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Abstract. A construction of conservation laws for o-modelsin two dimensionsis generalized within
the framework of noncommutative geometry of commutative algebras. Thisis done by replacing the
ordinary calculus of differential forms with other differential calculi and introducing an analogue of
the Hodge operator on the latter. The general method isillustrated with several examples.
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1. Introduction

Inarecent work [1], we have shown that completely integrable discrete versions of
two-dimensional o-models (chiral models) are obtained via certain deformations
[2] of the ordinary calculus of differential forms on R?. The procedure is based
on a generalization of the construction of conserved currents presented for con-
tinuum o-modelsin [3]. In the present work, we further generalize this method in
several ways. We present rather weak conditions to be imposed on a differential
calculus and on a generalized Hodge *-operator such that the classical field equa
tiond * g~*dg = O for a v-model makes sense and a construction of an infinite
sequence of conserved currents still works (Section 3). In Section 2, we introduce
two-dimensional ‘noncommutative geometries’ with several examples to which
we refer in the sequel. Section 3 presents our notion of a generalized o-model, the
construction of conserved currents for it, and a linear system of which the field
equations are integrability conditions. This linear system is then further discussed
in Section 4 from a slightly more general point of view, revealing akind of ‘dual-
ity’ between the o-model field equation and the zero curvature condition. Some
integrable equations are derived from the examples of noncommutative geometries
in Section 2. Section 5 contains our conclusions and further remarks.

2. Two-Dimensional Noncommutative Geometries

Let A beacommutative algebraof functionsof two variables, t and z. Let (A) be
adifferential calculuson A suchthat d¢ and d= constitute aleft and right .A-module
basis of the space Q*(A) of 1-forms. Though the algebra A itself is commutative
(and can thus berealized as an algebra of functions on sometopological space), the
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differential calculus may be such that functions and differentials do not commute.
In that case, we speak of a ‘noncommutative differential calculus and geometric
structures built on it inherit this noncommutativity. In this sense we obtain a‘ non-
commutative geometry’ on acommutative algebra. Our basic geometric ingredient
isaC-linear operator *: Q1(A4) — Q(A) with the property

*(wf) = f(xw) D
foral f € Aandw € QY(A). Then
« dt = ydt + adz, xOde =p0dt+ ddz (2

and the operator «* is determined by the choice of o, 3,7, € A. The x-operator
generalizesthe Hodge operator of Riemannian geometry. In the following sections
we shall need some additional properties for this operator. We require x to be
symmetric in the sense that

wirw =w xw 3)

for all w,w’ € QY(A). Depending on the choice of differential calculus, these
conditions restrict the possibilities for the x operator. A simple calculation shows
that the symmetry condition is equivalent to*

dtfpdt +difodr —defydt —dzfadr =0 4

foral f € A. Wealsorequire % to beinvertible. Asaconsequenceof (1) itsinverse
then satisfies «1(fw) = (+w)f. Moreover, we demand that

d**xw)=0<dw=0. (5)

In Section 3, we also need the triviality of the first cohomology group of Q(A),
i.e., closed 1-forms haveto be exact. Thisconditionisfulfilled for all the following
examples.

EXAMPLE 1. Let A bethe algebraof C*°-functions on R? and 2(.4) the ordinary
differential calculus (where functions commute with 1-forms). According to the
Poincaré Lemma every closed form is exact, i.e., the cohomology is trivial. The
symmetry condition (4) becomes = —+. The x-operator is invertible iff D :=
af + 2 is everywhere different from zero. We find «x = Did. The condition (5)
issatisfied iff D is constant.

* Itispossible to extend afirst-order differential calculus to higher orders by demanding that the
product of any two differentials vanishes. Then the following condition istrivially satisfied, but also
the field equation which we consider in Section 3. It is more natural and convenient, of course, to

constrain the space of two-forms only by those conditions which are derived from the first-order
calculus using the general rules of differential calculus (cf. [2], for example).
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EXAMPLE 2. Let A be the set of all functions on the two-dimensional lattice
aZ x bZ wherea, b are positivereal constants. 2 and ¢ are the canonical coordinate
functions. A differential calculus on A is then determined by the commutation
relations*

[dz, x] = adz, [dz,t] = 0= [dt, z], [dt, 1] = bdt. (6)
More generally, we have

dt f(z,t) = f(z,t+ b)dt, dz f(z,t) = f(z + a,t) dz (7
for f € A. Acting with the exterior derivative on (6) leadsto

drdr =0=dtdt, dzdt= —dtdz. (8)

In general, however, 1-forms do not anticommute in this calculus. For the differ-
entia of afunction f we get

df =0ipfdz+ 04 fdt )

where 9, and 0, ,, are discrete partial derivatives, i.e.,
1
(8+l‘f)($at) = a[f(m + a’at) - f(.’L‘,t)],

(@) 1) = 317 (a1 4D) — f a0 (10)

The symmetry condition (4) becomesy = § = 0 and the x-operator is invertible
iff a3 nowhere vanishes on the lattice. Furthermore, one finds

« x [dz f(z,t) + dt h(z,1)]
= a(z,t)B8(z,t —b)dz f(z — a,t — b)+
+a(z — a,t)B(z,t)dt h(x — a,t — b). (12)
The condition (5) in particular requires = x dt and = * dz to be closed. Thisleadsto
Oyila(z, 1)B(z,t =b)] =0, dysfalz —a,t)B(x,1)] = 0. (12)
Thus

C(z)
B(t—b)

B(t)
alx —a,t)’

a(z,t) = a(z —a,t—b), B(z,t) = (13)

* More precisaly, these relations determine a differential calculus on the algebra of polynomials
in z and ¢ which can then be extended to the algebra of arbitrary functions. See aso [2].
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where C'(z) and B(t) arearbitrary (nowhere vanishing) functions. Taking (12) into
account, (5) applied to the closed 1-form dz ¢ + dt x yields

a(z,t)B(z,t —b) = a(r — a,t)B(x, t). (14)

Together with (13), this requires C' and B to be constant and, moreover, C = B.
We end up with

C
With these restrictions on « and 5 we have
**w(z,t) = Cw(x —a,t —b) (16)

for al w € QY(A) and (5) is satisfied. In the limit ¢ — 0,56 — O we obtain the
ordinary differential calculus (on C°°-functions of = and t). The corresponding
limit of the x-operator, however, does not exhaust the possibilities which we have
for a = b = 0 (cf. Example 1). On the other hand, the limit b — 0, keeping a
constant (and different from zero), does exhaust the possibilities which one finds
by investigating the limit calculus.

EXAMPLE 3. Let A be the algebra of C°°-functions on R? and Q(.A) the differ-
ential calculus determined by

[dz, 2] = ndt, [dz,t] = [dt,z] = [d¢, ] = O, a7
with aconstant n (see adso [4]). More generally, we have
dtf = fdt, def = fdz+nf, dt (18)

for f € A. Here f, denotes the partial derivative with respect to x. Furthermore,
one finds

Af = (fo+ Bhue ) di+ foe (19)

and dzdz = 0 = dtdt, dxdt = —dtdz. For n # 0 the symmetry condition (4)
becomesa = 0and § = —v so that

xdt =~y dt, xdx = fdt —ydz. (20)

The x-operator isinvertibleiff v # 0. The condition (5) applied to the differentials
dt and dz requires v to be constant. Since every 1-form w can be written as
w = dtf + dzh with functions f and h, adirect calculation now leads to

* % w = y2w (21)
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so that (5) isindeed satisfied. There is no restriction for the function 5.

EXAMPLE 4. For ab # 0, the constants ¢ and b in (6) can be absorbed via a
rescaling of = and ¢. We may therefore set « = b = 1. In terms of the ‘light cone
coordinates

ui=pu(t+z), vi=v(t—x), (22)

where 1, v are constants, (6) becomes
2
[du, u] = p du, [du, v] = [dv,u] = pdv, [dv,v] = % du. (23)

Performing the limit . — 0 in such away that v?/u — 7 with a constant 7, the
calculus of Example 3 is recovered. Another calculus, which will be discussed in
the following, is obtained in the limit » — 0. After arenaming of the coordinate
functions, we get

[dt, t] = O, [dt, z] = [dz,t] = pdt, [dz, z] = pdz. (29)
For afunction f, this generalizesto

dtf(z,t) = f(z + p,t) dt,

. (25)
dzf(z,t) = f(z +p.t)dz + pf(z +p,t)dt
where f = df /dt. Furthermore,
df = f( +p, 1) dt + (040 f) (2, 1) da. (26)

The algebra A should now consist of functions on pZ x R which are smooth in
thevariable¢. Again, (8) holds. The v — 0 limit of the x-operator for the calculus
of Example 2 (in the form (23)) only leavesuswitha = g =0and § = —y in
(2). But a closer inspection of the above (limit) calculus shows that an arbitrary
function 3 is permitted. The condition (5) requires -y to be constant and 3 not to
dependon z, i.e.,, B = (3(t). Then

% w(z,t) = y2w(z — 2u,t). (27)

Theaboveexampleshby far do not exhaust the possibilities.* Eventhese examples
can be considerably generalized by replacing the constants appearing in the defining
relationsof thedifferential calculi by suitablefunctions. The commutation relations
for thedifferentialsthen nolonger takethesimpleform (8). If two differential calculi
are related by a (suitable) coordinate transformation, they should be identified. A

* Further examples of two-dimensional differential calculi can be found in [5].
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complete classification of two-dimensional differential calculi has not yet been
achieved (see [5] for partial results). As a consequence of our definitions, the
action of the «-operator can be calculated on any basis of Q1(.A) if we know its
action on one basis.

3. Generalized o-Models and Conservation Laws

In case of the ordinary differential calculus on R?, the following construction of
conserved currents is due to Brezin et al. [3]. In the form presented below, it also
works for the noncommutative geometries introduced in the previous section. I'
denotesan algebraof finite matriceswith entriesin A and I"* the group of invertible
elementsof I'. For g € " and

A:=gtdg (28)
we consider the field equations
dxA=0 (29)

and refer to such a classical field theory as a generalized o-model. Since A isa
‘pure gauge' we have

F:=dA+ AA=0. (30
Let ¥ eTand D: T — Q! ® 4T the‘exterior covariant derivative’ given by
DV =d¥ + AU, (31)

Using (1), (29) and (3), wefind

d* (AL0]) = d(T] = A}) = (dP]) * A = A}« dT], (32
and thus
d+« DU = D x dU. (33)

If thereisone conserved current for ageneralized o-model, then aninfinite sequence
of conserved currentsisobtained asfollows. Suppose J (™) € Q'® 4T isconserved,
i.e.,

dx.Jm = Q. (34)

If the first conomology group of €2(.A) istrivial and provided that (5) holds, there
exists x(™) e T such that

Jm) = s dy (™). (35)
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Then
Jm+D) .= py(m) (36)
is also conserved since
dx JD = dx Dy™ = D x dy(™ = pJ™
= DDV = py(m=1 =0, (37)

Starting with (9 = I, the unit matrix, this procedure indeed generates an infinite
number of conserved currents. Let usintroduce

x =Y &mx™ (39)
m=0

where k is aparameter. From (35) and (36) we obtain

« dy (D = Dy, (39)
Multiplying by <™+ and summing over m leadsto

x dy = k Dx. (40)

The field equations (29) are integrability conditions of the linear system (40). In a
slightly more general setting thiswill be shown in the following section.
4. Another Look at the Linear System

Let A € QY(A) ®4T. Here A is not assumed to have the form (28). We till use
the definitions (30) and (31), however. Let us consider alinear system of the form
(40),i.e., xdy = kDy. Itimplies

0= d(*Dx)§. = dx dx§ + d(Xf x AL)

= d=* dX;+A§;* dx?—i—x?d*Afc

= (D * dx)} + x} dx A}, (41)
On the other hand, (40) also leads to
D s dy =k D?y = k Fy. (42
Hence

X?d*Af;:—/@F,ixf. (43)
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We can now achieve F = 0 with the ansatz (28), i.e., A = ¢~ dg, as we did in
the previous section. Then (29) is the integrability condition of (40) which then
dependson g. Alternatively, we can satisfy d « A = 0 by setting A = xdg’. Then
F = Oistheintegrability condition for the abovelinear system which now depends
on ¢'. We should stress that in the two cases we are dealing with different linear
systemsand one should not expect the equationsresulting from thetwo integrability
conditionsto be equivalent. In the following two examples, this turns out to be the
case, however.

EXAMPLE 1. Let us consider the differential calculus of Example 2 in Section
2 with b = 0 (so that elements of .4 should be C'°°-functions of ¢) and xdt =
adz, xdx = Gdt where o, 5 are constants different from zero. For v € A we
write vy, (t) = v(na,t) wheren € Z. Then

dv,, = dto,, + dml(vn — Up—1). (44)
a
The 1-form
A(na,t) = xdv, = av, dz + é(vn — Up—1) dt (45)

a

hasthe ‘ curvature’
F(na,t) = |ai, — ﬁz(l + aaty)(vpt1 — 20p + vp—1)| dtdz. (46)
a
The zero curvature condition F' = 0 isthen equivalent to

[(IN(1+4 aaty,)] = g(vnﬂ — 20y + Vp—1). 47)

This equation is ‘dua’, in the sense of an exchange of the roles of particles and
interactions, and mathematically equivalent to that of the nonlinear Toda lattice
equation, see[6], p. 18. The latter is

an — i (eun—lfun _ e“n*“n+l) (48)

aa2

whichisrecoveredfromd«x A = Owherenow A = e de ", i.e., (28) withg = e .
Seealso[1].

EXAMPLE 2. We choose the differential calculus of Example 3 in Section 2. For
the 1-form

A=xdv= [’y (vt - gvm> + ﬂvz} dt — yv, dz, (49)
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wherewv € A, the zero curvature condition F = 0 is
1
w5 (B - 7y w?), =0, (50)

where w = v,,. On the other hand, fromd * A = 0, wherenow A := e¢“ de™ *, we
obtain the same equation by setting w := yu,.

EXAMPLE 3. Let us consider the v = 0 calculus of Example 4 in Section 2. With
A = x dv wherev € A, the zero curvature condition is equivalent to*

= t
O0vp, = _%’Y)Avn + %['[)nfla+z'un + '[)n+18+:rvnfl] (51)

where v, := v(npu,t) and
_ 1 1
Ovy, = Z(U,H_l — Up—1), Av,, = P(vnﬂ — 20n + Vp—1). (52)
On the other hand, with A = €* de * the equationd * A = 0 leadsto
t
u’n+l gin " Unt1 _ unileun—lfun — &[eunfun+l _ e’“ﬂn—l*un]‘ (53)
TH

These are just afew examples of integrable equations. The relevance of the last
two is unclear. They are included here mainly to illustrate the general method. So
far we have restricted our examplesto g € A for simplicity. Generalizations to
models where g takes values in some matrix group are easily obtained, asin the
next example.

EXAMPLE 4. We generalize our Example 3 in the sense just mentioned. With
A= g~1dg (Where g € ') the equation d + A = O is equivalent to

1. 1. 8, _ _
Intans1+ (9,21) Gn = —E(Qn Y1 — 9, 10n)- (54)

The linear system (40) can be expressed as follows (when k # 0),

o1 )
(gn-l-an-H) = Egn ('YXn—l + ,Ba-l-:vXn—l)a (55)

In+1Xn+1 = In[(1 — v/E)xn + (V/E) Xn—1]- (56)

Introducing &, := (KgnXn, Xn_1)" and

1( K= rgn
Lyi== 57
! "“(ggl 0 > 0

* The function 3(¢) can be absorbed by choosing a suitable ‘time’ coordinate.
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_ 1 Blu —6[Ygn + (B/ 1) gn]
M m—v(—[g;ﬂgn1+ﬂ/(m)]g;11 w3/ (1) ) (59)

(assuming x # -y), the above system of equations can be written as follows,

fn+1 = Ln§m gn = Mnfn (59)

The integrability conditions, which are the o-model field equations, now take the
form L,, + L, M,, — M,,.1L,, = 0. We have derived aformulation of the complete
integrability of (54) interms of aLax pair.

In the way described in this section, and furthermore by choosing different
differential calculi, we get aplethoraof modelswhich areintegrablein the sense of
Section 3. These models need to be further investigated (in particular with respect
to soliton solutions) and somehow classified.

5. Conclusions

We have introduced a generalization of o-models in the framework of noncom-
mutative geometry. Obviously our constructive method leads to a large set of new
completely integrable models. An interesting question is which of the known inte-
grable modelswhich are of interest in physicsfit into this framework. For example,
it has been shownin [1] (see also Example 1 in Section 4) that the nonlinear Toda
lattice is a generalized o-model in the sense of Section 3. Via the linear system
(40) there is an integrable zero curvature model associated with each generalized
o-model. This ‘duality’ turned out to coincide with a physical duality in case of
the nonlinear Toda lattice.

Our definition of generalized o-models (and their duals) also makes sense in
more than two dimensions and the construction of conserved currentsin Section 3
still works. The problem, however, isto find ax-operator satisfying (1), (3) and (5).
It should also be noticed that, in more than two dimensions, our x-operator (which
acts in the space of 1-forms) is no longer an analogue of the Hodge operator of
Riemannian geometry.

EXAMPLE. Let us consider the ordinary differential calculuson R™. A x-operator
isthen determined by

s« dzt = a§ da’ (60)
(using the summation convention). The symmetry condition (3) takes the form
wﬁcak[iw]’] = wkak[iw'ﬂ (61)

where w = dz‘w; and the square brackets indicate antisymmetrization of indices.
In morethantwo dimensions (n > 2), thisconditionisonly satisfied for all 1-forms
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w,

«' if al the functions aj- vanish.* Hence, there is no (generalized) o-mode in

this case.

The last example leaves us with a rather pessimistic impression concerning

the possibilities of higher-dimensional generalized o-models. However, the situa-
tion may be different in case of other (honcommutative) differential calculi. The
corresponding possibilities have still to be explored.
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* Choose any three of the n indices, like {1, 2,3}, and evaluate the symmetry condition for

Wi

,wj € {04,0%,85}. Thisleadsto af = Ofor all i and for k = 1,2, 3. But since {1, 2,3} could

number any triple of coordinates, we haveaj- =O0wheres,j=1,...,n.



