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Abstract. We investigate approximations of the vertex coupling on a star-shaped graph by
families of operators with singularly scaled rank-one interactions. We find a family of ver-
tex couplings, generalizing the δ′-interaction on the line, and show that with a suitable
choice of the parameters they can be approximated in this way in the norm-resolvent sense.
We also analyze spectral properties of the involved operators and demonstrate the conver-
gence of the corresponding on-shell scattering matrices.

Mathematics Subject Classification (2010). 81Q35, 81Q10.

Keywords. quantum graph, vertex coupling, approximation.

1. Introduction

Quantum graphs are a versatile model of many physical systems; we refer to the
recent monograph [3] for an extensive bibliography. One of the central items of this
theory are vertex coupling conditions used to match wave functions supported by
graph edges. From general principles they have to be chosen to make the graph
Hamiltonian self-adjoint. This is a simple task, but the result leaves a lot a free-
dom through parameters entering those conditions the values of which have to be
fixed. The background of such a choice is the question about the physical mean-
ing of the coupling, important without any doubt; one has to keep in mind that
different vertex couplings give rise to different quantum dynamics on the graph.

A natural approach to the problem is to analyze various approximations of
those couplings, either on the graph itself or using a tubular network shrinking to
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the graph ‘skeleton’. Even in the latter case, however, one considers the approxi-
mations on the graph as an intermediate step—cf. [7] and references therein. The
task simplifies due to the fact that the vertex couplings, the physically interest-
ing ones at least, are of a local nature; it is thus sufficient to solve the problem
for a star-type graph with n edges meeting in a single vertex. One usually begins
with the most simple coupling, often called Kirchhoff, and investigates families of
scaled interaction supported in the vicinity of the junction. The simplest example is
potentials scaled with their mean preserved, which give rise to one-parameter fam-
ily of the so-called δ-couplings [4]. This is, however, only a small subclass of the
couplings allowed by the self-adjointness requirement. Using potentials scaled in
a more singular way many other conditions can be obtained—without going into
details we refer to [6] and the bibliography therein.

These scaled-potential approximations, however, do not yield all the admissible
couplings; in particular, one cannot obtain in this way strongly singular match-
ing conditions such as the so-called δ′-coupling and its modifications, which are of
interest mainly because their properties contrast in a sense to those of more regu-
lar couplings; for instance, a δ′ junction is opaque at high energies.

Note that various results are known in the simplest nontrivial case n = 2 where
the coupling is nothing else that a generalized point interaction on the line [1].
In particular, an approximation of the δ′-interaction on the line with the help of
scaled rank-one operators was proposed longtime ago by Šeba [11]. The aim of
the present paper is to propose and analyze a similar approximation of a class
of singular vertex couplings, given by relations (5) below, by nonlocal potentials
for a general star-shaped graph. Our main results are demonstration of the norm-
resolvent convergence of such an approximation, Theorem 3.2 below, and conver-
gence of the corresponding on-shell scattering matrices, Theorem 5.1. Let us add
that as in the case n = 2, the constructed approximation is non-generic, and fur-
thermore, it represents a new generalization of the δ′-interaction on the line, dif-
ferent from the two known ones [5]—we will say more on that in the conclud-
ing remarks—in contrast to those it leans on the permutation asymmetry of the
approximating operators.

2. Preliminaries

To begin with, we recall a few basic notions concerning metric graphs. In what
follows, we focus on noncompact star-shaped graphs � consisting of n ∈ N semi-
infinite edges γ1, . . . , γn connected at a single vertex. A map ψ :�→ C is said to
be a function on the graph and its restriction to the edge γi will be denoted by ψi .
Each edge γi has a natural parametrization xi given by the arc length of the curve
representing the edge, hence without loss of generality we may identify each γi

with the half-line [0,∞). A differentiation is always related to this natural length
parameter. We denote by ψ ′

i (0), the limit value of the derivative at the graph ver-
tex taken conventionally in the outward direction, i.e., away from the vertex. The
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integral
∫
�
ψ dx of ψ over � is the sum of integrals over all edges

∑n
i=1

∫∞
0 ψi dxi ,

the measure being the natural Lebesgue measure.
As usual, L2(�) denotes the Hilbert space of (equivalence classes of) such

functions with the scalar product (ψ1,ψ2)=
∫
�
ψ1ψ̄2 dx . Next, we introduce the

Sobolev space H2(�) as the Banach space with the norm ‖ψ‖H2(�)= (‖ψ‖L2(�)+
‖ψ ′′‖L2(�))

1/2, observing that neither the functions belonging to H2(�) nor their
derivatives should be continuous at the graph vertex. Finally, we say that a func-
tion ψ satisfies the Kirchhoff conditions at the graph vertex and write ψ ∈ K (�) if
ψ is continuous at this vertex and satisfies the condition

∑n
i=1ψ

′
i (0)=0.

Given a star graph � described above, we introduce the following family of
Schrödinger operators on L2(�) labeled by the parameter ε∈ (0,1],

−�ε :=− d2

dx2
+ λ(ε)

ε3
Vε(x)〈·,Vε〉�, D(−�ε)= H2(�)∩ K (�), (1)

with Vε(·) := V ( ·
ε
), where the real-valued function V belongs to the class L1

loc(�)

and has a compact support and zero mean, i.e.,
∫
�

V dx =0. Without loss of gen-
erality, we may (and shall) suppose that the support of V is contained in the unit
ball centered at the graph vertex. With respect to the edge indices, V may be
regarded as an n ×n matrix function on [0,∞); we stress that it need not be diag-
onal. In a similar way, the differential part of −�ε is a shorthand for the operator
which acts as the negative second derivative on each edge γi . The function λ(·) in
the above expression is supposed to be real-valued for real ε and holomorphic in
the vicinity of the origin. In addition, it satisfies the condition

λ(ε)=λ0 + ελ1 +O(ε2) , ε→0 , (2)

where λ0 and λ1 are nonzero real numbers. Our main goal in this paper is to inves-
tigate convergence of the operators −�ε as ε→0 in the norm-resolvent topology.

To describe the outcome of the limiting process, we need the following quanti-
ties:

ϑi :=
∞∫

0

xi V (xi )dxi , i =1,2, . . . ,n, (3)

and

A :=−
n∑

i=1

∞∫

0

∞∫

0

min{xi , yi } V (xi )V (yi )dxi dyi . (4)

Using them, we define the limit operator −�β as the one acting as

−�βψ :=−ψ ′′
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on functions ψ ∈ H2(�) that obey the matching conditions

ψi (0)−ψ j (0)
ϑi −ϑ j

=β
n∑

�=1

ϑ� ψ
′
�(0) , 1≤ i < j ≤n ,

n∑

�=1

ψ ′
�(0)=0 , (5)

where we adopt the convention that ψi (0)=ψ j (0) holds if ϑi =ϑ j . Here

β=
{

1
λ1 A2 if λ0 A =1,

0 otherwise.
(6)

Remark 2.1. (i) In the particular case n =2, one gets from (5) the well-known one-
dimensional δ′-interaction with the coupling parameter β.

(ii) The boundary conditions that determine the domain of the limit operator
−�β can alternatively be written in the conventional form [8] as

A�(0)+B� ′(0)=0 , (7)

where

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 . . . 0
1

ϑ1−ϑ2

1
ϑ2−ϑ1

0 . . . 0
1

ϑ1−ϑ3
0 1

ϑ3−ϑ1
. . . 0

...
...

...
. . .

...
1

ϑ1−ϑn
0 0 . . . 1

ϑn−ϑ1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, B =−β

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
β

1
β

. . . 1
β

ϑ1 ϑ2 . . . ϑn

ϑ1 ϑ2 . . . ϑn
...

...
. . .

...

ϑ1 ϑ2 . . . ϑn

⎞

⎟
⎟
⎟
⎟
⎟
⎠
.

It is useful to adopt the convention that all entries of the first row of B are −1
even if β=0. As it is well known, to make a graph Hamiltonian self-adjoint, a
graph vertex at which n edges meet should be characterized by boundary con-
ditions (7) in which the n ×n matrices A, B are such that the product AB∗ is
self-adjoint, while the 2n ×n matrix (A|B) has rank n; it is straightforward to
check that this is the case here.

(iii) If ϑ1 =ϑ j holds for some j = 2, . . . ,n, then the jth row of the above matrix
(A|B) should be replaced by the vector (1,0, . . . ,0,−1,0, . . . ,0) of the length
2n with −1 at the jth place. In what follows, we assume without loss of gen-
erality that all the ϑi are different.

Having stated the problem, let us review briefly the following contents of the paper.
In the next section, we describe properties of the limit operator −�β , in particular,
we characterize its spectrum as well as its resolvent, and describe the correspond-
ing scattering matrix—cf. Theorems 3.1–3.3. In Sect. 4, we first discuss the struc-
ture of the resolvent of the approximation operators (1) with the aim prove our
first main result, namely its closeness to that of the limit operator, stated in Theo-
rem 4.1, together with its spectral consequences, Theorem 4.2. Finally, Sect. 5 con-
tains the other main results of the paper, Theorem 5.1, which says that the on-shell
scattering matrices of the operators (1) approximate the corresponding on-shell
S-matrix of the limit one.
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3. Limit Operator

After the above preliminaries, let us turn to basic properties of −�β . Starting from
the explicit expression of the resolvent (−�β −k2)−1, we are going to describe the
structure of the spectrum and scattering amplitudes of the limit

THEOREM 3.1. The resolvent (−�β − k2)−1 of the limit operator is an integral
operator on L2(�) with the kernel


k(xi , y j )= Gk(xi , y j )+�i j (k
2) exp(ik(xi + y j )) , i, j =1,2, . . . ,n, (8)

with k2 ∈ρ(−�β), �k>0, and with � of the form

�i j (k
2)= β�i j

1+ ikβB
,

where

B := 1
n

(
n∑

i=1

ϑi

)2

−
n∑

i=1

ϑ2
i , �i j :=

(
1
n

n∑

�=1

ϑ�−ϑi

)(
1
n

n∑

�=1

ϑ�−ϑ j

)

. (9)

In the relation (8),

Gk(xi , y j )= i
2k

[

δi j exp(ik|xi − y j |)+
(

2
n

− δi j

)

exp(ik(xi + y j ))

]

(10)

is the integral kernel of the resolvent of the free Hamiltonian −�0.

Proof. Let us first note that the claim, or that of Theorem 3.3 below, can be
obtained easily referring to results in the literature. In order to make the text self-
contained, we present a full proof first and comment on the alternative at the end
of the section. According to Krein’s formula, the sought Green’s function is given
by (8) with the matrix � to be found. Suppose that ψ solves the equation (−�β −
k2)ψ=φ, then ψ= (−�β −k2)−1φ and relation (8) allows us to write the function
ψ explicitly,

ψ(xi )=
n∑

j=1

∞∫

0

(Gk(xi , y j )+�i j (k
2) exp(ik(xi + y j )))φ(y j )dy j .

Since the resolvent maps the whole space L2(�) onto the domain D(−�β) of our
operator, the function ψ has to satisfy the boundary conditions (7) at the vertex.
Using the explicit form of Gk , we find that

ψ |xi =0 =
n∑

j=1

(
i

kn
+�i j (k

2)

) ∞∫

0

φ(y j ) exp(iky j )dy j ,

ψ ′|xi =0 =
n∑

j=1

(

ik�i j (k
2)+ δi j − 1

n

) ∞∫

0

φ(y j ) exp(iky j )dy j .
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Substituting the above relations into (7), we get a system of equations,

n∑

j=1

n∑

i=1

∞∫

0

[

A�i

(
i

kn
+�i j (k

2)

)

+B�i
(

ik�i j (k
2)+ δi j − 1

n

)]

φ(y j ) exp(iky j )dy j =0

for �= 1,2, . . . ,n. Next, we require that the left-hand side vanishes for any φ,
which yields the condition A�̃+ ikB�̃+B =0, where �̃i j (k2) :=�i j (k2)+ i

kn . This
leads in a straightforward way to the following representation of the matrix �̃(k2),

�̃(k2)=−(A+ ikB)−1B.
Next, we apply the Gauss elimination method to get the chain of equivalences

(−(A+ ikB)|B)∼· · ·∼ (I |−(A+ ikB)−1B
︸ ︷︷ ︸

�̃(k2)

);

then by equivalent-row manipulations we pass to the matrix (C|D), where

C = ik

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n∏

�=1
c� 0 . . . 0 0

0
n∏

�=2
c� . . . 0 0

...
...

. . .
...

...

0 0 . . . cn−1cn 0
0 0 . . . 0 cn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

D =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

d11

n−1∏

�=1
c� d12

n−1∏

�=1
c� . . . d1n−1

n−1∏

�=1
c� d1n

n−1∏

�=1
c�

d21

n−1∏

�=2
c� d22

n−1∏

�=2
c� . . . d2n−1

n−1∏

�=2
c� d2n

n−1∏

�=2
c�

...
...

. . .
...

...

dn−11cn−1 dn−12cn−1 . . . dn−1n−1cn−1 dn−1ncn−1

dn1 dn2 . . . dnn−1 dnn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with c j := j + ikβ((
∑ j
�=1 ϑ�)

2 − j
∑ j
�=1 ϑ

2
� ) and di j := −1 + ikβ(n�i j − B). Conse-

quently, we can divide each row of (C|D) by the corresponding diagonal element
of C. This yields the relation (I |�̃), where the entries of �̃ are given by the for-
mula �̃i j = di j

ikcn
. Thus,

�i j = �̃i j + 1
ikn

= 1+ ikβB +di j

ikn(1+ ikβB)
= β�i j

1+ ikβB
, (11)

which therefore completes the proof of the theorem.
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THEOREM 3.2. The essential spectrum of −�β is purely absolutely continuous and
covers the nonnegative real axis, while the singularly continuous spectrum is empty,

σess(−�β)=σac(−�β)=[0,∞) , σsc(−�β)=∅.
If β < 0, the operator −�β has precisely one negative eigenvalue, namely its point
spectrum σp(−�β) is

σp(−�β)=
{

− 1
β2 B2

}

.

If β >0, the limit operator has no eigenvalues,

σp(−�β)=∅ , β /∈ (−∞,0).

Proof. Since (−�β −k2)−1 − (−�0 −k2)−1, k2 ∈ρ(−�β), is of finite rank in view
of (8), Weyl’s essential spectrum theorem [10, Theorem XIII.14] implies that the
essential spectrum of −�β is not affected by the perturbation, i.e., σess(−�β)=
σess(−�0)= [0,∞). Using (8) in combination with Theorem XIII.20 of [10], one
can check easily the absence of σsc(−�β). The structure of the point spectrum of
−�β for negative β and the absence of negative eigenvalues for nonnegative one
follow from the explicit meromorphic structure of the resolvent (8). On the other
hand, we note that the pole in the right-hand side of (8) for β >0 corresponds to
a resonance (antibound state). Finally, a short computation shows that the equa-
tion −�βψ= k2ψ has no square integrable solutions for nonnegative k, which, in
turn, leads to the absence of nonnegative eigenvalues for all real β.

THEOREM 3.3. For any momentum k> 0, the on-shell scattering matrix S(k) for
the pair (−�β,−�0) takes the form

Si j (k)= 2
n

− δi j − 2ikβ�i j

1+ ikβB

with �i j and B given by relations (9).

Proof. The scattering matrix can easily be obtained by substituting the scatter-
ing solution ψ(xi )= δi j exp(−ikx j )+Si j exp(ikx j ) into the matching conditions (7)
which according to [8] yields

S(k)=−(A+ ikB)−1(A− ikB).

Reasoning in a way similar to the proof of Theorem 3.1, we get the chain of equiv-
alences

(−(A+ ikB)|(A− ikB))∼· · ·∼ (I |−(A+ ikB)−1(A− ikB)
︸ ︷︷ ︸

S(k)
).
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Let the numbers c j and the matrix � be the same as in the mentioned proof and
set

ei j := 2
n
(cn − ikn2β�i j );

using again row manipulations we to pass to the matrix (C|E), where

E = ik

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(e11 − cn)
n−1∏

�=1
c� e12

n−1∏

�=1
c� . . . e1n−1

n−1∏

�=1
c� e1n

n−1∏

�=1
c�

e21

n−1∏

�=2
c� (e22 − cn)

n−1∏

�=2
c� . . . e2n−1

n−1∏

�=2
c� e2n

n−1∏

�=2
c�

...
...

. . .
...

...

en−11cn−1 en−12cn−1 . . . (en−1n−1 − cn)cn−1 en−1ncn−1

en1 en2 . . . enn−1 enn − cn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Finally, we divide each row of (C|E) by the corresponding diagonal entry of C,
obtaining thus (I |S), where S is the sought scattering matrix and its entries are
given by Si j = ei j

cn
−δi j . To complete the proof it is sufficient to use the explicit for-

mulae for ei j and cn .

Let us now return to the alternative argument mentioned above. It was shown
in [12] that the Green’s function describing the general coupling (7) can be written
in terms of pure waves weighted by the scattering amplitudes, namely as

GA,B
k (xi , y j )= i

2k
[δi j exp(ik|xi − y j |)+SA,B

i j (k) exp(ik(xi + y j ))], (12)

see also [9] for a more general formula. It implies that the proof of either Theo-
rem 3.1 or Theorem 3.3 may be skipped, since it is a direct consequence of the
other one and formula (12). In turn, the two proofs provide us with an alterna-
tive way to derive formula (12). Indeed, according to Krein’s formula the sought
Green’s function is given by (8), and we find that the matrix �A,B is given by

�A,B(k)= i
2k

(

SA,B +I − 2
n
J ,

)

where I is an n × n identity matrix, while J is the matrix, whose all entries are
one. From the proofs of Theorems 3.1, 3.3 one infers that

�A,B(k)= 1
2ik

(

2ik�̃A,B(k)+ 2
n
J
)

= i
2k

(

−(A+ ikB)−1(A− ikB)+I − 2
n
J
)

and the claim follows.



APPROXIMATIONS OF QUANTUM-GRAPH VERTEX COUPLINGS 1087

4. Convergence of the Resolvents and Spectra

This section is devoted to proof of the fact that the operator family (−�ε− k2)−1

approximates (−�β − k2)−1 in the uniform operator topology. We will do that
by demonstrating that the kernel of (−�ε − k2)−1 approaches the kernel 
k of
(−�β − k2)−1 in L2(�) given by Theorem 3.1, which, in turn, makes it possible
to verify the convergence of the corresponding operators in the Hilbert–Schmidt
norm, and thus, a fortiori, in the uniform norm. To this aim, we are going to
construct the resolvent (−�ε − k2)−1 explicitly; this resolvent allows us to deter-
mine the structure of the spectrum of the perturbed operator, and we show that
the spectrum of −�ε is close to that of −�β for small ε. Our first main result
reads

THEOREM 4.1. As ε→ 0, the family of Hamiltonians −�ε converges to −�β in
the norm-resolvent sense.

Proof. To compare the resolvents of �ε and �β , fix k := iκ belonging to the
resolvent sets of both operators; as we shall see later from the explicit structure
of the resolvents this can be achieved, e.g., by choosing κ>0 large enough.

We observe that the resolvent (−�ε + κ
2)−1 is an integral operator in L2(�),

which has the kernel of the following form,

(−�ε+κ
2)−1(xi , y j )= G iκ(xi , y j )

− ζε((−�0 +κ
2)−1Vε)(xi )((−�0 +κ

2)−1Vε)(y j ), (13)

with G iκ from (10) being the Green’s function of the free Hamiltonian −�0, and
with the constant ζε of the form

ζε :=
(
ε3

λ(ε)
+〈(−�0 +κ

2)−1Vε,Vε〉�
)−1

.

This expression is obtained in the same way as in the particular case n =2, i.e., for
point interactions on the line—see e.g., [2].

We start with the asymptotic behavior of the expression ζε as ε→0. Using the
Taylor expansion of exp(−εκ(xi + yi )) together with the fact that V has a compact
support and zero mean, one derives the formula

〈(−�0 +κ
2)−1Vε,Vε〉� = ε2

2κ

⎡

⎣
n∑

i=1

∞∫

0

∞∫

0

V (xi )V (yi ) exp(−εκ|xi − yi |)dxi dyi

−
n∑

i=1

∞∫

0

∞∫

0

V (xi )V (yi ) exp(−εκ(xi + yi ))dxi dyi
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+ 2
n

n∑

i=1

n∑

j=1

∞∫

0

∞∫

0

V (xi )V (y j ) exp(−εκ(xi + y j ))dxi dyi

⎤

⎦

=−Aε3 +κBε4 +O(ε5) as ε→0.

Recall that the constants A and B are defined via formulae (4) and (9), respec-
tively. We, thus conclude that

ζε= 1

ε3

(
1
λ0

− A + ε(κB − λ1
λ2

0
)

) +O
(

1
ε2

)

, ε→0,

and finally, since β= λ2
0
λ1

when λ0 = 1
A , that

ζε= −β
ε4(1−κβB)

+O
(

1
ε3

)

, ε→0. (14)

In the next step, we have to discuss the asymptotical behavior of the functions
((−�0 +κ

2)−1Vε)(xi )((−�0 +κ
2)−1Vε)(y j ). In a similar manner as above we find

that

((−�0 +κ
2)−1Vε)(xi )=

n∑

j=1

∞∫

0

G iκ(xi , y j )Vε(y j )dy j

=−ε2 exp(−κxi )

⎡

⎣
n∑

j=1

(
1
n

− δi j

)

ϑ j +O(ε)
⎤

⎦ , ε→0,

which, in turn, gives the desired relation,

((−�0 +κ
2)−1Vε)(xi )((−�0 +κ

2)−1Vε)(y j )

= ε4 exp(−κ(xi + y j ))
(
�i j +O(ε)), ε→0. (15)

Combining (13)–(15) we find that

(−�ε+κ
2)−1(xi , y j )= G iκ(xi , y j )+ exp(−κ(xi + y j ))

(
β�i j

1−κβB
+O(ε)

)

,

= G iκ(xi , y j )+ exp(−κ(xi + y j ))(�i j (−κ
2)+O(ε))

holds as ε→0. This allows us to conclude that the kernel (−�ε+κ
2)−1(xi , y j ) of

the approximating operator resolvent converges as ε→ 0 to the kernel 
iκ(xi , y j )

pointwise. We further observe that the function (−�ε+κ
2)−1(xi , y j ) decays expo-

nentially, hence the integral expressing its norm converges and the dominated con-
vergence theorem implies that this function tends to the kernel 
iκ(xi , y j ) in
L2(�×�). From this, the resolvent converges in the Hilbert–Schmidt norm follows,
i.e.,

lim
ε→0

‖(−�ε+κ
2)−1 − (−�β +κ

2)−1‖2 =0 ,
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and thus, a fortiori, the family {−�ε}ε≥0 approximates −�β in the norm-resolvent
topology.

As an immediate corollary of Theorem 4.1 we get the following result.

THEOREM 4.2. (i) The essential spectrum of −�ε is purely absolutely continuous
and covers the nonnegative real axis, while the singularly continuous spectrum is
empty.

(ii) If β<0, the operator −�ε has for all ε small enough exactly one negative eigen-
value −κ

2
ε with the asymptotic behavior

−κ
2
ε =− 1

β2 B2
+O(ε) , ε→0 ,

which tends to the eigenvalue of the limit operator. If β >0, the perturbed oper-
ator has no eigenvalues.

(iii) If β= 0, then there are two possibilities. If λ0<
1
A , the approximating operator

has for all ε small enough exactly one negative eigenvalue −κ
2
ε with the asymp-

totics

−κ
2
ε =− (A − 1

λ 0)
2

ε2 B2
+O

(
1
ε

)

, ε→0 ,

tending to −∞. In the opposite case, the operator −�ε has no eigenvalues.

Proof. The arguments used in the proof of Theorem 3.2 together with the pre-
cise structure of the resolvent (−�ε−k2)−1 give the first statement of the theorem.
To obtain the remaining two claims, we only need to observe that the resolvent
(−�ε+κ

2)−1 has only one pole at κε admitting the asymptotics

κε= 1
B

(
A − 1

λ0

ε
+ λ1

λ2
0

+O(ε)
)

, ε→0 ,

and that the operator �ε can have only negative eigenvalues.

5. Convergence of the Scattering Matrices

In the final section, we investigate stationary scattering for the pair (−�ε,−�0).
Our aim is to show that the corresponding scattering amplitudes are close to those
for the pair (−�β,−�0) in the limit ε→0. We consider the incoming monochro-
matic wave exp(−ikxi ) approaching the vertex along the edge γi . The correspond-
ing scattering solution ψεi has to solve the problem

−ψ ′′ + λ(ε)

ε3
Vε(x)〈ψ,Vε〉� = k2ψ on �, ψ ∈ K (�) , (16)
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and, by virtue of the compactness of the support of V , it takes the form

ψεi (x j )= δi j exp(−ikx j )+Sεi j (k) exp(ikx j ) , x j ≥1.

Hence to solve the scattering problem for the Hamiltonian −�ε, we need to ana-
lyze the behavior of the amplitudes Sεi j (k) as the scaling parameter ε approaches
zero.

The integro-differential equation (16) for the scattering solution ψεi can easily be
reformulated as an integral equation using the variation-of-constants method,

ψεi (x j )=−λ(ε)〈ψ
ε
i ,Vε〉�

kε3

ε∫

x j

Vε(y j ) sin k(x j − y j )dy j

+ δi j exp(−ikx j )+Sεi j (k) exp(ikx j ). (17)

Noting that

ψi |x j =0 = λ(ε)〈ψεi ,Vε〉�
kε3

ε∫

0

Vε(y j ) sin ky j dy j + δi j +Sεi j (k) ,

ψ ′
i |x j =0 =−λ(ε)〈ψ

ε
i ,Vε〉�
ε3

ε∫

0

Vε(y j ) cos ky j dy j − ikδi j + ikSεi j (k),

we substitute these relations into the Kirchhoff matching conditions to conclude
that

Sεi j (k)=
λ(ε)〈ψεi ,Vε〉�

kε3

⎡

⎣−
ε∫

0

Vε(y j ) sin ky j dy j

+ 1
in

n∑

�=1

ε∫

0

Vε(y�) exp(iky�)dy�

⎤

⎦+ 2
n

− δi j

= λ(ε)〈ψεi ,Vε〉�
ε

[
n∑

�=1

(
1
n

− δ�j

)

ϑ�+O(ε)
]

+ 2
n

− δi j . (18)

Comparing formulæ (17) and (18), we derive the following Fredholm integral equa-
tion (with a degenerate kernel) for the scattering solution,

ψi (x j )=〈ψεi ,Vε〉�W (x j )+ F(x j ),

where

W (x j )= λ(ε)

2ikε3

⎡

⎢
⎣

ε∫

x j

Vε(y j ) exp(ik(y j − x j ))dy j +
x j∫

0

Vε(y j ) exp(ik(x j − y j ))dy j

+
n∑

�=1

(
2
n

− δ�j

) ε∫

0

Vε(y�) exp(ik(x j + y�))dy�

⎤

⎦
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and

F(x j )=−2iδi j sin kx j + 2
n

exp(ikx j );

then as an immediate consequence of this fact, we get

〈ψεi ,Vε〉� =
⎡

⎣
n∑

j=1

ε∫

0

F(x j )Vε(x j )dx j

⎤

⎦

⎡

⎣1−
n∑

j=1

ε∫

0

W (x j )Vε(x j )dx j

⎤

⎦

−1

. (19)

Next, we are going to find the asymptotic behavior of the quantity 〈ψεi ,Vε〉�
defined by (19), which will be used further to get the asymptotics of the scatter-
ing amplitudes via (18). To this end, we first denote the numerator of (19) as N
and analyze its asymptotic behavior,

N =−2i

ε∫

0

Vε(xi ) sin kxi dxi + 2
n

n∑

j=1

ε∫

0

Vε(x j ) exp(ikx j )dx j

=−2iε

⎡

⎣
1∫

0

V (xi ) sin kεxi dxi + i
n

n∑

j=1

1∫

0

V (x j ) exp(ikεx j )dx j

⎤

⎦

=2ikε2
n∑

j=1

(
1
n

− δi j

)

ϑ j +O(ε3), ε→0.

Then the denominator of (19) can be written as 1− D, where D behaves as follows,

D= λ(ε)

2ikε3

⎡

⎣
n∑

j=1

ε∫

0

ε∫

0

Vε(x j )Vε(y j ) exp(ik|x j − y j |)dx j dy j

+
n∑

j=1

n∑

�=1

(
2
n

− δ�j

) ε∫

0

ε∫

0

Vε(x j )Vε(y�) exp(ik(x j + y�))dx j dy�

⎤

⎦

= λ(ε)

2ikε

⎡

⎣
n∑

j=1

1∫

0

1∫

0

V (x j )V (y j )(exp(ikε|x j − y j |)− exp(ikε(x j + y j )))dx j dy j

+ 2
n

n∑

j=1

n∑

�=1

1∫

0

1∫

0

V (x j )V (y�) exp(ikε(x j + y�))dx j dy�

⎤

⎦

=λ(ε)(A + ikεB +O(ε2)), ε→0,

with the usual definitions of the constants A and B. Combining the above asymp-
totic formulæ for N and D along with (19), we finally conclude that the scattering
amplitude Sεi j (k) has the following asymptotic behavior,
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Sεi j = 2
n

− δi j + 2ikελ(ε)
1−λ(ε)(A + ikεB)

×
[

n∑

�=1

(
1
n

− δ�i
)

ϑ�

][
n∑

�=1

(
1
n

− δ�j

)

ϑ�

]

+O(ε)=Si j +O(ε), ε→0,

where the limit values Si j are defined in Theorem 3.3. In this way, we have shown

THEOREM 5.1. For any momentum k > 0, the on-shell scattering matrix for the
pair (−�ε,−�0) converges as ε→0 to that of (−�β,−�0), and moreover, there is
a constant C such that

‖Sε(k)−S(k)‖≤Cε , ε∈ (0,1] ,
where ‖ · ‖ stands for the operator norm of the matrix.

6. Concluding Remarks

First of all, let us address a natural question inspired by the above remarks,
namely whether the formula (12) remains valid generally for Schrödinger operator
on the graph with rank-one perturbations,

− d2

dx2
+λV (x)〈·,V 〉�. (20)

If this was the case, Theorems 4.1 and 5.1 could imply each other each other. Let
us suppose that λ∈R and V ∈ L1

loc(�) is of compact support. In a similar manner
as in the previous section, we find that the scattering matrix SV corresponding to
(20) can be expressed as

SV
i j (k)=

λN

k(D −1)

⎡

⎣
∞∫

0

V (y j ) sin ky j dy j+ i
n

n∑

�=1

ε∫

0

V (y�) exp(iky�)dy�

⎤

⎦+2
n

− δi j ,

where

N :=−2i

∞∫

0

V (xi ) sin kxi dxi + 2
n

n∑

j=1

∞∫

0

V (x j ) exp(ikx j )dx j

and

D := λ

2ik

n∑

j=1

∞∫

0

V (x j )

⎡

⎣
∞∫

0

V (y j )(exp(ik|x j − y j |)− exp(ik(x j + y j )))dy j

+ 2
n

n∑

�=1

∞∫

0

V (y�) exp(ik(x j + y�))dy�

⎤

⎦ dx j .

On the other hand, the Green’s function GV
k corresponding to (20) can be

expressed as
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GV
k (xi , y j )= Gk(xi , y j )− λ((−�0 − k2)−1V )(xi )((−�0 − k2)−1V )(y j )

1+λ〈(−�0 − k2)−1V,V 〉� .

It follows from (10) that

((−�0 − k2)−1V )(xi )= i
2k

⎡

⎣
∞∫

0

V (yi )(exp(ik|xi − yi |)− exp(ik(xi + yi )))dyi

+ 2
n

n∑

j=1

∞∫

0

V (y j ) exp(ik(xi + y j ))dy j

⎤

⎦ ,

and consequently, 〈(−�0 − k2)−1V,V 〉� =−D/λ. Should formula (12) hold in this
case, the above results would yield the equality

∞∫

xi

V (yi ) sin k(yi − xi )dyi =0,

which in general does not hold. It holds, however, asymptotically, i.e., in the limit
ε→0, in the special case of the potentials considered in the previous sections.

The second thing to mention is the meaning of the obtained δ′-interaction. We
have mentioned that such interactions are interesting in view of their particular
scattering properties, being most transparent at low energies. We do not know how
to realize an exact δ′ physically, but using approximation results we are able to sim-
ulate such a behavior over large intervals of energy. We have recalled also that a
δ′ on the line can have different generalizations to a graph. The most common is
the ‘symmetrized’ one introduced in [5], characterized by the matching conditions

ψ ′
i (0)=ψ ′

j (0)=:ψ ′(0), 1≤ i < j ≤n,
n∑

�=1

ψ�(0)=βψ ′(0). (21)

An attentive reader would notice, however, that there is another extension intro-
duced in [5], namely, the one described by the conditions

ψi (0)−ψ j (0)= β

n
(ψ ′

i (0)−ψ ′
j (0)), 1≤ i < j ≤n,

n∑

�=1

ψ ′
�(0)=0, (22)

with β ∈R; the result of this paper provides still another generalization.
Both the couplings (21) and (22), as well as (5), yield operators with the essen-

tial spectrum which is purely absolutely continuous and covers the nonnegative real
axis, while the singularly continuous one is empty. For a negative β, the couplings
(21) and (22) produce a single eigenvalue, namely − n2

β2 , of a different multiplicity,
equal one and n − 1 in the two cases, respectively. In the former case, the corre-
sponding eigenfunction is exp(nx j/β) on the jth edge. In the case of (22), the jth
eigenfunction is exp(nx j/β) on the jth edge, − exp(nxn/β) on the nth edge and
vanishes elsewhere, for j =1, . . . ,n −1.
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The new coupling (5) leads to a simple eigenvalue − 1
β2 B2 —cf. Theorem 3.2—the

corresponding eigenfunction is (
∑n
�=1 ϑ� − nϑ j ) exp(−x j/(βB)) on the jth edge.

Note that even when the system has some symmetries, i.e., when some of the para-
meters ϑ j coincide, the structure of the spectrum is preserved, the only exception
being the case when all the parameters ϑ j are equal mutually; then the eigenvalue
disappears, since then couplings (5) reduces then to the free (Kirchhoff) coupling.
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