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Evanescent modes in a multiple scattering
factorization
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We discuss differences between the exact S–matrix for scat-
tering on serial structures and a known factorized expres-
sion constructed of single–element S–matrices. As an illus-
tration, we use an exactly solvable model of a quantum wire
with two point impurities.
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The core of the scattering–operator concept is that it relates asymp-
totic states far away from the region where the interaction affects the
motion substantially. It happens often, however, that the interaction
is localized to a certain domain Ω ; since solutions to the free equation
are usually known, we may rephrase then the scattering problem as a
map between the solutions at the boundary of Ω which can be con-
tinued (in some direction) into the corresponding asymptotic states. If
we want to keep a terminological distinction, it is more appropriate to
speak about the prescattering operator in this case.

Such a “finite–distance” scattering is particularly useful in situa-
tions when the interaction support is a union of a finite number of
domains Ωj ; it can help to solve the full problem by means of scatter-
ing on the “components”. This subject has become actual in connec-
tion with recent studies of quantum–wire superlattices [1–13] in which
a number of elements, usually of the same type, is arranged into a
serial structure. The physically relevant quantity is the conductivity
which is related directly to the electron scattering in the superlattice
by Landauer’s formula.

There are several ways how to derive the S–matrix components of
the serial structure, i.e., transmission and reflection amplitudes from
analogous quantities of a single element. The above sketched obser-
vation applies directly if the number of linearly independent solutions
entering and leaving each component scatterer is finite. This is the
case, e.g., when the system in question is a graph [3, 4]; it may not be
easy to find the solution interconnecting the scatterers if an external
field is applied, but the algebraic part of the problem is well established
[14, 15].

However, quantum mechanics lures always around ready to show
who is the master of our physical world. In general, diferent compo-
nents of the wave function, say, different transverse modes in a quantum
wire, do not cease to be correlated even out of the support of the in-
teraction. Here the difference between the scattering and prescattering
operator shows, because the sets of states the latter maps onto each
other are larger; in addition to true asymptotic states which live eter-
nally they contain also such that die out when the distance from the
interaction region increases.
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Figure 1: A pair of scatteres in the strip.

It would be certainly worth to formulate properly relations between
this approach, which is inherently time–independent, and the rigorous
scattering theory [16, 17]. Our aim here, however, is more practical and
connected with the mentioned studies of quantum–wire superlattices.
With few exceptions their authors include the evanescent states into the
iterative procedures of computing the S–matrix, so the result suffers
no theoretical defect. The weak point of all numerical calculations
stems from the necessity to restrict the used family of states to a finite
number; the stability aspect is usually handled by a vague observation
that the involved series converge fast enough. In this letter we want
to discuss this problem in more detail; we are going to derive explicit
error estimates in a solvable model in which the individual scatterers
are point impurities in a straight strip.

1 S–matrix factorization

Elements of a one–dimensional superlattice are linearly arranged and
most authors use various transfer–matrix modifications connecting so-
lutions to the left and right of a given scatterer [1,2,5,9–11]; some admit
numerical problems due to a fast growth of higher evanescent modes.
It has been argued recently [12] that the approach, which we called
pre–S–matrix, offers a more stable scheme relating instead the ingoing
and outgoing waves.

Consider therefore a pair of scatterers S1, S2 as sketched on Fig-
ure 1, where A+ is the family of solutions entering S1 from the left
etc.; in particular, if the corresponding external motion is free, A+ is
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Figure 2: A pair of point scatteres in the strip.

a column vector
(

a
(+)
ℓ eikℓx

)

with kℓ being the channel momenta. The
pre–S–matrices can be written in terms of the reflection and transmis-
sion parts,
(

B−
B+

)

=

(

R1 T̃1
T1 R̃1

)(

A+

A−

)

,

(

D−
D+

)

=

(

R2 T̃2
T2 R̃2

)(

C+

C−

)

,

(1)
where the tilded quantities corresponding to the passage from the right
to the left are obtained from Rj , Tj by mirror transformation. The
above form is convenient because the numbers of involved modes at the
two sides of Sj may be different. Let us stress that the pre–S–matrices
in this setting need not be unitary. The evanescent modes — if included
— do not contribute to the probability current, and the propagating
ones enter with different velocities: if the corresponding part of Sj

should be unitary, we have to multiply the (n,m)–th amplitudes by
(km/kn)

1/2.
Our aim is to express B−, D+ from given A+, C− . The relations

(1) yield a set of four operator equation which can be solved if we
identify the left and right traveling solutions between the scatterers,
D− = A− and C+ = B+ . Using the identity

I +X(I−Y X)−1Y = (I−XY )−1

which is valid whenever the inverses make sense, we find by a straight-
forward algebra that the combined pre–S–matrix is

S12 =







R1+T̃1(I−R2R̃1)
−1R2T1 T̃1(I−R2R̃1)

−1T̃2

T2(I−R̃1R2)
−1T1 R̃2+T2(I−R̃1R2)

−1R̃1T̃2





 . (2)
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The blocks of this operator acquire an illustrative meaning if we expand
the inverses into geometric series [6]. Sometimes S2 is obtained by
shifting and/or mirroring another scatterer, then one has to find the
operator which represents this transformation. This is equivalent to
finding the general solution in the intermediate region between S1 and
S2 which may not be easy if the motion is not free there [15].

The operator (2) describes the combined scatterer exactly if the
space into which S1 and S−1

2 map is large enough to accomodate all
generalized eigenvectors of the corresponding Schrödinger equation. A
truncation induces an error which in general is not easy to estimate;
we shall do that below in an explicitly solvable model.

2 Point–interaction scattering in a strip

The model describes a nonrelativistic particle confined to straight strip
of a width d with the hard–wall boundary subject to point perturba-
tions simulating natural or artificial impurities. Such a system has nu-
merous interesting features which will be described in detail elsewhere
[18]; here we restrict ourselves to a basic information.

For simplicity we set d := π and h̄2/2m = 1 , so that in the ab-
sence of the impurities the motion is governed by the Hamiltonian
H0 := −∆ ; the wavefunction is supposed to satisfy the Dirichlet
boundary conditions ψ(x, 0) = ψ(x, π) = 0 for any x . Point in-
teractions situated at ~aj = (aj, bj) , j = 1, . . . , J can be introduced in
the standard way [19, Sec.I.5]: they are determined by the boundary
conditions

L1(ψ,~aj) + 2παjL0(ψ,~aj) = 0 , j = 1, . . . , J ,

relating the generalized boundary values

L0(ψ,~a) := lim
|~x−~a|→0

ψ(~x)

ln |~x−~a| , L1(ψ,~a) := lim
|~x−~a|→0

[

ψ(~x)−L0(ψ,~a) ln |~x−~a|
]

,

where αj are the (rescaled) coupling constants; the free Hamiltonian
corresponds to αj = ∞ , j = 1, . . . , J .
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Solvability of the model stems from the fact that one can compute
the corresponding resolvent kernel by means of the Krein’s formula; all
spectral information is contained then in the J×J matrix Λ(z) given
by

Λ(z) = δjm
(

αj − ξ(~aj; z)
)

− (1−δjm)G0(~aj,~am; z) (3)

where G0(~x1, ~x2; z) :=
i
π

∑∞
n=1

eikn(z)|x1−x2|

kn(z)
sin(ny1) sin(ny2) is the free

Green’s function, kn(z) :=
√
z−n2 , and

ξ(~a; z) := lim
|~x−~a|→0

(

G0(~a, ~x; z)−
1

2π
ln |~x−~a|

)

=
i

π

∞
∑

n=1

(

sin2(nb)

kn(z)
− 1

2in

)

.

(4)
We suppose everywhere that the energy stays away of the thresholds,√
z 6= 1, 2, . . . . The knowledge of the resolvent allows us, in particu-

lar, to solve the scattering problem. The reflection and transmission
amplitudes are expressed through the inverse of Λ(z) as

rnm(z) =
i

π

J
∑

j,k=1

Λ(z)−1
jk

sin(mbj) sin(nbk)

km(z)
ei(kmaj+knak) ,

(5)

tnm(z) = δnm +
i

π

J
∑

j,k=1

Λ(z)−1
jk

sin(mbj) sin(nbk)

km(z)
e−i(kmaj−knak) .

The mirrored quantities are obtained by changing each perturbation
longitudinal coordinate aj to −aj ; together they satisfy the unitarity
condition

[
√
z]

∑

m=1

km(tnmtsm+rnmrsm) = δnskn ,
[
√
z]

∑

m=1

km
(

t̃nmrsm + r̃nmtsm
)

= 0 ,

where the summation runs over the open channels, [·] being the integer
part.

3 Comparison of the S–matrices

From now on we shall consider a pair of point interactions, J = 2 ,
with a1 = 0 and a2 = a . For the sake of brevity we denote γj :=
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αj−ξ(~aj ; z) and G := G0(~a1,~a2; z) , so the matrix Λ(z) may be written

as
(

γ1 −G
−G γ2

)

. For further purposes we introduce also the truncated

resolvent

Gt ≡ Gt
0(~a1,~a2; z) :=

i

π

M
∑

n=1

sin(nb1) sin(nb2)

kn(z)
eikna ; (6)

among the M modes involved, N := [
√
z ] are propagating while

the rest corresponds to evanescent channels. The one–perturbation
reflection and transmission are

r(j)nm =
i

π

sin(nbj) sin(mbj)

kmγj
ei(kn+km)aj , t(j)nm = δnm+

i

π

sin(nbj) sin(mbj)

kmγj
ei(kn−km)aj

(7)
for j = 1, 2 . Suppose that we employ an M component Ansatz for
wavefunctions in the intermediate region, 0 < x < a . Using the
definition (6), we find

(

1− r̃(1)r(2)
)

nm
= δnm − i

π
Gt sin(nb1) sin(mb2)

kmγ1γ2
eikma .

This M ×M matrix is explicitly invertible,

(

1− r̃(1)r(2)
)−1

nm
= δnm +

i

π

Gt

γ1γ2−(Gt)2
sin(nb1) sin(mb2)

km
eikma . (8)

The relations (7) and (8) allow us to express the composed transmis-
sion amplitude as the lower left element of the matrix (2); after a
straightforward computation using the definition (6), we arrive at the
formula

t(12)nm = δnm +
i

π

k−1
m

γ1γ2−(Gt)2

{

γ2 sin(nb1) sin(mb1) +Gt sin(nb2) sin(mb1) e
ikna

(9)

+Gt sin(nb1) sin(mb2) e
−ikma + γ1 sin(nb2) sin(mb2) e

i(kn−km)a
}

,

which differs from the exact expression (5) just by replacing the “off–
diagonal” coefficients G by the truncated one Gt . A similar conclusion

7



can be made for the other amplitudes in (2). Let us estimate the error
due to neglecting the remainder term

Gr :=
1

π

∞
∑

n=M+1

sin(nb1) sin(nb2)√
n2− z

e−a
√
n2−z . (10)

Denote

γ̃ := max{ γ1, γ2} , D :=
√

(M+1)2− (N+1)2 ,

where the maximum in the first expression is taken over the interval of
energies we are interested in. Since N = [

√
z ] , we have

(ℓ+M+1)2− z ≥ (ℓ+M+1)2− (N+1)2 ≥ (ℓ+D)2 ,

and the relative error of the “diagonal” terms in (9), i.e., the first and
the last one, can be estimated by

|∆d| <∼
2

π

∣

∣

∣

∣

∣

Gγ̃

γ1γ2−(Gt)2

∣

∣

∣

∣

∣

∞
∑

n=M+1

e−a
√
n2−z

√
n2− z

≤ 2

πD

∣

∣

∣

∣

∣

Gγ̃

γ1γ2−(Gt)2

∣

∣

∣

∣

∣

e−aD

1−e−aD ;

for the off-diagonal ones we have

|∆off | <∼
1

πD

∣

∣

∣

∣

∣

γ1γ2+G
2

γ1γ2−(Gt)2

∣

∣

∣

∣

∣

e−aD

1−e−aD .

This error bounds show where deviations from the exact expression
are most likely. An obvious requirement is that the evanescent states
must be given opportunity to decay; as long as the moduli are of order
of one, it is the exponential term which governs the estimates. To get

a K digit precision, one roughly needs (M+1)2− (N+1)2 >∼
(

K
2a

)2
.

In general, the problem becomes therefore non–trivial when we glue
scatterers without intermediate regions; then one has to check that the
evanescent states do indeed decay within each Sj when we move from
its centre to the boundaries.

The second source of error are the denominators. The two–impurity
system has no embedded eigenvalues (apart from the trivial ones due to
symmetry), so the exact γ1γ2−G2 is never zero in the cases of interest
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[18]. On the other hand, it has resonances unless the impurity sits at a
node of a transverse eigenfunction; they are narrow in the case of a weak
coupling, i.e., for αj large positive. The truncated expression may
blow up around the resonance energies, and even if it is not the case, it
may produce shifted resonances. This is important, because resonance
structures such as conductivity modulations around thresholds are a
primary object of interest in quantum–wire serial scatterers.

To illustrate the differences due to the cut–off factorization, let us
compute the conductivity of the quantum wire with a pair of impurities,

g(z) =
2e2

h

[
√
z ]

∑

n,m=1

km
kn

|tnm(z;M)|2 , (11)

where tnm(z;M) is given by (9) with the resolvent (6) which includes
M−N evanescent states; the limit M → ∞ gives the exact answer.
Let us remark that the one–point problem contains also a sum over
all modes in the function (4) but this can be controlled [18]. We see
that even if the approximations with low number of evanescent modes
i.e.M <∼ 5 differ considerably only in the vicinity of the thresholds,
there are regions like those close to a resonance (cf. the inset), where
the convergence slows rapidly down. For instance, in order to get the
correct position of the peak, higher evanescent modes, up to M = 15
in this particular case, must be taken into account.
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Figure caption:

Figure 1: A pair of scatteres.

Figure 2: A pair of point scatteres in the strip.

Figure 3: Conductivity plots for factorized vs. exact scattering matri-
ces. The positions of scatterers are ~a1 = (0, π/3), ~a2 = (0.05, 2π/3)
and the coupling constants are chosen α1 = α2 = 0.2. The full line
represents the exact result, dotted, dash-dotted and dashed lines the
approximations with M = 1, M = 2 and M = 4, respectively. In
the inset, however, they represent the approximations with M = 5,
M = 10 and M = 15, respectively.
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