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Abstract. Some time-evolution operators of a general unstable system lead 
to unphysical spectrum (unbounded below) of the total Hamiltonian. Various 
necessary conditions for boundeness of the spectrum are known. It is shown 
here, how this spectrum can be determined, which, in particular, gives the 
sufficient condition. 

1. Introduction 

It is well-known, that the exponential decay law, though is confirmed 
experimentally in a wide range, has an unphysical property; it corresponds to the 
energy spectrum without (lower) bound. Also some similarly behaving decay 
laws in the general scheme for description of unstable systems (developed mostly 
in the last few years - see e.g. Refs. [1--5]) exhibit this unpleasant feature. Various 
authors [3-7] deduce different conditions for the "reduced evolution operator" 
(time-evolution operator of the unstable system itself), under which spectrum 
of the total Hamiltonian is (below) unbounded. Nevertheless, the same question 
arises for those reduced evolution operators which do not obey any of the men- 
tioned conditions. We shall show here how the spectrum can be determined to a 
given reduced evolution operator. It gives, in particular, a possibility to decide 
whether a reduced evolution operator corresponds to a total Hamiltonian with 
a spectrum bounded below. 

In Section 2 we collect the assumptions in our description of unstable systems 
and introduce some notions. Section 3 is devoted to derivation of relations 
between a reduced evolution operator and spectrum of the corresponding total 
Hamiltonian. A simple criterion is given for the case when the state Hilbert space 
of an unstable system is finite-dimensional. The last section contains discussion 
of the results, a special attention being payed to connections of decay laws to the 
total Hamiltonian. 
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2. Preliminaries 

We deal with the description of an unstable system considered e.g. in Ref. [2]. 
Let us remind that such a system is assumed to obey the following conditions: 

(i) one can ascribe to it a state Hilbert space ~u, 
(ii) ~ ,  is a proper subspace of a Hilbert space ~ ,  

(iii) a strongly continuous unitary representation U(t) of one-parameter 
group of translations is realized on 0;/{ and ~f~, is not an invariant subspace of 
U(t) on ~ for any t >  0. 

Here ) f  is understood to be state Hilbert space of the "whole" system, i.e. 
including decay products as well. Further U(t)= e x p ( - i H t )  plays role of the time 
evolution operator o f  the considered system, and H is therefore the total 
Hamiltonian. 

Time evolution on the space ~= itself is governed by the reduced evolution 
operator 

V(t)=E=U(t)E,, t e N ,  

where Eu is a projection, E,~f' = •,. The relations 

v( t )  = v + ( -  t ) ,  

[I v(t)II <-_ i 

(2.1) 

(2.2a) 

(2.2b) 

hold obviously for all real t. The reduced evolution operator determines the 
decay law: assuming the unstable system to be prepared at t = 0 in a (normalized) 
state ~PeJC'u, we define it as 

P~(t) = tt V(t)tp I)2, (2.3a) 

in particular 

P~p(t) = 1(~, V(t)~)[ 2 (2.3b) 

if dim Jr= = t. More generally if the system is initially prepared in a mixed state 
described by density matrix 0, Ran 0 C ~,u, we define (cf. Ref. [8]): 

P0(t) = Tr ( v +(t) v ( t )a} .  (2.3c) 

We are interested in a class of operator-valued functions which are allowed 
to play role of reduced evolution operators. Solution of this problem is contained 
in the theory of unitary dilations (this theory was firstly applied to description of 
unstable systems by Williams [3]); let us remind it here briefly. 

Following Sz.-Nagy and Foias [9] we introduce the concept of positive 
definite operator-valued function 1 (PO-function). 

t We formulate the statements of Sz,-Nagy and Foias with respect to purposes of this paper. The 
notion of PO-function as well as the assertion ofth~ following theorem are in [9] considered for more 
general functions V:G->~(-~), G being a (topological) group 
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Definition 1. A function V : I R ~ ( ~ )  (whose values are bounded operators on a 
Hilbert space .Jr) is called positive definite if the inequality 

(~, v(t~- tj)~j) >__ 0 (2.4) 
i,j=l 

holds for any integer n and arbitrary 91 . . . . .  t p , ~ ;  t 1 . . . . .  t, elR. 2 

Remark. If dim J r  = 1, the present definition coincides with the usual definition 
of positive definite function V :IR--,I1S - cf. Ref. [10]. The condition (2.4) is then 
expressed as follows: for any integer n and arbitrary ~1 .. . . .  e,~l12; tl . . . . .  thEIR, 
the inequality 

~ ~io~jV(ti - tj) >- 0 (2.4a) 
i,j=l 

holds. 
We are interested especially in those PO-functions which are weakly continuous 

(WPO-functions). Let us now formulate for our purposes the following theorem 
originally deduced by Sz.-Nagy [11]: 

Theorem I. (i) Let U : l R ~ 2 ' ( J f )  be a unitary representation of one-parameter 
group of  translations on J/f, and let Jz~u be a subspace of ~ .  Then the function 
V: V(t)= E,U(t)E, is PO-function and obeys V(0)= E,. Moreover, if U is continuous 
(weakly or strongly, what is the same due to unitarity), then V is also continuous. 

(ii) Conversely, to any PO-function V : I R ~ ( ~ u ) ,  V(0)=E~, there exists a 
unitary representation U:IR~S~(~)  ("the minimal unitary dilation") of one- 
parameter translation group on some Hilbert space ~ ,  ~ 3  Su, so that it holds 

I/(t)=EuU(t)E. 

for all t and the space o;/f obeys the minimality condition 

~ = [ ~ U  U(t )~]  . 3 (2.5) 

Moreover, if V is weakly continuous, then the representation U is (weakly, and 
therefore also strongly) continuous. 

Corollary. The function V :lR--r2a(2/f,) can be a reduced evolution operator on Jr, 
if and only if it is WPO-function such that V(O) = E,. 

This class of reduced evolution operators is, however, too large. Some of them 
can be excluded, because they violate physical assumptions, which are to any 
system (especially to an unstable one) naturally ascribed. As we have mentioned, 
areason for such exclusion can consist of the fact that the Hamiltonian H (generator 
of the minimal unitary dilation) corresponding to given V(t) has a spectrum 
(below) unbounded. 

Let us show some reduced evolution operators with this unpleasant property: 

2 Notice that the relation (2.4) implies I0p, V(t)~P)l<(~p, V(0)~p), v(0) being ttermitian and positive, 
and V+(t)= V(- t ) ;  these conditions are closely connected to (2.2) 

The symbol M)~ rgeans the linear envelope of a set M, i.e. the collection of all finite linear combina- 
tions of vectors belonging to M 
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Theorem 2. (i) Let {V(t)},> o be a continuous semigroup of  contractions, i.e. 

V(tl)V(t2)= V(tl +t2) ,  tl, tz > 0 .  (2.6a) 

Equivalently, let any regeneration of a decayed state be forbidden: 

E , U ( t O ( I -  E~)U(t2)E . = 0 ,  t 1, t 2 >=0. (2.6b) 

(ii) Let a reoeneration be forbidden after a finite time T~: 

V(tl)V(tz) = V(tl + tz), tl  >- T~ > 0, t 2 > 0.  (2.6c) 

(iii) Let V(t) be weakly bounded by an exponential, i.e. let ~ p , ) ~ ,  and V>0 
exist so that 

](~', V(t))Ot < exp ( - Vt), t _>_ 0 .  (2.6d) 

(iv) For d i m J f , = t  let the integral 

In [(~,, V(t)tp)[dt (2.6e) 
l +t  z 

- -  c t 3  

diverge. 

Any of the conditions (i)-(iv) implies that the spectrum a(H) is (below) un- 
bounded. Moreover, the validity of (i) or (ii) implies a(H) to be the whole real line. 

For  proof  of this theorem see for example [ 3 ] -  (i), [ 4 ] -  (i), [ 5 ] -  (i), (ii), 
[6] - (iii), [7] - (iv). Negat ion of each of condit ions (i) ,-~ (iv) is necessary condit ions 
for V(t) to correspond to a (below) bounded  spectrum a(H). In the next section 
we shall show a sufficient condition. 

3. The Spectrum of Minimal Unitary Dilation 

The first thing which we need is some general expression of WPO-funct ions.  Let 
us start with the Bochner-Khintchin theorem: 

Theorem 3. To any continuous positive definite function V :IR---,C (see Remark ~o 
Definition l) there exists a bounded real function oo, non-decreasin9 and continuous 
on the right, so that 

V(t)= ~ e-i)tdo)(2), t e N .  (3.1) 

Conversely, any such function oo defines through (3.1) a continuous positive definite 
function V. 
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For proof see e.g. Ref. [10].Notice further that the functiono) (which determines 
a Lebesgue-Stieltjes measure on N) can be found to given V(t) by means of the 
formulae (cf. Ref. [10]) 

~0(~ +i t / )= ~ V(t)e~'(¢÷i~)dt, r />0 ,  (3.2a) 
o 

½(0)0(2-0)+0)0(2+0)) = _1 tim .[ Req~({ +iq)d{ , (3.2b) 
7~ q ~ 0 +  0 

o~(2)= - lim c%(2)+o)o(2+0). * (3.2c) 

Ira particular, if e~ is absolutely continuou~ i.e. if 0~(2)= S f(2)d2,feL(lR), the 
--09 

"formulae (3.2) reduce themselves to the inverse Fourier transformation. We shall 
generalize now Theorem 3 for the case of WPO-functions: 

1"he,rein 3a. An operator-valued function V :lR~£°(3f,) is weakly continuous and 
pos~;ve definite if and onty if there exists an operator valued function F: IR~ £a(:gf,) 
such t~hat 

(a) for all 2elR the operator F(2) is Hermitian, 
(b) for all 2, pe~,, 2<t~, it holds F(2)<=F(II)<=F(~), F(oo) being a Hermitian 

operator on 2~, 
(c) F is weakly continuous on the right, i.e. for all p, ~pe~, it holds (v,F(2 + 0)~o) 

= ( ~ ,  F(,1)~0), 
(d) iv(,).) is related to V(t) by means of the equation 

V(t)= ~ e-~adF(2). (3.3) 
--oo 

Remark. The formula (3.3) has to be read as follows: to a given t and arbitrary 
q~, q~3ef, the equality holds 

(V, V(t)q~)= f e-~Ztd(v,F(2)~o). (3.3a) 
- o o  

Other formulae containing integrals of the type (3.3) are understood in the same 
sense .  

Proof.. Sufficient Condition. Let a function F obeying ( a - d )  be given. Let us 
choose an integer n and some (arbitrary) t~ . . . .  , t ,  elR; ~a . . . . .  t ; , e ~ , .  Then we 
obtain 

(,#i,V(t~--t)¥,)= ~ ~ e-~'t~-tJ)d(vi, F(2)tpj) 
i , j =  I i , j =  t - o o  

= d e~a~i, F(2) ~ eiaJtp~ >0, 
--oo i j = l  

* The function co defined by (3.2c) obeys the condition lim co(2)=0; under this condition the 
correspondence V~-+co is one-to-one a~-~ 
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so that V is positive definite. Further for any ~ 2 / g ,  the function (he, V(t)tp) as the 
Fourier transform of a finite Lebesgue-Stieltjes measure [see (3.3a)] is continuous. 
The polarization identity (cf. e.g. [12]) implies now the weak continuity. 

Necessary Condition. For any *psafu the function (V0, V(0*p) is positive definite 
so that according to Theorem 3 a function c% exists: 

(he, V(t)he)= ~ e-iadc%(2). 
- - 0 9  

Let us define for any 2 s i r  the operator F()O in the following way: 

(he, V(,~)~o) - ¼ {coy + ~(;0 - o~,~,_ ~(~) - io~,~ +,~(;0 
+ ic% _ ,~(2)}. (3.4) 

Since V(0) is a bounded operator, the operator F(2) is obviously bounded; it 
assures that its definition through "matrix elements" is consistent. One easily 
verifies ( a -  c) with the use of properties of the functions c%(2) = (he, F(2)he). Validity 
of the Equation (3.3) follows directly from the definition of the function F(2). • 

One can find the function F(2) corresponding to given WPO-function V(t) 
by means of the formulae: 

~b(~ + itl) = ~ V(t)e ~'~ + i")dt, r/> 0, (3.5a) 
0 

½ [Q0(,~ - 0) + Qo(,~ + 0)] 

1 
= - -  lhn ~ [cP(¢+#l)+q)+(~+irt)]d~, (3.5b) 

2~ .+o+ o 

F(2) = - -  w-lim ~o(2) + (2o(2 + 0), (3.5c) 
~--+ - -  oO 

which follow easily fiom (3.2), (3.4) (see Remark following Theorem 3a). The 
function F(2) constructed in this way corresponds uniquely to given V(t), because 
due to (3.5c) it obeys the condition 

w-lim F(,~) = 0,  (3.6) 
. g ~  - - o 0  

which removes the possible non-uniqueness F(2)--,F'(2)= F (2 )+F  o, F o being any 
Hermitian (k-independent) operator. 

Let V(t) be now a reduced evolution operator, i.e. WPO-function such that 
V(0)= E,. The minimal unitary dilation U(0 of V(t), as welt as its generator H we 
may write in the form of spectral representation 

U(t)= ~ e-~Z'dEu(2),. H= ~ 2dE~I(2). (3.7) 
- o o  oo 

The function E,E~.  )E, fulfills the assumptions ( a - d )  of Theorem 3a and, 

moreover, it obeys the condition (3.6). Thus (2.1), (3.3), and (3.7) imply 

F(2)=E,E~(2)E,, ,~elR, (3.8a) 
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and 

IIF(2)II < 1, 2elR. (3.8b) 

Conventionally a(H) denotes the spectrum of H; further we shall introduce 
the following notion: 

Definition 2. Let V(t) be a reduced evolution operator. The set o-[VI-{2~IR] 
F(2 + e) - F(2 - e) > 0 for all e > 0} is called energy support of V(t). 5 

Now we are in position to prove our main theorem: 

Theorem 4. Let V(t) be a reduced evolution operator and H be generator of the 
correspondin 9 minimal unitary dilation. Then 

a(H) = a[V] . (3.9) 

In particular, if a[V] is (below) bounded so is a(H). 

Proof. A point 2o does not belong to or(H) if and only if there exists 7 > 0, En(20 + 7) 
- E t t ( 2 0 - 7 ) = 0 -  cf. [12]. Then (3.8a) implies 20¢ a[V], and therefore a[V]C 
a(H). On the other hand, let us consider the set 

J/1 = U v( t )~ . .  
t~lR 

If 20 ~ ~[ V], there exists 7 > 0 such that F(2 o + rl) - F(2 o -  7) = 0. Then the relation 

(*) (q~, ~,~(;~o + 7 )9 , ) -  (~o, E~/(~o - 0~0) = 0 

holds for any qoE~, because such expressions one can write as 

(q~, E~,(~),p) = (~, U + (t)E~(~) U(t)~) 

for some Fe  Yfu. Using the fact that U(t) for any t commutes with Eu(2) we obtain 

(cp, E,~ff.)~o)= (~, E , f f @ ) = ( , ~ ,  F f f j ~ ) .  

Since Eu(A ) -  E~1(2 o + 7 ) -E i~ (2o-  7) is a projection on W, the relation (,) implies 

E ~t( A )cp = 0  

for all q)e~{. Let us assume now EtI(A)#O, i.e. that there exists ZeJ f ,  ilEu(A)Xtt = 
e>0.  The minimality condition (2.5) states that the linear envelope JAca o f / #  is 
dense in H ,  so that to given Z one can find a finite linear combination 

Zo = ~ cq~0~, q~ieJ{, [lZ-)(ol[ <e. Then it holds 
i = 1  

e = I I E n ( A ) z  II = l l E t ~ ( A ) ( ) ( - ) ( o ) i i  < f iX -  Xo II < e, 

what contradicts to the assumption EH(A)+O. Thus we obtain 2o¢6(H), and 
consequently (r(H) C a[V]. Ill 

s Let us point out that the present definition is suitable also for complex continuous positive definite 
functions; we havethen ~ [ V ] ~  {)~lRto(2 + e ) - o X 2 - ¢ ) >  0 for all e>0}. 
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Discussion of this result will be performed in the next section. Here we show a 
simple consequence: 

Corollary. I f  d i m ~ ,  < o% the relation 

~(H)=~Ev] (3.~0) 

holds, where v(t)=Tr V(t), telR. In particular, if a[v] is (below) bounded so is a(H). 

Proof. The finite dimension of ovg, assures that the functions v(t) and TrF(2) are 
defined. The function v(t) as a finite sum of continuous positive definite functions 
is continuous and positive definite (cf. Theorem 3); one can express it as 

v(t)= ~ e-i~ldYrF(2). 
- - 0 0  

There holds obviously a i r ]  C o-IV]. On the other hand, all the functions (~,F(2)tp) 
are non-decreasing, i.e. Tr F(2 + 5)-  Tr F ( 2 -  5) = 0 implies F(2 + e) - F ( 2 -  5) = 0, 
and consequently a[v] ~ a[V]. • 

4. Discussion 

Theorem 4 together with the formulae (3.5) shows, how the spectrum of total 
Hamiltonian can be found to a given reduced evolution operator. Let us point 
out, that this procedure often simplifies: 

(a) in the case of finite-dimensional ~u Corollary of Theorem 4 can be applied; 
its main advantage is that the all necessary informations are contained in one 
complex function only, 

(b) under some reasonable assumptions about V(t) (see e.g. [5] .- Theorem 4.2) 
the function F(2) is absolutely continuous (in the weak sense), then we may 
replace the formulae (3.5) by the inverse Fourier transformation, 

(c) in various models the reduced evolution operator is determined by means 
of the function F(2) (remember the Breit-Wigner formula and its modifications), 
then one is able to apply Theorem 4 directly. 

Let us notice that alternative formulae to (3.5) of this paper could be deduced 
from Bochner theorems used to the similar aim by Sinha [5]. 

The second question which we shall discuss here concerns decay laws. Since 
they represent themselves directly measurable quantities (probability of non- 
decay at a given time), one can naturally ask whether it is possible to determine 
the energy spectrum from them. A knowledge of decay laws for sufficiently many 
states of the considered system gives to us the operator-valued function V +(t) V(t) - 
cf. (2.3). Problem is now the following: does the function V+(t)V(t) determine the 
Hamiltonian or (what is the same) does it determine the function V(t)? 

In the most simple case dim W, = 1 a reconstruction of the function (~, V(t)eo) 
from its modulus can be realized, however, some information about a behaviour 
of this function for complex values of t is needed [7]. Generally, the problem is 
expressed by the equation 

v + (t) v ( t )  = P(t )  (4.1) 
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where P(t) is a given operator-valued function with the following properties: 
(i) the operator P(t) is positive (and therefore Hermitian) for all tslR, 

(ii) P(0)=E,,  
(iii) for any t 6 ~  the inequality IIP(t) P] =< 1 holds, 
(iv) P(t) is weakly continuous with respect to t. 
One can also assume P(t) to obey some other (physically motivated) conditions. 

Notice that P(t) need not be positive definite, if dimoCf,,>l: in such a case the 
condition analogous to (2.2a) would have to hold 

V +(t)V(t) = P(t)= P+(-  t) = [V +(- t )V(-  t)] + = V(t)V ÷(t), 

but V(t) need not generally commute with V +(t). 
Up to our knowledge, it is not known, under which assumptions there exists a 

WPO-function V(t) solving the Equation (4.1). If such a solution exists, then it is 
not a unique one: 

(a) a function W(t)V(t), W(t) being any strongly continuous representation of 
one-parameter translation group on ~ , ,  solves the Equation (4.t) together with 
V(t); if for example [V(q), W(t2) ] =0  for all tl, tz~IR, then positive definiteness 
of V(t) implies the same property for W(t)V(t), 

(b) if [V+(t), V(t)] = 0  for all t>0 ,  then the function V+(0 solves the Equation 
(4.1) together with V(t); if V(t) is positive definite so is V+(t). 

We do not know, whether (a) and (b) are all possible non-uniquenesses of 
solutions of the Equation (4.1) or not. 

Concluding this part of discussion, a solution to "existence and uniqueness 
problem" of the Equation (4.1) is needed in order to decide whether a given 
operator-valued function P(t) corresponds to some unstable system (i.e. represents 
a collection of decay taws) in the present formalism_ Assuming now P(t) to be 
such a function (to which a reduced evolution operator V(t), and consequently 
a total Hamiltonian H corresponds), we can easily see the following consequence 
of the non-uniqueness (a) (which is the more substantial one); for example an 
operator H' = H + G which obeys the conditions 

(i) G is self-adjoint, 
(ii) G is reduced by oF,, 

(iii) G commutes with H, 
can be taken by the same right as a Hamiltonian giving the function P(t). Excluding 
the physically irrelevant possibility G-=eL e~IR, the present example shows 
that a knowledge of P(t) alone need not be sufficient in order to determine the 
Hamiltonian. 

Acknowledgment. The author is indebted to Prof. V. Votruba and Dr. M. Havli6ek for helpful and 
inspiring discussions. 

References 

t. Horwitz, L. P., Marchand, J.-P. : Helv. Phys. Acta 42, 801--807, 1039--1053 (t969) 
2. Havli~ek, M., Exner, P. : Czech. J. Phys. B23, 594-600 (1973) 
3. Williams, D. N.: Commun. math. Phys. 21,314--333 (1971) 
4. Horwitz, L. P., LaVita, J., Marchand, J.-P. : J. Math. Phys. 12, 2537--2543 (1971) 



10 P. Exner 

5. Sinha, K. : Helv. Phys. Acta 45, 619--628 (1972) 
6. L6vy, M. : Nuovo Cimento 14, 612--624 (1960) 
7. Khalfin, L.A. : JETP 33, 1371--1382 (1957) 
8. Exner, P. : Czech. J. Phys. B26, 976--982 (1976) 
9. Sz.-Nagy, B,, Foias, C.: Harmonic analysis of operators on Hilbert space. Amsterdam: North- 

Holland PubL Co. 1970 
10. Akhiezer, N. I., Glazman, I. M. : Theory of linear operators in Hilbert space (Russian). Moscow: 

Nauka 1966 
11. Sz:-Nagy, B.: Acta Sci. Math. Szeged 15, 87--92, 104--114 (1953) 
12. Riesz, F., Sz.-Nagy, B.: Functional analysis. New York: Ungar Publ. Co. 1960 

Blank, J., Exner, P., Havti~ek, M.: Linear operators on Hilbert space I (Czech). Prague: SPN 1975 

Communicated by H. Araki 

Received August 25, 1975 


