Essential spectrum of Schrödinger operators with δ -interactions on the union of compact Lipschitz hypersurfaces

Jussi Behrndt^{1,*}, Pavel Exner², and Vladimir Lotoreichik¹

¹ Institute for Computational Mathematics, Graz University of Technology, 8010, Graz, Austria

² Nuclear Physics Institute, Academy of Sciences, 250 68, Rez near Prague, Czech Republic

In this note we prove that the essential spectrum of a Schrödinger operator with δ -potential supported on a finite number of compact Lipschitz hypersurfaces is given by $[0, +\infty)$. We emphasize that the union of a family of Lipschitz hypersurfaces is in general not Lipschitz.

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Let $S := {\Sigma_k}_{k=1}^n$ be a family of (d-1)-dimensional Lipschitz manifolds, each of which separates the Euclidean space \mathbb{R}^d , $d \ge 2$, into a bounded part $\Omega_{k,i}$ and an unbounded exterior part $\Omega_{k,e}$. Let $\mathcal{A} := {\alpha_k}_{k=1}^n$ be a family of L^∞ -functions $\alpha_k : \Sigma \to \mathbb{R}$ and define a sesquilinear form $\mathfrak{t}_{\mathcal{A},S}$ by

$$\mathfrak{t}_{\mathcal{A},\mathcal{S}}[f,g] := (\nabla f, \nabla g)_{L^2(\mathbb{R}^d;\mathbb{C}^d)} - \sum_{k=1}^n (\alpha_k f|_{\Sigma_k}, g|_{\Sigma_k})_{L^2(\Sigma_k)}, \quad \mathrm{dom}\,\mathfrak{t}_{\mathcal{A},\mathcal{S}} = H^1(\mathbb{R}^d). \tag{1}$$

It can be shown that $\mathfrak{t}_{\mathcal{A},\mathcal{S}}$ is a closed, densely defined, symmetric sesquilinear form which is bounded from below and hence induces a self-adjoint operator $-\Delta_{\mathcal{A},\mathcal{S}}$ in $L^2(\mathbb{R}^d)$ via the first representation theorem, see [1, 2, 4, 5]. The main objective of this note is to prove the following result.

Theorem 1.1 $\sigma_{ess}(-\Delta_{\mathcal{A},\mathcal{S}}) = [0, +\infty).$

We note that Theorem 1.1 is slightly more general than [4, Theorem 4.2(i)] since the δ -interaction is supported on the union of hypersurfaces which itself may not be locally the graph of a Lipschitz function. The proof of Theorem 1.1 is based on a compact perturbation argument for one hypersurface, variational principles and singular sequences.

2 **Proof of Theorem 1.1 for one hypersurface**

Let us introduce the self-adjoint free Laplacian $-\Delta_{\rm free}$ defined via the sesquilinear form

$$\mathfrak{t}_{\mathrm{free}}[f,g] := (\nabla f, \nabla g)_{L^2(\mathbb{R}^d;\mathbb{C}^d)}, \quad \mathrm{dom}\,\mathfrak{t}_{\mathrm{free}} = H^1(\mathbb{R}^d)$$

It is well-known that $\sigma_{\text{ess}}(-\Delta_{\text{free}}) = \sigma(-\Delta_{\text{free}}) = [0, +\infty)$. Let $\mathcal{S} = \{\Sigma\}$ and $\mathcal{A} = \{\alpha\}$, where $\alpha : \Sigma \to \mathbb{R}$ is an L^{∞} -function, and denote the self-adjoint operator corresponding to the form (1) in this case by $-\Delta_{\alpha,\Sigma}$.

Theorem 2.1 *The resolvent difference*

$$(-\Delta_{\rm free} - \lambda)^{-1} - (-\Delta_{\alpha,\Sigma} - \lambda)^{-1} \tag{2}$$

is compact for all $\lambda \in \rho(-\Delta_{\text{free}}) \cap \rho(-\Delta_{\alpha,\Sigma})$. In particular, $\sigma_{\text{ess}}(-\Delta_{\alpha,\Sigma}) = [0, +\infty)$.

Proof. According to its definition, the operator $-\Delta_{\alpha,\Sigma}$ is semibounded from below. Hence we can fix a constant a > 0 such that $-\Delta_{\alpha,\Sigma} + a > 0$. We denote the resolvent difference in (2) with $\lambda = -a$ by W. Let $f, g \in L^2(\mathbb{R}^d)$ and set

$$u := (-\Delta_{\text{free}} + a)^{-1} f, \qquad v := (-\Delta_{\alpha, \Sigma} + a)^{-1} g.$$
 (3)

Using (3) and the definition of the operator W we obtain

$$(Wf,g)_{L^{2}(\mathbb{R}^{d})} = \left((-\Delta_{\text{free}} + a)^{-1}f,g \right)_{L^{2}(\mathbb{R}^{d})} - \left((-\Delta_{\alpha,\Sigma} + a)^{-1}f,g \right)_{L^{2}(\mathbb{R}^{d})} = \left(u,g \right)_{L^{2}(\mathbb{R}^{d})} - \left(f, (-\Delta_{\alpha,\Sigma} + a)^{-1}g \right)_{L^{2}(\mathbb{R}^{d})} = \left(u, (-\Delta_{\alpha,\Sigma} + a)v \right)_{L^{2}(\mathbb{R}^{d})} - \left((-\Delta_{\text{free}} + a)u,v \right)_{L^{2}(\mathbb{R}^{d})} = \left(u, -\Delta_{\alpha,\Sigma}v \right)_{L^{2}(\mathbb{R}^{d})} - \left((-\Delta_{\text{free}}u,v)_{L^{2}(\mathbb{R}^{d})} \right)_{L^{2}(\mathbb{R}^{d})}$$
(4)

^{*} Corresponding author: e-mail behrndt@tugraz.at, phone +43-(0)316-873 8127, fax +43-(0)316-873 8621

This formula can be rewritten in a more suitable way. Observe that both functions u and v belong to $H^1(\mathbb{R}^d)$, which is the form domain of the operators $-\Delta_{\alpha,\Sigma}$ and $-\Delta_{\text{free}}$. Hence, we can use the first representation theorem to rewrite (4) in the following form

$$(Wf,g)_{L^2(\mathbb{R}^d)} = -(u|_{\Sigma},\alpha v|_{\Sigma})_{L^2(\Sigma)},$$
(5)

where we made use of the explicit formulae for $\mathfrak{t}_{\text{free}}$ and $\mathfrak{t}_{\mathcal{A},\mathcal{S}}$. Introduce the operators $T_1, T_2: L^2(\mathbb{R}^d) \to L^2(\Sigma)$ by

$$T_1 f := \left(\left(-\Delta_{\text{free}} + a \right)^{-1} f \right) \Big|_{\Sigma}, \qquad T_2 g := -\alpha \left[\left(\left(-\Delta_{\alpha, \Sigma} + a \right)^{-1} g \right) \Big|_{\Sigma} \right].$$

It follows from the trace theorem for Sobolev functions [8, Theorem 3.37] that both operators T_1 and T_2 are everywhere defined in $L^2(\mathbb{R}^d)$ and bounded. Moreover, ran $T_1 \subset H^{1/2}(\Sigma)$ and as Σ is a compact Lipschitz manifold the embedding of $H^{1/2}(\Sigma)$ into $L^2(\Sigma)$ is compact, see, e.g., [7, Section 2] and the references therein. Therefore, we obtain in addition that T_1 is compact. Combining (3) with (5) and with the definition of the operators T_1 and T_2 we find

$$(Wf,g)_{L^2(\mathbb{R}^d)} = (T_1f,T_2g)_{L^2(\Sigma)}$$

In fact, we have shown that $W = T_2^*T_1$ and the compactness of T_1 and boundedness of T_2 imply compactness of W. Note that by [3, Lemma 2.2] the resolvent difference in (2) is compact for all $\lambda \in \rho(-\Delta_{\text{free}}) \cap \rho(-\Delta_{\alpha,\Sigma})$.

Proof of Theorem 1.1 in the general case 3

We will make use of the following fact: Let A and B be self-adjoint operators which are semibounded from below and have the same form domain. Then the inequality

$$\min \sigma_{\rm ess}(A+B) \ge \min \sigma_{\rm ess}(A) + \min \sigma_{\rm ess}(B) \tag{6}$$

holds, where the sum A + B should be understood in the form sense. In fact, this is a consequence of the min-max theorem [9, Theorem XIII.2] since the corresponding sequences for the operators A, B and A+B satisfy the inequality $\lambda_{m+n-1}(A+B) \ge 1$ $\lambda_m(A) + \lambda_n(B)$ and it remains to pass to the limit $m, n \to \infty$.

Obviously the equality $\mathfrak{t}_{\mathcal{A},S}[f,f] = \frac{1}{n} \sum_{k=1}^{n} \mathfrak{t}_{\{n\alpha_k\},\{\Sigma_k\}}[f,f]$ holds for all $f \in H^1(\mathbb{R}^d)$. Employing inequality (6) and Theorem 2.1 we arrive at

$$\min \sigma_{\mathrm{ess}}(-\Delta_{\mathcal{A},\mathcal{S}}) \ge \sum_{k=1}^{n} \min \sigma_{\mathrm{ess}}\left(-\frac{1}{n}\Delta_{\{n\alpha_k\},\{\Sigma_k\}}\right) = 0$$

For the opposite inclusion we follow some ideas in the proof of [6, Proposition 5.1]. Pick a function $\varphi \in C_0^{\infty}([0,2))$ such that $\varphi(r) \ge 0$ and $\int_{\mathbb{R}^d} \varphi(|x|)^2 = 1$. Choose $p \in \mathbb{R}^d$ and $x_n \in \mathbb{R}^d$ such that the balls $B_{2n}(x_n)$ with the centers x_n and the radii 2n are mutually disjoint and do not intersect any hypersurface from the family S. Then

$$\psi_{n,p}(x) := \frac{1}{n^{d/2}} \varphi\left(\frac{1}{n} |x - x_n|\right) e^{ipx}$$

with $n \in \mathbb{N}$ is a singular sequence for the operator $-\Delta_{\mathcal{A},S}$ corresponding to $|p|^2$. In fact, the sequence $\{\psi_{n,p}\}_n$ is a singular sequence for $|p|^2$ corresponding to the free Laplacian $-\Delta_{\text{free}}$, but, since the supports of the functions $\psi_{n,p}$ do not intersect the support of the δ -interaction, this sequence is also a singular sequence for $-\Delta_{\mathcal{A},\mathcal{S}}$ corresponding to the same value $|p|^2$. Hence, we get $\sigma_{ess}(-\Delta_{\mathcal{A},S}) = [0, +\infty).$

Acknowledgements. The authors gratefully acknowledge financial support by the Austrian Science Fund (FWF): project P 25162-N26, Czech Science Foundation (GAČR): project P203/11/0701, and by the Austria-Czech Republic cooperation grant CZ01/2013.

References

r

- [1] J. Behrndt, P. Exner and V. Lotoreichik, arxiv.1307.0074
- J. Behrndt, M. Langer and V. Lotoreichik, Ann. Henri Poincaré 14 (2013), 385-423.
- [3] J. Behrndt, M. Langer and V. Lotoreichik, Integral Equations Operator Theory 77 (2013), 1–37.
- [4] J. F. Brasche, P. Exner, Yu. A. Kuperin and P. Šeba, J. Math. Anal. Appl. 184 (1994), 112–139.
 [5] J. F. Brasche and A. Teta, in "Ideas and Methods in Quantum and Statistical Physics", Cambridge University Press, (1992), 197–211.
 [6] P. Exner and T. Ichinose, J. Phys. A 34 (2001), 1439–450.
- F. Gesztesy and M. Mitrea, J. Anal. Math. 113 (2011), 53–172. [7]
- W. McLean, Strongly elliptic systems and boundary integral equations (Cambridge University Press, Cambridge, 2000). [8]
- [9] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators (Academic Press, New York-London, 1978).