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We study relations between the ground-state energy of a quantum graph Hamiltonian with attractive δ

coupling at the vertices and the graph geometry. We derive a necessary and sufficient condition under
which the energy increases with the increase of graph edge lengths. We show that this is always the case
if the graph has no branchings while both energy increase and decrease are possible for graphs with a
more complicated topology.
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1. Introduction

Quantum graphs proved themselves to be a class of systems of-
fering numerous problems interesting from both the physical and
mathematical point of view; we refer to the proceedings volume
[1] for an extensive bibliography. In this Letter we address the
question about relations between the ground-state energy of such
a Hamiltonian and geometric properties of the underlying graph,
in particular, the lengths of its edges.

A motivation to study this kind of problem is twofold. On the
physics side it is, of course, the importance of the ground state as
the one to which the system tends to relax when it loses energy
due to an interaction with the environment. Since quantum graphs
model various real physical systems it is natural to ask about the
geometric configurations which are energetically the most favor-
able. At the same time, mathematically the problem represents
a natural extension of the usual spectral-geometry studies of the
relations between spectral properties of differential operators and
geometry of the manifolds supporting them.

We restrict here our attention to graphs with a finite number
of edges, some of which may be semi-infinite, and an attractive
δ coupling at the vertices, assuming that the motion at the graph
edges away from the vertices is free. Such systems have always
a nontrivial negative spectrum with a well-defined ground state;
we will ask how the corresponding eigenvalue depends on the
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finite-edge lengths. First we analyze the case of n attractive δ inter-
actions on the line which can be regarded as a simple chain graph.
We will prove that the ground-state energy moves up with increas-
ing distances between the δ potentials in two different ways, by
means of a Neumann bracketing and by using the well-known ex-
plicit form of such a Hamiltonian resolvent.

After that we will pass to general quantum graphs of the de-
scribed class. We will show that in such a case the dependence
on the edge length is more complicated and its sign is uniquely
determined by the form of the ground-state eigenfunction on the
particular edge. As long as the graph is a chain we have the
monotonicity described above. On the other hand, we will give an
example showing that once the graph has at least one nontriv-
ial branching, i.e., a vertex of degree exceeding two, it is possible
that the ground-state energy decreases with the increasing edge
lengths.

Before proceeding further let us note that relations between
quantum graph eigenvalues and edge lengths have been discussed
also in other contexts. In particular, Friedlander [2] derived a lower
bound on higher eigenvalues for finite graphs in terms of the total
graph size. On the other hand, Berkolaiko and Kuchment [3] stud-
ied general relations between the point spectrum and the set of
edge lengths and coupling constants.

2. A warm-up: δδδ interactions on a line

Consider first a particle on a line with a finite number of δ-
interactions the Hamiltonian of which can be formally written as
− d2

dx2 +∑n
j=1 α jδ(x − y j). Following [4] we denote this operator as

−�α,Y where α := {α1, . . . ,αn} and Y := {y1, . . . , yn}. We suppose
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that all the points y j are mutually distinct and the interactions
are attractive, α j < 0, j = 1, . . . ,n. Under this assumption the con-
tinuous spectrum of −�α,Y covers the positive halfline and the
discrete spectrum in the negative part of the axis is non-empty, in
particular, there is a ground-state eigenvalue λ0 < 0 with a strictly
positive eigenfunction ψ0

1; we ask how does λ0 depend on the
geometry of the set Y .

One can conjecture that the ground-state energy decreases
when the point interactions are closer to each other. First we prove
this claim under an additional assumption.

Proposition 2.1. Consider sets Y1, Y2 of the same cardinality such
that y j,1 < y j,2 < · · · < y j,n, j = 1,2. Let there be an i such that
y2,l = y1,l for l = 1, . . . , i and y2,l = y1,l + η for l = i + 1, . . . ,n.
Suppose further the ground-state eigenfunction of the −�α,Y1 satisfies
ψ ′

0(y1,i+) < 0 and ψ ′
0(y1,i+1−) > 0. Then we have minσ(−�α,Y1 ) �

minσ(−�α,Y2 ) for any η > 0.

Proof. Since ψ0 is positive and satisfies ψ ′′
0 = −λ0ψ0 between the

point interaction sites, the function is convex; by the assumption
there is then a point x0 ∈ (y1,i, y1,i+1) such that ψ ′

0(x0) = 0. Con-
sider now the operator −�̃α,Y1 which acts as −�α,Y1 with the
additional splitting2 Neumann condition at the point x0; it is ob-
vious that the two operators have the same ground state. Such
a Neumann condition separates the two halflines, hence −�̃α,Y1

can be written as −�̃l
α,Y1

⊕ −�̃r
α,Y1

. Consider now the operator

−�̂α,Y2 := −�̃l
α,Y1

⊕ −�N ⊕ −�̃r
α,Y1

where the added operator is

the Neumann Laplacian on L2(0, η); it is clear that the latter does
not contribute to the negative spectrum, hence minσ(−�̂α,Y2 ) =
minσ(−�̃α,Y1 ). Furthermore, −�̂α,Y2 is obviously unitarily equiv-
alent to −�α,Y2 with added splitting Neumann conditions at the
points x = x0, x0 + η, hence the sought result follows from Neu-
mann bracketing [5, Section XIII.15]. �

It is not difficult to see that the assumption about the derivative
signs is satisfied if −αi,−αi+1 are large enough or, which is the
same by scaling, the distance yi+1 − yi is large enough. However,
we can make a stronger claim without imposing restrictions on the
ground-state eigenfunction derivatives.

Theorem 2.2. Suppose again that #Y1 = #Y2 and α j < 0 for all j.
Let further y1,i − y1, j � y2,i − y2, j hold for all i, j and y1,i − y1, j <

y2,i − y2, j for at least one pair of i, j, then we have minσ(−�α,Y1 ) <

minσ(−�α,Y2 ).

Proof. We employ Krein’s formula [4, Section II.2.1] which makes
it possible to reduce the spectral problem at energy k2 to solution
of the secular equation, det Γα,Y (k) = 0, where

[
Γα,Y (k)

]
j j′ = −[

α−1
j δ j j′ + Gk(y j − y j′)

]N
j, j′=1

and Gk(y j − y j′ ) = i
2k eik|y j−y j′ | is the free resolvent kernel. Writing

conventionally k = iκ with κ > 0, we have to investigate the lowest
eigenvalue of Γα,Y (iκ) which is, of course, given by

μ0(α, Y ;κ) = min|c|=1

(
c,Γα,Y (iκ)c

)

1 See [4, Theorem II.2.1.3], and also Theorem 3.2 below.
2 Adding a Neumann condition is understood here in the way standard in bracket-

ing arguments [5, Section XIII.15]. Nevertheless, since Neumann condition is some-
times used as a synonym for Kirchhoff coupling in quantum graphs, we say “split-
ting” to stress that the functions from the domain of −�̃α,Y1 are in general discon-
tinuous at x0.
with the minimum taken over all c ∈ C
n with |c| = 1. It is easy

to see that μ0(α, Y ;κ) > 0 for all κ large enough; the ground-
state energy −κ2 corresponds to the highest value of κ such that
μ0(α, Y ;κ) = 0. Since [Γα,Y (iκ)]i j = −δi jα

−1
i − 1

2κ e−κ�i j , where
�i j = |yi − y j|, the quantity to be minimized is explicitly

(
c,Γα,Y (iκ)c

) =
n∑

i=1

|ci|2
(

− 1

αi
− 1

2κ

)
− 2

n∑
i=1

i−1∑
j=1

Re c̄ic j
e−κ�i j

2κ
.

Next we notice that the eigenfunction corresponding to the ground
state, i.e., c for which the minimum is reached can be cho-
sen strictly positive; we write symbolically c > 0 meaning ci >

0, i = 1, . . . ,n. This follows from the fact that the semigroup
{e−tΓα,Y (iκ): t � 0} is positivity improving, as a consequence of
strict negativity of the off-diagonal elements of Γα,Y (iκ) — cf. [5,
Section XIII.12 and Problem XIII.97]. This means, in particular, that
we have

μ0(α, Y ;κ) = min|c|=1, c>0

(
c,Γα,Y (iκ)c

)
.

Take now two configurations, (α, Y ) and (α, Ỹ ) such that �i j � �̃i j
and the inequality is strict for at least one pair (i, j). For any
fixed c > 0 we then have (c,Γα,Y (iκ)c) < (c,Γα,Ỹ (iκ)c), and con-
sequently, taking a minimum over all such c’s we get

μ0(α, Y ;κ) < μ0(α, Ỹ ;κ)

for any κ > 0 with the obvious consequence for the ground state
of −�α,Y ; the sharp inequality in the last formula holds due to
the fact that there is a c for which the minimum is attained. �
Remark 2.3. The argument used above can be extended to other
situation. Take for instance, point interactions on a loop, in other
words, on a finite interval with periodic boundary conditions. The
corresponding Green’s function is

Giκ (x, y) = coshκ(� − |x − y|)
2κ sinhκ�

, |x − y| � 1

2
�,

where � is the length of the loop. Writing the corresponding secu-
lar equation we find that expanding the loop without reducing the
distances between the neighboring point interaction sites means
moving the ground-state energy up.

3. Quantum graphs: setting the problem

After this preliminary let us pass to a more general situation
when the particle lives on a graph and the attractive point interac-
tion represent couplings at the graph vertices. Consider a graph
Γ consisting of a set of vertices V = {X j: j ∈ I}, a set of fi-
nite edges L = {L jn: ( j,n) ∈ I L ⊂ I × I} where L jn is the edge3

connecting the vertices X j and Xn , and a set of infinite edges
L∞ = {Lk∞: k ∈ I C } attached to them. We regard it as a configu-
ration space of a quantum system with the Hilbert space

H =
⊕
j∈I L

L2([0, l j]
) ⊕

⊕
k∈I C

L2([0,∞)
)
.

the elements of which can be written as columns ψ = {(ψ jn: L jn ∈
L}, {ψk∞: Lk∞ ∈ L∞})T . We consider the dynamics governed by
a Hamiltonian which acts as −d2/dx2 on each edge. In order to
make it a self-adjoint operator, in general boundary conditions

3 Without loss of generality we may suppose that each pair of vertices is con-
nected by a single edge; in the opposite case we add extra vertices of degree two
to the “superfluous” edges and impose Kirchhoff conditions there.
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(U j − I)Ψ j + i(U j + I)Ψ ′
j = 0 (3.1)

with unitary matrices U j have to be imposed at the vertices X j ,
where Ψ j and Ψ ′

j are vectors of the functional values and of the
(outward) derivatives at the particular vertex, respectively [6–8]. In
other words, the domain of the Hamiltonian consists of all func-
tions in W 2,2(L ⊕ L∞) which satisfy the conditions (3.1). We will
be interested in the following particular class:

• the internal part of the graphs is finite and so is the number
of external edges, #I L < ∞ and #I C < ∞;

• the coupling at each vertex is of δ type in terminology of [9],
i.e., U j = 2

n j+iα j
J − I , where n j is the degree of the vertex

X j and J is the matrix having all the entries equal to one.
Explicitly the coupling conditions (3.1) then become

ψ j,i(0) = ψ j,k(0) =: ψ j(0), j ∈ I, k = 1, . . . ,n j,

n j∑
i=1

ψ ′
j,i(0) = α jψ j(0), (3.2)

where each edge emanating from X j is parametrized in such
way that x = 0 corresponds to the vertex;

• for “free endpoints”, or vertices of degree one, parametrized by
x j = l j , this in particular means the Robin condition, ψ ′

j(l j) +
α jψ j(l j) = 0;

• all the couplings involved are non-repulsive, α j � 0 for all
j ∈ I , and at least one of them is attractive, α j0 < 0 for some
j0 ∈ I .

In such a case it is not difficult to express the quadratic form
associated with the quantum-graph Hamiltonian H : it is given by4

q[Ψ ] =
∑
j∈I L

l j∫
0

∣∣ψ ′
j(x)

∣∣2
dx +

∑
k∈I C

∫
R+

∣∣ψ ′
k(x)

∣∣2
dx

+
∑
i∈I

αi
∣∣ψi(0)

∣∣2
, (3.3)

where ψ j , ψk are components of the wave function Ψ on the in-
ternal and external edges, respectively, and ψi(0) are the values at
the vertices. The domain of the form consists of L2 functions which
are W 1,2 on the graph edges and continuous at the vertices.

Proposition 3.1. infσ(H) < 0 holds under the stated assumptions.

Proof. If I C = ∅ we take a constant function, Ψ = c on Γ which
belongs to the form domain because Γ has then a finite length; we
get q[Ψ ] � α j0 |c|2. On the other hand, if I C 	= ∅, we take Ψ equal
to c on the internal part of the graph and to ψk(x) = ce−κx on each
external semi-infinite edge. The integrals over the internal edges
vanish as before and those over external ones are easily evaluated;
we get

q[Ψ ] �
(
α j0 + 1

2
κ#I C

)
|c|2

which can be made negative by choosing κ small enough. �
4 A meticulous reader might notice that numberings of the functions on the edges

differ; sometimes it is practical to number the edges, sometimes vertices at their
endpoints, or edges sprouting from a given one. We are sure that this can cause no
misunderstandings.
Theorem 3.2. In addition, let Γ be connected, then the bottom of the
spectrum λ0 = infσ(H) is a simple isolated eigenvalue. The correspond-
ing eigenfunction Ψ (0) can be chosen strictly positive on Γ being convex
on each edge.

Proof. Consider a disjoint graph with all the vertex couplings
changed to Dirichlet conditions. In such a case the spectrum is
positive; it is discrete if I C = ∅ and equal to R+ otherwise. By
Krein’s formula [10, Proposition 2.3], the original operator differs
from the Dirichlet decoupled one by a finite-rank perturbation in
the resolvent, hence their essential spectra are the same by Weyl’s
theorem and the negative spectrum of H may consist at most of a
finite number of eigenvalues of finite multiplicity; by the previous
proposition it is non-empty and the ground-state eigenvalue exists.

The ground state positivity follows, e.g., from a quantum-graph
modification of the Courant theorem [11]. The eigenfunction being
positive and its component ψ

(0)
j at the jth edge twice differen-

tiable away of the vertices, we have (ψ
(0)
j )′′ = −λ0ψ

(0)
j > 0, which

means the convexity. �
In fact, one can say more about the ground-state eigenfunction

because the corresponding Schrödinger equation can be solved ex-
plicitly. Writing the spectral threshold as λ0 = −κ2 we see that
the eigenfunction component on each edge is a linear combination
of eκx and e−κx . Since we are free to choose the edge orientation,
each component has one of the following three forms,

ψ
(0)
j (x) =

⎧⎨
⎩

c j coshκ(x + d j), d j ∈ R,

c je±κ(x+d j), d j ∈ R,

c j sinhκ(x + d j), x + d j > 0,

(3.4)

where c j is a positive constant. For further purposes we introduce
edge index

σ j :=

⎧⎪⎪⎨
⎪⎪⎩

+1 · · · ψ
(0)
j (x) = c j coshκ(x + d j),

0 · · · ψ
(0)
j (x) = c je±κ(x+d j),

−1 · · · ψ
(0)
j (x) = c j sinhκ(x + d j).

(3.5)

4. Monotonicity proof by a scaling argument

From now on we consider connected graphs only which we
can do without loss of generality, since otherwise we deal with
each connected component separately. By Theorem 3.2 the graph’s
Hamiltonian H then has a simple ground state with positive eigen-
function. Using the above definition, we can compare graphs with
the same index structure.

Given Γ and Γ̃ with the same topology differing possibly by
inner edge lengths, we consider the family of interpolating graphs
having the length of the jth edge in the closed interval with l j

and l̃ j as endpoints.5 We say that the graphs Γ and Γ̃ belongs to
the same ground-state class if the edge indices of the graphs edges
remain the same for this whole family. Equipped with this notion
we can make the following claim.

Theorem 4.1. Under the stated assumptions, consider graphs Γ and Γ̃ of
the same ground-state class. Let H and H̃ be the corresponding Hamilto-
nians with the same couplings in the respective vertices, and λ0 and λ̃0

5 This family corresponds to a closed parallelepiped in the natural parameter
space (0,∞)
I L of our problem given by the interior edge lengths. If at least one
of the edges has the same length in both the Γ and Γ̃ the said parallelepiped is
degenerate and we regard it instead as a subset in the reduced parameter space re-
ferring to the changing edge lengths. The eigenvalues are analytic functions on the
interior of such a set — cf. [3].
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the corresponding ground-state eigenvalues. Suppose that σ j l̃ j � σ jl j

holds all j ∈ I L such that |σ j| = 1 and l̃ j = l j if σ j = 0, then λ̃0 � λ0;
the inequality is sharp if σ j l̃ j < σ jl j holds for at least one j ∈ I L .

Proof. It is obviously sufficient to compare graphs differing just by
the length of a single inner edge corresponding to a fixed index
value j ∈ I C with |σ j| = 1, and it is enough to prove the claim
locally. We choose a finite-length segment J ≡ [a,b] in the interior
of the jth edge and write Γ as the union of J and Γ J := Γ \ J .
Without loss of generality we may choose J in such a way that
b − a > l j − l̃ j if σ j = 1 and b − a < l j if σ j = −1. Then Γ̃ can
be written as Γ J ∪ J̃ where J̃ is obtained by scaling of J with
the factor ξ := | J̃ || J |−1 being less than one in case of a shrinking
edge and larger than one otherwise. In order to prove the desired
result we have to find a function Ψ ∈ L2(Γ̃ ) such that the Rayleigh
quotient on the tilded graph satisfies

q̃[Ψ ]
‖Ψ ‖2

< λ0. (4.1)

We construct such a trial function Ψ̃ (0) in the following way: we
put Ψ̃ (0)(x) = Ψ (0)(x) for x ∈ Γ J while the jth component on J̃ is
obtained by scaling

ψ̃
(0)
j (ã + ξ y) = ψ

(0)
j (a + y) for 0 � y � | J |, (4.2)

in order to prove (4.1) we have to choose ξ < 1 if σ j = 1 and vice
versa. The Rayleigh quotient for the function (4.2) can be easily
rewritten in a natural notation as

q̃[Ψ̃ (0)]
‖Ψ̃ (0)‖2

= a + bξ−1

c + dξ
=: f (ξ), (4.3)

where

a := qΓ J

[
Ψ (0)

]
, b :=

∫
J

∣∣(ψ(0)
j

)′
(x)

∣∣2
dx,

and c,d are the parts of the squared norm of Ψ (0) correspond-
ing to Γ J and J , respectively. It is enough to check that σ j f ′(1) =
−σ j(bc + 2bd + ad)(c + d)−2 > 0. Choosing the ground-state eigen-
function Ψ (0) conventionally with the norm equal to one, we have
c + d = 1 and a + b = λ0, hence the property to be checked is
−σ j(λ0d + b) > 0, or more explicitly

−σ j
(
λ0

∥∥ψ
(0)
j

∥∥2
J + ∥∥(

ψ
(0)
j

)′∥∥2
J

)
> 0.

Using λ0 = −κ2 we find for σ j = 1
∫
J

∣∣(ψ(0)
j

)′
(x)

∣∣2
dx = c2

j κ
2
∫
J

(sinhκx)2 dx < c2
j κ

2
∫
J

(coshκx)2 dx

= −λ0

∫
J

∣∣ψ(0)
j (x)

∣∣2
dx,

and the opposite inequality for σ j = −1 where the roles of hyper-
bolic sine and cosine are interchanged. Hence inequality (4.1) is
satisfied for ξ < 1 if σ j = 1 and ξ > 1 if σ j = −1, provided |1 − ξ |
is small enough, which is what we have set out to prove. �
Remark 4.2. The case σ j = 0 is nontrivial; the critical case in the
example given in the next section shows that such a possibility is
not excluded in case of finite edges and the ground-state energy
can be independent of length changes of such edges, however, a
more subtle analysis is needed to treat such situations in general.
5. Discussion

Let us now ask what consequences can one derive from our
main result given in Theorem 4.1. First we notice that the graphs
without branchings belong all to the same class and one is able
to extend to them conclusions of Theorem 2.2 and Remark 2.3.
Specifically, we can make the following claim.

Corollary 5.1. In the setting of Theorem 4.1 suppose that the graph Γ

has no branchings, i.e., the degree of no vertex exceeds two. Then the in-
dex of any edge is non-negative being equal to one for any internal edge.
Consequently, a length increase of any internal edge moves the ground-
state energy up.

Proof. By assumption a graph without branchings is a chain of
edges, either closed into a loop or open; in view of Remark 2.3
we can consider only the latter possibility. It is obvious that it is
not possible that all the edges have negative index. If the first or
the last one are semi-infinite, their index must be zero; if all the
edges are finite the attractive δ-coupling would require that sgnψ ′

0
remains unchanged over the whole chain and the non-repulsive
Robin condition on one of the endpoints could not be satisfied.
The question is whether one can have a sinh-type solution at some
position within the chain. In such a case there would be a vertex
in which wavefunction components with different indices have to
match. Let us parametrize the chain by a single variable x choosing
x = 0 for the vertex in question. Suppose that the (non-normalized)
ground-state eigenfunction equals ψ j(x) = coshκ(d1 − x) for x < 0
and ψ j+1(x) = c sinhκ(d2 ∓ x) for x > 0. By assumption they are
coupled by an attractive δ interaction, hence c is determined by
the continuity requirement and ψ ′

j+1(0+) − ψ ′
j(0−) must be neg-

ative; recall that the ground-state eigenfunction is positive. How-
ever, this expression equals ∓κ coshκ(d1 ±d2)/ sinhκd2, hence the
needed match is impossible for a sinh solution decreasing towards
the vertex. The same is true for the opposite order of the two so-
lutions, and similarly one can check that a negative-index edge
cannot neighbor with a semi-infinite one. �

On the other hand, for graphs with a more complicated topol-
ogy the analogous claim is no longer true. We will illustrate it on
a simple example of a star graph with mirror symmetry sketched
in Fig. 1. We have plotted here the ground-state energy — in the
logarithmic scale to make the effect more visible — as a function
of the edge length L2 and the coupling constant α in the cen-
tral vertex. We see two regimes here. For weak attractive coupling,
αcrit < α < 0 where αcrit ≈ −1.09088, the ground-state energy de-
creases with increasing L2 while the opposite is true if α < αcrit; at
the critical value the energy is independent of L2 and the solution
on the “axial” edge is a pure exponential.

The reason why this happens in the example is obvious. The
mirror symmetry allows us to decompose the problem into a sym-
metric part, where the ground state is to be sought, and antisym-
metric one which reduced trivially to the Dirichlet problem on a
single interval. Using the notation from the proof of Corollary 5.1,
the left-hand side of the derivative condition in the symmetric
part equals ψ ′

2(0+) − 2ψ ′
1(0−), hence the argument used there no

longer applies. On the other hand, it is not difficult to construct ex-
amples without a symmetry in which we have different regimes;
an open question is whether one can find a general regime char-
acterization for an arbitrary branching graph.

Let us finally recall that our main result, Theorem 4.1, holds for
graphs belonging to the same ground-state class. We know from
[3] that the notion is not empty: it follows from eigenfunction
dependence on the edge lengths that a given graph has a neigh-
borhood in the parameter space where the indices do not change.
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Fig. 1. The ground-state energy of sketched star graph as a function of L2 and α.
The question about existence of different classes for graphs of the
same topology is open and interesting.
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