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Matrix canonical realizations

of the Lie algebra o(m, n)
I. Basic formulæ and classification

M. HAVLÍ010CEK P. EXNER (*)

Ann. Inst. Henri Poincare,

Vol. XXIII, n° 4, 1975,

Section A :

Physique théorique.

ABSTRACT. - The concept of matrix canonical realization of a Lie algebra
is introduced. The generators of the Lie algebra of the pseudoorthogonal
group n) are recurrently expressed in terms of matrices with polyno-
mial elements in a certain number of quantum-mechanical canonical
variables p~, qi and they depend on a certain number of free real para-
meters. The realizations are, in the well-defined sense, skew-hermitean and
Casimir operators are multiples of the identity element. Part of them are
usual canonical realizations.

1. INTRODUCTION

In the previous paper we dealt with canonical realizations of the complexi-
fied Lie algebra of the orthogonal group in n-dimensional Euclidean space
Oc(n) [1 ]. By canonical realization we understood there an isomorphism
mapping r of a given Lie algebra G into the Weyl algebra W2N, i. e. essen-
tially into the algebra of polynomials in N pairs of quantum canonical
variables pi, q;, i = 1, 2, ... , N. Among the other results we proved there
that in any canonical realization of Lie algebra o(m, n) of a pseudoortho-

(*) Department of theoretical nuclear physics, Faculty of Mathematics and Physics,
Charles University, Prague. -
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336 M. HAVLICEK AND P. EXNER

gonal group O(m, n), in a n &#x3E; 0, in W2N, N = m + n - 2 (for the excep-
tion of the case m + n = 6), all Casimir operators are realized by constant
multiples of the identity element (*) (we speak about Schur-realizations)
and if m + n &#x3E; 6 they depend on the quadratic ones in one of the two
possible ways only (it is what we call « degeneration » of realization). It

means that to remove partly or even fully the mentioned « degeneration »
we must enlarge the number N of canonical pairs. In contrast to canonical
realizations of o(m, n) in W 2N, N = m + n - 2, the realizations with
N &#x3E; m + n - 2 need not be necessarily the Schur-realizations. So we come
naturally to the question whether some realizations of o(m, n) exist in

which the « degeneration » is at least reduced and which are at the same
time Schur-realizations.

In this paper we solve this question positively in the generalized frame-
work of the so-called matrix canonical realizations in which the generators
of considered Lie algebra are expressed by matrices with elements from W2N
(if the dimension of such matrices is M, we denote such a generalization of
the Weyl algebra by the symbol W2N,M).
The matrix canonical realizations represent one possible proper alge-

braical embedding of the Weyl algebra into a larger structure. It is known
that another possibility is to embed the Weyl algebra into its quotient
division ring. In both these cases the class of allowed functions, in terms of
which the generators of a given Lie algebra can be expressed, is essentially
enriched compared with the original Weyl algebra. Therefore the possibility
of obtaining a wider class of realizations in these structures arises without
necessity of changing the pure algebraical approach.
From the point of view of application to the representation theory we

shall introduce further concept of skew-hermitean realization though the
representation aspects are not discussed in this paper. By the skew-hermitean
matrix canonical realization we shall essentially imply the one which after
replacement of p’ and q; by their Schrodinger representatives passes to a
skew-symmetric representation on a suitable Hilbert space.
The main result of this paper lies in the formulae describing recurrently

two sets of matrix canonical skew-symmetric Schur-realizations of the Lie
algebras 1. In some special cases these formulae coincide

with earlier results of some authors (see e. g. Richard [3]). Every realization
from the first set is uniquely determined by some finite-dimensional irre-
ducible skew-hermitean representation of the compact Lie algebra
o(m - n) (**) and the finite sequence of n real numbers. If the dimension
of representation of o(m - n) is M then o(m, n) is realized in 

(*) As to the particular case W~~m+n-s) ~ ~’~2(m+n-2) see also (2].
(**) As to case m - n = 0,1 see the following footnote.
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337MATRIX CANONICAL REALIZATIONS OF THE LIE ALGEBRA n). I.

Realizations from the second set are usual canonical realizations in

W 2 d(rn + n - d - 1 &#x3E;&#x3E; ~ = 1, 2, ..., n - 1; they are characterized by d-tuple of
real constants.
We shall introduce further the concept of related and non-related realiza-

tions by means of which all realizations described above will be classified.
We prove that any two realizations chosen from the both sets are non-
related if they differ either in characterizing tuples of real numbers or in the
case of realizations of the first type with the same characterizing tuples, if
the irreducible representations of the algebra o(m - n) are non-equivalent.
The exact formulation of all these statements is contained in Theorem 3.

Its proof is based mainly on Theorem 1 where the basic recurrent formulae
are included. Theorem 2 shows that any skew-hermitean matrix canonical
Schur-realization of a compact Lie algebra is usual matrix skew-hermitean
representation, what generalizes the Joseph assertion [4].
Again, as in our previous paper, all considerations are purely algebraical.

As to the problem of (( degeneration », i. e. mutual dependence or inde-
pendence of Casimir operators in the described realizations, we shall discuss
these questions in the second part of this paper.

2. PRELIMINARIES

A. The (complex) Weyl algebra W2N is the associative algebra with the
identity element 1 over the field of complex numbers C; its generating
elements q;, pi, i = 1, ..., N, fulfill the usual canonical commutation rela-
tions

As the consequence of the Poincare-Birkhon-Witt theorem the monomials

form the basis of W 2N (see [5], p. 178), i. e. every element w E W 2N can be
uniquely written in the form

where

B. The symbol o(m, n), 0, m + n &#x3E; 2, denotes the Lie algebra
of pseudoorthogonal group in (m + n)-dimensional pseudoeuclidean space
with the metric tensor gJlV’ J1, V = 1, 2, ..., m + n. If LJlv = - denotes

1/2. (m + n)(m + n - 1 ) elements of the basis of o(m, n) then the commu-
tation relations hold

Vol. XXIII, no 4 - 1975.



338 M. HAVLICEK AND P. EXNER

p, T = 1, 2, ..., m + n. If n &#x3E; 1 we can assume without the loss of gene-
rality the metric tensor having the form

In addition to the tensor basis the second one can be chosen

in which the commutation relations (1) have the form:

Note that the generators Pl, ... , Pm + n - 2 and Qi, ..., Qm+n-2 form the
bases of (m + n - 2)-dimensional Abelian subalgebras of o(m, n).

C. Any irreducible finite-dimensional representation of the compact
Lie algebra o(m, 0) - 2, is, for the exception of m = 2, equi-
valent to a skew-hermitean one. Any such representation of o(m) is uniquely
determined by the so-called signature a = ..., where the num-

bers al, ..., a m 
for m &#x3E; 2 are either all integers or all half-integers such

that ai  03B12  ...  03B103BD  0
ifm=2v+ 1.

In the case of commutative Lie algebra o(2) all irreducible skew-hermitean
representations are one-dimensional and the generator L12 is represented
as irEl, r E R, where £1 is identity operator. By the signature a of this
representation we understand the one-point sequence oc = (r == .

Two equivalent irreducible representations have the same signatures and
to different signatures there correspond non-equivalent irreducible repre-
sentations ([6], p. 518-519).

3. BASIC CONCEPTS

DEFINITION 1. - Let W2N be the complex Weyl algebra in N canonical
pairs and let MatM be the algebra of complex M x M - matrices. The
tensor product W 2N,M = W 2N (8) MatM we shall call matrix Weyl algebra.

It is clear that © EM C W2N,M (EM is the unit
M x M-matrix) and MatM ~ 1 (8) MatM ~

DEFINITION 2. - A matrix canonical realization of the Lie algebra G is
the homomorphism r : G - The homomorphism r extends natu-
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339MATRIX CANONICAL REALIZATIONS OF THE LIE ALGEBRA o(m, n). I.

rally to the homomorphism mapping (denoted by the same symbol r) of
the enveloping algebra UG of G into If G is simple then any homo-

morphism is either trivial or it is an isomorphism of G.
Remember that involution on an associative algebra (over R or C) is

the mapping « + » : G --~ G obeying the relations

DEFINITION 3. - Let an involution « + » be defined on the algebra W 2N,M.
A matrix canonical realization of a real Lie algebra G in W2N,M is called
skew-hermitean if all the elements of G are realized by skew-hermitean

expressions, i. e. if T~) = 2014 r(a) for all a E G.

NOTE 1. - An involution on W 2N together with the usual Hermitean

adjoint in MatM defines involution in W2N,M. In what follows, we consider
such an involution with a special choice induced by

on the algebra W2 N.

DEFINITION 4. - A matrix canonical realization r : G -~ W2 N,M is called
Schur-realization if all the central elements of the enveloping algebra UG
of G are realized by multiples of the identity element.
For the classification of matrix canonical realizations we introduce the

following last concept :

DEFINITION 5. - Matrix canonical realizations 03C4 and r’ of the Lie algebra G
in are called related if a conserving identity endomorphism 8 of

W 2N,M exists so that either 3 o r = r’ or 03B8 o r’ = T.

4. MATRIX CANONICAL REALIZATIONS
OF THE LIE ALGEBRA o(m, n)

THEOREM 1. - Let a skew-hermitean Schur-realization of the algebra
o(m - 1, n - 1 ), m + n &#x3E; 2 (*), in W2N,M be given and let

denote the realization of the basis elements of o(m - 1, n - 1). Then

(*) In order to reduce maximally the number of exceptional cases we consider also
« Lie algebras » 0(0) and o(1) when we define Mij = 0. In the first case the formulae (3)
define the realization ’t(R) = ial of o(1, 1) in Wo 1. while in the second case the realiza-
tion of o(2, 1 ) in W~,1. 

’

Vol. XXIII, n° 4 - 1975.



340 M. HAVLICEK AND P. EXNER

i) the following formulae define the skew-hermitean Schur-realization
.

where

ii) two realizations (3) with different values of the parameter a are not
related,

iii) two realizations (3) differing only in realization of I, n - 1)
are related if and only if the realizations of o(m - 1, n - I) are related.

For the proof of this theorem we shall use the following two easily pro-
vable assertions :

(a) If an element a E W 2N,M commutes with canonical variable pi (or qi),
then a does not depend on qi (or pi).

(b) If for a E and --- qipl + ... + N’ 6 N, the
commutation relation

is valid, then

and ar,s does not depend on ..., qN,, pl, ..., p .
Proof. One can by direct commutation verify that the expressions (3)

form a realization 1" of the basis of o(m, n). With respect to involution we use
(see note 1), all the expressions (3) are skew-hermitean and therefore they
generate (through real linear combinations) the skew-hermitean realization
T of o(m, n). We shall prove that 1" is Schur-realization.

Let us take some arbitrary centre element z of Uo(m, /?). Its realization

r(z) is a polynomial

(r * (~1~ - - - ~ = (S1~ - - - ~ Sm+n-2) which commutes with all the
expressions (3). The coefficients depend polynomially on the basis

Annales de l’Institut Henri Poineare - Section A



341MATRIX CANONICAL REALIZATIONS OF THE LIE ALGEBRA o(m, n). I.

elements M ij of the realization of o(m - 1, n - 1). Due to the commutations
relations [r(z), T(PJj = 0, i. e. [~(z), p~] = 0, in accord with the assertion (a),

T(Z) does not depend on q 1, ... , e. As T(z)
s

commutes also with r(R) = 2014 (qp) + const, the assertion (b) can be applied,
which gives

We shall use once more the fact that r(z) realizes a centre element of Uo(m, n).
It implies that T(z) commutes with all = + Mi f, and
consequentlv

Due to the assumption of the theorem the realization of o(m - 1, n - 1) is
Schur-realization, and therefore each polynomial in its basis elements

commuting with all of them equals some multiple of the identity element,
what proves the first statement of the theorem.

ii) and iii) Let us consider two realizations r and r’ of the type (3) and
assume the existence of an endomorphism 8 :

such that ~(1) = 1 and 8 o r = T’ (i. e. r and T’ are related). We shall show
that a = a’ and that the corresponding realizations of c(~ 20141,~20141) are
also related. The and 03B8 0 !(R) = T’(R) give
immediatelly

and

The element 9~(qi~ E W2(m+n-2+N),M can be written in the form

where f3i,rs = E W2N,M. polynomial

is either zero or its lowest degree in the « variables» pi, ...,~+~-2 is
greater or equal to one. As this polynomial equals to a’), the second
possibility is excluded and the first one implies a = ct’, which proves the
assertion ii.

For m + n = 2,3 the theorem is proved completely because only trivial
realization of the « Lie algebras» o(0) and o(1) exists; we shall assume there-
fore further m + n &#x3E; 3.

Vol. XXIII, nO 4 - 1975.



342 M. HAVLICEK AND P. EXNER

The polynomial 8(qi) - q; commutes with all Pj == 8(Pj) and therefore
due to the assertion (a) does not depend on ~,~ = 1, 2, ..., m + n - 2, i. e.

As 9 is an endomorphism and 8(qp) = (qp) (see eq. (5),
oc = oc’), we know the commutation relations between 8(qi) and (qp),

so that we can apply the assertion (b) to obtain :

The images ... of the other canonical variables
commute with all 3(q;); 8(p i), i = 1, 2, ..., m + n - 2. From the asser-
tion (a) the independence of 03B8(pm+n-1), ... of qi = 8(qi),
p; = 9{Pi)’ i = 1, 2, ..., m + n - 2, follows. Therefore the restriction
of 8 to W2N,M c is the endomorphism of W2N,M.
The equation ~ o = z’(L~~) together with eqs. (4), (6) lead immedia-

tely to = which finishes the proof of the first part of the state-
ment iii).
The proof of the last statement in the opposite direction is simple: If

8 : W 2N,M -+ W 2N,M is an endomorphism of W 2N,M then we can easily
extend it to W2(m +n - 2 + N~,M putting

Ifr and r’ are two realizations of the type (3) (with a = a’) and 8 is the endo-
morphism of W2 N,M such that = the mentioned extension gives
N o T = 1:’ and completes the proof.

LEMMA 1. = 0, 1, ..., = 1, 2, ..., n, be elements of
W2N,M obeying the following system of equations

t=0,1, ..., 2R. Then = 0 for r = 0, 1, ..., Rand ~==1,2,...,~.

Proof. By induction: a) For N = 0 the statement concerns M x M
matrices; it can be proved easily that the matrix equation

Annales de l’lnstitut Henri Poincaré - Section A



343MATRIX CANONICAL REALIZATIONS OF THE LIE ALGEBRA o(m, n). I.

implies All = 0 for p = 1, 2, ..., n. As the first and the last equation of
the system (7) are just of this form, we conclude Yo ,11 = YR,1t = 0. Substituting
it into the remaining equations and repeating the procedure we obtain

= = 0, etc. b) Let us assume that the statement is valid for
N - 1 and not for N. Let us further assume that an index ro
exists (0  R) such that 03B30,  = y 1,u = ... = 03B3ro-1,  = 0 for all p and

0 for some It. Then the first 2ro equations of the system (7) is ful-
filled identically while the (2ro + l)-st looks as follows

The elements can be written in the form

~k,~ E W 2(N-l),M’ K = 0, 1, ... is the highest degree of the polynomials
~c = 1, 2, ..., n, in the « variables » qN, pN while the highest degree of

the polynomial considered in the same way is less than K.
As the consequence of our assumption # 0 for some ro and /l) some

of the coefficients differs from zero. Substituting now from eq. (9)
into eq. (8), we obtain up to the lower order terms

from which we have

However, according to the statement of the lemma for N - 1, this equation
implies U k,1l = 0 for all k and p and therefore contradicts our assumption.
As it is shown in ref. [4], no skew-hermitean Schur-realization of a com-

pact Lie algebra could exist in By means of the proved lemma we shall
generalize now this result to realizations in W2N,M, M &#x3E; 1.

THEOREM 2. 2014 ~) Any skew-hermitean Schur-realization of the compact
Lie algebra G in W 2N,M does not depend on q;, p;, i = 1,2, ..., N, i. e. r is
a usual matrix representation of G in MatM ~ WO,M C W2N,M.

ii) Two such realizations r and r’ are related if and only if they are equi-
valent in the usual matrix representation sense.
Vol. XXIII, no 4 - 1975.
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For N = 0 the assertion is trivially right, we assume therefore N ~ 1.

Proof - As the algebra G is compact, a basis X1, ..., Xn can be chosen
such that 12 = X 1 + ... + x; belongs to a centre of UG. The realization r
is Schur-realization, and therefore 1’(12) = e R. As the polynomial in
qN, every can be written in the form

E where R = 0, 1, ..., denotes the highest degree in qN
and PN of ..., and the dots stand for the lower order terms.
Due to skew-hermiticity of we have

Substituting here and from the above equation we obtain

The assumption that R is the highest degree in « variables» qN, pr~ in the
set of all elements T(XJ, ..., -r(Xn) means that at least one Yr,/1 differs from
zero. If R would be greater than zero, the last equation implies eq. (7) and
lemma 1 gives immediately Yr,11 = 0 for all J1 and r. The only possibility is
therefore R = 0, which proves the statement i ).

ii) As the matrix algebra MatM has no non-trivial two-sided ideals, every
nonzero endomorphism of MatM is an automorphism (see e. g. [7], p. 48).
As any automorphism 03B8 of MatM is the inner one, the regular
matrix S9 E MatM exists so that 9(A) = S; lAS9 for every A E MatM (see [7],
p. 50), so the proof has been completed.
From this theorem it follows that with our involution on W 2N,M (see

Note 1 ) any skew-hermitean Schur-realization of compact Lie algebra is
a usual matrix skew-hermitean representation in which all Casimir opera-
tors are multiples of the identity matrix. Such representations, however,
are equivalent to a direct sum of irreducible mutually equivalent represen-
tations and without essential loss of generality we can limit ourselves to the
irreducible ones only.
As we pointed out in Preliminaries, every irreducible skew-hermitean

representation of the compact Lie algebra o(m) is uniquely, up to equiva-
lence, determined by its signature. Now we shall generalize this concept in
the way suitable for our further use :

Annales de l’Institut Henri Poincare - Section A
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DEFINITION 6. - Let m  n &#x3E; 0 be pair of natural numbers and
d = 1,2, ..., n. The finite sequence of real numbers

is called signature if

tean representation of the compact Lie algebra o(m - n).
Now we are in a position to formulate and prove our main theorem.

THEOREM 3. - i) To every signature = 

(d; 03B11, ..., the rela-

tions (3) define recurrently skew-hermitean Schur-realization r = 
of the Lie algebra o(m, n) in W2~(~,M(d)’ Here the number M(d) is for
d = nand 111 - n a 2 the dimension of the irreducible skew-hermitean

representation of the Lie algebra o(m - n) with the signature

Axi, ...,03B1[m-1 2]) and M(d) = 1 otherwise. The number N(d)’ is given

as N(d) = d(m + n - d - 1).
ii) Two such realizations are non-related if and only if their signatures

are different.

Proof - By induction : a) Firstly we shall prove the theorem for o(m, 1).
For m = 1, 2 the assertions are contained in theorem 1. Let us assume
m &#x3E; 3 and take a signature

The sequence (0(1, ..., determines the irreducible skew-hermitean

representation of the compact Lie algebra o(m - 1) (its dimension we denote
as M), i. e. the skew-hermitean Schur-realization of o(m - 1) in Wo,M.
Using the formulae (3) with oc = we can define the skew-hermi-

tean Schur-realization of the Lie algebra o(m, 1) in W2(m-1),M. Using
further the assertions ii) and iii) of theorem 1, ii) of theorem 2 and the
part C. of Preliminaries, we have the assertion ii) of the theorem for o(m, 1).

b) Assume further that the statements of the theorem are valid for the
algebra o(m - 1, n - 1 ). Let us take the signature am,n = (d; 0(1’ ..., a ,n+n .
For d &#x3E; 1 we shall use the realization of o(m - 1, n - 1 ) in 
corresponding to the signature (d - 1; al, ..., 1 to insert it in

the formulae (3) with a = If d = 1 we shall use for the same purpose

Vol. XXIII, no 4 - 1975. 25
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the trivial realization of o(m - 1, n - 1) in Wo,l. Due to the assertion i) of
theorem 1 we obtain in this way the skew-hermitean Schur-realization
i = of o(m, n) in where M == M(d - 1 ) = M(d) and
N = m + n - 2 + N(d - 1) = N(d), what proves the assertion i) of

the theorem. The assertions ii) iii) of theorem 1 together with assumed
validity of the theorem for c(~ 20141,~20141) imply the assertion ii ).

5. CONCLUSION

All considered algebras o(m, n), m + n = N, N = const are different
real form of their common complexification oc(N) (*). It is not difficult to
see that all results contained in theorems 1 and 3 remain valid also for

oc(N), if we ignore the skew-hermitean property and its consequences. As
we are not forced now to respect theorem 2, relations (3) define reccurently
a usual canonical Schur-realization of 1 

for odd N or in

W for even N depending on the ~2J 2014 free parameters. As to the

real forms, the same situation arises for algebras o(n + 2, n), o(n + 1, n)
and o(n, n) while in the remaining cases the described canonical realizations

depend at most on [m+n 2] - 20142014 -- n free parameters only. To

obtain in these cases the « full » number of the parameters in

realizations described, we have to use the signature ()(m ,n = (n ; ()( 1..... 
and realizations are right matrix canonical realizations.

It is also clear, that instead of realizations of the auxiliary Lie algebra
o(m - d, n - d), d  n that we used in reduction of formulae (3), any
other realization of o(m - d, n - d ) can be taken. So, the possibility of
deriving further, new, realizations of Lie algebra o(m, n) may arise.
The concept of matrix canonical realization, especially the realizations

of the Lie algebras o(m, n) described in this paper, have the direct application
in the representation theory. Replacing here p; and q; by their Schrodinger
representatives we obtain immediately a skew-symmetric representation of
o(m, n) with « constant » Casimir operators. It has to be stressed that these
representations were obtained purely in the algebraical way. As the second
advantage of this approach, one can consider the fact that the analytical
properties of representations can be investigated separately as the second
step.

(*) Note that in the Cartan classification of semi-simple Lie algebras c~(2~) ~ Dn and
~(2~+1)~ B~.
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347MATRIX CANONICAL REALIZATIONS OF THE LIE ALGEBRA o(m, n). I.

We often work, for example, with skew-symmetric representations of
Lie algebras which are differentials of some unitary representation of the
corresponding (connected, simple connected) Lie group, i. e. with the inte-

grable ones. By means of some known methods [8], we can try to solve the
integrability for the above described representations too. It may happen
that some meaningful part of the set of all integrable representations of the
Lie algebra o(m, n) would be obtained in this way. The other possibility of
obtaining representations both integrable or not arises, when we replace
the Schrodinger representation of pi, qi by some other e. g. by representation
on the space of analytical functions.
As was pointed out by Doebner and Melsheimer [9], the integrability

condition on representation of Lie algebra is often from the physical point
of view not necessary. So, some classes of non-integrable representations of
Lie algebras could also be interesting for physics, e. g. partly integrable
representations with respect to chosen subalgebra or those in which some
physically interpreted generators are essentially self-adjoint, etc. In matrix
canonical approach to the representation theory we are not limited by any
sort of integrability conditions so that the wide class of representations could
be obtained. This fact represents the third advantage of the described
approach. 

’ .
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