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We discuss the discrete spectrum induced by bulges on
threadlike mesoscopic objects, using two models, a continu-
ous hard—wall waveguide and a discrete tight—binding model
with two sorts of atomic orbitals. We show that elongated
bulges induce numerous quasibound states. In the discrete
model we also evaluate the probability of transition between
the localized states and extended ones of the “valence” band.
We suggest this as a mechanism governing the porous-silicon
luminiscence. In addition, the model reproduces the domi-
nance of nonradiative transitions, blue shift for finer textures
and luminiscence suppression at low temperatures.

PACS numbers: 03.65Ge, 78.65.—s

The effect of luminiscence of porous silicons has attracted
a lot of attention recently ] There are various attempts
to explain

it, but none of them can be regarded as fully convinc-
ing at present. It is clear that the porous material texture
plays the decisive role, because first the effect is absent
in the bulk, and second, a refinement of the structure is
known to cause a blue shift of the emitted light. In this
Letter we intend to discuss one possible quantum me-
chanical mechanism which employs transitions between
the valence band and a large family of localized states be-
low the conductance bend; we put emphasis on describing
the geometric conditions under which such families

may exist.

It has been suggested that quasibound states in small
crystallites may play important role [E] It is natural to
expect that the interior of the porous medium resembles a
sort of a calcite cave containing not only loose—end mate-
rial “drops” but also other structures; our main hypoth-
esis is that a significant portion of them are threadlike
objects of a varying cross section. Under this assumption
we may employ recent results on electron bound states in
quantum wires which are bent, protruded, or coupled lat-
erally to another wire [J-fjj. The mechanism behind the
existence of these bound states is an effective attractive
potential

induced by the geometric modification of the tube.
Our key observation is

that if the deformation extends over a long interval
(relative to the tube cross section), the waveguide can
support numerous bound states and the discrete spec-
trum has typical one-dimensional features: most eigen-

values are found at the bottom of the spectrum, i.e., away
of the continuum. Hence if

the variation of the tube cross section produces pro-
trusions which are rather long than wide, such a tube
has many more quasibound states than other conceivable
structures, so the corresponding radiative transitions are
responsible for the most part of the emitted light.

Below we shall illustrate this feature on a tube with a
single elongated

bulge. On the other hand, any model of porous—silicon
luminiscence has to be able to reproduce the other exper-
imentally established properties, notably the dominance
of the nonradiative transition mode as well as the fre-
quency and temperature dependence of the effect. For
this purpose the free—particle quantum waveguide model
is oversimplified, because its continuous spectrum con-
sists of a single band. This motivates us to treat the
essentially same situation in the tight-binding setting,
considering chains of “atoms” to which other chains of
finite length are laterally attached. If the atomic orbitals
are of two different sorts, the spectrum of an infinite chain
can consist of distinguished bands which would play the
role of the valence and conductance band, respectively.

Adding a finite chain will cause appearance of bound
states whose distance from the band edges is controlled
by the coupling strength between the two chains.

Truncating the discrete “tube”, we are able to find the
spectrum and the

corresponding eigenfunctions numerically. This will al-
low us to estimate

the rate of transition between the quasibound states
below the conductance band and extended states in the
valence band. This quantity can be compared to the
probability of nonradiative transitions due to a tunnel-
ing escape of an electron localized in a bulge to a neigh-
bouring bulge or to the bulk from which the treadlike
structure spreads.

Let us describe briefly the two models; more details will
be given in a forthcoming paper [ﬂ] In the continuous
model we consider a tube

with hard walls which has a constant cross section ex-
cept for a finite part where it is protruded [E} The bulge
produces bound states no matter how small it is [E]7 but
of course, the number of such states and the distribu-
tion of the corresponding energy levels depend substan-
tially on the geometry. For instance, a hard—wall planar
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strip of a unit width with a stub of the same width and
length ¢ considered in Ref. [E] has just one bound state
A(¢) such that A\(¢) = n2— 71024 O(¢*) for small ¢ and
limg—oo A(¢) < 0.9372 — cf. [{L0); making the protru-
sion two—sided, we have still one bound state with the
eigenvalue which cannot be lower than 0.6672.

On the other hand, elongated bulges produce numerous
bound states. As a simple example, consider a boxlike
protrusion on a straight planar strip, so the width is 1+n
on an interval of a length L and one otherwise. By
a bracketing argument [@] the discrete energy levels are
squeezed between the eigenvalues of the Laplacian on the
rectangle [0, L] x [0,1+n] with the Dirichlet condition
on the “parallel” boundary and Dirichlet or Neumann,
respectively, on the “perpendicular” one, that is,

() () = e () (2
(1)

for n=1,2,.... The discrete spectrum consists of those
Ajn which are below 72, the bottom of the continu-
ous spectrum; it is clear that with the lowest transverse
mode, j =1, such states exist for any n > 0 as long as
L is large enough. Moreover, in the case L > 1 there
are numerous bound states, with most eigenvalues being
concentrated in the vicinity of 72(147)~2, or the higher
thresholds (75)2?(1+4n)~2, provided the latter are below
the bottom of the continuous spectrum. These conclu-
sions extend easily to a tube with a steplike bulge in three
dimensions.

The fact that elongated bulges produce many bound
states is not restricted to the above simple example;
on the other hand, the eigenvalue distribution depends
substantially on the protrusion shape. To get a bet-
ter understanding, consider a tube whose cross section
Y, is constant for |z| > L and varies smoothly
in the interval [—3L,1L] (see Fig.la). For a fixed
x let vi(z) < w(r) < wv(z) < denote the
eigenvalues of the Laplacian with the Dirichlet condi-
tion in L2(X,); the corresponding eigenfunctions are
xi(z,y), j = 1,2,...; y being the transverse vari-
able(s). The “full” wave function may be then written in
the form ¢ (z,y) = >_; a;(2)¥;(z,y) with the normal-
ization ffﬁz >, laj(@)Pde = 1.

The protrusion-induced discrete spectrum is essen-
tially determined again by the spectrum of the bubble
alone; one can employ the bracketing argument closing
the bulge at « = :I:%L by the Dirichlet and Neumann
“lid”, respectively. If we assume now that the bulge is
long and its cross section changes only slowly with respect
to = the longitudinal derivatives of x; may be neglected
and we arrive at an Born—-Oppenheimer type approxima-
tion: the stationary Schrodinger equation decouples into
a family of equations for the slow motion,

— (@) + vy(@)a (@) = Bay(a), 2)

where the the transverse eigenvalues play role of the po-
tentials. At the same time, if the bulge is long the eigen-
values E;, of the j—th equation are determined approx-
imately by the semiclassical quantization condition

/ \E-vi(x)dz = nm+ puj, (3)
M;(E)

where M;(E) :={z: v;(z) < E} is the classically al-
lowed region; the explicit value of the Maslov factor p; is
not important as long as we are interested in the distance
0E;, = Ej ny1— Ej, between the adjacent energy levels
which determines the density of states p(E). Expand-
ing the square root and neglecting the difference between
M;(E;,) and M;(Ejnt+1), we find that the latter ap-
proaches in the limit L — oo the form

1 dx
PE) = o ; /Mj(E) E-vj(z) W

recall that we are interested only in the behavior of this
function below 14(L/2), the bottom of the continuous
spectrum, where just one or several lowest transverse
modes can have M;(E) # 0.

Returning to our example of a boxlike bulge on a unit—
width strip, we find that for large L the j—th mode
contribution to the discrete-spectrum density is

0= (52) |2 ()

, 2
with a singularity at E7"" :=

—1/2

()

mj
1+4+n

Other shapes may change the form of the distribution;
it is more concentrated close to the bottom of the discrete
spectrum the closer is the bulge to the cylindrical shape.
For instance, consider the strip of the width d (%) , where
d(€) := (1+n)(1—b¢?)'/2 and b is chosen in such a way
that d(£1/2) = 1. The jth term on the rhs of ([ is
then expressed as

L(1+n) E-Ep

p;i(E) = /e — |

where E;’“" is the same as above and E is the full elliptic
integral of the second kind [@], it has still a peak at
E = E}”i" but less pronounced.

Let us now pass to description of the tight—binding
model. We employ the simplest possible choice for the
atomic geometry as well as for the interactions between
orbitals. We consider N parallel chains of

atoms forming a strip in the plane to which we add M
finite-length

(6)



chains which constitute a bulge (Fig.1b). To mimick
the band structure of

the semiconductor spectrum, one can choose interac-
tions between orbitals

(side-diagonal elements of the tight-binding Hamil-
tonian) switching between two values a and b in the
horizontal direction; vertically one can choose the same
structure or simply a single coupling constant c.

If one has an infinite horizontal strip of width N with
no bulge the corresponding spectrum can be obtained
summing the spectrum of one horizontal infinite chain
(i.e., the pair of intervals (—a—b,b—a) and (a—b,a+
b)) and the discrete spectrum corresponding to a vertical
line of N atoms; the latter is of course contained in the
mentioned intervals if the structure is the same in both
directions. The resulting spectrum still exhibit gaps if a
and b are chosen appropriately; in general they become
narrower with increasing NV .

The spectrum of an infinite strip of width N with a
finite number of bulges of width M has a continuous
part identical with that of the

“unperturbed” strip and eigenvalues outside of it. The
latter are nevertheless contained in the spectrum of a
strip of width N+ M . Fig.2 shows the eigenvalue plot
obtained numerically for a chain (N =1) of 40 “atoms”
and a bulge of 14 “atoms”, a=3,b=1 (in the verti-
cal direction b=1). We can distinguish the eigenval-
ues in the intervals (—4,—2) and (2,4) corresponding
to the extended states of the “valence” and “conduc-
tion” bands, and those outside corresponding to states
localized mainly on the bulges with an exponential decay
outside. In case of several bulges it may occur that an
eigenstate is supported by more than one of them; this
happens typically if the system has a symmetry. Notice
that the extended states are not Bloch states due to the
lack of translational invariance.

The knowledge of the eigenfunctions makes it possible
to compute the radiative transition probability between
the excited bound states living in the bulges and the
valence-band extended states which is given in general
by the Fermi golden rule,
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We have evaluated the matrix element in question. It is
nonzero but not large; the value is typically at least 2—3
orders of magnitude below the upper bound given by the
potential step between the bulge ends.

Inserting the values of the constants into @), the above
observation tells us that the transition probability does
not exceed 108 s71: it increases, but not more than one
order of magnitude, when w runs through the visible

spectrum. The last named property conforms with the
experimentally observed shorter lifetime at the blue edge
of the spectrum [f].

It is further known [[] that W, (w) exhibits a dramatic
decrease below the room temperature. To explain this
effect one has to take into account that the final-state
probability is determined by the Fermi

distribution, and therefore the the matrix element in
() should be multiplied by Py, := 1—(efEFr =1 4 1) 7"
Assuming that the chemical potential takes value in the
middle of the gap between the two bands, the above fac-
tor is of order of e#? at the room temperature and the
decrement is inversely proportional to T'; the suppres-
sion is larger at the blue edge of the spectrum.

Other properties of this model also conform with ex-
perience for the effect under consideration. Long bulges
support many excited states which is necessary to cre-
ate a macroscopic luminosity output. At the same time,
a simple scaling argument shows that the distance be-
tween the bound states and the valence band increases
as the lateral size of the tubes and bulges become smaller;
hence a finer material texture results in a blue shift.

Experimental data show a low emmision efficiency of
photoluminiscence measured at room temperature. This
strongly suggests that the radiative recombination W, is
dominated by the nonradiative probability W,,, which
involves the escape of the confined carriers (electrons—
holes) from a bulge into a more extended/less passivated
neighborhood where a nonradiative recombination can
occur. Hence the emitted intensity I(w) ~ W, (w)7(w),
where the lifetime 7(w) = (Wy(w) + Wyr(w))” . Inde-
pendent measurements

[ of I(w) and 7(w) show that W,, > W, and
Wor(w) = Ae®™ . In the framework of both our model
a decay process related to W, occurs if the bulged
tube is connected to a wider part of the structure (bulk).
The tunneling probability can be estimated in the second
model from the eigenfunction decay [[LJ:

Wi (w) =Im (E;— Ey) /R

- Re (E;—Ey) [¢re £, (L)]?, (8)
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where L is the tunneling distance. For typical light pho-
ton energies we get W, ~ 10° e~V where v(E) is a
function of the distance between the eigenvalue and the
bottom of the “conduction” band. We get W,,,. > W, at
the room temperature as long as L < 50 a.u. ; for a cooler
material and bluer light the dominance is preserved at
longer distances.

It is certainly not easy to decide which mechanism is
responsible for the porous—silicon luminiscence as long
as we know little about the actual texture, and it is fully
conceivable that the effect comes from conspiracy of dif-
ferent physical processes. On the other hand, it seems
to be straightforward to check experimentally whether



the states discussed in this letter may contribute, since
quantum wires with bulges

of appropriate shape can be fabricated. Omne could,
a fortiori, taylor in this way luminiscent systems emit-
ting light of prescribed properties. Moreover, since the
mechanism producing bound states in infinite tubes are
similar, the same can be done for quantum wires with
numerous bends,

or pairs of wires coupled laterally through a long “win-
dow”.

In conclusion, we have presented a mechanism which
could be responsible for the porous—silicon luminiscence
illustrating it on two models. Despite the simplifications,
they yield the basic features, i.e., the existence of numer-
ous quasibound states away of the continuum, the dom-
inance of nonradiative transitions and the spectral shift
associated with refining the texture.
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Figure captions

Figure 1  The models. (a) A tubular guide with
a bulge. The bound states of an infinite tube change
to quasibound when we couple it to the bulk. (b) The
tight—binding model.

Figure 2 The spectrum of the tight-binding model.
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