Abstract. We prove an abstract criterion stating resolvent convergence in the
case of operators acting in different Hilbert spaces. This result is then applied to
the case of Laplacians on a family Xε of branched quantum waveguides. Combin-
ing it with an exterior complex scaling we show, in particular, that the resonances
on Xε approximate those of the Laplacian with “free” boundary conditions on
X0, the skeleton graph of Xε.

1. Introduction

In a few recent years there was a surge of interest to quantum mechanics on metric
graphs. It is a subject with a long history reaching back to the paper of Ruedenberg
and Scherr [RuS53] on spectra of aromatic carbohydrate molecules elaborating an
idea of L. Pauling, but a systematic study motivated by the need to describe semi-
conductor graph-type structures began only at the end of the eighties, cf. [EŠ89];
a survey of the subsequent development with the appropriate bibliography can be
found, e.g., in the papers [KoS99] or [Ku04].

Since quantum graphs are used in the first place to model various real graph-like
structures whose transverse size is small but non-zero, one of the most important
questions in the theory is how such system approximate an ideal graph in the limit
of zero thickness. This problem is difficult and the answer is so far known in some
cases only. In particular, compact “fat graphs” with Neumann boundary conditions
has been analyzed, first in [FW93] and [F96], then in [KuZ01] and [RS01] where
the eigenvalue convergence was demonstrated; an extension of this result to more
general Neumann-type graph-like manifolds can be found in [EP05]. More recently,
the resolvent convergence on non-compact graph-like manifolds of this type was
dealt with in [P06]. Recall, however, that the analogous problem in the physically
most important case of tube systems with Dirichlet boundary is more difficult and
at the present moment far from being fully understood, although there are fresh
results in this direction [P05], [MV06].

Apart of the spectral analysis, one of the most important questions we study
on quantum graphs concerns the resonance scattering. It is usually easy to find
resonances on a graph — see, e.g., [ETV01] and references therein — but a priori
it is not clear how are these related to possible resonances on an approximating
finite-thickness manifold. This is the main topic of the present paper.

An efficient way to study resonances understood as poles in the analytically con-
tinued resolvent is to rephrase the question as an eigenvalue problem. A time-
honored trick to achieve this goal is based on the complex scaling — see, e.g., [C69,
AC71, BC71, S72, CT73, S79, CDKS87, BCD89] or [RS80, Sec. XII.6 and XIII.10]
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— which transforms the Hamiltonian by a non-unitary operator with the aim to
rotate the essential spectrum uncovering a part of the “second sheet” while leaving
the poles at place1. Our aim here is to apply this method to the problem at hand.
We will construct an exterior complex-scaling transformation for Hamiltonians on
graph-like manifolds and show that some among its complex eigenvalues converge to
the eigenvalues of the complex-scaled graph Hamiltonian2. In this way, resonances
of the quantum graph are approximated by those of the corresponding family of
“fat graphs” (cf. Theorems 2.1 and 6.2). Furthermore, graph Hamiltonians often
have embedded eigenvalues, e.g. by rational relations between the edges, and these
are again approximated, either by embedded eigenvalues or by resonances (one can
conjecture that the latter case is generic).

As a by-product of our analysis we will prove, using the technique of [P06], that a
magnetic Laplacian of a family of “fat non-compact graphs” converges to the one on
the corresponding graph, this time without any complex scaling (cf. Theorem 6.4).
This conclusion is rather important because it shows that nice results about fractal
graph spectra such as the one discussed in [BGP07] can be observed in some form
with more “realistic” systems. Needless to say, this is a goal which the experimental
physicists vigorously pursue, see e.g. [ASvK+01]. The convergence of the spectrum
of the magnetic Laplacian on a compact graph was already established in [KuZ01].

Let us describe the contents of the paper. To explain our method in a simple
setting first, we analyze in the next section an example of a “lasso” graph having
one loop and one semi-infinite external link. After that we describe the two main
objects of our approximation, quantum graphs in Section 3 and quantum wave
guides in Section 4. The following section is devoted to explanation of the complex-
dilation method in our setting, and in Section 6 we will state and prove our main
results.

Since the arguments are rather technical and demand various auxiliary material,
we collected it in a series of appendices. Appendix A contains facts about Hilbert
scales associated to sectorial operators, Appendix B provides an abstract conver-
gence theory for eigenvalues and eigenvectors of non-selfadjoint operators in different
Hilbert spaces. Finally, we prove in Appendix C among other things the analyticity
of the complex dilated operators.

2. A motivating example: a loop with a lead

Let us start with a slightly informal discussion of a simple example in order
to show the main purpose and to motivate the general analysis presented in the
forthcoming sections. Proofs and more precise definitions of the operators will also
be given there.

2.1. The graph and its neighbourhood. Denote by X0 the metric graph consist-
ing of a loop eint with a finite length ℓ := ℓint ∈ (0,∞) and one external line, i.e., an

1While the complex-scaling method was formulated by mathematicians it became a practical
and often used tool in atomic and molecular physics – see, e.g., the review [Moi98].

2Complex scaling was used to treat resonances of thin tubes also in [Ned97, DEM01], this time
with Dirichlet boundary conditions. In that case the resonances of the limiting zero-thickness
problem come from the tube curvature rather than the (trivial) graph structure. The complex
scaling can be also used to demonstrate equivalence of the “resolvent” and scattering resonances
for a wide class of quantum graphs including those discussed here [EL06].
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edge eext of length ℓext = ∞ attached to the loop eint at the vertex v; sometimes also
called a lasso graph [E97]. For simplicity we assume that the graph is planar, i.e.,
e ⊂ R2 and v ∈ R2 where e denotes either eint or eext (cf. Figure 1), and furthermore,
that the edges are straight in a neighbourhood of v; we will simply suppose that the
exterior edge eint is embedded as a straight half-line in R

2. Denote by Xε the open

Uε,int

v

eint

eext

Uε,ext

Uε,v

X0

Xε

ε

Figure 1. The metric graph X0 consisting of one loop and one ex-
ternal line together with the ε/2-neighbourhood Xε.

ε/2-neighbourhood of X0. We decompose Xε into three open, mutually disjoint sets
Uε,ext, Uε,v and Uε,int such that the union of their closures equals Xε. They are
chosen in such a way that v ∈ Uε,v while Uε,e is the ε-tubular neighbourhood of the
slightly shortened edge e. Since the edges are straight near v by assumption, Uε,v is
ε-homothetic to a fixed set Uv ⊂ R2 and there exists an affine transformation

τε,v : Uv −→ Uε,v (2.1)

z 7→ v + εz. (2.2)

The ε-tubular neighbourhood Uε,e is given by

τε,e : e× F −→ Uε,e (2.3)

(x, y) 7→ γe
(
ϕε,e(x)) + εyne(ϕε,e(x)

)
(2.4)

where γe : (0, ℓe) −→ Xε ⊂ R2 denotes the path parametrising the edge e by arc-
length (according to its orientation). Furthermore, ne : (0, ℓe) −→ R

2 denotes one
of the two possible unit vector fields along γe orthogonal to the tangent vector γ̇e.
We can also identify e with the interval (0, ℓe) and set F := (−1/2, 1/2). Since the
graph is embedded into R2, we have to take a slightly smaller part of e = eint instead
of the full edge. This is needed when constructing the edge neighbourhood Uε,e in
order to make room for the vertex neighbourhood Uε,v. We therefore let

ϕε,e : (0, ℓ) −→
(
εℓ/2, (1− ε/2)ℓ

)

be the affine linear mapping from the full edge e onto the shortened edge where εℓ/2
is the amount of e belonging to the vertex neighbourhoods; for the external edge a
simple shift by εℓ/2 will do the job.

Since we want to study the (non-relativistic) quantum dynamics on the graph in
presence of external fields we have to introduce the latter. Denote by geucl the usual
Euclidean metric in R2. The vector potential α in R2 is given by a real-valued 1-form
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α = a1dz1 + a2dz2 and we denote the corresponding vector field by a = (a1, a2).
Furthermore, let q be a real-valued function on R2, the electric potential. Their
regularity properties will be specified below.

In the particular example of this section we could, of course, perform all the rea-
soning which follows in the coordinates given by the embedding. We will, however,
employ the ε-independent sets Uv and Ue := e×F , not only because the argument is
simpler but also because it can be easily be generalized to the differential geometric
setting which we will use in the general case below. Consequently, let us express the
metric, the magnetic and electric potential in terms of the coordinates given on Uv

and Ue. We set

gε,v := τ ∗ε,vgeucl,

gε,e := τ ∗ε,egeucl,

αε,v := τ ∗ε,vα,

αε,e := τ ∗ε,eα,

qε,v := τ ∗ε,vq,

qε,e := τ ∗ε,eq,
(2.5)

where τ ∗ε,vω denotes the usual pull-back of the tensor ω from (a subset of) R2 to Uε,v,
and the other map has the analogous meaning. A simple calculation now shows that
quantities at left-hand sides are equal to

{
gε,v(z) = ε2geucl,

gε,e(x, y) = (1− ε)2
(
1− εyκe(x̃)

)2
dx2 + ε2dy2,

(2.6)

{ αε,v(z) = εα(v + εz),

αε,e(x, y) = (1− ε)
(
1− εyκe(x̃)

)
a‖e(x, y) dx+ εa⊥e (x, y) dy,

(2.7)

{
qε,v(z) = q(v + εz),

qε,e(x, y) = q
(
γe(x̃) + εyne(x̃)

)
,

(2.8)

where x̃ = ϕε,e(x), z ∈ Uv, (x, y) ∈ e× F and

a‖e(x, y) := γ̇e(x̃) · a(τε,e(x, y)), a⊥e (x, y) := ne(x̃) · a(τε,e(x, y)) (2.9)

denote the tangential and normal component of the vector field a, respectively,
taken at the (shortened) edge e parametrised by γ ◦ ϕε,e. Furthermore,

κe := γ̇e,1γ̈e,2 − γ̇e,2γ̈e,1 (2.10)

denotes the (signed) curvature of the curve γe = (γe,1, γe,2) embedded in R2. As
mentioned above we assume that κe = 0 on the external edge e = eext, and therefore

gε,ext(x, y) = dx2 + ε2dy2 (2.11)

has a product structure. In addition, we suppose that the tangential component

of the vector potential vanishes, a
‖
e = 0; notice that this can always be achieved

by an appropriate gauge transformation (see Section 3.3 below). For simplicity, we
assume also that there is no electric potential on the exterior edge eext as well as on
its neighbourhood Uε,ext.

2.2. Magnetic Hamiltonians. After describing the graph and its neighbourhood
we introduce now the corresponding magnetic Schrödinger operator for a vector
potential a = (a1, a2) (a vector field) and an electric potential q (a function). We
shall assume that a1, a2, q and their first derivatives are bounded and, as we have
said, that they vanish on the external edge neighbourhood.
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Let us start with the “fat graph”. The magnetic Hamiltonian Hε in the Hilbert
space L2(Xε) is given formally by the differential expression

Hε := (∇− ia)∗(∇− ia) + q (2.12)

acting on Xε. To define it properly as a self-adjoint operator one has to specify its
domain; namely, we assume Neumann boundary conditions. In terms of coordinates
introduced on the edge and vertex neighbourhoods we have

Hε,e =
(
−∂x + ia‖e +O(ε)

)(
∂x − ia‖e +O(ε)

)

+
1

ε2
(
−∂y + iεa⊥e

)(
∂y − iεa⊥e

)
+ qε,e

for the internal edge e = eint and

Hε,e = −∂xx −
1

ε2
∂yy,

Hε,v =
1

ε2
(
−∇+ iεav

)(
∇− iεav

)
+ qε,v

for the external edge e = eext and the vertex v, respectively, where av is the vector
field corresponding to the 1-form αv. The error term on the internal edge comes
from the curvature and the shortened edge — cf. (2.6) and (2.7).

On the other hand, on the graph we consider the “limit” operator H0 given by

H0,int = (−∂x + iae)(∂x − iae) + qe, e = eint

H0,ext = −∂xx.
To fix its domain we have to specify how the functions are related at the vertex v.
We suppose that they satisfy the so-called free boundary conditions3, namely

fint(0) = fint(ℓ) = fext(0),

(f ′ − iaf)int(0+)− (f ′ − iaf)int(ℓ−) + f ′
ext(0+) = 0.

More general (self-adjoint) boundary conditions for a magnetic Hamiltonian on X0

were discussed in [E97], in particular, from the point of view of resonances.
The magnetic and electric potential on the internal edge can be easily found, in

particular, one can see from the “fat graph” Hamiltonian that

ae(x) := γ̇e(x) · a(γe(x)) = a‖e(ϕ
−1
ε,e(x), 0), qe(x) := q(γe(x)) (2.13)

are the tangent component of a and the value of q, respectively, along the full edge
e = eint. Indeed, on a heuristic level the choice of the potentials in the limiting
operator is justified by the relations

|a‖e(x, y) +O(ε)− ae(x)| ≤ εc1‖a‖C1,

|εaε,v(z)| ≤ ε‖a‖∞,
(2.14)

where ‖a‖C1 denotes the supremum of |a|, |∇a1| and |∇a2| on Xε, and

|qε,e(x, y)− qe(x)| ≤ εc2‖q‖C1,

|qε,v(z)− q(v)| ≤ εc3‖q‖∞,
(2.15)

3They are often labelled as Kirchhoff boundary conditions, with an allusion to classical electrical
circuits. The term is unfortunate, however, since every boundary condition giving rise to a self-
adjoint graph Hamiltonian must preserve the (probability) current.
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where the constants ci > 0 depend only on ℓ and ‖κe‖∞, 0 < ε ≤ 1.
As in the previous work quoted in the introduction our aim is to give meaning to

the intuitive notion that H0 described above is in some sense a limit of the operators
Hε as ε → 0 — now from the resonance point of view — despite the fact they act on
different Hilbert spaces. There is no paradox here, of course, since only the lowest
transverse eigenmode survives, in other words, all functions which are not constant
in the transverse direction y will not contribute to the limit. We will make this
vague observation precise in Section 6 and Appendix B below.

Note also that we have a somehow simpler, unitary equivalent magnetic Hamil-
tonian Ĥ on the graph obtained by the gauge transformation f̂ = Ξf where

Ξe(x) := e−iΦe(x) and Φe(x) :=

∫ x

0

ae(s) ds. (2.16)

on the loop and Ξe = 1 on the external edge (cf. Section 3.3), where Φ = Φe(ℓ) is
the total flux through the loop. The free boundary conditions under this unitary
transformation become

f̂int(0) = eiΦf̂int(ℓ) = f̂ext(0) , (2.17a)

f̂ ′
int(0+)− eiΦf̂ ′

int(ℓ−) + f̂ ′
ext(0+) = 0 ; (2.17b)

the price for the simpler expression of the Hamiltonian on an edge are more com-
plicated boundary conditions, with discontinuous functions at the vertex.

2.3. Complex dilations and resonances. Let us recall briefly the essence of the
complex exterior dilation argument — for more details we refer, e.g., to [RS80,
Sec. XIII.10], [CDKS87] or [HS96]. We will do it in our setting, both on the graph
and its neighbourhood, i.e., for a fixed ε ≥ 0. Let us consider the one-parameter
unitary group Uθ

ε,e on the external part Xε,ext := Uε,e, in particular X0,ext = eext for
the graph, whose element characterized by the parameter θ ∈ R acts as

(Uθ
0 f)e(x) := eθ/2fe(e

θx)

(Uθ
ε u)ε,e(x, y) := eθ/2u(eθx, y)

(2.18)

at the external edge e = eext; note that U
θ
ε is unitary since the exterior edge e = eext

is straight by assumption and therefore the metric on Uε,e has the product structure
(2.11). The transformation can be extended to the whole Hilbert space acting as
the identity operator on the internal parts Xε,int, in other words, a function on the
graph or the fat graph is longitudinally dilated on the external edge and remains
unchained on the remaining parts. A simple coordinate transformation shows that
for a fixed ε ≥ 0, the action of the dilated magnetic Hamiltonian Hθ

ε := Uθ
εHε(U

θ
ε )

∗

is given by

Hθ
εu = Hε,intuint +Hθ

ε,extuext,

Hθ
0f = H0,intfint − e−2θ∂xxfext,

(2.19)

where

Hθ
ε,ext := −e−2θ∂xx −

1

ε2
∂yy
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The domain domHθ
ε consists of all functions which are locally twice weakly L2-

differentiable and satisfy the conditions

uext = eθ/2uint and u′ext = e3θ/2u′int (2.20)

on Γε, the common boundary of Xε,int and Xε,ext, where u
′
ext = ∂xu and u′int = ∂xu

denote the (normal) derivatives in the orientation of x, i.e., the outward normal
derivative on ∂Xε,int and the inward normal derivative on ∂Xε,ext.

4

In the particular case of the graph, ε = 0, we have to specify the boundary
conditions. Using the gauge described above we can write them as

f̂int(0) = eiΦf̂int(ℓ) = e−θ/2f̂ext(0),

f̂ ′
int(0+)− eiΦf̂ ′

int(ℓ−) + e−3θ/2f̂ ′
ext(0+) = 0.

In the next step we use (2.19) and (2.20) to perform the basic trick of the complex-
scaling methods by extending the definition ofHθ

ε to complex θ with 2|Im θ| < ϑ < π.
Note that such a perturbation is very singular with respect to θ, even for real θ,
since not only the operator domain, but also the form domain depends on θ as we
shall discuss in Appendix C below. In the spirit of [CDKS87] we are going to show

there that {Hθ
ε}θ defines a self-adjoint family of operators (i.e., (Hθ

ε )
∗ = Hθ

ε ) with
spectrum contained in the common sector Σϑ for θ in the strip Sϑ where

Σϑ :=
{
z ∈ C

∣∣ | arg z| ≤ ϑ
}

and Sϑ :=
{
θ ∈ C

∣∣ |Im θ| < ϑ/2
}
. (2.21)

Following the usual convention — see, e.g., [RS80, Sec. XII.6] — we define a
resonance of Hε with ε ≥ 0 as the pole of the resolvent analytically continued over
the cut given by the essential spectrum of the operator. The position of the cut
changes once θ ceases to be real, in particular, for Im θ > 0 sufficiently large it may
“expose” the pole which will just become a complex eigenvalue of Hθ

ε in the lower
half-plane. Such eigenvalues will the main object of our interest.

In the example, the eigenvalues λ = k2 of the quantum graph Hamiltonian Hθ
0

with a magnetic field of total flux Φ through the loop (to make things simple we
put q = 0), are obtained from the condition [E97]

2(cos kℓ− cosΦ) = i sin kℓ .

If Φ 6= 0 (mod π) none of the solution is real, while for Φ = 0 half of the solutions
is on the real axis and the other half in the lower half-plane, explicitly

λj =
1

ℓ2
(
2πj

)2
, and λ̂j =

1

ℓ2
(
2πj − i ln 3

)2
. (2.22)

for j ∈ Z \ {0} and j ∈ Z, respectively; as expected the values of λj and λ̂j are
independent of the exterior scaling parameter θ. The real eigenvalues λj do not turn
into resonances because they correspond to eigenfunctions on the loop which have a
node at the vertex, and therefore do not “know” about the presence of the external
lead, the half-line part of the eigenfunction being zero. The remain embedded
into the essential spectrum of H0 coming from the half-line, and naturally become
isolated after the complex scaling whenever Im θ > 0 and σess(H

θ
0 ) = e−2θ[0,∞).

4Here ∂Xε,• = ∂R2Xε,• ∩Xε means the boundary w.r.t. the open set Xε, not the boundary of
Xε as subset of R2
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On the contrary, the solutions corresponding to λ̂j are true resonances. Their
half-line component is proportional to exp

(
(ln 3 + i · 2πj)x/ℓ

)
and thus not square

integrable, however, after a complex scaling with large enough Im θ it will become (a
part of) an L2-eigenfunction of Hθ

0 . Recall that σess(H
θ
0 ) = e−2θ[0,∞) is rotated into

the lower half-plane by the angle 2Im θ and the resonances λ̂j lie on the parabola

Im λ̂ = −2 ln 3

ℓ

√
Re λ̂+

(
ln 3

ℓ

)2

,

hence for complex scaling with Im θ large enough all resonances are revealed.
On the other hand, for the “fat graph” Xε one can check easily that σess(H

θ
ε ) =

1
ε2
σ(∆N

F )+e2θ[0,∞) consists of an infinite number of half-lines turned by 2Im θ; each
attached to the base point (jπ/2ε)2 ∈ σ(∆N

F ). All these base points except the one
with j = 0 tend to ∞ as ε→ 0, so for any bounded set B ⊂ C we have

σess(H
θ
0 ) ∩B = σess(H

θ
ε ) ∩B (2.23)

provided ε > 0 is small enough, in other words, higher sheets of the Riemann surface
associated the resolvent of Hθ

ε play no role. The question is whether the complex
dilation reveals resonances of this system — manifested as complex eigenvalues of
Hθ

ε — and what is their relation to the resonances of the graph. The answer which
are going to demonstrate is the following.

Theorem 2.1. Let λ(0) be a resonance of the magnetic Hamiltonian H0 with a
multiplicity m > 0. Under the stated assumptions, for a sufficiently small ε > 0
there exist m resonances λ1(ε), . . . , λm(ε) of Hε, satisfying Im λj(ε) < 0 and not
necessarily mutually different, which all converge to λ(0) as ε → 0. The same is
true in the case when λ(0) is an embedded eigenvalue of H0, except that Imλj(ε) ≤ 0
holds in general.

In the following sections we will prove this claim in a considerably more general
setting when the loop is replaced by a finite metric graph to which a finite number
half-lines is attached — this will be the main result of this paper.

The indicated proof will be divided into several steps. First we will introduce
generally in Section 3 and Section 4, respectively, the Hamiltonians of the quan-
tum graph and on the corresponding graph-like waveguide. Next in Section 5 we
present the exterior scaling argument. Finally, in Section 6 we conclude the proof
by verifying conditions of abstract criteria given in Appendix B; the aim is to show
the convergence of discrete eigenvalues — complex in general — for non-self-adjoint

operators H̃θ = Hθ
ε and Hθ = Hθ

0 having a “distance” which tends to zero. The
difficult part of the argument, in comparison with [RS01, KuZ01, EP05], is that we
cannot use the variational characterization of eigenvalues because our operators are
not self-adjoint, nor even normal.

3. Quantum graph model

Passing to our main subject we define now the general model in which we are able
to prove the convergence of resonances. We start with the quantum graph.
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3.1. Metric graphs. Suppose X0 is a connected metric graph given by (V,E, ∂, ℓ)
where (V,E, ∂) is a usual graph, i.e., V denotes the set of vertices, E denotes the
set of edges, ∂ : E −→ V × V associates to each edge e the pair (∂+e, ∂−e) of its
terminal and initial point (and therefore an orientation). That X0 is a metric graph
(also called quantum graph) means that there is a length function ℓ : E −→ (0,∞]
associating to each edge e a length ℓe. We often identify the edge e with the interval
(0, ℓe). Clearly, the length function makes X0 into a metric space.

For each vertex v ∈ V we set

E±
v := { e ∈ E | ∂±e = v } and Ev := E+

v ⊎ E−
v ,

i.e., E±
v consists of all edges starting (−) resp. ending (+) at v and Ev their disjoint

union. Note that the disjoint union is necessary in order to allow loops, i.e., edges
having the same initial and terminal point as in the example in Section 2. We adopt
the following uniform bounds on the degree deg v := |Ev| and the length function
ℓ:

deg v ≤ d0, v ∈ V, (H01)

ℓe ≥ ℓ0, e ∈ E, (H02)

where 0 < d0 < ∞ and 0 < ℓ0 ≤ 1. Of course, both assumptions are fulfilled if |E|
and |V | are finite.

An edge e with ℓe = ∞ will be called external and Eext denotes the set of all
external edges. Such edges are assumed to have only an initial point, i.e., ∂e consists
only of the point ∂−e for e ∈ Eext. The remaining edges are called internal and their
set will be denoted by Eint := E \Eext. We call the vertices connecting internal and
external edges boundary vertices, denoted by

Γ0 := { ∂−e ∈ V | e ∈ Eext }. (3.1)

Since we are not aware of reasonable models with an infinite number of external edges
attached, we assume throughout this paper that Γ0 (i.e., Eext) is finite, namely

|Eext| = |Γ0| <∞. (H03)

3.2. Magnetic Hamiltonian on the graph. Let H = L2(X0) =
⊕

e∈E L2(e), and
denote the corresponding norm by ‖f‖0 = ‖f‖. Suppose that a and q are bounded,
measurable functions on X0, i.e,

‖a‖∞ <∞, and ‖q‖∞ <∞. (H04)

Without loss of generality, we assume that q ≥ 0 and that ae is a smooth function
on each edge (cf. Remark 3.4). For simplicity, we also assume that qe is smooth on
each edge. We set

h(f) :=
∑

e∈E

he(fe), he(f) :=

∫

e

[
|Defe|2 + qe|fe|2

]
dx. (3.2)

where Defe := f ′
e − iaefe. In particular, h is non-negative, i.e, h(f) ≥ 0 for all f .

We specify its domain below.

Notation 3.1. Here and in the sequel, the subscript (·)e refers to the restriction onto
the edge e (sometimes also identified with the interval (0, ℓe), e.g., fe := f↾e, ‖·‖e
denotes the norm on L2(e), he is the restriction of h onto L2(e) etc. We often omit
the index if it is clear from the context (e.g., he(f) = he(fe)).
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Denote by H
k(e) the Sobolev space on the interval e ∼= (0, ℓe) of k-times L2-weakly

differentiable functions.

Notation 3.2. Denote by ‖·‖q the norm associated to a closed, non-negative quadratic
form q in the Hilbert space H, i.e.,

‖f‖2h := ‖f‖2 + q(f). (3.3)

This norm turns H1 := dom h into a complete Hilbert space.

Denote by d the quadratic form h where a = 0 and q = 0.

Lemma 3.3. Assume that a, q ∈ L∞(X0). Then h and d are closed forms on

H1 := H
1(X0) := C(X0) ∩

⊕

e∈E

H
1(e). (3.4)

Furthermore, the norms ‖·‖1 := ‖·‖d and ‖·‖h are equivalent.

Proof. It can be quite easily seen that d is a closed form on H
1(X0) (this is clear by

standard arguments for de, and the vertex condition remains true by the continuity
of fe 7→ fe(v), v ∈ ∂e (cf. (6.8)). In addition,

he(f) ≤ 2de(f) + (2‖ae‖2∞ + ‖qe‖2∞)‖fe‖20
and a similar inequality holds with the roles of he and de interchanged, thus the
norms ‖·‖h and ‖·‖d are equivalent. �

We denote the operators corresponding to h and d by H and ∆, respectively.5

Remark 3.4. We can always assume that ae is a smooth function on each edge:
We just have to replace a non-smooth magnetic potential ae by a smooth function
ãe having the same values at the endpoints and the same integral over e. Using
the gauge transformation (2.16) we will see in Section 3.3 that the operators with
magnetic potentials a and ã are unitarily equivalent.

Nevertheless the domain H2 := domH of H may depends on a in general, namely,
a function f is in H2 iff (i) fe ∈ H

2(e) (due to our smoothness assumption of ae),
(ii) f , Hf ∈ L2(X0) and (iii) the so-called generalised free boundary conditions
(sometimes also labelled as Kirchhoff – see Footnote 3)

fe1(v) = fe2(v), e1, e2 ∈ Ev (3.5a)
∑

e∈Ev

Def(v) = 0 (3.5b)

are fulfilled for all v ∈ V where Def(v) := ~f ′
e(v)− i~ae(v)fe(v) and

~f ′
e(v) :=

{
f ′
e(0), if v = ∂−e,

−f ′
e(ℓe), if v = ∂+e

(3.6)

defines the outward derivative of fe at v, and similarly for ~ae(v). The fact that
we need different signs for incoming and outgoing edges is due to the fact that f ′

and a formally are 1-forms on the quantum graph. Note that 1-forms do see the
orientation (in contrast to the second order operator H). Condition (3.5a) is the

5We work in the “geometric” convention in which the Laplacian is a non-negative operator.
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continuity at each vertex and (3.5b) is the conservation of the current generated by
De.

If
∑

e∈Ev
~ae(v) = 0 for all v ∈ V then H2 = domH , i.e. (3.5b) becomes the usual

free boundary conditions, where Defe(v) is replaced by ~f ′
e(v).

3.3. Gauge transformations. Without loss of generality, we may assume that
ae = 0 for external edges e ∈ Eext: Using the simple gauge transformation f̂e = Ξefe
on the external edge (cf. eq. (2.16)) one easily sees that he(fe) = de(Ξefe). In addi-
tion, Ξe(0) = 1 so that (Ξefe)(v) = f(v), i.e., Ξefe extends to a continuous function

also onto interior edges (where Ξe = 1). In particular, f̂ = Ξf ∈ H
1(X0) and the

assertion h(f) = ĥ(f̂) holds where ĥ is the quadratic form without magnetic poten-
tial on the external edges, which in turn implies that the corresponding operators
are unitarily equivalent.

Similarly, we can always gauge away the magnetic potential on a tree graph (i.e.,
a graph without loops). On a general graph, we can use a gauge transformation to
eliminate the vector potential on each edge; the price for that is a less convenient
quadratic form domain, now consisting of functions generally discontinuous at the
vertices. Specifically, the values eiΦe(v)fe(v) have to be equal for all e ∈ Ev. Note
that Φe(∂−e) = Φe(0) = 0, but Φe(∂+e) = Φe(ℓe) /∈ 2πZ in general. Furthermore,
the condition for the operator domain is the free condition with Def(v) replaced by
eiΦe(v)f ′

e(v) (cf. eq. (2.17)).
In addition, a magnetic Hamiltonian on a quantum graph is completely deter-

mined (up to a unitary equivalence) by the values of the magnetic flux ΦL :=
Φe1(ℓe1) · . . . · Φen(ℓen) (mod 2π) through all its primary loops L = (e1, . . . , en) by
Stokes theorem. For a general treatment of magnetic perturbations on quantum
graphs we refer to [KoS03].

4. Quantum wave guide model

4.1. Branched quantum wave guides. Let Xε be a d-dimensional manifold. If
Xε has boundary, we denote it by ∂Xε. We assume that Xε and ∂Xε are disjoint,
i.e., Xε is the interior of Xε = Xε ∪ ∂Xε. In addition, we assume that Xε can be
decomposed into open sets Uε,e and Uε,v, i.e,

Xε =
⊎

e∈E

Uε,e ⊎
⊎

v∈V

Uε,v.

Notation 4.1. Here and in the sequel, A =
⊎

iAi means that Ai are open (in A),

mutually disjoint and the interior of
⋃

iAi equals A.

We have introduced this notion to avoid mentioning boundaries of dimension d−1
which are unimportant in an L2-decomposition. Note that it suffices to consider a
chart cover of Xε up to a set of measure 0 when dealing with L2-theory.

Denote the metric on Xε by gε. We assume that Uε,e and Uε,v are isometric to
(Ue, gε,e) and (Uv, gε,v), respectively, where the underlying manifolds are independent
of ε > 0. In addition, we assume that Ue = e × F where F is a compact m-
dimensional manifold with m := (d−1). The cross section manifold F has boundary
depending on whether Xε has a boundary or not.
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Notation 4.2. Here and in the sequel, the subscripts (·)ε,e and (·)ε,v (or sometimes
only (·)e and (·)v) denotes the restriction of objects living on Xε to Uε,e and Uε,v,
respectively. For example, gε,e := g↾Uε,e

or uv := u↾Uv
. We will switch between

different charts (e.g., Uε,v and Ue = e× F ∼= (0, ℓe)× F ) without mentioning. If no
confusion can occur, we also omit the subscripts.

Notation 4.3. As a Riemannian manifold, Ue carries the metric gε,e with ε = 1.

Similarly, Ûε,e = (Ue, ĝε,e) and Uv = (Uv, gv).

Motivated by our example in Section 2 we assume that the metric components
satisfy

gε,e= (1 +O(ε))2dx2 + ε2h, gε,v≈ ε2gv
ĝε,e= dx2 + ε2h, ĝε,v= ε2gv

(Hε1)

where gv and h are fixed metrics on Uv and F , respectively. For simplicity, we
suppose that volm F = 1. Clearly, we have

dUε,e = (1 +O(ε)) dÛε,e (4.1)

for the Riemannian densities w.r.t. gε,e and ĝε,e. To keep the model simple, we also
assume that an exterior edge neighbourhood Uε,e has exact product structure, i.e.,
that gε,e = ĝε,e for e ∈ Eext.

Notation 4.4. Here and in the following, bε = O(εα) means that |bεε−α| is bounded
by some constant c > 0 for 0 < ε < ε0. Similarly, bε ≈ b̂ε means that there exist
constants c± > 0 such that c−bε ≤ b̂ε ≤ c+bε for all sufficiently small ε > 0. The
constants c and c± are supposed to be independent of ε > 0, z ∈ Xε, e ∈ E and

v ∈ V ; e.g., gε,v ≈ ĝε,v means that bε = gε,v(z)(w,w) and b̂ε = ĝε,v(z)(w,w) satisfy

bε ≈ b̂ε uniformly in ε > 0, v ∈ V , z ∈ Uv and w ∈ T ∗
z Uv.

Condition (Hε1) means that on the edge neighbourhood, the metric gε,e differs
from ĝε,e only by a small longitudinal error. On the vertex neighbourhood, we are
closed to the ε-homothetic metric ĝε,v. Note that the embedded case of Section 2
is included in this setting. The estimate gε,v ≈ ε2gv allows us to consider also non-
homothetic vertex neighbourhoods Uε,v occurring e.g. if the edges are curved up to
the vertex, cf. [P06, Sec. 3.1]. We can indeed treat a slightly more general model
with off-diagonal terms in the metric (coming e.g. from non-constant radii along the
edge neighbourhood) and a slightly slower scaling at the vertex neighbourhood. We
refer to [EP05, P06] and keep the simpler model here, since it already covers the
main example, the embedded quantum graph.

The metric ĝε on Xε, close to the original one, is more adapted to the reduction
onto the quantum graph. Note that (Xε, ĝε) consists of straight cylinders (Ue, ĝε,e) of
radius ε and fixed length ℓe joined by ε-homothetic vertex neighbourhoods (Uv, ĝε,v).
The manifold (Xε, ĝε) does not form an ε-neighbourhood of an quantum graph
embedded in some ambient space, since the vertex neighbourhoods cannot be fixed
in the ambient space unless one allows slightly shortened edge neighbourhoods as
we described in the example in Section 2. Nevertheless, introducing ε-independent
coordinates simplifies the comparison of the Laplacian on the quantum graph and
the manifold.
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In addition, we assume the following uniformity conditions:

cvol := sup
v∈V

vold Uv <∞, λ2 := inf
v∈V

λN2 (Uv) > 0, (Hε2)

where λN2 (Uv) denotes the second (first non-zero) Neumann eigenvalue of (Uv, gv).
In addition, we assume that Xε is of bounded geometry, i.e., we have a global lower
bound on the injectivity radius and the Ricci curvature, namely

r0(ε) := inj radXε > 0, κ0(ε) := inf
x∈Xε

v∈TxXε\{0}

gε
(
Ric(x)v, v

)

gε(v, v)
> −∞. (Hε3)

Both constants will in general depend on ε. Roughly speaking, Condition (Hε2)
means that Uv remains small (cf. the discussion in [P06, Rem. 2.7]). The assump-
tion (Hε2)–(Hε3) are trivially satisfied once the vertex set V is finite. Assump-
tion (Hε3) still remains true for example if the set of “building blocks”, i.e., the
sets of isometry classes of {Uv}v∈V and {Ue}e∈E are finite. This assumption is only
needed in (C.23) in order to assure elliptic regularity.

For further purposes, we need a finer decomposition of Uv into

Uv =
⊎

e∈Ev

Av,e ⊎ U−
v (4.2)

where Av,e
∼= (0, ℓ0/2) × F with coordinates (x̌, y). Note that we have x ≈ εx̌

(if we extend the coordinate x to Av,e and x̌ to Ue), and therefore dx = εdx̌. In
particular, gε,v,e ≈ ε2(dx̌2 + h) where gε,v,e is the restriction of gε to Aε,v. Note that
this decomposition always exists. If necessary, we have to remove a small part (of
length O(ε)) of the adjacent edge neighbourhood and rescale the coordinates on the
shortened edge neighbourhood in order to obtain again ε-independent coordinates
on the edge neighbourhood.

Notation 4.5. We denote ∂eUv the boundary part of Uv meeting Ue and similarly,
∂vUe the boundary part meeting U v (if v ∈ ∂e). Similarly, ∂eU

−
v denotes the common

part of U−
v and Av,e.

4.2. Magnetic Hamiltonian on the quantum wave guide. We now determine
the assumptions on the magnetic and electric potentials. Here, the magnetic poten-
tial is a 1-form on Xε and qε is a function on Xε such that

αε ∈ L∞(T ∗Xε) and qε ∈ L∞(Xε), (4.3)

i.e., |αε|gε and |qε| are essentially bounded functions on Xε. As on the quantum
graph, we assume for simplicity that qε ≥ 0 and that αε, qε vanish on the exterior
edge neighbourhoods. To avoid any difficulties with the operator domain and elliptic
regularity in (C.23) we assume that αε is smooth.

In order to compare the magnetic and electric potential with the one on the
quantum graph, we introduce another magnetic and electric potential α̂ε and q̂ε,
respectively. The fact that α̂ε is no longer smooth does not matter since we use α̂ε

only as intermediate step in the verification of the closeness assumptions in Section 6.
Again, motivated by the loop example in Section 2 we assume that

αε,e= (ae +O(ε))dx+ εωε,e, αε,v≈ εαv

α̂ε,e= aedx, α̂ε,v= 0
(Hε4)
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where ae is the magnetic potential on the quantum graph and where

ωε,e = dFϑε,e = O(1), ϑε,e = O(1), ∂xϑε,e = O(1). (Hε5)

In particular, ωε,e is an exact 1-form on F and αv is a fixed 1-form on T ∗Uv.
For the electric potential, we assume that

qε,e= qe +O(ε), qε,v= O(1)
q̂ε,e= qe, q̂ε,v= 0

(Hε6)

where qe is the electric potential on the quantum graph. From these assumptions,
it is clear, that global bounds on the quantum graph potentials a and q are enough
to ensure that αε and qε are bounded.

We define the magnetic Hamiltonian Hε acting in the the Hilbert space Hε :=
L2(Xε, gε) (with the norm ‖·‖ and inner product 〈·, ·〉) via the quadratic form

hε(u) := ‖Dε,eu‖2 + 〈u, qεu〉, (4.4)

where Dε,e := (d− iαε). Denote by dε the quadratic form given by hε without field,
i.e, αε = 0 and qε = 0. The proof of the following lemma is straightforward (cf.
Lemma 3.3):

Lemma 4.6. Assume that αε ∈ L∞(T ∗Xε) and qε ∈ L∞(Xε), i.e., |αε|gε and qε are
essentially bounded functions on Xε. Then hε and dε are closed forms on

H1
ε := H

1(Xε) :=
{
u ∈ L2(Xε)

∣∣ |du|gε ∈ L2(Xε)
}

(4.5)

where the derivative is understood in the weak sense. Furthermore, the norms ‖·‖1 :=
‖·‖dε and ‖·‖hε satisfy ‖u‖dε ≈ ‖u‖hε (independently of ε). In particular, the norms
are equivalent.

We denote by Hε and ∆ε the corresponding operators associated to hε and dε.
Note that ∆ε = ∆Xε

≥ 0 is the usual (Neumann) Laplacian on Xε. Since we
assumed that αε is smooth also the operator domains of Hε and ∆ε agree, namely
they equal

H2
ε := H

2(Xε) :=
{
u ∈ L2(Xε)

∣∣ |du|gε,∆εu ∈ L2(Xε), ∂nu = 0 on ∂Xε

}
. (4.6)

Note that we include the Neumann boundary condition in the definition of the
second order Sobolev space if ∂Xε 6= ∅.
4.3. Intermediate product model. When comparing the magnetic Laplacian Hε

on the branched quantum wave guide with the magnetic Laplacian H on the graph,
it will be convenient to use also the magnetic Laplacian Ĥε defined via the hat-
quantities:

Notation 4.7. Here and in the sequel, the label ·̂ refers to the product metric ĝε
and the simplified potentials α̂ε and q̂ε defined as above. Similarly, a Hilbert space
defined via ĝε will carry the label ·̂, e.g., Ĥε := L2(Xε, ĝε) with norm and inner

product ‖·‖̂, 〈·, ·̂〉, resp. The quadratic form ĥε is defined as in (4.4) but with ĝε, α̂ε

and q̂ε, instead.

The main reason why we introduced the intermediate model operator Ĥε on Ĥε

is to split the reduction onto the quantum graph into two steps: In the first step,
we discard the error terms coming from the failure of the metric to be an exact
product as well as from the transverse magnetic and electric potential terms. Once
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having established some closeness estimates on Hε and Ĥε in Lemma 4.8, we will
show in Section 6.2 that Hε approaches the quantum graph Hamiltonian H using
the intermediate operator Ĥε; this will simplify the estimates used there.

Using our assumptions on the metric and the fields, we have (taking Notation 4.2
into account):

‖u‖2ε,e=
∫
Uε,e

|u|2 dUε,e, ‖u‖2ε,v=
∫
Uε,v

|u|2 dUε,v,

‖u‖̂2ε,e= εm
∫
Ue

|u|2 dF dx, ‖u‖̂2ε,v= εd
∫
Uv

|u|2 dUv,
(4.7)

hε,e(u) =
∫
Uε,e

[
gxxε,e

∣∣(De+O(ε))u|2

+
1

ε2
∣∣(dF − iεωε,e)u

∣∣2
h
+ qε,e|u|2

]
dUε,e,

ĥε,e(u) = εm
∫

Ue

[
|Deu|2 +

1

ε2
|dFu|2h + qe|u|2

]
dF dx,

(4.8)

hε,v(u) =

∫

Uε,v

[
|(d− iαε,v)u|2gε,v + qε,v|u|2

]
dUε,v,

ĥε,v(u) = εd−2

∫

Uv

|du|2gv dUv

(4.9)

where De := ∂x − iae and gxxε,e := gε,e(dx, dx) = 1 + O(ε) due to (Hε1). To discard
the transversal magnetic potential ωε,e, we need to introduce an approximate gauge
function, namely

Θε,e(x, y) := eiϑε,e(x,y) (4.10)

Θε,v(z) :=

{
χv,e(x̌) + (1− χv,e(x̌))Θε,e(v, y), z = (x̌, y) ∈ Av,e

1, z ∈ U−
v

where χv,e equals 0 on ∂eUv and 1 on ∂eU
−
v . The function ϑε,e was introduced

in (Hε5); we also recall (4.2) for a definition of Av,e, U
−
v , x̌, and Notation 4.5 for the

definition of the boundary ∂eUv etc. In particular, we can choose χv,e in such a way
that |χ′

v,e| ≤ 4/ℓ0 (since the length of Av,e is ℓ0/2). Note that the “gauge” function
Θε is unitary only on Uε,e since |Θε,e| = 1, while on the vertex neighbourhood we
have just |Θε,v| ≤ 1. Note, in addition, that the components Θε,e give together a
global Lipschitz-continuous function Θε. We will need this fact in Section 6.2. A
simple estimate shows that

‖Θε,e − 1‖∞= O(ε), dΘε,e = iε(∂xϑε,e + ωε,e)Θε,e,
‖Θε,v − 1‖∞= O(ε), |dΘε,v|gε,v = O(1)

(4.11)

where e.g. O(ε) = ε‖ϑε,e‖∞ and O(1) = 4‖ϑε,e‖∞/ℓ0 + ‖|ωε,e|h‖∞ (cf. (Hε5)). Now
we are going to provide some estimates which will be used when comparing the
Hamiltonian on the quantum wave guide with the one on the quantum graph:

Lemma 4.8. We have
∣∣〈u, û〉̂ε,e − 〈u, û〉ε,e

∣∣ = O(ε)‖u‖ε,e‖û‖̂ε,e (4.12)
∣∣ĥε,e(u, û)− hε,e(u,Θε,eû)

∣∣ = O(ε)‖u‖dε,e‖û‖̂d̂ε,e (if dF û = 0) (4.13)
∣∣hε,v(u,Θε,vû)

∣∣ = O(1)‖u‖dε,v‖û‖̂d̂ε,v (4.14)
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for all functions u, û in the appropriate spaces. Here, O(ε) and O(1) depend only
on the error terms O(ε) and O(1) in (H0) and (Hε).

Proof. The inner product estimate follows immediately from (4.1). For the second
assertion note that

Dε,e(Θε,eû) =
(
∂xû− i(ae +O(ε)− ε∂xϑε,e)û

)
Θε,edx

where the y-component vanishes due to the fact that dF û = 0 and that dFΘε,e =
iεΘε,eωε,e cancels the transversal magnetic potential. Furthermore, the difference of
the dx-components is

DeuDeû− (1 +O(ε))(Deu+ iO(ε))u (De(Θε,eû) + iO(ε)Θε,eû)

= O(ε)(∂xu+ u)(∂xû+ û)

where 1+O(ε) is the error factor in the metric gε,e and O(ε) in the last line depends
only on the errors given in assumptions (H0) and (Hε). In addition, the y-component
does not occur. The last estimate follows in a similar way using |dΘε,v|gε,v = O(1)
(cf. (4.11)). �

The requirement dF û = 0 in the second estimate is due to the fact that we used u
instead of Θε,eu in ĥε,e. This is exactly the situation we will need in Section 6.2. We
will also see that our rough estimate O(1) in (4.14) is already sufficient to ensure
that Hε approaches the quantum graph Hamiltonian H .

5. Complex dilation

Next we are going to explain the complex dilation argument. We use an exterior
scaling on the external edges only.

5.1. Space decomposition. We start with the space decomposition into an inte-
rior and exterior part. Recall that we assumed that each edge neighbourhood of
an external edge e ∈ Eext has exact product structure (i.e., gε,e = ĝε,e) and no field
(i.e., αε,e = 0 and qε,e = 0).

Notation 5.1. Here and in the sequel, the subscript (·)int stands for the internal
component and (·)ext for the external component of an element in the Hilbert space,
respectively, for the restriction to the subspace Hint of a quadratic form or an op-
erator. We often omit the label (·)int or (·)ext on a function, if it is clear (e.g., we
write hint(f) instead of hint(fint) etc.).

To avoid difficulties with a cut into an internal and external part at a vertex, we
can introduce artificial vertices of degree 2 on the external edges. Note that such
vertices do not change the domain of the graph Hamiltonian since a vertex of degree
2 with free boundary conditions means nothing else then continuity of a function
and its derivative at the vertex (cf. (3.5)). Remember that there is no potential on
the external edges.

Without loss of generality we can therefore assume that each boundary vertex
∂−e of an external edge e ∈ Eext has degree 2 and distance ℓ0 from any other vertex
in V . If this were not the case for an external edge e, just introduce a new boundary
vertex at distance ℓ0 from ∂−e on e.
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We can also assume that the manifoldXε has product structure near the boundary
vertices since we assumed that the edge neighbourhood Uε,e has exact metric product
structure for external edges e. This means in particular, that we do not associate a
vertex neighbourhood to a boundary vertex.

We remind the user that we used a different decomposition in Section 2.3. For
computational reasons, it is easier to keep the number of vertices minimal on a
quantum graph, but for our purposes, it is easier to be away from the inner vertices.
From an abstract point of view, of course, both models lead to the same definition
of resonances, cf. Lemma 5.10.

We denote by X0,int := (V,Eint, ℓ) the internal and by X0,ext := (Γ0, Eext, ℓ)
the external metric graph. Note that X0,ext corresponds to the disjoint union of
|Γ0| = |Eext| many half-lines. The boundary vertices Γ0 form the common boundary
of X0,int and X0,ext.

Similarly, we decompose the manifold Xε into

Xε,int :=
⊎

e∈Eint

Uε,e ⊎
⊎

v∈V

Uε,v and Xε,ext :=
⊎

e∈Eext

Uε,e

(remind Notation 4.1) and denote the common boundary of Xε,int and Xε,ext by Γε.
Again, Xε,ext consists of |Eext| many disjoint half-infinite cylinders (0,∞)× Fε.

Notation 5.2. For a boundary vertex v = ∂−e ∈ Γ0 with external edge e ∈ Eext we
set

fint(v) := fe(−0), uint(v, ·) := ue(−0, ·)
fext(v) := fe(+0), uext(v, ·) := ue(+0, ·)
f ′
int(v) := f ′

e(−0), u′int(v, ·) := ∂xue(−0, ·)
f ′
ext(v) := f ′

e(+0), u′ext(v, ·) := ∂xue(+0, ·)
where we identify a neighbourhood of v with a neighbourhood of 0 ∈ R (positive
numbers corresponding to the external part) and where g(±0) denotes the left/right
limit. Note that the sign convention for f ′

int(v) differs from the one for internal
vertices in (3.6).

We split the Hilbert space H and Hε into two components, namely we take

H = Hint ⊕Hext (5.1)

and the analogous decomposition for Hε where

Hint= L2(X0,int), Hext= L2(X0,ext)
Hε,int= L2(Xε,int), Hε,ext= L2(Xε,ext)

(5.2)

on the quantum graph and the branched quantum wave guide, respectively.

5.2. Dilated operators. Now we introduce the exterior dilation operator. For
θ ∈ R we define by

Φθ
e(x) := eθx, x > 0

a non-smooth flow on an external edge e ∈ Eext. Clearly, Φθ
e extends (by identity)

to a (non-smooth) flow on the graph X0. Similarly, Φθ
ε,e(x, y) := (Φθ

e(x), y) defines a

non-smooth flow on the external edge neighbourhood, again extended to a flow Φθ
ε

on Xε. For a smooth version of exterior dilation we refer to [HS89, HS96].
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Remark 5.3. The smooth dilation argument seems to be less technical, at least, one
does not have to deal with θ-dependent domains (see the appendix). The price to
pay is a more complicated expression of the dilated operator between the interior
and exterior part. Since most of the technical details are hidden in the abstract
criterion, the verification of the convergence assumptions for the non-smooth dilation
is simpler. Moreover, on a graph it is in a sense natural to have a “constant” scaling
at each edge. In addition, both dilation arguments leads to the same definition of
resonances (cf. Lemma 5.10).

On an edge e ∈ E we have then the following group action

Uθf := (detDΦθ)1/2(f ◦ Φθ) (5.3)

where

(detDΦθ)1/2 =

{
1 on X0,int,

eθ/2 on X0,ext

and similarly for Uθ
ε . Clearly, Uθ and Uθ

ε are 1-parameter unitary groups with
respect to θ ∈ R, acting non-trivially on the external part only.

Notation 5.4. For a quadratic form h and an operator H in H we set

hθ(f) := h(U−θf) and Hθ := UθHU−θ

with domains dom hθ := Uθ(dom h) and domHθ := Uθ(domH) for real θ.

Clearly, h0 = h and H0 = H . A simple calculation shows that for an external
edge e ∈ Eext we have

hθe(f) = e−2θhe(f), (Hθf)e = −e−2θf ′′
e (5.4a)

on the quantum graph and

hθε,e(u) = e−2θ‖∂xu‖2ε,e +
1

ε2
∥∥|dFu|h

∥∥2

ε,e
,

(Hθ
εu)e = −e−2θ∂xxue +

1

ε2
∆Fue (5.4b)

on the manifold. Of course, the action on internal edges remains unchanged. On
the quantum graph, the domains are given for a real θ by

H1,θ := dom hθ =
{
f ∈ H

1(X0,int)⊕ H
1(X0,ext)

∣∣ fext = eθ/2fint on Γ0

}
(5.5a)

and

H2,θ := domHθ =
{
f ∈ H

2(X0,int)⊕ H
2(X0,ext)

∣∣∣

fext = eθ/2fint, f
′
ext = e3θ/2f ′

int on Γ0.
}

(5.5b)

Here,

H
1(X0,int) := C(X0,int) ∩

⊕

e∈Eint

H
1(e) (5.6a)

and

H
2(X0,int) :=

{
f ∈ C(X0,int) ∩

⊕

e∈Eint

H
2(e)

∣∣ ∑

v∈Ev

Def = 0, v ∈ V
}

(5.6b)
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on the internal part and

H
1(X0,ext) :=

⊕

e∈Eext

H
1(e) and H

2(X0,ext) :=
⊕

e∈Eext

H
2(e) (5.6c)

on the external part. Note that due to Assumption (H03) we have H
k(X0,ext) ∼=

H
k(0,∞)|Eext|.
On the manifold, we have a very similar definition for H1,θ

ε and H2,θ
ε , with first

order Sobolev spaces H
1(Xε,•) defined as in (4.5) and second order Sobolev spaces

and second order Sobolev spaces

H
2(Xε,•) :=

{
u↾Xε,•

∣∣ u ∈ H
2(Xε)

}
(5.7)

where H
2(Xε) already includes the Neumann boundary conditions on ∂Xε (if non-

empty), i.e., we impose these boundary conditions only on ∂Xε ∩Xε,•, not on Γε.
Roughly speaking, the domain of the quadratic form consists of functions having a

jump of magnitude eθ/2 from the internal to the external part. The operator domain
in addition requires that the derivative along the common boundary of the internal
and external part has a jump of magnitude e3θ/2. In particular, even the quadratic
form domain depends on θ.

The expression of Hθ now serves as a generalization for θ in the strip Sϑ = { θ ∈
C | |Im θ| < ϑ/2 } where 0 ≤ ϑ < π. We call Hθ the complex dilated Hamiltonian,
and similarly for Hθ

ε . We will show in Appendix C that {Hθ}θ is a self-adjoint
family with spectrum contained in the common sector Σϑ. In addition, we show
that Rθ(z) := (Hθ − z)−1 is an analytic family in θ (for z not in the ϑ-sector Σϑ =
{ z ∈ C | | arg z| ≤ ϑ }, cf. Lemmas C.12 and C.13). This is a highly non-trivial fact
since Hθ is neither of type A nor of type B, i.e., both sesquilinear form and operator
domain depend on θ even for real θ. In other words, the non-smooth exterior scaling
as defined here is a very singular perturbation of the operator H = H0. The same
statements hold for the complex dilated Hamiltonian Hθ

ε on Hε.
The sesquilinear form hθ associated with the operator Hθ is defined via

hθ(f, g) := 〈f,Hθg〉 = hint(fint, gint) + e−2θhext(fext, gext) (5.8)

for f ∈ H1,θ and g ∈ H2,θ with domains as in (5.5), where

hint :=
⊕

e∈Eint

he, and hext :=
⊕

e∈Eext

he.

Similarly, the sesquilinear form hθε associated to Hθ
ε is

hθε(u, w) := hε,int(uint, wint) + e−2θhε,ext(uext, wext) (5.9)

for u ∈ H1,θ and w ∈ H2,θ. We show in Lemma C.14 how these sesquilinear forms

can be extended to bounded sesquilinear forms on H1,θ × H1,θ and this is actually
all we need in order to show the convergence in the appendices.

Remark 5.5. We naturally have to introduce the sesquilinear forms on mixed pairs

H1,θ × H1,θ in order to formally preserve the analyticity in θ. This is exactly the
setting we need in order to apply our abstract convergence result provided in Ap-
pendix B.

The difficulty here is to find a good norm on the natural quadratic form domain
H1,θ. The corresponding expression defined via qθ(f) := 〈f,Hθf〉 contains boundary
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terms of the form f(v)f ′(v) (on the quantum graph) which are not obviously defined
on H1,θ.

In addition, it seems to be very difficult to estimate errors in terms of the corre-
sponding norm ‖·‖qθ . There has been some confusion on the quadratic form domain
on H1,θ due to the anti-linearity of a sesquilinear form in its first argument (cf. the
Mathematical Reviews entry for [GY83]).

To avoid these difficulty, we use a simpler norm on H1,θ related with the un-
perturbed form h by a simple multiplication operator. In this case, we have to
assure that the corresponding spaces behave like a “natural” scale of Hilbert spaces
associated to Hθ (cf. Appendix A).

5.3. Essential and discrete spectrum. We collect some facts about the family
of dilated operators {Hθ}θ. Note that we cannot directly apply the perturbation
theory of such operators developped in [RS80, XIII.10] since the form domain of Hθ

(cf. (5.5a)) contains discontinuous functions and is therefore not included in the form
domain H1 = H

1(Xε) of the free operator, even not for real θ 6= 0. In particular, we
cannot directly use the H±1-scale of Hilbert spaces associated to the free operator.
Nevertheless, most of the conclusions of [RS80, XIII.10] remain true since (Hθ−z)−1

depends analytically on θ ∈ Sϑ for z /∈ Σϑ as we will see in Appendix C.
We first determine the essential spectrum of Hθ and Hθ

ε . Note that the essential
spectrum is determined by the behaviour of Xε at infinity. Namely, it does not
matter if we change the operator on a compact set due the invariance of the essential
spectrum under compact perturbations (decomposition principle). Recall that we
assumed in (H03) that we only have finitely many external edges.

Proposition 5.6. The essential spectrum is given by

σess(H
θ) \ (0,∞) = e2θ[0,∞).

If, in addition, Eint is also finite (i.e., the internal graph X0,int is compact), then

σess(H
θ) = e−2θ[0,∞).

Similarly, we can prove on the manifold:

Proposition 5.7. The essential spectrum is given by

σess(H
θ
ε ) \ (0,∞) =

1

ε2

⋃

k∈N

λNk (F ) + e−2θ[0,∞).

If, in addition, Eint is also finite, then

σess(H
θ
ε ) =

1

ε2

⋃

k∈N

λNk (F ) + e−2θ[0,∞).

In particular, since λN1 (F ) = 0, for any bounded set B ⊂ C \ (0,∞),

σess(H
θ
ε ) ∩B = e−2θ[0,∞) ∩B

provided ε is small enough.

Next, we make some general observations on the spectrum of Hθ
ε (ε ≥ 0) which

are true for both models, the quantum graph and manifold model:

Proposition 5.8. Assume that Eint is finite.
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(i) The spectrum σ(Hθ
ε ) depends only on Im θ and σ(Hθ

ε ) = σ(Hθ
ε ).

(ii) The discrete spectrum σd(H
θ
ε ) is locally constant in θ, i.e., if 0 < Im θ1 ≤

Im θ2 < ϑ/2 then σd(H
θ1
ε ) ⊂ σd(H

θ2
ε ).

(iii) We have σ(Hθ
ε ) ∩ [0,∞) = σp(Hε) where σp(Hε) denotes the set of eigen-

values of Hε (which are embedded in the continuous spectrum).
(iv) The singular continuous spectrum of Hε is empty.
(v) There is a subspace A satisfying (5.10) such that Ψf (z) := 〈f, (Hε − z)−1f〉

has a meromorphic continuation onto the Riemann surface defined by w →√
w if ε = 0 resp. w →

√
w − λNk (F )/ε

2, k ∈ N if ε > 0.
(vi) λ ∈ Σϑ is a discrete eigenvalue of Hθ

ε iff there exists f ∈ Hε such that the
meromorphic continuation of Ψf has a pole in λ.

Proof. The proof follows closely the proof of [RS80, Thm. XIII.36], so we only com-
ment on the differences. We omit the dependency on ε here. The basic ingredient in
the proof is first, the analyticity of the family {Hθ}θ in the sense that the resolvents
are analytic in θ, and second, the unitary equivalence

Hθ1+θ2 = Uθ1Hθ2U−θ1 (5.10)

for real θ1 and complex θ2 ∈ Sϑ. This unitary equivalence holds a priori only for
real θ1 and θ2. But since both sides are analytic in θ2, equality (5.10) extends
therefore to complex θ2 ∈ Sϑ. From this and the fact that {Hθ}θ is a self-adjoint
family, (i) follows immediately. In a similar way, (ii) follows noting the fact that an
eigenvalue of Hθ depends analytically on θ since (Hθ + 1)−1 is analytic (cf. [Ka66,
Thm. VII.1.8]). In order to prove (iii) and (iv) as in [RS80], we need the notion of
analytic vectors with respect to the unitary group Uθ (namely w.r.t. its self-adjoint
generator given by A := (x∂x + ∂xx)i/2 on each external edge). The subspace of
analytic vectors is defined as

A :=
{
f ∈

⋂

k∈N

domAk
∣∣∣
∑

n

tn

n!
‖Anf‖ <∞

}

for some t ≥ ϑ/2. It then follows that
{
Uθ(A) is dense in H and

θ 7→ Uθf extends analytically as map Sϑ → L2(Xε)
(5.11)

for all f ∈ A using (5.10) (cf. [RS80, Ch. X.6]). The analytic extension is then

f θ := Uθf =
∑

n

θn

n!
(iA)nf.

To prove (v) we just note that a meromorphic continuation of Ψf is given by

Ψθ
f(z) = 〈f θ, (Hθ − z)−1f θ〉

since we have Ψ0
f (z) = Ψθ(f) a priori only for real θ but by analyticity also for

θ ∈ Sϑ. For (vi) we argue as follows: If g is an eigenvector of Hθ with eigenvalue λ
then let f := U−θg. Again, by analyticity, we have Uθf = g not only for real, but
also for complex θ. In particular, Ψf has a pole at λ. On the other side, if Ψf = Ψθ

f

has a pole at λ, then 〈f θ,1{λ}f
θ〉 6= 0 and in particular, f θ is an eigenvector of

Hθ. �
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Motivated by (iii) and (vi) of the last lemma, we make the following definition.

Definition 5.9. A resonance of Hε is a non-real eigenvalue of the dilated operator
Hθ

ε for some θ ∈ Sϑ and 0 < ϑ < π.

Finally, we assure that our definition of resonances does not depend on where we
cut the spaces into an internal and external part (cf. also [HeM87]):

Lemma 5.10. The definition of resonances Definition 5.9 does not depend on where
we cut the graph and the manifold into an external and internal part. Furthermore,
the definition of resonances is the same if we use a smooth flow as in [HS89].

Proof. Denote by Uθ and Ũθ the exterior dilation operators associated to the flow

Φθ and Φ̃θ, respectively (cf. (5.3)), where the flow is either a (non-smooth) flow
with cut at some point x0 ≥ 0 on the external edge or smooth. The main point
is to show that there exists a subspace A which satisfies (5.11) for both Uθ and

Ũθ. But since we have Ax0
= ((x− x0)∂x + ∂x(x − x0))i/2 = A0 for the generator,

the set of analytic vectors of A0 forms such a subspace. Then an eigenvalue of the
dilated operator with respect to Uθ or Ũθ is a pole of the meromorphic continuation
of Ψf(z) = 〈f, (H − z)−1f〉 for some f ∈ A, and the latter definition is clearly
independent of the dilation operators. �

6. Closeness of graph and wave-guide model

6.1. Quasi-unitary operators. We now define quasi-unitary operators mapping

from H to H̃ and vice versa, as well as their analogues on the compatible scales of
order 1, namely H1,θ and H̃1,θ (cf. Definition B.2 and Definition B.3). Here,

H := L2(X0) H̃ := Hε = L2(Xε) (6.1)

and we define H1,θ and H̃1,θ as in (5.5a), but now for complex θ ∈ Sϑ. Using the
map

T θ : H −→ H, T θf := fint ⊕ e−θ/2fext

T̃ θ : H −→ H, T̃ θu := uint ⊕ e−θ/2uext,
(6.2)

we have H1,θ = T−θ(H1) where H1 = dom h = H
1(X0) is the quadratic form domain

of the undilated Hamiltonian. On H1,θ, we use the (complete) norm

‖f‖1,θ := ‖T θf‖1 (6.3)

where ‖·‖1 is the norm associated to d. Similarly, we define T̃ θ and a norm on H̃1,θ

via ‖u‖1,θ := ‖T̃ θu‖1 where ‖·‖1 is the norm associated to the free quadratic form
dε. We show in Appendix C, namely in Lemmas C.14–C.16 that we obtain a scale
of order 1 in the sense of Definition A.4. In particular, we also show in Appendix C

that the various constants C̃θ
i in Appendices A and B associated to the manifold

case are ε-independent.

Let J : H −→ H̃ be given on the components of Xε by

(Jef)(x, y) := ε−m/2fe(x) and (Jvf) := 0, (6.4)
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i.e., as an extension independent of the transverse variable. Recall that d = m+1 ≥ 2
is the dimension of the manifold Xε. Next we define J1 : H1,θ −→ H̃1,θ by

(J1
e f)(x, y) := ε−m/2Θε,e(x, y)fe(x),

(J1
vf)(z) := ε−m/2Θε,v(z)f(v)

(6.5)

for internal vertices v ∈ V \ Γ0 where Θε is given in (4.10). Note that we did not
associate a vertex neighbourhood to the boundary vertices since they have degree 2.
Note in addition that the latter operator is well defined: the function J1f matches
along the different internal components (recall that Θε is a Lipschitz function on
Xε) and has a jump of relative magnitude eθ/2 from the internal to the external
part. Finally, f(v) is defined for H1-functions (cf. (6.8)).

Concerning the mappings in the opposite direction, we first introduce the following
averaging operators

(Neu)(x) :=

∫

F

ue(x, y) dF (y) and Cvu :=
1

vold Uv

∫

Uv

u dUv

for u ∈ H̃ = L2(Xε). Recall that volm F = 1. The map in the opposite direction

J ′ : H̃ −→ H is given by

(J ′u)e(x) := εm/2(Neu)(x), x ∈ e. (6.6)

Furthermore, we define J ′
1 : H̃1,θ −→ H1,θ by

(J ′
e
1u)(x) := εm/2

[
Neu(x) +

∑

v∈∂e,v/∈Γ0

ρv,e(x)
[
Cvu−Neu(v)

]]
(6.7)

for x ∈ e on an internal edge e and J ′
e
1u := J ′

eu for an external edge e. Here ρv,e
is a smooth cut-off function such that ρv,e(v) = 1 and ρv,e(x) = 0 if d(v, x) ≥ ℓe/2.
Moreover, J ′

e
1u(v) = εm/2Cv(u) so that J ′

e
1u fits to a continuous function at each

internal vertex v ∈ V \ Γ0 of the the quantum graph. In addition J ′
e
1u has a jump

of magnitude eθ/2 at the boundary Γ0 since we assumed that at a boundary vertex
v ∈ Γ0 there is no additional vertex neighbourhood. The role of the conjugation
will become clear in Appendix B.

Note that the definition of J , J ′ and J ′
1 are the same as in the absence of the

fields, α = 0 and q = 0 (cf. e.g. [KuZ01, EP05, P06]), while the definition of J1 has
an additional phase factor due to the magnetic potential.

6.2. Closeness assumptions. Now we are in position to demonstrate that the two
Hamiltonians are close to each other:

Theorem 6.1. Assume (H01)–(H04) on the quantum graph X0 and (Hε1)–(Hε6) on
the manifold Xε. Then the dilated magnetic Hamiltonians Hθ

ε and Hθ are O(ε1/2)-
close in the sense of Definition B.3 where the error depends only on the constants
and errors in the hypotheses (except on r0(ε) and κ0(ε)), and on Re θ.
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Proof. We start with Condition (B.5) of the closeness assumptions: we estimate

‖Jf − J1f‖2

= (1 +O(ε))
∑

e∈E

∫

Ue

|Θε,e − 1|2|fe|2 dF dx+O(ε)
∑

v∈V

∫

Uv

|Θε,v|2 dUv|f(v)|2

= O(ε)
∑

e∈E

‖fe‖2e +O(ε)cvol
∑

v∈V

|f(v)|2 = O(ε)
∑

e∈E

(
‖fe‖2e + ‖f ′

e‖2e
)

where we have used (4.11) and our assumptions (H02), (Hε1), (Hε2) and (Hε5). In
addition, we have used the standard Sobolev estimate

|f(0)|2 ≤ 4

ℓ0

(
‖f‖2(0,ℓ0/2) + ‖f ′‖2(0,ℓ0/2)

)
. (6.8)

which implies ∑

v∈V

|f(v)|2 ≤ 4

ℓ0

∑

e∈E

(
‖fe‖2e + ‖f ′

e‖2e
)

(6.9)

by choosing an edge e ∈ Ev for each vertex v. Clearly, we can estimate the right-
hand side by ‖f‖1,θ = ‖T θf‖1 and we obtain ‖Jf − J1f‖ = O(ε1/2)‖f‖1,θ where
O(ε1/2) depends now also on Re θ.

Next we have

‖J ′u− J ′1u‖2 =
∑

e∈E

∑

v∈∂e

εm
∫

e

ρ2v,e dx |Cvu−Neu(v)|2

since the supports of ρv,e, v ∈ ∂e, are disjoint by construction. As in [EP05,
Lemma 5.5] (cf. also [P06, Lem. 2.10] for the non-compact case) we can show

εm|Cvu−Neu(v)|2 = O(ε)‖du‖2Uε,v

for u ∈ H
1(Uε,v), v ∈ ∂e. Here O(ε) depends on the errors in (Hε1), on λ2 in (Hε2)

and on ℓ0. Reordering the sum
∑

e∈E

∑
v∈∂e ‖u‖2Uε,v

, we gain a factor d0 (the maximal

degree of a vertex, cf. (H01)). In particular,

‖J ′u− J ′1u‖2 = O(ε)d0
∑

v∈V

‖du‖2ε,v = O(ε)‖u‖2
1,θ

for u ∈ H̃1,θ so that ‖J ′u− J ′1u‖ = O(ε1/2)‖u‖1,θ where again the error termO(ε1/2)
depends also on Re θ.

Assumption (B.2) follows easily from (4.12), i.e.,

|〈Jf, u〉 − 〈f, J ′u〉| ≤ O(ε)‖f‖‖u‖
for f ∈ L2(X0) and u ∈ L2(Xε). In the same way, Assumption (B.4) follows from

‖Jf‖2 ≤ (1 +O(ε))‖f‖2 and ‖J ′u‖2 ≤ (1 +O(ε))‖u‖2.
Assumption (B.3) follows from J ′Jf = f and

‖JJ ′u− u‖2 =
∑

e∈E

‖Neu− u‖2Uε,e
+
∑

v∈V

‖u‖2Uε,v
.

Now, as in [EP05, Lemmas 3.1, 4.4] (cf. [P06, Lem. 2.11] for the non-compact case),
we can show

‖Neu− u‖2Uε,e
≤ O(ε2)‖du‖2Uε,e
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where O(ε2) depends on the error in (Hε1) and on λN2 (F ). Next we have

‖u‖2Uε,v
= O(ε)(‖u‖2

U+
ε,e

+ ‖du‖2
U+
ε,e
)

(cf. [EP05, Cor. 5.8] or [P06, Lem. 2.12] for the non-compact case)) with an error
depending on ℓ0 and the errors in (Hε1) and (Hε2). Here,

U+
ε,v = Uε,v ⊎

⊎

e∈Ev

Uε,e

is the vertex neighbourhood together with its adjacent edge neighbourhoods. The
last two estimates mean that a function orthogonal to the constant transversal func-
tion or being concentrated at a vertex neighbourhood cannot be spectrally bounded.
Summing all these error terms, we obtain ‖JJ ′u− u‖ = O(ε1/2)‖u‖1 for u ∈ H1.

We finally prove (B.6’) in our model. On each internal edge, we have the contri-
bution

hθe(J
′
e
1u, f)− hθε,e(u, J

1
e f) = hθe(J

′
e
1u, f)− ĥθε,e(u, Jef) +O(ε)‖u‖dε,e‖f‖de ,

where we used (4.13). Note that J1
e f = Θε,eJef , dFJef = 0 and ‖Jef‖d̂ε,e = ‖f‖de

and that O(ε) = 0 if e ∈ Eext. Recall that ‖u‖2dε,e = ‖u‖2ε,e + ‖du‖2ε,e and similarly
for the other norms. Now

hθe(J
′
e
1u, f)− ĥθε,e(u, Jef) =

∑

v∈∂e,v/∈Γ0

〈Deρv,e, f〉ε,eεm/2
(
Cvu−Neu(v)

)

since the longitudinal terms cancel due to the simple form of ˆhθε,e and dFJef = 0. On

external edges we even have hθe(J
′
e
1u, f) = hθε,e(u, Jef) since Uε,e has exact product

structure there.
The vertex contribution is

hθε,v(u, J
1
vf) = ε−m/2hθε,v(u,Θε,vf(v)) = O(ε1/2)‖u‖dε,v |f(v)|,

where we have used (4.14). Note that J1
v f = ε−m/2Θε,vf(v), df(v) = 0, and therefore

‖f(v)‖d̂ε,v = εd/2|f(v)|.
Finally, summing up all the error terms, we obtain (B.6’) with δ = O(ε1/2), again

depending also on d0 and Re θ. �

Using the additional information of Theorem C.17 we can conclude from Appen-
dix B our main result:

Theorem 6.2. Let 0 ≤ ϑ < π and θ ∈ Sϑ, i.e., |Im θ| < ϑ/2. Assume in addi-
tion (H01)–(H04) on the quantum graph X0 and (Hε1)–(Hε6) on the manifold Xε. If
λ(0) denotes a resonance of the magnetic Hamiltonian H0 with a multiplicity m > 0
then for a sufficiently small ε > 0 there exist m resonances λ1(ε), . . . , λm(ε) of Hε,
satisfying Imλj(ε) < 0 and not necessarily mutually different, which all converge to
λ(0) as ε → 0. The same is true in the case when λ(0) is an embedded eigenvalue
of H0, except that only Imλj(ε) ≤ 0 holds in general.

Note that if the internal part is compact (i.e., if there are only finitely many
vertices), then the assumptions (H01)–(H02) and (Hε2) are automatically fulfilled.

We can even conclude stronger results from Appendix B using the identification
maps J and J ′ defined in (6.4) and (6.6), namely the resolvent convergence and the
convergence of the eigenprojections.
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Theorem 6.3. Under the same assumptions as in the previous theorem, we have

‖J(Hθ
0 − z)−1 − (Hθ

ε − z)−1J‖ = O(ε1/2), (6.10a)

‖J(Hθ
0 − z)−1J ′ − (Hθ

ε − z)−1‖ = O(ε1/2) (6.10b)

for z /∈ Σϑ. The error depends on the same quantities as the error in Theorem 6.1,
and also on ϑ and z.

In addition, suppose that λθ(0) is a discrete eigenvalue of Hθ
0 . Let D be an open

disc such that D contains λ but no other spectral point of Hθ
0 . Then (6.10) holds

when the resolvent is replaced by the spectral projection 1D(H
θ
0 ) resp. 1D(H

θ
ε ). If the

multiplicity of λθ(0) is 1 with normalised eigenfunction ψθ
0 (a resonance or eigen-

state for H0) then there exists a normalised eigenfunction ψθ
ε (a resonance or eigen-

state for Hε) on the manifold such that

‖Jψθ
0 − ψθ

ε‖ = O(ε1/2) and ‖J ′ψθ
ε − ψθ

0‖ = O(ε1/2).

As a by-product, we also have shown that the spectrum of a magnetic Hamiltonian
on a non-compact manifold converges to the associated non-compact quantum graph
Hamiltonian provided our uniformity assumptions are fulfilled. In particular, we
could approximate fractal spectra such as studied, e.g., in [BGP07] as we have
mentioned in the introduction.

Theorem 6.4. Assume (H01)–(H04) on the quantum graph X0 and (Hε1)–(Hε6)
on the manifold Xε. Then the spectrum of Hε converges to H0 on any finite energy
interval. The same is true for the essential and discrete spectrum.

Proof. The spectral convergence is a direct consequence of the closeness, as it follows
from the general theory developed in [P06, Appendix]. �

Appendices

A. Scale of Hilbert spaces

A.1. Scale of Hilbert spaces associated with a self-adjoint operator. Denote
by ∆ a non-negative, self-adjoint operator in the Hilbert space H. We sometimes
refer to ∆ as the free operator. Throughout the paper we use the convention that
〈·, ·〉 and other sesquilinear forms are anti-linear in the first and linear in the second
argument.

A scale of Hilbert spaces can be associated with ∆ as follows: For fixed k ≥ 0 we
set Hk := dom∆k/2 equipped with the norm ‖u‖k := ‖(∆ + 1)k/2u‖. For negative
powers, we set H−k := (Hk)∗ where

(Hk)∗ := {ϕ : Hk −→ C |ϕ anti-linear and bounded }, (A.1a)

with the norm

‖ϕ‖−k := sup
f∈Hk

|ϕ(f)|
‖f‖k

(A.1b)

and H is embedded in H−k via f 7→ 〈·, f〉. For more details we refer e.g. to [KPS82].
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A.2. Scale of Hilbert spaces associated with a self-adjoint family of oper-

ators. Since our dilated operators are no longer self-adjoint, we also need a scale
of Hilbert spaces associated with a particular class of non-self-adjoint operators,
namely sectorial operators. Most of the material on such operators is standard
and can be found e.g. in [Ka66]. We also introduce a scale of order 1 which is
not associated to the natural quadratic form, but easier to handle in the present
application.

Let {Hθ}θ with θ ∈ S = {w ∈ C | |Imw| < b } be a family of closed operators
acting in the Hilbert space H.

Definition A.1. We say that the family {Hθ}θ is self-adjoint6 if (Hθ)∗ = Hθ.
The family {Hθ} is called (spectrally) uniformly ϑ-sectorial7 if σ(Hθ) is contained

in the common sector Σϑ = { z ∈ C | | arg z| ≤ ϑ }.
We allow values 0 ≤ ϑ < π, although operators with spectrum not contained

in the right half-plane are no longer semi-bounded. The only point we need here
is, that −1 belongs to the resolvent set and that we can control the norm of the
corresponding resolvent (denoted by the constant Cθ

0).
From now on we assume that {Hθ} is a self-adjoint, uniformly ϑ-sectorial family

of operators. We start defining the scales of order 2, 0 and −2:
Let H0 := H, ‖·‖0 := ‖·‖ and

H2,θ := domHθ, ‖f‖2,θ := ‖(Hθ + 1)f‖ (A.2)

be the spaces of order 0 and 2. Since Hθ is closed and −1 /∈ σ(Hθ), H2,θ with norm
‖·‖2,θ is also a Hilbert space. The dual space is defined by

H−2,θ := (H2,θ)∗ (A.3)

similarly as in (A.1). Note the complex conjugation of θ in order to compensate
the anti-linearity in the definition of the dual. In the next two lemmas, we want to
assure that Hθ and its resolvent extend to maps on the scale of order −2, 0, 2:

Lemma A.2. The embedding ι : H −→ H−2,θ, g 7→ 〈·, g〉 is continuous. Further-
more, ‖(Hθ + 1)−1g‖ = ‖ιg‖−2,θ for g ∈ H, i.e., H−2,θ can be considered as the
completion of H in the norm ‖g‖−2,θ := ‖(Hθ + 1)−1g‖.
Proof. We have

‖ιg‖2,−θ = sup
f∈H2,θ

|〈f, g〉|
‖f‖2,θ

= sup
h∈H

|〈h, (Hθ + 1)−1g〉|
‖h‖ = ‖(Hθ + 1)−1g‖ (A.4)

where h = (Hθ + 1)f and the claims follow. �

Lemma A.3. The maps

(Hθ + 1): H2,θ −→ H and (Hθ + 1)−1 : H −→ H2,θ (A.5)

are isometries and inverse to each other. Similarly,

(Hθ + 1): H −→ H−2,θ and (Hθ + 1)−1 : H−2,θ −→ H (A.6)

6In general, Hθ is self-adjoint only for real θ.
7Usually, an operator is called sectorial, if ϑ < π/2, and if one requires in addition that for all

ϑ1 ∈ (ϑ, π/2) there is a constant C0 = C0(ϑ, ϑ1) such that ‖(Hθ − z)−1‖ ≤ C0/|z| for all z /∈ Sϑ1
.

We do not need this fact here.
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are isometries and inverse to each other. Here (Hθ + 1)g := 〈(Hθ + 1)(·), g〉 and
(Hθ + 1)−1ιg := (Hθ + 1)−1g extend to an isometry on H−2,θ. Finally,

Hθ : H2,θ −→ H and Hθ : H −→ H−2,θ (A.7)

are bounded maps with norm bounded by 1+Cθ
0 , where C

θ
0 = ‖(Hθ + 1)−1‖ in general

depends on θ.

Proof. The first two assertions are almost obvious. The last one follows from the
fact that since −1 /∈ σ(A), we have ‖f‖ ≤ Cθ

0‖(Hθ + 1)f‖, and therefore

‖Hθf‖ ≤ ‖(Hθ + 1)f‖ + ‖f‖ ≤ (1 + Cθ
0)‖(Hθ + 1)f‖ = (1 + Cθ

0)‖f‖2,θ.
Similarly

|〈Hθf, g〉| ≤ |〈(Hθ + 1)f, g〉|+ |〈f, g〉|
≤ (‖f‖2,θ + ‖f‖)‖g‖ ≤ (1 + Cθ

0)‖f‖2,θ‖g‖
and therefore ‖Hθg‖−2,θ ≤ (1 + Cθ

0)‖g‖. �

So far, we have defined a scale of Hilbert spaces {Hk,θ}k,θ, k = −2, 0, 2, associated
to the self-adjoint, uniformly ϑ-sectorial family {Hθ}θ, i.e., for k = 0 and k = 2, the
inclusion map

ι : Hk,θ −→ Hk−2,θ (A.8)

is continuous, Hk,θ is dense in Hk−2,θ and the maps

Hθ : Hk,θ −→ Hk−2,θ, (A.9a)

(Hθ + 1)−1 : Hk−2,θ −→ Hk,θ (A.9b)

are continuous.
Since in our context, the domain domHθ will depend on the complex parameter

θ, the natural quadratic form associated to Hθ is not well-adopted to our application
(especially its natural norm). We therefore define the norm on the Hilbert space of
order 1 in a different way:

Definition A.4. Let H1,θ be a linear subspace of H, and let ∆ ≥ 0 be a self-adjoint,
non-negative operator on H. We say that H1,θ defines a compatible scale of order 1
w.r.t. ∆ if the following conditions are fulfilled:

(i) There is a family of bounded, invertible operators T θ : H −→ H, called
compatibility operators such that

(T θ)∗ = T θ and (T θ)−1 = T−θ (A.10)

for θ ∈ S. We assume that H1,θ = T−θ(H1) and define a norm

‖u‖1,θ := ‖T θu‖1 = ‖(∆ + 1)1/2T θu‖ (A.11)

where H1 is the element of the Hilbert space scale of order 1 associated with
∆.

(ii) We assume that H2,θ is a dense subspace of H1,θ.
(iii) We assume that the embedding H2,θ →֒ H1,θ is continuous with norm

bounded by Cθ
2 .
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(iv) Finally, we assume that the sesquilinear form associated to Hθ defined by

hθ(f, g) := 〈f,Hθg〉 is continuous on H1,θ×H1,θ, i.e., there exists a constant
Cθ

1 such that

|hθ(f, g)| ≤ Cθ
1‖f‖1,θ‖g‖1,θ (A.12)

for all f ∈ H1,θ and g ∈ H2,θ = domHθ.

Clearly, by the construction, H1,θ is complete, since H1 is. In addition, since H2,θ

is dense in H1,θ, the sesquilinear form hθ extends uniquely to a bounded one on

H1,θ ×H1,θ → C which we denote by the same symbol.
We define the dual space as before by

H−1,θ := (H1,θ)∗ (A.13a)

with the canonical norm ‖·‖−1,θ as in (A.1). Note that we can consider H−1,θ as the
completion of H in the norm

‖u‖−1,θ = ‖(∆ + 1)−1/2T−θu‖. (A.13b)

There are simple equivalent characterisations of the last two conditions (iii) and (iv)
following from the definitions:

Lemma A.5. Condition (iii) is equivalent to the fact that

(Hθ + 1)−1 : H −→ H1,θ (A.14a)

is norm-bounded by Cθ
2 or equivalently,

(∆ + 1)1/2T θ(Hθ + 1)−1 (A.14b)

is a bounded operator in H with bound Cθ
2 .

We also have a sufficient condition:

Lemma A.6. Condition (iii) follows from the fact that

(Hθ + 1)−1 : H−1,θ −→ H1,θ (A.15a)

is norm-bounded or equivalently,

(∆ + 1)1/2T θ(Hθ + 1)−1T θ(∆ + 1)1/2 (A.15b)

is a bounded operator in H.

Lemma A.7. The continuity of the sesquilinear form

hθ : H1,θ ×H1,θ −→ C (A.16)

is equivalent to the fact that

Hθ : H1,θ −→ H−1,θ, g 7→ hθ(·, g) (A.17a)

is norm-bounded by Cθ
1 or equivalently,

(∆ + 1)−1/2T−θHθT−θ(∆ + 1)−1/2 (A.17b)

is a bounded operator in H with bound Cθ
1 .
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These observations show that {Hk,θ}k,θ behaves almost like a natural scale of
Hilbert spaces; in particular, Hk,θ is dense in Hk−1,θ: This follows for k = 1 by
the construction of H1,θ and for k = 2 by Definition A.4 (ii). Furthermore, the
inclusions

ι : Hk,θ −→ Hk−1,θ

are continuous for k = 1 by the construction of H1,θ and for k = 2 by Defini-
tion A.4 (iii). By duality, the same statements hold for k = 0 and k = −1. In
addition, (A.9) is valid for k = 0, 1, 2 (by Lemma A.3 and Lemma A.7) except that
the resolvent is only a continuous map from H to H1,θ (Lemma A.5). Therefore,
the following definition is natural:

Definition A.8. We call {Hk,θ}k,θ, k = −2,−1, 0, 1, 2, a compatible scale if H1,θ is
a compatible scale of order 1 (Definition A.4) and {Hk,θ}k,θ, k = −2, 0, 2, is a scale
in the sense of (A.8)–(A.9).

B. An abstract convergence criteria for non-selfadjoint operators

In this section we are going to prove the resolvent convergence for self-adjoint,
uniformly ϑ-sectorial families of (closed) operators {Hθ}θ and {H̃θ}θ acting in H
and H̃, respectively, for all θ in the strip Sϑ (i.e. |Im θ| < ϑ/2).

Notation B.1. We will use the obvious notation ‖A‖k→m for the norm of the operator
A : Hk −→ Hm where Hk is an element of the scale w.r.t. the self-adjoint operator
∆ ≥ 0. Similarly, we write ‖A‖k,θ→m,θ for the norm of the operatorA : Hk,θ −→ Hm,θ

where {Hk,θ}k,θ, k = −2, . . . , 2, is a compatible scale associated to the operator Hθ

(cf. Definitions A.4 and A.8).
Furthermore, we employ the analogous tilded notation for the respective objects

acting in the Hilbert space H̃, namely the self-adjoint operator ∆̃ ≥ 0 with the scale
{H̃k}k and the operator H̃θ giving rise to the scale {H̃k,θ}k,θ.

Next we introduce the notion of quasi-unitarity up to an error δ > 0. In our
application, δ = δ(ε) where ε is the parameter appearing in the operators and
domains and Hilbert spaces. We prefer to formulate the results below without
mentioning explicitly the parameter ε.

Definition B.2. Suppose that we have linear operators

J : H −→ H̃ and J ′ : H̃ −→ H. (B.1)

We say that J and J are δ-quasi-unitary w.r.t. the operators ∆ and ∆̃ iff the
following conditions hold for δ > 0:

‖J − J ′∗‖ ≤ δ, (B.2)

‖1− J ′J‖1→0 ≤ δ, ‖1− JJ ′‖1→0 ≤ δ, (B.3)

‖J‖ ≤ 2, ‖J ′‖ ≤ 2, (B.4)

where ‖A‖1→0 = ‖A(∆ + 1)−1/2‖ is the norm of A : H1 −→ H and the analogous

norm is used on H̃.

This allows us to specify what we mean by closeness of operators Hθ and H̃θ:
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Definition B.3. We say that the operators Hθ and H̃θ in H and H̃, respectively,
are δ-close w.r.t. the δ-quasi-unitary operators J and J ′ or briefly, δ-close if there

exist compatible scales H1,θ and H̃1,θ of order 1 associated to Hθ and H̃θ with

compatibility operators T θ and T̃ θ in the sense of Definition A.4, and if there exist
operators8

J1 = J1,θ : H1,θ −→ H̃1,θ and J ′1 = J ′1,θ : H̃1,θ −→ H1,θ

such that
‖J1 − J‖1,θ→0 ≤ δ and ‖J ′1 − J ′‖1,θ→0 ≤ δ. (B.5)

and

‖(J ′1)∗Hθ − H̃θJ1‖1,θ→−1,θ ≤ δ, (B.6)

T̃ θJ = JT θ, T θJ ′ = J ′T̃ θ, (B.7)

where ‖A‖1,θ→0 = ‖AT−θ(∆ + 1)−1/2‖ and similarly on H̃ and where

‖V ‖1,θ→−1,θ = ‖(∆̃ + 1)−1/2T̃−θV T−θ(∆ + 1)−1/2‖.
Remark B.4.

(i) We do not exclude that δ depends on θ.
(ii) Note thatHθ in (B.6) is a bounded operator as mapH1,θ toH−1,θ (cf. (A.17))

and similarly for H̃θ.

(iii) Denote the associated sesquilinear forms to Hθ and H̃θ by hθ and h̃θ, re-
spectively (cf. Definition A.4 (iv)). Then (B.6) is equivalent to

∣∣hθ(J ′1u, f)− h̃θ(u, J1f)
∣∣ ≤ δ‖u‖1,θ‖f‖1,θ (B.6’)

for u ∈ H̃1,θ and f ∈ H1,θ. In fact, we will see in the proof of Theorem B.6
(the only point, where J1 and J ′1 enter), that it is enough to have (B.6’)

only for f and u in the operator domains, i.e., f ∈ H2,θ and u ∈ H̃2,θ. Since

H2,θ is dense in H1,θ and similarly on H̃ by Definition A.4 (ii), this implies
of course (B.6).

An immediate consequence is the following:

Lemma B.5. With the previous notation we have

‖(J ′J − 1)f‖ ≤ Cθ
3δ‖f‖2,θ (B.8)

∣∣‖Jf‖2 − ‖f‖2
∣∣ ≤ Cθ

4δ‖f‖22,θ (B.9)

for f ∈ H2,θ and similarly on H̃.

Proof. We estimate

‖(J ′J − 1)f‖ ≤ ‖(J ′J − 1)T−θ‖1→0‖T θf‖1 ≤ ‖T−θ‖δCθ
2‖f‖2,θ =: Cθ

3δ‖f‖2,θ
using (B.3), (B.7) and Definition A.4 (iii). Similarly,
∣∣‖Jf‖2 − ‖f‖2

∣∣ =
∣∣〈(J∗J − 1)f, f〉

∣∣
≤

∣∣〈T−θ(J∗ − J ′)JT θf, T−θT θf〉
∣∣+

∣∣〈T−θ(J ′J − 1)T θf, T−θT θf〉
∣∣

≤ 3‖T−θ‖2δ‖T θf‖21 ≤ 3‖T−θ‖2(Cθ
2)

2δ‖f‖22,θ =: Cθ
4δ‖f‖22,θ

8The operators J1 and J ′1 need not to be bounded.
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using again assumptions in Definition A.4, Definition B.2 and Definition B.3. The
estimates on H̃ follow similarly. �

We can now state the convergence of the resolvents:

Theorem B.6. Assume that the families (Hθ) and (H̃θ) are δ-close w.r.t. the quasi-
unitary operators J and J ′, then

‖R̃θJ − JRθ‖ ≤ Cθ
5δ, (B.10)

where Rθ := (Hθ + 1)−1, R̃θ := (H̃θ + 1)−1 and Cθ
5 := (1 + Cθ

0 + Cθ
2)(1 + C̃θ

0 + C̃θ
2).

Proof. We write

R̃θJ − JRθ = R̃θ
[
JHθ − H̃θJ

]
Rθ

where the operator in the bracket maps from H2,θ to H−2,θ = (H2,θ)∗. This operator
can be decomposed into

JHθ − H̃θJ

= (J − J ′∗)Hθ + (J ′ − J ′1)∗Hθ +
(
(J ′1)∗Hθ − H̃θJ1

)
+ H̃θ(J1 − J)

where
(J ′1)∗ : H−1,θ = (H1,θ)∗ −→ H̃−1,θ = (H̃1,θ)∗. (B.11)

Now Hθ is bounded as a map from H2,θ to H, as well as H̃θ is bounded as map from

H to H−2,θ with the bounds Cθ
0 + 1 and C̃θ

0 +1, respectively, cf. Lemma A.3. Next,

the inclusion H2,θ →֒ H1,θ is bounded with bound Cθ
2 , and similarly in the space H̃

(cf. Definition A.4 (iii)). Finally, we can sum up all the error terms to arrive at the
given bound. �

Denote by ρ(H) the resolvent set of H . A simple argument allows us to deal with

all z in ρ(Hθ) and ρ(H̃θ):

Theorem B.7. Suppose that z0, z ∈ ρ(Hθ) ∩ ρ(H̃θ), then

‖V (z)‖ ≤ Cθ
5(z)‖V (z0)‖

where V (z) := R̃θ(z)J − JRθ(z) and Rθ(z) := (Hθ − z)−1 for z ∈ ρ(Hθ), and

similarly for H̃θ. In particular,

‖V (z)‖ ≤ Cθ
6(z)δ (B.12)

under the assumptions of Theorem B.6. The constants Cθ
5(z) and Cθ

6(z) depend
continuously on z.

Proof. Setting for brevity R := Rθ and R̃ := R̃θ, we have

V (z) = V (z0) + (z − z0)
(
R̃(z)R̃(z0)J − JR(z)R(z0)

)

= V (z0) + (z − z0)
(
R̃(z)V (z0) + V (z)R(z0)

)

where we have used the second resolvent identity. Reordering the terms we get

V (z)
[
1− (z − z0)R(z0)

]
=

[
1+ (z − z0)R̃(z)

]
V (z0)

Since 1+ (z − z0)R(z) is the inverse of 1− (z − z0)R(z0), we obtain

V (z) =
[
1 + (z − z0)R̃(z)

]
V (z0)

[
1+ (z − z0)R(z)

]
(B.13)
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and the estimate follows with

Cθ
5(z) :=

(
1 +

|z − z0|
d̃(z)

)(
1 +

|z − z0|
d(z)

)
(B.14)

where d(z) := ‖R(z)‖−1 and similarly for d̃(z). Estimate (B.12) follow immediately
from (B.10) with Cθ

6(z) := Cθ
5C

θ
5(z). �

We can now easily extend the convergence results to a suitable class of holomor-
phic functions of the operators:

Theorem B.8. Suppose that ϕ is a holomorphic functions in a neighbourhood of

a simply connected domain D ⊂ C such that D is disjoint from σ(Hθ) and σ(H̃θ)

for Hθ and H̃θ being δ-close and δ small enough. Suppose in addition that ϕ ∈
L1(∂D,C

θ
5(z) d|z|) (cf. (B.14)). Then

‖ϕ(H̃θ)J − Jϕ(Hθ)‖ ≤ Cθ
7δ (B.15)

where the constant depends only on θ and ϕ. The integrability condition on ϕ is in
particular satisfied if the curve is compact.

Proof. Since D is contained in the resolvent set of both operators and due to our
integrability assumption on ϕ, the holomorphic spectral calculus applies,

ϕ(Hθ) =
1

2πi

∮

∂D

ϕ(z)

z −Hθ
dz,

and a similar claim is valid for H̃θ. This implies

Jϕ(Hθ)− ϕ(H̃θ)J = − 1

2πi

∮

∂D

(
JRθ(z)− R̃θ(z)J

)
ϕ(z) dz.

and therefore,

‖Jϕ(Hθ)− ϕ(H̃θ)J‖ ≤ δ

2π

∫

eγ

Cθ
6(z)|ϕ(z)| d|z| =: Cθ

7δ

Since Cθ
6(z) = Cθ

5C
θ
5(z) depends continuously on z, the right-hand side is in partic-

ular finite if ∂D is compact. �

Now we are able to demonstrate the main result of this section namely the con-
vergence of eigenprojections and eigenvalues. For the discrete spectrum of Hθ it is

not necessary to consider the whole spectrum of H̃θ, we only need to make sure that
we are away from its essential spectrum.

Theorem B.9. Suppose that λ is a discrete eigenvalue of Hθ with multiplicity m >
0. Let D ⊂ ρ(Hθ) be an open disc such that D contains λ but no other spectral point

of Hθ. If D ∩ σess(H̃θ) = ∅ for H̃θ being δ-close to Hθ, then

‖J1{λ}(H
θ)− 1D(H̃

θ)J‖ ≤ Cθ
7δ

where Cθ
7 depends only on θ and D.

In particular, if m denotes the multiplicity of λ, then there exist m discrete eigen-

values λ̃1, . . . , λ̃m (not necessarily mutually distinct) in the discrete spectrum of H̃θ

such that
|λ̃j − λ| ≤ η(δ), j = 1, . . . , m,

where η(δ) → 0 as δ → 0.
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Proof. We choose a sequence H̃n := H̃θ
n which is δn-close to H = Hθ where δn → 0.

Since D∩⋃
n σess(H̃n) = ∅ and

⋃
n σd(H̃n) is countable, there exists a closed curve γ̃

in D, disjoint from
⋃

n σ(H̃n) enclosing λ but no other spectral point of H . Denote

by D̃ the enclosed region in C, i,e., ∂D̃ ⊂ ρ(H) ∩ ρ(H̃n) is parametrised by γ̃ and

D̃ ∩ σ(H) = {λ}. Then we can apply the previous theorem and obtain

‖J1{λ}(H)− 1 eD(H̃n)J‖ = ‖J1 eD(H)− 1 eD(H̃n)J‖ ≤ Cθ
7δn (B.16)

where Cθ
7 is finite and depend only on θ and D.

For the eigenvalue convergence we first denote by P = 1D(H) = 1{λ}(H) and P̃ =

1D(H̃) the corresponding spectral projections. We start proving that dimP (H) =

dim P̃ (H̃). Note first that P (H) ⊂ H2,θ for f = Pf ∈ P (H) since ‖f‖2,θ = |λ +
1|‖f‖. Then we estimate

‖P̃ Jf‖ ≥ ‖Jf‖ − ‖P̃ J − JP‖‖f‖ ≥
(
1−

√
Cθ

4δ |λ+ 1| − Cθ
7δ
)
‖f‖ (B.17)

using (B.9) and (B.16). If δ is small enough, the right-hand side is still positive. In

particular, P̃ J is injective on P (H) so that (P̃ J)(P (H)) has at least the dimension

of P (H), i.e., dimP (H) ≤ dim P̃ (H̃). The opposite inequality follows similarly.

Now it is almost obvious that in every neighbourhood D̃ of λ satisfying the above

assumption there are m (not necessarily mutually distinct) eigenvalues λ̃j of H̃θ

provided δ is small enough (cf. [Ka66, Ch. II.5.1]). �

In the case of one-dimensional projections we can even show the convergence of
the corresponding eigenvectors. Note that generically, the eigenvalues are simple
(cf. [U76]):

Theorem B.10. Suppose that ψ is a normalized eigenvector of Hθ with eigenvalue

λ of multiplicity 1 and that λ /∈ σess(H̃
θ). Then there exist an eigenvalue λ̃ of H̃θ

of multiplicity 1 arbitrary close to λ and a unique eigenvector ψ̃ (up to a unitary

scalar factor) and constants Cθ
8 , C̃

θ
8 > 0 depending only on θ and λ such that

‖Jψ − ψ̃‖ ≤ Cθ
8δ, ‖J ′ψ̃ − ψ‖ ≤ C̃θ

8δ

provided Hθ and H̃θ are δ-close and δ > 0 is small enough.

Proof. The first assertion follows from the previous theorem. Denote the correspond-
ing eigenprojections by P and P̃ , respectively. For the eigenvector convergence, note
that

ψ̃ =
1

〈P̃ Jψ, Jψ〉
P̃ Jψ

since P̃ is a one-dimensional projection. Note in addition that

〈P̃ Jψ, Jψ〉 = ‖P̃ Jψ‖2 ≥ 1

4
‖ψ‖2 = 1

4
, 0 < δ < δ0 (B.18)
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for some δ0 > 0 due to (B.17). Now,

‖Jψ − ψ̃‖ =
∥∥∥JPψ − 1

〈P̃ Jψ, Jψ〉
P̃ Jψ

∥∥∥

≤ ‖(JP − P̃ J)ψ‖ +

∣∣∣∣1−
1

〈P̃ Jψ, Jψ〉

∣∣∣∣‖P̃ Jψ‖

≤ Cθ
7δ + 8

∣∣〈(P̃ J − JP )ψ, Jψ〉 + ‖Jψ‖2 − ‖ψ‖2
∣∣

≤ (17Cθ
7 + 8Cθ

4 |1 + λ|2)δ =: Cθ
8δ

since ψ = Pψ and ‖ψ‖ = 1 using the previous theorem, (B.4), (B.9) and (B.18).
The second estimate follows immediately from

‖J ′ψ̃ − ψ‖ ≤ ‖J ′(ψ̃ − Jψ)‖ + ‖(J ′J − 1)ψ‖ ≤
(
2Cθ

8 + Cθ
3 |1 + λ|

)
δ =: C̃θ

8δ

using (B.8) All the estimates are valid for 0 < δ < δ0. �

C. Analyticity and a resolvent estimate

Here we sketch the proof of analyticity of the complex dilated Hamiltonian Hθ

as given in Section 5. We follow closely the proof given in [CDKS87]. We repeat
the arguments here, since we are not aware of a proof in the quantum graph case.
In addition, we need a stronger assertion, namely an explicit control of the norm
of the resolvent Rθ := (Hθ + 1)−1 as a map from H to H1,θ (cf. Lemma A.5). On
the quantum graph, it is enough to show that the operator is bounded, but on the
manifold, we need a uniform control of the constant with respect to the shrinking
parameter ε. Since the proof of the analyticity and the resolvent estimate is basically
the same, we state it in an abstract way for both models at the same time. The
main idea in showing the analyticity is to compare Hθ with the decoupled operator
Hθ,D where the decoupling is achieved via an additional Dirichlet condition at the
boundary between the interior and exterior part.

We first need some notation. Assume that the Hilbert space splits into an interior
and exterior part, namely H = Hint ⊕Hext (cf. Section 5.1 and (5.2)).

Notation C.1. We constantly use the subscripts (·)int and (·)ext for the interior and
exterior part, respectively. Similarly, quadratic forms, operators and functions with
these subscripts are understood in the obvious way. In addition, • stands either for
“int” or “ext”.

Decomposition and quadratic forms. We will make common use of minimal
and maximal quadratic form domains which corresponds to Neumann and Dirichlet
boundary conditions for the associated operators. Note that the classical Neumann
boundary conditions appear only in the domain of the associated operator (for
details, see e.g. [RS80]).

Suppose that h is a quadratic form of the magnetic Hamiltonian on H (either on
the quantum graph or the manifold). Denote by H• = L2(X•) the corresponding
subspace of H for X• = Xint or Xext.

The quadratic form hN• = h• with domain H1,N
• = H1

• associated to the Neumann
operator on X• consists of those functions u ∈ H• such that h•(u) is defined and
finite. In particular, we have

H1
• = H

1(X0,•) and H1
• = H

1(Xε,•) (C.1)
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where the Sobolev spaces H
1(Xε,•) are defined in (3.4) and (4.5) on the quantum

graph and the manifold, respectively.
We often omit the superscript (·)N on the Neumann quadratic form and its do-

main (when the boundary does not separate the domain into separate parts), since
Neumann boundary conditions mean no restriction on the quadratic form domain.

We assume that the quadratic forms can be written as

hint(u) = ‖∂int(χu)‖2 + h⊥int(χu) + hrestint (u) (C.2a)

hext(u) = ‖∂extu‖2 + h⊥ext(u) (C.2b)

for u = uint ⊕ uext ∈ H1,N where ∂•u = ∂xu is the derivative w.r.t. the coordinate
x (oriented towards infinity on the external edge) and. In addition, χ is assumed
to be a smooth cut-off function such that χ = 1 near the common boundary and
equals 0 away from it. Furthermore, we assume that hrestint (u) = 0 for functions with
support near the boundary. To be more concrete, we give the expressions in our
examples: On the manifold we have

h⊥ε,•(u) =
1

ε2

∫

Xε,•

|dFu|2h dXε and hrestε,int(u) = ‖d((1− χ)u)‖2Xε,int
, (C.3a)

where we can choose χ independently of ε in the manifold case due to our decompo-
sition away from the internal vertices: Namely, Γε has distance ℓ0 from any internal
vertex due to our assumptions in Section 5.1. On the quantum graph, we simply
have

h⊥0,•(f) = 0 and hrest0,int(f) = ‖(1− χ)f)′‖2X0,int
(C.3b)

The quadratic form hD• with domain H1,D associated to the Dirichlet operator on
X• is defined as restriction of h• on the subset of functions in H1,N

• vanishing on the
common boundary Γ of X• and X \X•.

Notation C.2. The superscripts (·)N and (·)D will always refer to Neumann and
Dirichlet boundary conditions on the common boundary Γ of the interior and exterior
part, respectively.

We also need the corresponding forms on the whole space, namely

H1,N := H1,N
int ⊕H1,N

ext and H1,D := H1,D
int ⊕H1,D

ext (C.4a)

together with their natural quadratic forms

hN := hNint ⊕ hNext and hD := hDint ⊕ hDext. (C.4b)

Notation C.3. For a non-negative quadratic form (i.e., h(u) ≥ 0 for u ∈ dom h) we
define the associated natural norm as

‖u‖1 :=
(
‖u‖2 + h(u)

)1/2
. (C.5)

We refer to H1 = dom h with norm ‖·‖1 as space of order 1. We use similar notation
for the various quadratic forms defined in this section.

In our application, all the quadratic forms defined here, are closed, so that the
corresponding scales of order 1 are indeed Hilbert spaces.
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Boundary maps. We also need the boundary maps in order to express the various
boundary conditions. It will be convenient to use an ε-independent space in the
manifold case:

Notation C.4. Let S• : H1
• −→ G be the the restriction or boundary map onto the

boundary Γ = ∂X• given by

u 7−→ {u(v)}v∈Γ0
and u 7−→ εm/2u↾Γ1

(C.6)

where

G = ℓ2(Γ0) ∼= C
|Γ0| and G = L2(Γ1), (C.7)

in the quantum graph and manifold cases, respectively. Here, Γ1 is the rescaled
boundary Γε with ε = 1. Note that the number of boundary vertices equals the
number of external edges which we assumed to be finite in (H03).

In the manifold case, we also have a scale on the boundary Hilbert space G =
L2(Γ1), namely Gk = H

k(Γ1). In particular, we can define the dual G−1/2 of G1/2

with respect to the pairing (·, ·)G : G−k × Gk −→ C. In addition to the boundary
map S• = S1

• we need a similar map of order 0, namely

S0
• : H• −→ G−1/2, u 7−→ εm/2u↾Γ1

. (C.8)

Note that on the quantum graph case, there is no such scale since G = ℓ2(Γ0) ∼=
C|Γ0|. This means in particular, that G∗ = G and S∗

• is a map from G into H−1
• .

We have to make sure that ‖S•‖ and ‖S0
•‖ do not depend on ε in the manifold

case:

Lemma C.5. The norm of the restriction maps

S• = S1
• : H1,N

• = H
1(Xε,•) −→ G1/2 = H

1/2(Γ1), u 7−→ εm/2u↾Γ1
(C.9)

S0
• : H = L2(Xε,•) −→ G−1/2 = H

−1/2(Γ1), u 7−→ εm/2u↾Γ1
(C.10)

are bounded independently of ε.

Proof. We have ‖S1
•u‖ = εm/2‖τ 1• ι1εu‖ where τ 1• : H

1(X1,•) −→ H
1/2(Γ1) is the trace

map, H1(X1,•) is the Sobolev space H
1(Xε,•) with ε = 1 fixed and ι1ε : H

1(Xε,•) −→
H

1(X1,•). Now, ‖ι1ε‖ = ε−m/2, so that ‖S1
•‖ ≤ ‖τ 1•‖. Clearly, the latter norm is

independent of ε. Similarly, S0
• is the composition of τ 0• and ι0ε with τ

0
• : L2(X1,•) −→

H
−1/2(Γ1) and ι

0
ε : L2(Xε,•) −→ L2(X1,•). Again, ‖ι0ε‖ = ε−m/2 and the result follows.

�

Coupled quadratic forms. With the help of the boundary maps, we can express
the Dirichlet quadratic form domain as

H1,D
• = ker S• ⊂ H1,N

• . (C.11)

We define the undilated Hamiltonian via its quadratic form h on

H1 := { u ∈ H1,N |Sextu = Sextu } = ker(−Sint + Sext) (C.12a)

with form given by

h(u) := hint(u) + hext(u), (C.12b)
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where
(−Sint + Sext)u := −Sintuint + Sextuext

for u = uint ⊕ uext. We will often omit the subscripts u = uint etc. if they are clear
from the context.

Similarly, we define the dilated quadratic form hθ, for the moment for real θ only,
on the space

H1,θ := { u ∈ H1,N |Sextu = e−θ/2Sextu } = ker(−Sint + e−θ/2Sext) (C.13)

and we set

hθ(u) = hint(u) + hθext(u), (C.14a)

hθext(u) = e−2θ‖∂extu‖2 + h⊥ext(u) (C.14b)

(cf. (C.2)). Note that the dilated form hθ agrees with the free form h if θ = 0.
The various quadratic form domains satisfy the following inclusions, also called

Dirichlet-Neumann bracketing, namely,

H1,D := H1,D
int ⊕H1,D

ext ⊂ H1,θ ⊂ H1,N
int ⊕H1,N

ext =: H1,N (C.15)

If we equip the spaces with their canonical quadratic form norm as in Notation C.3,
these inclusions are also bounded and induce bounded maps on the corresponding
dual spaces (cf. (A.1)), e.g.

H1,D ι1,θ−→ H1,θ and H−1,θ ι
−1,θ−→ H−1,D (C.16)

where ι−1,θ = (ι1,θ)
∗.

The following estimate follows immediately from (C.2):

Lemma C.6. We have
‖∂•u‖2 ≤ h•(u) (C.17)

for functions u ∈ H1
• (with support close to the boundary if • = int). In particular,

the operator9 ∂• : H1
• −→ H• has a norm bounded by 1.

Associated operators and Sobolev spaces of second order. We denote the
Dirichlet operator on X• corresponding to the Dirichlet quadratic form hD• by HD

•

with domain H2,D
• .

If we are on the exterior part, we also need the dilated version, namely we denote
by Hθ,D

ext the operator associated to the form h
θ,D
ext which is the restriction of hθext

(cf. (C.14b)) onto H1,D. Note that the domains of HD
ext and Hθ,D

ext agree and that
the operators agree for θ = 0. The decoupled operator Hθ,D is then the direct sum,
namely Hθ,D = HD

int ⊕Hθ,D
ext .

Before defining the coupled dilated operators we introduce minimal and maximal
(non-selfadjoint) operators with respect to the common boundary Γ of the internal
and external part.

Let Hθ,min
• be the restriction of Hθ;D

• to

D2
• := { u ∈ H2,D

• |S•∂u = 0 } (C.18)

(i.e., the intersection of the Dirichlet and Neumann operator domain) and set

D2 := D2
int ⊕D2

ext and Hθ,min := Hmin
int ⊕Hθ,min

ext . (C.19)

9Strictly speaking, ∂int is defined only on the subset of functions with support close to the
boundary.
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The corresponding maximal operators are defined by

Hθ,max
• := (Hθ,min

• )∗, Hθ,max := Hmax
int ⊕Hθ,max

ext (C.20)

with domains
W2

• := domHmax
• , W2 := W2

int ⊕W2
ext. (C.21)

independent of θ also for • = ext.
Since we assumed that the magnetic potential on the manifold αε is smooth

and that a on the graph is smooth inside each edge, we can characterise W2
• via

the Sobolev spaces already introduced earlier, namely W2
• = H

2(Xε,•) for ε ≥ 0
(see (5.6) for ε = 0 and (5.7) for ε > 0).

We now define the dilated operator Hθ as the operator associated to the quadratic
form hθ for real θ. Its domain is given by

H2,θ := { u ∈ W2 |Sextu = e−θ/2Sextu, Sext∂intu = e−3θ/2Sext∂extu }
= ker(−Sint + e−θ/2Sext) ∩ ker[(−Sint + e−3θ/2Sext)∂] (C.22)

where ∂ := ∂int ⊕ ∂ext . In our application, Hθ acts formally on exterior edges as
in (5.4). As before, we denote by H = H0 and H2 = H2,0 the undilated operator
and domain, respectively.

We will need in Lemma C.13 the following facts from elliptic regularity. In the
manifold case, we have the continuous embeddings

ιell : H2 −→ W2 and ιell : H2,D −→ W2 (C.23)

where the space W2 is endowed with a suitable Sobolev norm. On the quantum
graph, such estimates are almost trivial (under Assumption (H02)) and on the man-
ifold, we refer e.g. to [Aub76, Prop. 3]. Note that on the manifold, we need to
consider this embedding only for fixed ε; we do not need a global constant for all
ε > 0. In general, ιell has a finite norm depending on ε, since Xε is of bounded ge-
ometry by Assumption (Hε3) with constants depending on ε and since we imposed
no bounds on (general) derivatives of the magnetic vector potential αε.

Analyticity. The first aim in this section is to show that the family {Hθ}θ with do-
main H2,θ can be extended analytically into the complex strip Sϑ (i.e., |Im θ| < ϑ/2)
and has spectrum contained in Σϑ (i.e., each z in the spectrum satisfies | arg z| ≤ ϑ).
Analyticity here means, that the resolvent

Rθ(z) := (Hθ − z)−1 (C.24)

for z /∈ Σθ depends analytically on θ as operator in H.
To this aim we introduce the decoupled dilated operator

Hθ,D := HD
int ⊕Hθ,D

ext , (C.25)

where HD
int and H

θ,D
ext denotes the operator with Dirichlet boundary conditions at the

boundary Γ of Xint and Xext. We are now able to state the first lemma on analytic
dependence.

Lemma C.7. The decoupled dilated Hamiltonian {Hθ,D}θ extends to an analytic
family of type A into the strip θ ∈ Sϑ = { θ ∈ C | 2|Im θ| < ϑ }. In addition, σ(Hθ,D)
is contained in the sector Σϑ = { z ∈ C | | arg z| ≤ ϑ } and therefore a self-adjoint,
uniformly ϑ-sectorial family in the sense of Definition A.1
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Proof. The proof is almost obvious due to the explicit expression of the operators
and the fact that

σ(Hθ,D) = σ(HD
int) ∪ σ(Hθ,D

ext ) ⊂ Σϑ

since Hθ,D has numerical range in the sector Σϑ by (C.14). Note that the domain
of Hθ,D is independent of θ due to the decoupling. �

Now we are going to extend the definition of the coupled operators Hθ for real
θ to the complex strip Sϑ. We follow closely [CDKS87]. We want to compare the
resolvent Rθ(z) := (Hθ − z)−1 with the decoupled resolvent Rθ,D(z) := (Hθ,D(z))−1.
To do so, want to express the difference Rθ(z) − Rθ,D(z) in terms of an explicit
sequence of bounded and analytic operators, for the moment for real θ only. Since
this expression will serve as generalisation for complex θ, we formulate it already
for the complex case in order to formally respect analyticity.

Denote by

R̂(z) : H−1 −→ H1 (C.26)

the undilated resolvent (H−z)−1 of H as an operator in the natural scale of Hilbert
spaces Hk associated to the self-adjoint operator H (cf. Section A.1). Since on H1,
the boundary values on the internal and external part agree by (C.12), we can define
a bounded map

S : H1 −→ G, f 7→ Sintf = Sextf (C.27)

with dual S∗ : G −→ H−1.
The following arguments for the quantum graph and the manifold differ slightly

due to the fact that the boundary space G allows a natural scale of Sobolev spaces
only on the manifold.

We start on the quantum graph and define a bounded operator

Bθ(z) := S1,θ∂Rθ,D(z) : H Rθ,D(z)−→ H2,D ιell→֒ W2 ∂−→ H1,N S1,θ

−→ G (C.28)

for θ ∈ Sϑ and z /∈ Σϑ where

S1,θ : H1,N −→ G ∼= C
|Γ0|, f 7−→ −Sintf + e−3θ/2Sextf,

∂ := ∂int ⊕ ∂ext : W2 −→ H1,N .

For further purposes, we need to express the adjoint operator as a solution operator.

Lemma C.8. On the quantum graph, the adjoint (Bθ(z))∗ : G −→ H of Bθ(z) is

given as follows: If f = (Bθ(z))∗F with F ∈ G, then f ∈ W2 and f is the unique
solution of the Dirichlet problem

(Hθ,max − z)f = 0, fint(v) = F (v), fext(v) = eθ/2F (v) (C.29)

for all boundary vertices v ∈ Γ0. In particular, f satisfies all inner boundary condi-
tions and the jump condition along Γ0.

Proof. Let g̃ ∈ H, F ∈ G and denote g := (Hθ,D − z)−1g̃. Then

〈g̃, f〉H =
(
(Bθ(z))∗g̃, F

)
G
=

∑

v∈Γ0

(
−g′int(v) + e−3θ/2g′ext(v)

)
F (v).

In particular, 0 = 〈g̃, f〉 = 〈(Hθ,D − z)g, f〉 for functions g̃ with support away
from the boundary vertices. Choosing g̃ ∈ C

∞
c (e), and since we assumed that the

potentials ae and qe are smooth inside an internal edge e we conclude that fe is
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smooth as solution of the ODE (−∂x + iae)(∂ − iae)fe + qefe = zfe and −f ′′
e = zfe

on external edges. To conclude that f also satisfies all inner boundary conditions
we use the arguments of [KoS99, Lem. 2.2]. In particular, we conclude that f ∈ W2

and (Hθ,max − z)f = 0. Now, using general functions g̃, we have

〈g̃, f〉 = 〈(Hθ,D − z)g, f〉 =
∑

v∈Γ0

(
−g′int(v)fint(v) + e−2θg′ext(v)fext(v)

)

since g vanishes on Γ0. It follows that F (v) = fint(v) and fext(v) = eθ/2fint(v) for
boundary vertices v ∈ Γ0. �

Lemma C.9. We can factorize the adjoint map on the quantum graph by the
bounded maps

(Bθ(z))∗ =
(
idW2 −(Hθ,D − z)−1(Hθ,max − z)

)
Eθ : G −→ W2, (C.30)

where
Eθ : G −→ W2

is a bounded extension map such that f̃ := EθF is constant near Γ0 and F (v) =

f̃ext(v) = eθ/2f̃int(v) for boundary vertices v ∈ Γ0. In particular,

(Bθ(z))∗ : G −→ W2 (C.31)

is a bounded map and depends analytically on θ (and z). Finally, the dual of (C.31),
namely

(Bθ(z))∗∗ : W−2 −→ G, (C.32)

is bounded and an extension of Bθ(z) : H −→ G.
The extension map can for example be defined as

EθF (x) := χθ(x)F (v)

near the boundary vertex v where χθ is a smooth map with compact support and
derivatives bounded in terms of 1/ℓ0 (cf. (H02)) such that χθ

int = 1 and χθ
ext = eθ/2

near v.

Proof. A direct calculation shows that (C.30) defines the (unique) solution of the
Dirichlet problem (see e.g. [HP06, Lem. D.1]). The boundedness follows since the
maps in the factorization (C.30) are bounded. The analyticity is a consequence
of the explicit form of (C.30) and (5.4a). Note that no space in the factorization
depend on θ. �

Lemma C.10. For θ ∈ Sϑ and z /∈ Σϑ, the map

W θ(z) :=
(
Bθ(z)

)∗
SR̂(z)S∗Bθ(z) : H −→ H (C.33)

on the quantum graph is bounded and analytic. Furthermore, it is also bounded and

analytic considered as map W̃ θ(z) from H into W2.
For real θ, we have

W θ(z) = Rθ(z)− Rθ,D(z). (C.34)

Proof. The boundedness and analyticity follows from the preceding two lemmas.
The proof of (C.34) is essentially the same as in [CDKS87, Lem. A.2] and basically
an application of Greens formula for real θ. �
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On the manifold, we have a similar assertion:

Lemma C.11. For θ ∈ Sϑ and z /∈ Σϑ, the map W θ(z) from H into H defined as
in (C.33) but now with

Bθ(z) := S0,θ∂Rθ,D(z) : H Rθ,D(z)−→ H1,D ∂−→ H S0,θ

−→ G−1/2, (C.35)

(Bθ(z))∗ : G1/2 −→ H
S0,θ : H −→ G−1/2, f 7−→ −S0

intf + e−3θ/2S0
extf,

∂ := ∂int ⊕ ∂ext : H1,N −→ H,
S : H1 −→ G1/2, f 7→ Sintf = Sextf, S∗ : G−1/2 −→ H−1.

on the quantum graph is bounded and analytic. In addition, ‖W θ(z)‖ is bounded
w.r.t. ε.

For real θ and z /∈ Σϑ, we have again (C.34).

Proof. Again, the boundedness and analyticity follows from the explicit representa-
tion. The ε-independence of the norm follows from Lemmas C.5 and C.6. The last
assertion is again similar to the proof of [CDKS87, Lem. A.2]. �

As in [CDKS87], we now define the operator Rθ(z) also for complex θ ∈ Sϑ via
the formula (C.34), i.e.,

Rθ(z) := W θ(z) +Rθ,D(z) : H −→ H. (C.36)

In particular, we have:

Lemma C.12.

(i) For z /∈ Σϑ, the family of Rθ(z) is analytic in θ ∈ Sϑ.
(ii) The operators Rθ(z) satisfy the resolvent equation for z /∈ Σϑ.
(iii) The kernel of Rθ(z) is trivial.

In particular, Rθ(z) is the resolvent of an operator

Hθu := (Rθ)−1u− u, u ∈ domHθ := H2,θ := Rθ(H) (C.37)

where Rθ := Rθ(−1) and the family {Hθ}θ is self-adjoint with spectrum contained
in the sector Σϑ. Finally, the norm of Rθ as operator on H = L2(Xε) is independent
of ε in the manifold case.

Proof. (i) The first assertion follows immediately from Lemma C.7 and the explicit
formula for W θ(z) given in (C.33) (now for complex θ). (ii) The resolvent equation
is fulfilled for real θ, since then, the operator is the resolvent of a (self-adjoint)
operator. Due to analyticity, the resolvent equation remains true for all θ ∈ Sϑ.
(iii) To prove the third assertion, we claim that

〈
(Hθ,D − z)ϕ,W θ(z)v

〉
= 0 (C.38)

for all ϕ ∈ D2, for all v ∈ H, all z ∈ (Σϑ)
c and all θ ∈ Sϑ where D2 was defined

in (C.19). The claim can easily be seen from
〈
(Hθ,D − z)ϕ,W θ(z)v

〉
H
=

(
Bθ(z)(Hθ,D − z)ϕ, S1R(z)(S1)∗Bθ(z)v

)
G

using (C.33) for complex θ, where (·, ·)G is the pairing G × G in the quantum graph
case and G−1/2 ×G1/2 in the manifold case. Now the left-hand side of the last inner



CONVERGENCE OF RESONANCES ON QUANTUM WAVE GUIDES 43

product vanishes since Bθ(z)(Hθ,D − z)ϕ = (−S0
int + e−3θ/2S0

ext)ϕ = 0 for ϕ ∈ D2

and therefore, (C.38) is fulfilled.
Suppose finally, that Rθ(z)v = 0. Then we have

0 =
〈
(Hθ,D − z)ϕ,Rθ(z)v

〉
=

〈
(Hθ,D − z)ϕ,Rθ,D(z)v

〉

for ϕ ∈ D2 due to (C.38) . Since (Hθ,D−z)(D2) is dense it follows that Rθ,D(z)v = 0
and therefore v = 0 since the latter operator is injective as resolvent.

To conclude we observe that (ii) and (iii) imply that Rθ(z) is a resolvent (cf. [Ka66,
p. 428]) for all z /∈ Σϑ, i.e., σ(H

θ) ⊂ Σϑ. In addition, the family {Hθ}θ is self-adjoint
since (W θ)∗ =W θ and (Rθ,D)∗ = Rθ,D. Finally, ‖Rθ‖ ≤ ‖Rθ,D‖ + ‖W θ‖ is bounded
independently of ε by the spectral calculus and the preceding lemma. �

We finally characterize the domain of Hθ.

Lemma C.13. For complex θ ∈ Sϑ, the domain of Hθ is given by H2,θ as in (C.22)
and Hθu = Hmaxu where Hmax is defined in (C.20).

Proof. Let u = Rθv ∈ domHθ then
〈
(Hθ,min + 1)ϕ, u

〉
=

〈
(Hθ,D + 1)ϕ,Rθ,Dv

〉
= 〈ϕ, v〉

for all ϕ ∈ D2. In particular, due to the definition of the adjoint operator, we have
u ∈ domHθ,max and Hθ,maxu+ u = v. In particular, Hθ,maxu = (Rθ)−1u− u so that
finally, Hθu = Hθ,maxu using the definition (C.37).

To show that u belongs to the set defined on the right-hand side of (C.22) we will
first show that Rθ = Rθ,D +W θ defines a bounded and analytic map from H into

W2 denoted by R̃θ. For Rθ,D this follows from the sequence of maps

R̃θ,D : H Rθ,D

−→ H2,D ιell−→ W2 (C.39)

on the quantum graph and the manifold (cf. (C.23)) and Lemma C.7).

The fact that W̃ θ defines a bounded and analytic map from H = L2(X0) into W2

in the quantum graph case was already shown in Lemma C.10 (setting z = −1).
On the manifold, we decompose W θ into the sequence of bounded maps (denoted

again by W̃ θ when considered as map H into W2)

H B0,θ

−→ G1/2 (S0)∗−→ H R−→ H2 ιell−→ W2 S2

−→ G3/2 (B−2,θ)∗−→ W2

where Sk : Hk −→ Gk−1/2 are the usual trace maps (note that S−1 is not an inverse

of S) and B0,θ resp. B−2,θ are defined as

B0,θ : H Rθ,D

−→ H2,D ∂−→ H1,N S1

−→ G1/2

B−2,θ : W−2 (ιell)
∗

−→ H−2,D Rθ,D

−→ H ∂−→ H−1,N S−1

−→ G−3/2.

Now all these maps are bounded and also analytic.

Since now in both cases, R̃θ and W̃ θ + R̃θ,D are analytic, and since they agree for
real θ by Lemma C.10 and Lemma C.11, they agree for all θ ∈ Sϑ. Finally, since

W̃ θ + R̃θ,D is bounded, the same is true for R̃θ.
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To finish the proof that u belongs to the set defined on the right-hand side
of (C.22), we note that

[
(−Sint)⊕ e−θ/2Sext

]
R̃θ and

[
(−Sint∂int)⊕ e−3θ/2Sext∂ext

]
R̃θ

are bounded and analytic as operators in H since the operators in the brackets are
bounded and analytic fromW2 to H. These operators vanish for real θ due to (C.22)
and vanish therefore for all θ ∈ Sϑ.

For the opposite inclusion, we have to check that a function u belonging to the
set on the right-hand side of (C.22) is of the form u = Rθv. A straightforward
calculation using similar arguments as in Lemmas C.10 and C.11 shows that v :=
Hθ,maxu+ u is the right candidate. �

Finally, we have shown that Hθ with the above domain H2,θ is a self-adjoint,
analytic family of operators with spectrum in the sector Σϑ either on the quantum
graph as well as on the manifold.

Compatible scales. To conclude this section, we have to check that there is a
compatible scale of order 1 w.r.t. the operator ∆ ≥ 0 in the sense of Definition A.4.

We define the compatibility operators {T θ}θ as

T θ : H −→ H, T θu := uint ⊕ e−θ/2uext. (C.40)

Clearly, these operators are bounded, invertible and satisfy (A.10). As in the ab-
stract setting of Appendix A we define

H1,θ := T−θ(H1), ‖u‖1,θ := ‖T θu‖1 = ‖(∆ + 1)1/2T θu‖ (C.41)

for complex θ ∈ Sϑ and H−1,θ := (H1,θ)∗. Note that we could also use the undilated
magnetic Hamiltonian H instead of the Laplacian ∆ in (C.41), since their quadratic
forms are equivalent (cf. Lemmas 3.3 and 4.6). In addition, the definition (C.41)
agrees with the one given in (C.13) (a priori only for real θ).

The density assumption Definition A.4 (ii), namely the density of H2,θ in H1,θ (or
equivalently, that T θ(H2,θ) ⊂ T θ(H1,θ) = H1 is dense in H1) follows by standard ar-
guments . We omit the proof since we do not need the density in order to apply the
results of Appendix B: The only point where the density enters is the unique contin-
uation of hθ to H1,θ×H1,θ (cf. Definition A.4 (iv)), but we only need the sesquilinear

form on H1,θ ×H2,θ (resp. in the dual form H̃2,θ × H̃1,θ) (cf. Remark B.4 (iii)).
Next, we have to show that the sesquilinear form hθ associated to the operator

Hθ satisfies Definition A.4 (iv):

Lemma C.14. The sesquilinear form hθ(f, g) := 〈f,Hθg〉, f ∈ H1,θ, g ∈ H2,θ

extends to a bounded, sesquilinear form

hθ : H1,θ ×H1,θ −→ C (C.42)

with bound Cθ
1 depending only on Re θ and the bounds on the potentials ‖a‖∞ and

‖q‖∞.

Proof. Partial integration shows that

〈f,Hθg〉 = hint(f, g) + hθext(f, g)

for f ∈ H1,θ and g ∈ H2,θ; in particular, there are no boundary terms. On
the internal part, we have hint(f, g) ≤ (hint(f) hint(g))

1/2 and hint(f) ≤ ‖f‖2hint ≈
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‖f‖2dint = ‖fint‖21,θ using Lemmas 3.3 and 4.6. On the external part, we estimate

|hθext(f, g)| ≤ 2 cosh(Re θ)‖fext‖1,θ‖gext‖1,θ and the claim follows. �

Finally, we have to check the embedding assumption Definition A.4 (iii) or the
equivalent resolvent estimate (A.14). We can prove even more, namely the stronger
resolvent estimate (A.15). Again, the proofs differ slightly in the quantum graph
and manifold case.

Lemma C.15. There exists a constant Cθ
2 depending only on Re θ, ‖a‖∞ and ‖q‖∞

such that the resolvent Rθ extends to a bounded map R̂θ : H−1,θ −→ H1,θ with norm
bounded by Cθ

2 . In particular, we have

‖f‖21,θ ≤ Cθ
2‖f‖22,θ (C.43)

for all f ∈ H2,θ on the quantum graph.

Proof. Similar as in the proof of Lemma C.13 we show that each summand on the
RHS of Rθ = W θ +Rθ,D extends individually to bounded maps H−1,θ −→ H1,θ. We
start with W θ and note that

Ŵ θ := (Bθ)∗SR̂S∗Bθ : H−1,θ −→ H1,θ (C.44)

is bounded where we consider Bθ as bounded map G −→ W−2 together with its dual

(cf. Lemma C.9). In that lemma we have also seen that the adjoint (Bθ)∗ maps
into H1,θ. Since the inclusion W2 ∩ H1,θ (with W2-norm) into H1,θ is continuous,

Ŵ θ is bounded. Furthermore, Ŵ θ and W θ coincide on the dense set H and Ŵ θ is
the unique extension of W θ onto H−1,θ.

Similarly, ι1,θR̂
θ,Dι−1,θ is bounded and agrees with Rθ,D on H: Here, the inclusion

map ι1,θ defined in (C.16) is bounded (see Lemma 3.3) and R̂θ,D : H−1,D −→ H1,D.
Note that the norm of ι1,θ depends on Re θ and on a resp. q since Hθ,D is the
decoupled magnetic Hamiltonian and the norm on H1,θ (cf. (C.41)) is defined with
the free Hamiltonian. Finally we have seen that Rθ extends to a bounded map

R̂θ : H−1,θ −→ H1,θ as desired. �

Recall that due to (Hε4) and (Hε6), the magnetic potential αε and the electric
potential qε are bounded independently of the squeezing parameter ε.

Lemma C.16. There exists a constant C̃θ
2 depending only on Re θ, ‖αε‖∞ and

‖qε‖∞, and not on ε, such that the resolvent Rθ extends to a bounded map

R̂θ : H−1,θ −→ H1,θ with norm bounded by C̃θ
2 . In particular, we have

‖u‖21,θ ≤ C̃θ
2‖u‖22,θ (C.45)

for all u ∈ H2,θ on the manifold.

Proof. Similar as in the previous proof, we show first that Ŵ θ : H−1,D −→ H1,D

defined as in (C.44), where now Bθ = B−1,θ with

B−1,θ := S0,θ∂Rθ,D : H−1,D Rθ,D

−→ H1,D ∂−→ H S0,θ

−→ G−1/2, (C.46)

is bounded: From Lemmas C.5 and C.6 we see that the norm of B−1,θ is bounded
independently of ε, and therefore, the same is true for the norm of Ŵ θ. It can

easily be seen by the very definition that ‖R̂θ,D‖ = 1. As before, Ŵ θ and R̂θ,D are
extensions of the corresponding operators on H. Finally, the norm of the inclusion
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map ι1,θ depends on ‖αε‖∞ and ‖qε‖∞, but can be bounded independently on ε by
our assumptions. �

Summarizing the results of Lemmas C.12 and C.13 and Lemmas C.15 and C.16
we have shown the following theorem:

Theorem C.17. The family {Hθ}θ∈Sϑ
is a self-adjoint, analytic family of operators

with domain given by (C.22). In addition, {H1,θ}θ is a compatible scale of order 1
with respect to the free operator ∆ = ∆Xε

in both the quantum graph and manifold
case. Finally, the constant Cθ

0 = ‖(Hθ + 1)−1‖ in Lemma A.3 and the constant Cθ
2

in Definition A.4 do not depend on ε in the manifold case. In particular, the results
of Appendix A and Appendix B apply.
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