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Abstract

We consider resonant vortices around nodal points of the wavefunction in

electron transport through a mesoscopic device. With a suitable choice of the

device geometry, the dominating role is played by single vortices of a preferred

orientation. To characterize strength of the resulting magnetic moment we

have introduced a magnetance, the quantity defined in analogy with the device

conductance. Its basic properties and possible experimental detection are

discussed.
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The topological structure of quantum mechanical wavefunctions is responsible for many

observable phenomena. One of its prominent consequences is existence of vortices. They

have already been observed in macroscopic quantum systems, rotating superfluid helium and

superconductors. In general, their existence is connected with the time reversal symmetry

breaking. The first example of the such topological effect was already given in the very early

days of the quantum theory. It concerns the probability current density of a single electron

defined conventionally by

~j(~r) = (h̄/m∗) Im
(

ψ̄(~r)~∇ψ(~r)
)

(1)

which may be nontrivial once the wavefunction ψ is complex. In systems with open ge-

ometry a nonzero probability current refers to an electron transport through the system,

i. e. from the source to a drain. Dirac1 pointed out that the quantum probability current

may exhibit a vortex structure around nodal points (zeros) of the corresponding wavefunc-

tion. The effect was later discussed by Hirschfelder2. Recently it has been demonstrated

numerically that the current in topologically nontrivial devices exhibits pronounced vortices

the form and magnitude of which changes quickly with the energy3–7 and applied magnetic

field8. The experimental evidence of their existence is of the particular interest.

The direct consequence of a vortex is a non-zero magnetic moment, which has to depend

on the applied current in a similar way as the device conductance. The natural physical

quantity representing a vortex structure strength is thus the device magnetance given by

the ratio of the magnetic moment and applied voltage drop. To analyse the effect of vortices

to the electron transport and magnetance we will limit our consideration to devices with

two-dimensional gas of spinless electrons. Main attention will be payed to the simple device

formed by a piece of the one–dimensional wire with tangentially attached circular cavity (a

quantum dot) as sketched in Fig. 1. It may be expected that there appears a dominating

circulating current in analogy with the classical gas flow. This structure is thus the natural

candidate for an experimental attempt to observe electron vortices.

The vortices are closely related with the topological structure of the phase. To be more
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explicit, let us write the wavefunction as

ψ =
√
ρ eiS , (2)

where ρ is the probability density of the particle and S is the corresponding phase. The

latter is defined modulo 2π and assumes conventionally values in the interval [0, 2π) . In

the two–dimensional case it is possible to identify the configuration space with a region in

the complex plane and to treat a possible multivaluedness of S in terms of its analytical

structure, especially cuts and branching points corresponding to different Riemannian sheets

of this function.

Existence of a branching point on the phase Riemannian surface implies appearance of

a vortex in the corresponding quantum probability flow2. Inserting (2) into (1) we get

~j(~r) =
h̄

m∗
ρ(~r)~∇S(~r) . (3)

The vector ~v = (h̄/m∗)~∇S can be regarded as a velocity of the corresponding probability

flow. For a closed curve Γ the vorticity of ~v along Γ is thus

∮

Γ
~v d~l =

h̄

m∗
δS = 2π

h̄

m∗
m ; m = 0,±1,±2, . . . , (4)

where δS is the phase change when winding once around the curve. Since the wave function

(2) must be single–valued, the difference δS can only equal to a multiple of 2π . If the phase

S has no singularities inside Γ, the contour can be shrinked into a point in which case the

vorticity is zero. If, on the other hand, Γ encircles a nodal point of ψ, the phase is ambigu-

ous at this point and the integer m may be nonzero. In this situation the corresponding

probability current exhibits a vortex centered at the nodal point.

In quantum devices three basic topological situations can occur (see Fig. 1) :

(a) A phase cut starts and ends at the boundary of the system. This is typical for integrable

systems. As a simple example, consider the transport through a straight quantum waveguide

of the width w parallel to the x–axis. If the incident wave is in the n–th transverse mode,

the wavefunction has the form
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ψk,n(x, y) =

√

1

πw
eikx sin

πny

w
, (5)

where n is the mode number and h̄2( k2+ π2n2/w2)/2m∗ is the particle energy. In this case

the phase S = kx is monotonically increasing in the longitudinal direction and its cuts are

located at the segments x = 2πj/k , j = . . . ,−1, 0, 1, . . . , parallel to the x–axis. Their

endpoints lie at the boundary, y = 0, w . They are physically irrelevant being not branching

points.

(b) The cut starts at the boundary and ends at some nodal point inside the system. The

internal endpoint is a branching point which is related to a single vortex.

(c) The cut connects two nodal points of the wavefunction. Both endpoints are branching

points which corresponds to a pair of vortices rotating in opposite directions.

To define the vortex magnetance we will follow the scattering approach9, generally ac-

cepted in the transport theory of quantum devices. To establish conductance of a two

terminal device, infinitely long ideal leads are placed between the device (scattering region)

and electron reservoirs (source and drain) allowing an explicit asymptotic form of scattering

wave functions. The obtained transmission coefficient T (E) is used to relate the applied

current J and the chemical potential difference between reservoirs, ∆µ. In the limiting case

of vanishing ∆µ and at zero temperature the electron transport is determined by properties

of electrons at the Fermi energy EF and we have

J =
e

h
T (EF ) ∆µ . (6)

The applied current is responsible for a non-zero momentum of the system. It can be

divided into two parts: momentum of the center-of-mass and the momentum due to electron

motion relative to the center-of-mass. The later one originates in circulating currents giving

rise to a magnetic moment ~M ≡ (0, 0,M) representing their strength. Momentum of the

center-of-mass is controlled by the current density within the ideal leads only. Note that

in the considered limit of infinitely long ideal leads the mass center momentum cannot be

affected by a device of finite dimensions.
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In the simplest case of one–dimensional ideal leads having a common axis the momentum

of the center-of-mass can easily be evaluated. It is controlled by the product T (EF )~j0(~r)

with ~j0(~r) being the current density within the system without the scattering region (the

device is replaced by the lead). In this case we get the vortex magnetance in the following

form:

~M(EF )

∆µ
=
eg(EF )

2c

∫

(

~j(~r) − T (EF )~j0(~r)
)

× ~r d2r, (7)

where g(E) denotes the density of device states. The magnetance defined by this way

characterizes the vortex structure of the studied device and it is invariant with respect to

coordinate system translations.

The expression, Eq.(7), is applicable to the device sketched in Fig. 1. To stress the effect

of the device geometry the flat potential is assumed within the device area demarcated by

hard walls. The relevant wave functions are thus eigenfunctions of the Schrödinger equation

for free electrons with zero values at the boundaries of the device and ideal leads.

To estimate the magnetance of the considered device, let us first summarize wavefunc-

tion properties of the separated circular cavity. In polar coordinates eigenfunctions are

determined by zeros of Bessel functions Jm at the cavity radius R and we have

ψ±
l,m(r, θ) = cl,m Jm(kl,mr)e

±imθ , (8)

where kl,m = xl,m/R with xl,m being the l–th zero of the Bessel function Jm, and cl,m

is the normalization factor. The quantum number m (m = 0, 1, 2, . . . ) represents the

angular momentum ±(h̄/m∗)m which is closely related to the vorticity defined by Eq.(4).

The eigenstates of spinless electrons are two–fold degenerated with respect of the sign of the

momentum.

Only the azimuthal component of the probability current density for given eigenenergy

El,m might be nonzero and it is given as follows

jθ(r) = Al,m

h̄

m∗

m

r
c2l,m J

2
m(kl,mr) , (9)
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where Al,m is given by the difference of weight factors, Al,m = |a(+)
l,m |2−|a(−)

l,m |2 , representing

amplitudes a
(+)
l,m and a

(−)
l,m of eigenfunctions with positive and negative values of the orbital

momentum, respectively. In the equilibrium case the problem has time reversal symmetry

requiring equality of weight factors and the total momentum vanishes.

Attaching a wire the wavefunctions ψ(r, θ) given by Eq.(8) become modified by a cou-

pling with plane waves. Assuming a small window between wire and cavity, much less than

R, wave functions ψ(r, θ) will only be slightly modified. The main effect will be a level broad-

ening represented by the spectral density gl,m(E) with sharp maxima at energies E ∼= El,m.

Wave functions representing states with the same direction of the probability flow in the

window region will be much easily matched together than those with opposite flow direc-

tions. In the current currying regime the amplitude of cavity wave functions matched with

incident plane wave will be thus enhanced giving rise to circulating currents. Corresponding

magnetance may be estimated by choosing a proper value of the Al,m(E) entering Eq.(9).

Inserting the current density jθ(r), Eq.(9), into expression for the magnetance, Eq.(7), we

get

M(EF )

∆µ
∼= µ∗

B

∑

l,m

Al,m(EF )mgl,m(EF ) , (10)

where µ∗
B = eh̄/2m∗c is the effective Bohr magneton. Due to the dominating role of the

spectral density gl,m(E) a resonance character of the magnetance is expected. Since gl,m(E)

is proportional to m∗ the magnetance is of the purely topological origin.

As an example, the energy dependence of the magnetance and the transmission coefficient

close to the resonance for l = 1 and m = 3 is shown in Fig. 2. Corresponding current density

distribution for EF indicated by arrow is presented in Fig. 1. Four phase-cut endpoints

represent vortex centers. Three of them are located close to the cavity center giving rise

to pronounced circulating current. For fixed window region the broadening of cavity levels

becomes weaker for larger radius R giving rise to more pronounced resonances as seen in

Fig. 3a. For R > 1.8w more complicated resonance structure appears due to states with

different quantum numbers l.
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For a quite well separated resonance the magnetance peak height may be estimated by

equality of the current originated in the cavity eigenfunction, Eq.(8), and that of the single

wire, Eq.(5), in the common region, i.e. in the area of overlapping circular and strip regions.

This condition gives:

Al,m(Er)
h̄g(Er)

m∗
m

∫ R

R−d
c2l,mJ

2
m(kl,mr)

dr

r
∼=

∼= 1

h

1

πw

∫ w

w−d
sin2 πy

w
dy , (11)

where d is the width of the common region, d = w + R − y0 with y0 being the distance of

the cavity center from the bottom wire edge. This estimation is in good agreement with the

values obtained by direct evaluation of the Eq.(7), as shown in Fig. 3a.

The above amplitude estimation, Eq.(11), assumes an ideal coupling allowing an easy

transfer of the incident wave with transmission coefficient T approaching unity. Out of the

ideal coupling a reflection will take place and T will decrease. However, far enough from

the resonance the mixing of plane waves with eigenfunction of the separated cavity becomes

less effective and transmission will be enhanced. This typical energy dependence is shown

in Fig. 2b.

At finite temperatures the magnetance is given by the following expression

M(µ, T )

∆µ
= − 1

∆µ

∫ ∂f0(E)

∂µ
M(E) dE , (12)

where f0(E) denotes the Fermi–Dirac distribution function and M(E) is the zero tempera-

ture magnetic moment given by Eq.(7). The resulting magnetance at a non-zero temperature

is shown in Fig. 3b. For high enough temperatures resonances will fully be smeared out and

the magnetance should approach values obtained by a semiclassical treatment. Since the av-

eraged density of states g scales with the cavity area < g >∼= (m∗/hh̄)EF πR
2 andm ∼ R/w,

the approximate scaling of the magnetance with R3 is expected.

The semiclassical description of the studied ballistic transport can be based on the billiard

model10. Electrons are injected uniformly over the wire width w and with the probability

1
2
cosφ along the direction represented by the angle φ with respect of the wire axis. As
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expected, the resulting magnetance, shown in Fig. 3b, approaches mean values obtained by

full quantum–mechanical treatment.

The same qualitative features of the magnetance are expected for any cavity defined by

a potential of the circular symmetry. We have found that resonances are very stable with

respect of the radius modulation (∆R(θ)/〈R〉 <0.1) and potential fluctuations less than the

energy level separation of the unperturbed cavity. Interaction between electrons, which was

not taken into account, should not change the magnetance structure qualitatively. However,

we expect enhanced magnetance due to the electron-electron friction.

Impurity potentials within wire area have destructive effect to the magnetance. They

suppress the transmission coefficient and consequently the current flow along window be-

tween wire and cavity, which is responsible for the magnetance peak height as discussed

above, Eq.(11). They also give rise to additional vortices of the uncontrollable orienta-

tion within the wire region. The resulting richer magnetance structure can be much easily

smeared out by the temperature. This destructive effects will be even more effective for

wider, multimode, wires.

In real systems the probability to have impurities within wire region might be lowered

by the shortening of the wire length. Similar device, but with centrally attached wires rep-

resented by point contacts, have already been realized11. The proper design could also allow

to control cavity area by top gates. To observe resonances the energy level separation of

the isolated cavity has to be larger than the thermal energy kBT . For the device fabricated

from a GaAs-AlGaAs heterostructure it limits the cavity radius, R[µm] < 0.2/
√

T [K]. For

example, assuming R ∼ 0.5µm resonances could be indicated by a fluxmeter allowing mea-

surements with accuracy 102 µB, which is in principle within experimental reach12. The

contribution of non-circulating currents cannot be easily excluded by experimental setup

as has been done in our theoretical treatment. Under the standard conditions of the fixed

applied current it will be, however, responsible for a monotonic background only.
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FIGURES

FIG. 1. The model device geometry with phase cuts (solid lines) for the energy indicated in

Fig. 2 by the arrow. The window between wire and the cavity equals to 5/4 of the wire width w

and the cavity radius R = 5w/3. Corresponding current density is illustrated by arrows.

FIG. 2. Energy dependence of the magnetance M/∆µ (a) and transmission coefficient T (b) in

the vicinity of the resonance for l = 1 and m = 3. Device geometry is the same as that in Fig. 1

and E1 denotes the energy of the lowest transversal mode E1 = (π2h̄2)/(2m∗w2).

FIG. 3. Magnetance M/∆µ at zero temperature (a) and at the temperature 0.05E1/kB (b) as

function of the cavity radius for fixed window width 5w/4. The dashed line represents estimation

for resonance maxima, Eq.(11). The dashed-dotted line is the result of the semiclassical treatment.
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