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Abstract. A construction of conservation laws for �-models in two dimensions is generalized within
the framework of noncommutative geometry of commutative algebras. This is done by replacing the
ordinary calculus of differential forms with other differential calculi and introducing an analogue of
the Hodge operator on the latter. The general method is illustrated with several examples.
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1. Introduction

In a recent work [1], we have shown that completely integrable discrete versions of
two-dimensional �-models (chiral models) are obtained via certain deformations
[2] of the ordinary calculus of differential forms on R

2 . The procedure is based
on a generalization of the construction of conserved currents presented for con-
tinuum �-models in [3]. In the present work, we further generalize this method in
several ways. We present rather weak conditions to be imposed on a differential
calculus and on a generalized Hodge �-operator such that the classical field equa-
tion d � g�1 dg = 0 for a �-model makes sense and a construction of an infinite
sequence of conserved currents still works (Section 3). In Section 2, we introduce
two-dimensional ‘noncommutative geometries’ with several examples to which
we refer in the sequel. Section 3 presents our notion of a generalized �-model, the
construction of conserved currents for it, and a linear system of which the field
equations are integrability conditions. This linear system is then further discussed
in Section 4 from a slightly more general point of view, revealing a kind of ‘dual-
ity’ between the �-model field equation and the zero curvature condition. Some
integrable equations are derived from the examples of noncommutative geometries
in Section 2. Section 5 contains our conclusions and further remarks.

2. Two-Dimensional Noncommutative Geometries

LetA be a commutative algebra of functions of two variables, t and x. Let
(A) be
a differential calculus onA such that dt and dx constitute a left and rightA-module
basis of the space 
1(A) of 1-forms. Though the algebra A itself is commutative
(and can thus be realized as an algebra of functions on some topological space), the
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differential calculus may be such that functions and differentials do not commute.
In that case, we speak of a ‘noncommutative differential calculus’ and geometric
structures built on it inherit this noncommutativity. In this sense we obtain a ‘non-
commutative geometry’ on a commutative algebra. Our basic geometric ingredient
is a C -linear operator � : 
1(A)! 
1(A) with the property

� (!f) = f(�!) (1)

for all f 2 A and ! 2 
1(A). Then

� dt =  dt+ � dx; � dx = � dt+ � dx (2)

and the operator � is determined by the choice of �; �; ; � 2 A. The �-operator
generalizes the Hodge operator of Riemannian geometry. In the following sections
we shall need some additional properties for this operator. We require � to be
symmetric in the sense that

! � !
0 = !

0
� ! (3)

for all !; !0 2 
1(A). Depending on the choice of differential calculus, these
conditions restrict the possibilities for the � operator. A simple calculation shows
that the symmetry condition is equivalent to?

dtf� dt+ dtf� dx� dxf dt� dxf� dx = 0 (4)

for all f 2 A. We also require � to be invertible. As a consequence of (1) its inverse
then satisfies ��1(f!) = (��1!)f . Moreover, we demand that

d (� � !) = 0 , d! = 0: (5)

In Section 3, we also need the triviality of the first cohomology group of 
(A),
i.e., closed 1-forms have to be exact. This condition is fulfilled for all the following
examples.

EXAMPLE 1. LetA be the algebra of C1-functions on R2 and 
(A) the ordinary
differential calculus (where functions commute with 1-forms). According to the
Poincaré Lemma every closed form is exact, i.e., the cohomology is trivial. The
symmetry condition (4) becomes � = �. The �-operator is invertible iff D :=
�� + 2 is everywhere different from zero. We find �� = Did. The condition (5)
is satisfied iff D is constant.

? It is possible to extend a first-order differential calculus to higher orders by demanding that the
product of any two differentials vanishes. Then the following condition is trivially satisfied, but also
the field equation which we consider in Section 3. It is more natural and convenient, of course, to
constrain the space of two-forms only by those conditions which are derived from the first-order
calculus using the general rules of differential calculus (cf. [2], for example).
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EXAMPLE 2. Let A be the set of all functions on the two-dimensional lattice
aZ� bZwhere a; b are positive real constants. x and t are the canonical coordinate
functions. A differential calculus on A is then determined by the commutation
relations?

[dx; x] = a dx; [dx; t] = 0 = [dt; x]; [dt; t] = b dt: (6)

More generally, we have

dt f(x; t) = f(x; t+ b) dt; dx f(x; t) = f(x+ a; t) dx (7)

for f 2 A. Acting with the exterior derivative on (6) leads to

dx dx = 0 = dt dt; dx dt = �dt dx: (8)

In general, however, 1-forms do not anticommute in this calculus. For the differ-
ential of a function f we get

df = @+xf dx+ @+tf dt (9)

where @+t and @+x are discrete partial derivatives, i.e.,

(@+xf)(x; t) =
1
a
[f(x+ a; t)� f(x; t)];

(@+tf)(x; t) =
1
b
[f(x; t+ b)� f(x; t)]: (10)

The symmetry condition (4) becomes  = � = 0 and the �-operator is invertible
iff �� nowhere vanishes on the lattice. Furthermore, one finds

� � [dx f(x; t) + dt h(x; t)]

= �(x; t)�(x; t � b) dxf(x� a; t� b)+

+�(x� a; t)�(x; t) dt h(x � a; t� b): (11)

The condition (5) in particular requires � � dt and � � dx to be closed. This leads to

@+t[�(x; t)�(x; t � b)] = 0; @+x[�(x� a; t)�(x; t)] = 0: (12)

Thus

�(x; t) =
C(x)

B(t� b)
�(x� a; t� b); �(x; t) =

B(t)

�(x� a; t)
; (13)

? More precisely, these relations determine a differential calculus on the algebra of polynomials
in x and t which can then be extended to the algebra of arbitrary functions. See also [2].
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whereC(x) andB(t) are arbitrary (nowhere vanishing) functions. Taking (12) into
account, (5) applied to the closed 1-form dx t+ dt x yields

�(x; t)�(x; t � b) = �(x� a; t)�(x; t): (14)

Together with (13), this requires C and B to be constant and, moreover, C = B.
We end up with

�(x; t) = �(x� a; t� b); �(x; t) =
C

�(x� a; t)
: (15)

With these restrictions on � and � we have

� � !(x; t) = C!(x� a; t� b) (16)

for all ! 2 
1(A) and (5) is satisfied. In the limit a ! 0; b ! 0 we obtain the
ordinary differential calculus (on C1-functions of x and t). The corresponding
limit of the �-operator, however, does not exhaust the possibilities which we have
for a = b = 0 (cf. Example 1). On the other hand, the limit b ! 0, keeping a

constant (and different from zero), does exhaust the possibilities which one finds
by investigating the limit calculus.

EXAMPLE 3. Let A be the algebra of C1-functions on R
2 and 
(A) the differ-

ential calculus determined by

[dx; x] = � dt; [dx; t] = [dt; x] = [dt; t] = 0; (17)

with a constant � (see also [4]). More generally, we have

dtf = f dt; dxf = f dx+ �fx dt (18)

for f 2 A. Here fx denotes the partial derivative with respect to x. Furthermore,
one finds

df =

�
ft +

�

2
fxx

�
dt+ fx dx (19)

and dx dx = 0 = dt dt; dx dt = �dtdx. For � 6= 0 the symmetry condition (4)
becomes � = 0 and � = � so that

� dt =  dt; � dx = � dt�  dx: (20)

The �-operator is invertible iff  6= 0. The condition (5) applied to the differentials
dt and dx requires  to be constant. Since every 1-form ! can be written as
! = dtf + dxh with functions f and h, a direct calculation now leads to

� � ! = 
2
! (21)
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so that (5) is indeed satisfied. There is no restriction for the function �.

EXAMPLE 4. For ab 6= 0, the constants a and b in (6) can be absorbed via a
rescaling of x and t. We may therefore set a = b = 1. In terms of the ‘light cone
coordinates’

u := � (t+ x); v := � (t� x); (22)

where �; � are constants, (6) becomes

[du; u] = � du; [du; v] = [dv; u] = � dv; [dv; v] =
�2

�
du: (23)

Performing the limit � ! 0 in such a way that �2=� ! � with a constant �, the
calculus of Example 3 is recovered. Another calculus, which will be discussed in
the following, is obtained in the limit � ! 0. After a renaming of the coordinate
functions, we get

[dt; t] = 0; [dt; x] = [dx; t] = � dt; [dx; x] = � dx: (24)

For a function f , this generalizes to

dtf(x; t) = f(x+ �; t) dt;

dxf(x; t) = f(x+ �; t) dx+ � _f(x+ �; t) dt
(25)

where _f = @f=@t. Furthermore,

df = _f(x+ �; t) dt+ (@+xf)(x; t) dx: (26)

The algebra A should now consist of functions on �Z� R which are smooth in
the variable t. Again, (8) holds. The � ! 0 limit of the �-operator for the calculus
of Example 2 (in the form (23)) only leaves us with � = � = 0 and � = � in
(2). But a closer inspection of the above (limit) calculus shows that an arbitrary
function � is permitted. The condition (5) requires  to be constant and � not to
depend on x, i.e., � = �(t). Then

� � !(x; t) = 
2
!(x� 2�; t): (27)

The above examples by far do not exhaust the possibilities.?Even these examples
can be considerably generalized by replacing the constants appearing in the defining
relations of the differential calculi by suitable functions. The commutation relations
for the differentials then no longer take the simple form (8). If two differential calculi
are related by a (suitable) coordinate transformation, they should be identified. A

? Further examples of two-dimensional differential calculi can be found in [5].
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complete classification of two-dimensional differential calculi has not yet been
achieved (see [5] for partial results). As a consequence of our definitions, the
action of the �-operator can be calculated on any basis of 
1(A) if we know its
action on one basis.

3. Generalized �-Models and Conservation Laws

In case of the ordinary differential calculus on R
2 , the following construction of

conserved currents is due to Brezin et al. [3]. In the form presented below, it also
works for the noncommutative geometries introduced in the previous section. �
denotes an algebra of finite matrices with entries inA and�� the group of invertible
elements of �. For g 2 � and

A := g
�1 dg (28)

we consider the field equations

d �A = 0 (29)

and refer to such a classical field theory as a generalized �-model. Since A is a
‘pure gauge’ we have

F := dA+AA = 0: (30)

Let 	 2 � and D : �! 
1 
A � the ‘exterior covariant derivative’ given by

D	 = d	+A	: (31)

Using (1), (29) and (3), we find

d � (Ai
j	

j
k) = d(	j

k � A
i
j) = (d	j

k) � A
i
j = A

i
j � d	j

k (32)

and thus

d �D	 = D � d	: (33)

If there is one conserved current for a generalized�-model, then an infinite sequence
of conserved currents is obtained as follows. Suppose J (m) 2 
1
A� is conserved,
i.e.,

d � J (m) = 0: (34)

If the first cohomology group of 
(A) is trivial and provided that (5) holds, there
exists �(m) 2 � such that

J
(m) = � d�(m)

: (35)
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Then

J
(m+1) := D�

(m) (36)

is also conserved since

d � J (m+1) = d �D�
(m) = D � d�(m) = DJ

(m)

= DD�
(m�1) = F�

(m�1) = 0: (37)

Starting with �(0) = I , the unit matrix, this procedure indeed generates an infinite
number of conserved currents. Let us introduce

� :=
1X

m=0

�
m
�
(m) (38)

where � is a parameter. From (35) and (36) we obtain

� d�(m+1) = D�
(m)

: (39)

Multiplying by �m+1 and summing over m leads to

� d� = �D�: (40)

The field equations (29) are integrability conditions of the linear system (40). In a
slightly more general setting this will be shown in the following section.

4. Another Look at the Linear System

Let A 2 
1(A) 
A �. Here A is not assumed to have the form (28). We still use
the definitions (30) and (31), however. Let us consider a linear system of the form
(40), i.e., � d� = �D�. It implies

0 = d(�D�)ij = d � d�ij + d(�kj � A
i
k)

= d � d�ij +A
i
k � d�kj + �

k
j d �Ai

k

= (D � d�)ij + �
k
j d �Ai

k: (41)

On the other hand, (40) also leads to

D � d� = �D
2
� = �F�: (42)

Hence

�
k
j d � Ai

k = ��F
i
k �

k
j : (43)
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We can now achieve F = 0 with the ansatz (28), i.e., A = g�1dg, as we did in
the previous section. Then (29) is the integrability condition of (40) which then
depends on g. Alternatively, we can satisfy d � A = 0 by setting A = � dg0. Then
F = 0 is the integrability condition for the above linear system which now depends
on g0. We should stress that in the two cases we are dealing with different linear
systems and one should not expect the equations resulting from the two integrability
conditions to be equivalent. In the following two examples, this turns out to be the
case, however.

EXAMPLE 1. Let us consider the differential calculus of Example 2 in Section
2 with b = 0 (so that elements of A should be C1-functions of t) and � dt =
� dx; � dx = � dt where �; � are constants different from zero. For v 2 A we
write vn(t) = v(na; t) where n 2 Z. Then

dvn = dt _vn + dx
1
a
(vn � vn�1): (44)

The 1-form

A(na; t) := � dvn = � _vn dx+
�

a
(vn � vn�1) dt (45)

has the ‘curvature’

F (na; t) =

�
��vn �

�

a2 (1 + �a _vn)(vn+1 � 2vn + vn�1)

�
dt dx: (46)

The zero curvature condition F = 0 is then equivalent to

[ln(1 + �a _vn)]
� =

�

a
(vn+1 � 2vn + vn�1): (47)

This equation is ‘dual’, in the sense of an exchange of the roles of particles and
interactions, and mathematically equivalent to that of the nonlinear Toda lattice
equation, see [6], p. 18. The latter is

�un =
�

�a2

�
e
un�1�un � e

un�un+1
�

(48)

which is recovered from d�A = 0 where nowA = eu de�u, i.e., (28) with g = e�u.
See also [1].

EXAMPLE 2. We choose the differential calculus of Example 3 in Section 2. For
the 1-form

A := � dv =
�


�
vt �

�

2
vxx

�
+ �vx

�
dt� vx dx; (49)
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where v 2 A, the zero curvature condition F = 0 is

wt +
1

2
(�w)x �

�

4
 (w2)x = 0; (50)

where w = vx. On the other hand, from d �A = 0, where now A := eu de�u, we
obtain the same equation by setting w := ux.

EXAMPLE 3. Let us consider the � = 0 calculus of Example 4 in Section 2. With
A = � dv where v 2 A, the zero curvature condition is equivalent to?

�@ _vn = �
�(t)

2
�vn +



2
[ _vn�1@+xvn + _vn+1@+xvn�1] (51)

where vn := v(n�; t) and

�@vn :=
1

2�
(vn+1 � vn�1); �vn :=

1
�2 (vn+1 � 2vn + vn�1): (52)

On the other hand, with A = eu de�u the equation d � A = 0 leads to

_un+1 eun�un+1 � _un�1 eun�1�un =
�(t)

�
[eun�un+1 � eun�1�un ]: (53)

These are just a few examples of integrable equations. The relevance of the last
two is unclear. They are included here mainly to illustrate the general method. So
far we have restricted our examples to g 2 A for simplicity. Generalizations to
models where g takes values in some matrix group are easily obtained, as in the
next example.

EXAMPLE 4. We generalize our Example 3 in the sense just mentioned. With
A = g�1 dg (where g 2 ��) the equation d � A = 0 is equivalent to

g
�1
n _gn+1 + (g�1

n�1)
�
gn = �

�

�
(g�1

n gn+1 � g
�1
n�1gn): (54)

The linear system (40) can be expressed as follows (when � 6= 0),

(gn+1�n+1)
� =

1
�
gn( _�n�1 + �@+x�n�1); (55)

gn+1�n+1 = gn[(1� =�)�n + (=�)�n�1]: (56)

Introducing �n := (�gn�n; �n�1)
T and

Ln :=
1
�

 
��  �gn

g�1
n 0

!
; (57)

? The function �(t) can be absorbed by choosing a suitable ‘time’ coordinate.
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Mn :=
1

�� 

 
�=� ��[ _gn + (�=�)gn]

�[g�1
n�1 _gn�1 + �=(�)]g�1

n�1 ��=(�)

!
(58)

(assuming � 6= ), the above system of equations can be written as follows,

�n+1 = Ln�n;
_�n =Mn�n: (59)

The integrability conditions, which are the �-model field equations, now take the
form _Ln+LnMn�Mn+1Ln = 0. We have derived a formulation of the complete
integrability of (54) in terms of a Lax pair.

In the way described in this section, and furthermore by choosing different
differential calculi, we get a plethora of models which are integrable in the sense of
Section 3. These models need to be further investigated (in particular with respect
to soliton solutions) and somehow classified.

5. Conclusions

We have introduced a generalization of �-models in the framework of noncom-
mutative geometry. Obviously our constructive method leads to a large set of new
completely integrable models. An interesting question is which of the known inte-
grable models which are of interest in physics fit into this framework. For example,
it has been shown in [1] (see also Example 1 in Section 4) that the nonlinear Toda
lattice is a generalized �-model in the sense of Section 3. Via the linear system
(40) there is an integrable zero curvature model associated with each generalized
�-model. This ‘duality’ turned out to coincide with a physical duality in case of
the nonlinear Toda lattice.

Our definition of generalized �-models (and their duals) also makes sense in
more than two dimensions and the construction of conserved currents in Section 3
still works. The problem, however, is to find a �-operator satisfying (1), (3) and (5).
It should also be noticed that, in more than two dimensions, our �-operator (which
acts in the space of 1-forms) is no longer an analogue of the Hodge operator of
Riemannian geometry.

EXAMPLE. Let us consider the ordinary differential calculus on Rn . A �-operator
is then determined by

� dxi = a
i
j dxj (60)

(using the summation convention). The symmetry condition (3) takes the form

!
0
ka

k
[i!j] = !ka

k
[i!

0
j] (61)

where ! = dxi!i and the square brackets indicate antisymmetrization of indices.
In more than two dimensions (n > 2), this condition is only satisfied for all 1-forms
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!; !0 if all the functions aij vanish.? Hence, there is no (generalized) �-model in
this case.

The last example leaves us with a rather pessimistic impression concerning
the possibilities of higher-dimensional generalized �-models. However, the situa-
tion may be different in case of other (noncommutative) differential calculi. The
corresponding possibilities have still to be explored.
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? Choose any three of the n indices, like f1; 2; 3g, and evaluate the symmetry condition for
!i; !

0

j 2 f�1
k; �

2
k; �

3
kg. This leads to aki = 0 for all i and for k = 1; 2; 3. But since f1; 2; 3g could

number any triple of coordinates, we have aij = 0 where i; j = 1; : : : ; n.
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