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We continue discussion of the Lee-type decay model described in the first part  of this paper. 
After separation of the centre-of-mass motion,  we deduce meromorphic structure of the reduced 
resolvent for small values of the coupling constant.  

1. I N T R O D U C T I O N  

In the first part of this paper [1], hereafter referred to as I, we have formulated 
a non-relativistic model of two-particle decay and studied its Galilean invariance. 
Here we are going to study the model further. First we separate the centre-of-mass 
motion. Then we turn to discussion of the reduced resolvent which contains the 
essential dynamical information. We show that under mild assumptions about 
the interaction Hamiltonian, it has a meromorphic structure. The unperturbed 
Hamiltonian has a simple eigenvalue embedded in the continuous spectrum; the 
corresponding pole shifts under influence of the perturbation to the second sheet 
of the analytically continued reduced resolvent. Further properties of the model 
will be discussed in the subsequent parts of the paper. 

The second part is a direct continuation of I and leans fully on its results. The 
theorems, formulae and references given in I are not repeated but referred to by 
their numbers following the digit I. In the forthcoming parts of the paper we shall 
proceed similarly. 

2. SEPARATION OF THE CENTRE-OF-MASS MOTION 

The state Hilbert space (I.2.1) decomposes naturally into the tensor product 
of spaces referring to relative and centre-of-mass motion, ~ = j f c m |  j4orel. 
With the usual licence, we write 

(2.1) W = L2(~ 3) | (C �9 L2(~3)), 

where the bilinear mapping |  L2(~ 3) x [C (~ L2(~3)] ~ 2gr is defined by 

\0(x) e(x)]' 
�9 ) Presented at the Internat ional  Conference "Selected Topics in Quan tum Field Theory 

and Mathematical  Physics", Bechyn~, Czechoslovakia, June 23--27, 1986. 
�9 *) Present address: JINR, 141 980 Dubna, USSR. 
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one can check easily that  it has the required properties (cf, [L29] ,  Chapt.  6 or [-2]). 
The  Hamil tonian (I.2.5) can be then expressed as 

(2.2) H ,  = H~ m |  + I |  re' 

where n~  TM = - ( I / 2 M ) A x  and H t e l  -~- /4rel --o **o + g V w i t h  

~*o = _ __1 A .  ' 

2m 

we omit  here the superscript " re l "  for  convenience. The operators  H~ m and H re~ --9' 
are self-adjoint and the relation (2.2)implies ([I. 29], Theorem 6,10) 

(2.4) e - i '" '  = e - ' '~176 | e - i ' .r~  

for  all t 6 ~. Hence the total p ropaga tor  decomposes naturally and its centre-of-mass 
par t  represents a free motion.  For  our  purposes,  only the relative par t  is important .  
We are interested in the situation when the initial state o f  the system represents an 
undecayed heavy particle, 

at t = 0. Then the state vector factorizes at each t > 0, 

dtrel\ 5~t* u) (2.6a) 7Jt = e-iU~ku = ~gtc'm | ,t,r~' ' 
\~t" t , d /  

where 

(;) 5~ t'U e -  iHgrelt (2.6b) ( , , , , , , )  :=  
\~!" t ,d /  

and 

c m  (M_M ~ 3/2 fl 
(2.6c) ~Jt'"(X) = \27r it,/ 1.i.m. exp ( iMlX - Y]z/2t) ~J,(Y) d Y  

(cf. Ref. [I .27] ,  Sect IX.7). The same can be expressed in other words.  The decay 
is described fully by the reduced propaga tor  

(2.7a) U t :  = prte" e-it~,t = E,, e-iHgt 1"* J~t~ 

where E.  denotes the projection onto  ~ ,  (Ref. [I.3],  Chapt.  1). However ,  the latter 
F~ rol E~ ~ equals I | _ .  , where projects onto the one-dimensional  subspace j/fr~ ... C 

in #fr~l, and therefore the relation (2A) implies 

(2.7b) U, = e -iH~ | prje ~o, e - i H ~ ' t  . 
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Before proceeding further, let us mention how this decomposition looks like in the 
p-representation. The operator (I.2.10) may be expressed as 

(2.8) F =  F 3 |  

cm .flr~x where fl~m is a multiplication operator, and transforms Ha into flo | I + I @ no , 
(fl~m~) (p) = (p2/2M) ~(p) and 

(2.9) flr~, = p2 

3. T H E  R E D U C E D  R E S O L V E N T  

In what follows, we shall be concerned mostly with the relative motion, and 
therefore we omit the superscripts "tel". Let us first recall that the reduced propagator 
(2.7) is determined by the reduced resolvent 

(3.1) R.(z, Ha):= pray" (H a - z) -1 

as  

(3.2a) Ut~f = ;Re -i)'t de~ 5g, 

where the vector-valued measure is given by 

(3.2b) �89 + F((2, #))} 7 t = 

L _ 1 l i m  [Ru( ~ + it/, Ha) - R , (~  - it/, Hg)] 7 t d~ 
2rci n -~o+ 

(Ref. [I.3], Sect. 3.1); if R,( ' ,  Hg) has a pole near the real axis, then the reduced 
propagator is dominated by the corresponding exponential term. In our case, the 
(relative) subspace ~t~ is one-dimensional, so R,,(z, Hg) and U t act simply as multi- 
plication by numbers ru(z, Hg) and u(t), respectively. ~ 

Since E > 0 by assumption, the unperturbed Hamiltonian has the simple eigen- 
value E embedded in the non-simple continuous spectrum ac(Ho) = N+. Spectrum 
of the operator H a can be found easily. In particular, desk(Ha) = aos~(Ho) = N+, 
because the operator V is of rank two, and therefore relatively compact with respect 
to H o (cf. [I.273, Sect XIII.4); it means that ~(Hg) ~ o-(Ho). 

The,perturbation problem for the embedded eigenvalue E can be solved explicitly, 
because the interaction Hamiltonian fulfils the Friedrichs condition 

(3.3) EaVE a = O. 
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A simple algebraic argument (cf. [L3]; Proposition 3.2.1) gives 

Proposition 3.1: The reduced resolvent (3.1) acts as multiplicatio n by 

r,(z, He) = [ - z ' +  E + g2G(z)] - ' ,  (3.4) 

where 

(3.5a) f.. je(p)i' d - ,  z - (p2/2rn) t, 

for z ~ Q(Hg), in particular, for each non-real z e C. 
Notice that proving this assertion, one can work in the p-representation, where 

/to and (/~o - z) -1 act as multiplication operators; the relation (2.8) shows that 
r.(z,/-)g) = r,(z, Hg). The crucial observation is now that r,(-, Ho) may be continued 
analytically across N+, even if the full resolvent is not having a cut there. We shall 
prove that the perturbation shifts the pole corresponding to the unperturbed eigen- 
value from the real axis to the second sheet of the analytically continued r,( . ,  Ha). 
Let us first collect the hypotheses concerning the function t~: 

Assumptions 3.2: (a) ~ is rotationally invariant. In that case, the same is true for 
~, and we shall write ~(p) = ~t(P), having in mind that ~1 is not Fourier image 
of v t from I, (~)'/2l.i.m.r'rsinpro,(r)dr. 
(3.6) v'(P) .~o .]o P 

The relation (3.5a) can be now rewritten as 

(3.5b) G(z) - 47: f7  lo,(p)l' p' dp 
L z - (p2/Zm) 

(b) The  funct ion 2 can be continued analytically to an 
open set Q ~ C containing the point E and such that f2 c~ ~ c N+, i.e., there is 
a holomorphic function f :  Q ~ C such that f(2) = JOa[x/(2rn2)]] z x/(2mL) for 2 e  
e f2 c~ H. 'For convenience, we write f (z)  = [~l[#(2mz)]l 2 x/(2mz) for non-real z 
too. 

(c) o 

Now We Shall prove two auxiliary assertions. 

Lemma 3.3: Let the function 2 ~ [~[x/(Zrn2)]l z ~/(2m2) has a bounded derivative 
in an open set J ~ H+: Define 

(3.7) I(2, v ) : =  ~ 1"~ Ifl(P)l: P= L ~ )  alp' 

where ~ denotes principal value, then the function I( . ,  v) is finite and continuous 
in J. 
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Proof: Choose an arbitrary 2o ~ J- Due to the assumption,  there are positive C, 
6 such that  

(3.8) I ]~l(p)l z p - I@a[x/(2m2)]l z x/(2m2)l < Clp - ~/(2m;q[ 

holds for all p, x/(2m2) ~ (#(2m2o) - 6, x/(2m2o) + 6). The integral (3.7) can be 
then written as 

o ) :  0 ) :  + + dp 
= ~ / - , / [2m(2- -~ , )1  [ 2 m ( 3 . + 0 ) 1  )" - -  (P2/2m) 

for some 0 ~ (0, 2). We can choose 0 ~ (0, 2o) and 61 ~ (0, �89 such a way that  
IVzE2m(2 - O)] - x/(2m2)l < �89 for 

(3.9a) x/(2m2) e ( ~ / ( 2 m 2 o ) -  6,, x / (2m2o)+  61) 

so that  
(3.9b) 1412m('  + - < a.  

In what follows, we shall consider only those 2 which fulfil the condition (3'.9a). 
The integrals Ik(2, V), k = 1, 3, are finite and Ik( ' ,  V) are continuous at 40 due to the 
dominated-convergence theorem. It is sufficient therefore to consider the second 
integral. A simple intergration yields 

f,/[2~(~+o)~ p dp  - lim (f~/(2mZ)--v/ + f,/[2m(X+o)]) p a p  _ 

-.,/t2,,(z-o)l 2 - (p2[2m) ,-~o+ ,,.j,/t2m(a_~)l O ,/(2,,~)+, / 3, -- (p2/2m)  

= m l im In 
r / ~ 0  + 

so we have 

+ - -  
2m 

= 0  

2m 

(3.10) I2(2, o) = ~ r~lt2,,-+o)~ le,(p)l 2 p _ le,E4(am2)]12 x/(2m2 ) p d p .  

J,/tz,,(~-o)l ~ - (P2/2rn) 

According to the conditions (3.8) and (3.9), the following inequality holds 

P 2 m C p  lel(p)l~p - l e l [ 4 ( 2 m ) ) ] l  2 ~/(2m,t) <= <_ 2 i n C .  
2 - (pZ/2m) p + x/(2m2) - 

Thus the rhs of  (3.10) makes sense as a Lebesgue integral and I2( ' ,  v) is continuous 
at  40 by the dominated-convergence theorem. [] 

Lemma 3.4: Adopt  the assumptions (a) and (b). The function Ge defined by 

G(z) . . . I m z > 0  

(3.11) Go(z)  = ~4~l (z ,  v) - 47= z imle l [x / (2mz)][  z x/ (2mz) . . ,  z e N c~ Q 

[G(z) - 8~ z im[~l[x/ (2mz)]]  z x/(Zmz) ... z e Q, Im z < 0 

is holomorphic in {z ~ C: Im z > 0} w 12, 
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Proof: One has to check that within f2, the relation 

(3.12) lim G(~ _+ irl) = 4~I(2, v) -T- 47:2 ira[ ~1[\/(2m2)]12 ~/(2m2) 

holds. We notice first that I(2, v) makes sense due to (b), because the assumption 
of the preceding lemma is fulfilled in that case. Hence one can choose a sufficiently 
small Q and express G(z)  as a sum of three integrals in analogy with the above proof; 
the dominated-convergence theorem implies Gk(~ ~ it/) ~ 4~Ik(2,  v) for k = 1, 3. 
Further we have 

(3.13) lira G2(~ �9 it/) = 

T / ~ 0  + 

= 4rr lim f,/t2m(~+e)] ~l~l(p)12p _ l~x[x/(2m~)]jz x/(2m~ ) p dp + 
~-.a /,/,/[2m(z_a)j ~ • it~ - (pZ/Zm)  

~ / ~ 0  + 

^ /"~/C 2m(; t  + ~ ) ]  

+ 4n lim [va[x/(2m~)]l 2 x/(2m~) / p dp 

~1--}0+ 

The first limit equals 4~/z(a, o) according to (3.10) and the dominated-convergence 
theorem. One obtains easily 

fJt2raO~ + o)] 
(3.14) lira p d p  = m l i m l n  ~ - 2 + i t / + Q - =  -T-iTrrn 

r a vt2,,(~.-o)~ ~ +- it/ - (p2 /2m)  ~-~x ~ - 2 +_ iq - 
q-}O + yl-oO+ 

and we arrive at the relation (3.12). Combining it with the preceding lemma, we see 
that the function (3.11)is continuous in [z ~ C: Im z > 0} u f2. ~) Then it is uniformly 
continuous in any compact subset of it, and therefore the limit in (3.12) is uniform 
with respect to 2 in any compact subinterval of ~ n ~. Since Gn(-) is easily seen 
to be holomorphic in the upper and lower halfplanes (within f2 in the last case), 
the assertion follows from the edge-of-wedge theorem [4]. [] 

Remark 3.5: One has to check the uniform convergence, because the remark 
following Theorem 2 - 1 3  of Ref. [4] is not correct: a counterexample is represented 
by F ( z )  = z e i/=:. 

Now we are in position to prove the main result of this section. 

Theorem 3.6: Assume (a)-(c) .  Then there is a connected complex neighbourhood 
f2~ c O of the point E and a positive e such that for each g e ( - e ,  e), 

(3.15) r~(z ,  H a ) : =  [ - z  + E + O z Gs~(z)] -1 

represents analytic continuation of (3.4) to {z e C: Im z > 0} u f2. The function 

t) In fact, we need Lemma 3.3 only to ensure finiteness of I0., v) since the continuity follows 
from the existence of a finite limit on the real axis (cf. Ref. [3], Theorem 146). 
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r~(., Hg) has just one singularity in f21, a simple pole at z = zp(g), where the function 
zp = ;tp - iSp belongs to C~ e] and its real and imaginary parts fulfil 

(3.16a) 2p(g) = E + 4ng2~ foo. i~,(p)l ~ p2 dp + o ( g ' ) ,  
Jo E - (p2[2m) 

(3.168) 6,(g) = 4rc2mg2l~x[x/(ZmE)][ 2 x/(2mE) + o(a4).  

Proof: The assertion concerning analytic continuation follows from Lemma 3.4�9 
Only possible singularities of (3.15) are zeros of the function f (g,  z) :=  z - E - 
- g2Ga(z) defined for g e ~ and z from the analycity domain of G~. For small 
enough g, one can use the implicit-function theorem (cf. Ref. [3], Theorem 210 
or Ref. [5], Theorems IIL28, III.31). The function f is infinitely differentiable with 
respect to both g and z, further we have f(O,E) = 0 and (Of/Oz) (O,E) = 1 4= O. 
Then there is a neighbourhood ( - e ' ,  e') of the point g = 0 and a unique function 
Zp e C~ ', e'] such that f (g,  zp(g)) = 0 for lal < i.e., zp(a) = E + g2Ge(z,(9)). 
Continuity of the partial derivatives of f implies particularly that (Of/az) (.,  zp(.)) 
is continuous in ( - e ' ,  e'), and therefore there is a positive e < e' such that (Of/Oz). 
�9 (g, zp(g)) • 0 for g e ( - e ,  e). Consequently, r~(., Ha) has a simple pole at zp(9). 
The first few terms of[he Taylor expansion of zp 

= d3zp = 0 and 
d9 g=o do 3 9=0 

which imply (3.16). 

can be easily calculated: we obtain 

dZzP = 2G~(E) 
do  2 0=0 

[] 

Remark 3.7: In fact, we have proved the theorem using the assumptions (a) and (b) 
only. The assumption (c) is important, however, since it determines the leading 
order in the formula (3.16b) which yields the decay width. We shall return to this 
problem in a sequel to this paper. 

Remark 3.8: The proved theorem represents a particular case of much more 
general results obtained by Howland and Baumg/irtel - cf. ref. [I.3], sect. 3.3. 
The deduction is, however, more illustrative in comparison with the general case since 
the Friedrichs condition (3.3) makes it possible to avoid use of the factorization 
technique. 

Received 19. 8. 1986. 
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