Integr. Equ. Oper. Theory 81 (2015), 535–557 DOI 10.1007/s00020-014-2194-1 Published online November 16, 2014 © Springer Basel 2014

Integral Equations and Operator Theory

Spectrum of a Dilated Honeycomb Network

Pavel Exner and Ondřej Turek

Abstract. We analyze spectrum of Laplacian supported by a periodic honeycomb lattice with generally unequal edge lengths and a δ type coupling in the vertices. Such a quantum graph has nonempty point spectrum with compactly supported eigenfunctions provided all the edge lengths are commensurate. We derive conditions determining the continuous spectral component and show that existence of gaps may depend on number-theoretic properties of edge lengths ratios. The case when two of the three lengths coincide is discussed in detail.

Mathematics Subject Classification. Primary 81Q35; Secondary 34B45, 34K13, 35B10.

Keywords. Quantum graphs, Hexagon lattice, Laplace operator, Vertex δ -coupling, Spectrum.

1. Introduction

Quantum graphs, more exactly differential operators on metric graphs describing quantum motion confined to networks, attracted a lot of attention recently as a fruitful combination of spectral theory, geometry, combinatorics, and other disciplines. The number of results in this area is large and permanently increasing; we refer to the monograph [2] for an up-to-date survey.

A class of particular interest are quantum graphs having a periodic structure. On one hand they are interesting mathematically, in particular, because the corresponding operators may exhibit properties different from standard periodic Schrödinger operators, for instance they may have compactly supported eigenfunctions. On the other hand, they provide a physical model of various systems having crystalline structure which become popular especially recently in connection with the discovery of graphene and related material objects such as carbon nanotubes [7].

Physical models of various lattice structures usually involve symmetries as arrangements which the nature favours. This may be true in the ideal situation but it can change under influence of external forces, for instance, mechanical strains. At the same time, we know from the simple model of a

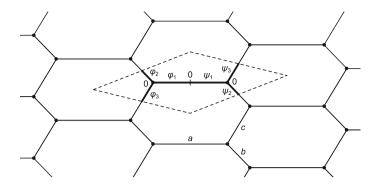


FIGURE 1. A dilated honeycomb network and the elementary cell

rectangular quantum-graph lattice [3,4] that the graph geometry may give rise to interesting number-theoretic effects in the spectrum. This motivates us to inspect how edge length variations can affect the spectrum of the lattice appearing most frequently in the applications, the hexagonal one.

Let us thus consider an infinite honeycomb graph Γ dilated independently in all the three directions, as depicted in Fig. 1 below. That is, each hexagon consists of two antipodal edges of length a, two antipodal edges of length b and two antipodal edges of length c. The operator to investigate is the corresponding quantum-graph Hamiltonian, that is, a Laplacian on the Hilbert space $\mathcal{H} = L^2(\Gamma)$ consisting of sequences $\psi = \{\psi_j\}$ the elements of which refer to edges of Γ . The operator acts as $H\psi = \{-\psi_j''\}$ on functions from $H^1(\Gamma) \cap H^2(\Gamma \setminus \mathcal{V})$, where \mathcal{V} is the set of graph vertices. In order to make it self-adjoint we have to specify its domain, for instance, by indicating boundary conditions. We choose the so-called δ -coupling [3] requiring

$$\psi_1(0+) = \psi_2(0+) = \psi_3(0+) =: \psi(0), \quad \sum_{i=1}^3 \psi_i'(0+) = \alpha \psi(0),$$
 (1)

where i=1,2,3 number three edges meeting in a vertex, which are parametrized by their arc length with zero at the junction. We suppose that the coupling is the same at each vertex, hence the operators exhibit translational symmetry corresponding to the geometry of the hexagonal lattice. It would be thus natural to label the operator by the parameter appearing in (1) writing it, for instance, as H_{α} for a fixed $\alpha \in \mathbb{R}$, however, since there will be no danger of misunderstanding, we shall drop the index.

An alternative way is to characterize the operator H by means of the associated quadratic form which is given by

$$q[\psi] = \int_{\Gamma} |\psi'(s)|^2 ds + \alpha \sum_{i} |\psi_i|^2$$
 (2)

with the domain consisting of all functions from $H^1(\Gamma)$, where the first term is a shorthand for the sum over all the edges and in the second term we sum over all the vertices and ψ_i is the function value at the *i*-th vertex. It is

obvious from (2) that $H \ge 0$ holds for $\alpha \ge 0$, and it is not difficult to check that for $\alpha < 0$ we have $\inf \sigma(H) < 0$.

Our goal in this paper is to analyze the spectrum of H. Since the system is periodic, it has a band structure but in general it can have a nonempty point component. This is now a textbook fact [2], discussed previously [7] but known in fact much earlier [5]. We are going to show, in particular, that the point spectrum is present *iff* all the lattice edges are commensurate allowing thus for "single loop eigenstates". The role of rationality is not surprising, of course, being discussed before in various contexts, both for compact [9,11] and noncompact graphs [7]. In the present model, the conclusion can be made in a simple way using the secular equation.

Next we derive the condition determining the spectrum, in particular, its open gaps. The gap structure attracted attention recently, in particular, in a nice paper [1] the authors demonstrated using an ergodic argument that the gap measure in the spectrum is independent of the edge lengths as long as the edges remain incommensurate. This was done, however, under the assumption that the vertex coupling was Kirchhoff, i.e. $\alpha=0$. One of the aims of the present paper is to show that replacing Kirchhoff by another coupling, even as simple as the δ -type one, can make the spectral picture substantially more involved. Indeed, while the hexagonal lattice with $\alpha=0$ has no gaps as we shall see in Sects. 3.3 and 3.4 below, for a nonzero α the graph may have an infinite number of open gaps, and their presence or absence depends on number-theoretic properties of edge length ratios. The gap density may be independent of α , however, as we shall mention in the last section.

The method we use is straightforward and relies on treating the appropriate secular equation. After the general discussion, we focus in Sect. 4 on the particular case when two of the three edge lengths are identical and analyze the gap structure in detail. The analysis is inevitably somewhat lengthy and a short summary of the results is given in Sect. 4.3. We conclude the paper by mentioning a couple of questions about the model which remain open.

2. Point Spectrum

In contrast to the usual Schrödinger operator theory, quantum graph Hamiltonians may violate the unique continuation principle – see, e.g., [6]. It happens also in our present model; a sufficient condition for that is a commensurability of the lattice edges lengths.

Proposition 2.1. If $\frac{b}{a} \in \mathbb{Q}$ and $\frac{c}{a} \in \mathbb{Q}$, then $\sigma_{p}(H) \neq \emptyset$.

Proof. Under the assumption, there is an infinite number of values k such that ka, kb, and kc are integer multiples of 2π . Then a sinusoidal function on a perimeter of a hexagon cell with zeros at the vertices gives rise to an eigenfunction of H since it solves the equation $-\phi'' = k^2\phi$ and satisfies the boundary conditions (1).

It is also obvious that such a point spectrum is of infinite multiplicity. On the other hand, the commensurability is also a necessary condition.

Proposition 2.2. If $\sigma_{\mathbf{p}}(H) \neq \emptyset$, then $\frac{b}{a} \in \mathbb{Q}$ and $\frac{c}{a} \in \mathbb{Q}$.

We postpone the proof of this claim to the next section.

Remark 2.3. While in the present simple model it is possible to state the result in the above elegant form, one has to recall that necessary conditions for existence of a discrete spectrum has been considered before and in a greater generality. A result to mention here is Theorem 4.5.4 of [2] which states that existence of an eigenvalue of a \mathbb{Z}^n -periodic quantum graph, different from the "Dirichlet points", means existence of compactly supported eigenfunctions which span the corresponding eigenspace. Proposition 2.2 indicates that one needs not in general to exclude the "Dirichlet points" from the consideration in the said theorem: if some of them belong to the spectrum, they have to correspond to compactly supported eigenfunctions. Of course, in more complicated graphs than the one considered here the existence of such eigenvalues does not in general imply the full edge commensurability, it sufficient to have enough rational relations to allow for "loop eigenfunctions", while other edges may remain incommensurate. Note also that compactly supported eigenfunctions appear also in different graph contexts, cf. e.g. a discussion of percolation models in [12].

3. Continuous Spectrum

3.1. Determining the Spectrum

Since we are dealing with a periodic graph, a natural tool to employ is the Floquet–Bloch decomposition [2, Chap. 4]. The elementary cell of Γ is shown in Fig. 1, together with the symbols we use to denote the wave function components on the edges.

We are interested in generalized eigenfunctions of the graph Laplacian at an energy E. If E>0, we put conventionally $E=k^2$ with k>0 and assume that $\sin(\ell k)\neq 0$ holds for at least one $\ell\in\{a,b,c\}$; without loss of generality we may suppose that $\sin(ak)\neq 0$. Since the Hamiltonian acts as a negative second derivative, the wavefunction on each edge has to be a linear combination of the exponentials e^{ikx} and e^{-ikx} , specifically we can write

$$\psi_1(x) = C_1^+ e^{ikx} + C_1^- e^{-ikx}, \quad x \in [0, a/2]$$
 (3a)

$$\psi_2(x) = C_2^+ e^{ikx} + C_2^- e^{-ikx}, \quad x \in [0, b/2]$$
 (3b)

$$\psi_3(x) = C_3^+ e^{ikx} + C_3^- e^{-ikx}, \quad x \in [0, c/2]$$
 (3c)

$$\varphi_1(x) = D_1^+ e^{ikx} + D_1^- e^{-ikx}, \quad x \in [-a/2, 0]$$
 (3d)

$$\varphi_2(x) = D_2^+ e^{ikx} + D_2^- e^{-ikx}, \quad x \in [-b/2, 0]$$
 (3e)

$$\varphi_3(x) = D_3^+ e^{iikx} + D_3^- e^{-ikx}, \quad x \in [-c/2, 0]$$
 (3f)

Obviously, $\psi_1(0) = \varphi_1(0)$ and $\psi'_1(0) = \varphi'_1(0)$, hence

$$C_1^+ = D_1^+, \quad C_1^- = D_1^-.$$
 (4)

The wave functions have to satisfy the following six boundary conditions corresponding to the δ -couplings in the vertices (1), namely

$$\psi_2(0) = \psi_3(0) = \psi_1(a/2) \tag{5a}$$

$$\psi_2'(0) + \psi_3'(0) - \psi_1'(a/2) = \alpha \psi_1(0)$$
(5b)

$$\varphi_2(0) = \varphi_3(0) = \varphi_1(-a/2) \tag{5c}$$

$$-\varphi_2'(0) - \varphi_3'(0) + \varphi_1'(-a/2) = \alpha \varphi_1(0)$$
 (5d)

where $\alpha \in \mathbb{R}$ is the coupling parameter. On the other hand, the Floquet-Bloch decomposition requires to impose the following conditions,

$$\psi_2(b/2) = e^{i\theta_1} \varphi_2(-b/2), \quad \psi_3(c/2) = e^{i\theta_2} \varphi_3(-c/2),
\psi_2'(b/2) = e^{i\theta_1} \varphi_2'(-b/2), \quad \psi_3'(c/2) = e^{i\theta_2} \varphi_3'(-c/2)$$
(6)

for some $\theta_1, \theta_2 \in (-\pi, \pi]$.

Substituting (3b)–(3f) into (6) enables one to express variables D_2^{\pm} and D_3^{\pm} in terms of C_2^{\pm} and C_3^{\pm} : we obtain

$$D_{2}^{+} = C_{2}^{+} \cdot e^{i(bk-\theta_{1})}, \qquad D_{3}^{+} = C_{3}^{+} \cdot e^{i(ck-\theta_{2})}, D_{2}^{-} = C_{2}^{-} \cdot e^{i(-bk-\theta_{1})}, \qquad D_{3}^{-} = C_{3}^{-} \cdot e^{i(-ck-\theta_{2})}.$$

$$(7)$$

The continuity at the vertices – cf. conditions (5a), (5c) – together with (4) allow us to eliminate coefficients C_1^{\pm} and D_1^{\pm} . In this way we obtain a system of four linear equations containing $C_2^+, C_2^-, C_3^+, C_3^-$ as the unknown quantities and a, b, c, k, α as parameters, namely

$$M \begin{pmatrix} C_2^+ \\ C_2^- \\ C_3^+ \\ C_3^- \end{pmatrix} = 0, \tag{8}$$

where the matrix M is given as

$$M = \begin{pmatrix} 1 & 1 & -1 & -1 \\ e^{i(bk-\theta_1)} & e^{i(-bk-\theta_1)} & -e^{i(ck-\theta_2)} & -e^{i(-ck-\theta_2)} \\ m_{31} & m_{32} & i & -i \\ m_{41} & m_{42} & -ie^{i(ck-\theta_2)} & ie^{i(-ck-\theta_2)} \end{pmatrix}$$

with

$$m_{3j} := \frac{-e^{-i\sigma_j ak} + e^{i(\sigma_j bk - \theta_1)}}{\sin ak} - \frac{\alpha}{k}$$

and

$$m_{4j} := \frac{-\mathrm{e}^{\mathrm{i}(\sigma_{\mathrm{j}}\mathrm{ak} + \sigma_{\mathrm{j}}\mathrm{bk} - \theta_{1})} + 1}{\sin ak} - \frac{\alpha}{k}\mathrm{e}^{\mathrm{i}(\sigma_{\mathrm{j}}\mathrm{bk} - \theta_{1})}$$

for j=1,2, where $\sigma_j:=(-1)^{j-1}$. A nontrivial solution of the form (3) exists iff $(C_2^+,C_2^-,C_3^+,C_3^-)$ is a nonzero vector. Therefore, k^2 belongs to the spectrum of H if (8) has a non-trivial solution for certain pair (θ_1,θ_2) , in other words, if there exist $\theta_1,\theta_2 \in (-\pi,\pi]$ such that $\det(M)=0$. A straightforward calculation leads to

$$\det(M) = -4 \left[2\sin ak \cos bk \cos ck + 2\cos ak \sin bk \cos ck + 2\cos ak \cos bk \sin ck - 3\sin ak \sin bk \sin ck - 2\sin ak \cos (\theta_1 - \theta_2) - 2\sin ck \cos \theta_1 - 2\sin bk \cos \theta_2 + 2\frac{\alpha}{k} (\cos ak \sin bk \sin ck + \sin ak \cos bk \sin ck + \sin ak \sin bk \cos ck) + \frac{\alpha^2}{k^2} \sin ak \sin bk \sin ck \right] \frac{e^{-i(\theta_1 + \theta_2)}}{\sin ak}.$$

$$(9)$$

The spectral condition can be put into a more convenient form if we exclude all the "Dirichlet points", i.e. if we consider k such that $\sin(\ell k) \neq 0$ holds for all $\ell \in \{a,b,c\}$. After a simple manipulation, we then obtain

$$\begin{split} \det(M) &= -4 \left[2 (\cot g \, ak \cot g \, bk + \cot g \, ak \cot g \, ck + \cot g \, bk \cot g \, ck) \right. \\ &+ \cot g^2 \, ak + \cot g^2 \, bk + \cot g^2 \, ck - \frac{1}{\sin^2 ak} - \frac{1}{\sin^2 bk} - \frac{1}{\sin^2 ck} \\ &- 2 \left(\frac{\cos \theta_1}{\sin ak \sin bk} + \frac{\cos \theta_2}{\sin ak \sin ck} + \frac{\cos (\theta_1 - \theta_2)}{\sin bk \sin ck} \right) \\ &+ 2 \frac{\alpha}{k} (\cot g \, ak + \cot g \, bk + \cot g \, ck) + \frac{\alpha^2}{k^2} \left[\frac{\sin bk \sin ck}{\mathrm{e}^{\mathrm{i}(\theta_1 + \theta_2)}}, \right. \end{split}$$

hence

$$\begin{split} \det(M) &= -4 \left[\left(\cot g \, ak + \cot g \, bk + \cot g \, ck + \frac{\alpha}{k} \right)^2 \right. \\ &\left. - \frac{1}{\sin^2 ak} - \frac{1}{\sin^2 bk} - \frac{1}{\sin^2 ck} \right. \\ &\left. - 2 \left(\frac{\cos \theta_1}{\sin ak \sin bk} + \frac{\cos \theta_2}{\sin ak \sin ck} + \frac{\cos(\theta_1 - \theta_2)}{\sin bk \sin ck} \right) \right] \frac{\sin bk \sin ck}{\mathrm{e}^{\mathrm{i}(\theta_1 + \theta_2)}}. \end{split}$$

We can conclude that $k^2 \in \sigma(H)$ holds if there are $\theta_1, \theta_2 \in (-\pi, \pi]$ such that

$$\left(\cot ak + \cot bk + \cot ck + \frac{\alpha}{k}\right)^2 = \frac{1}{\sin^2 ak} + \frac{1}{\sin^2 bk} + \frac{1}{\sin^2 ck} + 2\left(\frac{\cos \theta_1}{\sin ak \sin bk} + \frac{\cos \theta_2}{\sin ak \sin ck} + \frac{\cos(\theta_1 - \theta_2)}{\sin bk \sin ck}\right). \tag{10}$$

The obtained spectral condition allows us to determine the positive part of the spectrum. This is sufficient if $\alpha \geq 0$, in the opposite case we have to take also negative energies into account. This can be done in a similar way, replacing the positive k in the above considerations by $k = i\kappa$ with $\kappa > 0$. In particular, the condition (10) is then replaced by

$$\left(\coth a\kappa + \coth b\kappa + \coth c\kappa + \frac{\alpha}{\kappa}\right)^2 = \frac{1}{\sinh^2 a\kappa} + \frac{1}{\sinh^2 b\kappa} + \frac{1}{\sinh^2 c\kappa} + 2\left(\frac{\cos \theta_1}{\sinh a\kappa \sinh b\kappa} + \frac{\cos \theta_2}{\sinh a\kappa \sinh c\kappa} + \frac{\cos(\theta_1 - \theta_2)}{\sinh b\kappa \sin c\kappa}\right); \quad (11)$$

in distinction to the previous case there is no need to exclude any values of the spectral parameter κ .

One important conclusion of these considerations is that the spectrum of H is absolutely continuous away of the "Dirichlet points". This is a consequence of the following claim.

Proposition 3.1. The solution of the equation det(M) = 0 regarded as a function of (θ_1, θ_2) is non-constant on any open subset of $(-\pi, \pi]^2$.

Proof. Let us denote $F(\theta_1,\theta_2,k) = -\frac{\mathrm{e}^{\mathrm{i}(\theta_1+\theta_2)}}{4}\det(M)$ and consider first the positive-energy solutions, i.e., values k>0 satisfying the condition $\sin ak \neq 0$. Obviously, a number k solves $\det(M)=0$ for a pair $(\theta_1,\theta_2)\in(-\pi,\pi]^2$ if and only if $F(\theta_1,\theta_2,k)=0$. We use a reductio ad absurdum argument. Suppose that the function $k=k(\theta_1,\theta_2)$ is constant on an open subset $J\subset(-\pi,\pi]^2$, i.e., let $F(\theta_1,\theta_2,k_0)=0$ hold for a $k_0>0$ and for every $(\theta_1,\theta_2)\in J$. Hence in view of (9) and the definition of F we have

$$\sin ak_0 \cos(\theta_1 - \theta_2) + \sin ck_0 \cos \theta_1 + \sin bk_0 \cos \theta_2 = \text{const} \quad \text{on } J.$$

The trigonometric polynomial $A\cos(\theta_1 - \theta_2) + C\cos\theta_1 + B\cos\theta_2$ regarded as a function of two variables (θ_1, θ_2) can be obviously constant on a non-empty open subset of $(-\pi, \pi]^2$ if and only if A = B = C = 0 which in our case would mean $\sin ak_0 = \sin bk_0 = \sin ck_0 = 0$, however, this is excluded by the assumption.

In case of negative energies $-\kappa^2$ with $\kappa > 0$ we have instead a condition

$$\sinh a\kappa_0 \cos(\theta_1 - \theta_2) + \sinh c\kappa_0 \cos \theta_1 + \sinh b\kappa_0 \cos \theta_2 = \text{const}$$
 on J , which can never be satisfied for $\kappa > 0$.

At the same time, the above argument allows us to prove Proposition 2.2. Indeed, in view of the periodicity the point spectrum has necessarily an infinite multiplicity, corresponding to a "flat band", i.e. a solution to the spectral condition independent of (θ_1, θ_2) . We have seen in Proposition 3.1 that this can happen only if the energy is positive. We can also exclude the case when all the edge lengths are commensurate as we already know that $\frac{b}{a} \in \mathbb{Q}$ and $\frac{c}{a} \in \mathbb{Q}$ implies $\sigma_{\mathbf{p}}(H) \neq \emptyset$. Let $k^2 > 0$ and at least two of the lengths be incommensurate. Then $\sin ak$, $\sin bk$, and $\sin ck$ cannot vanish simultaneously. We choose a nonzero one and if needed renumber the edges in order to satisfy the assumption $\sin ak \neq 0$. Then Proposition 3.1 implies that k cannot correspond to a "flat band".

Corollary 3.2. If $\frac{b}{a} \notin \mathbb{Q}$ or $\frac{c}{a} \notin \mathbb{Q}$, the spectrum of H is purely absolutely continuous.

Proof. By Proposition 2.2 the spectrum is purely continuous. By implicit-function theorem any solution to the conditions (10) is smooth, even analytic, hence singularly continuous spectrum is excluded.

Let us add that if the edge lengths are commensurate, the operator may have infinitely degenerate eigenvalues, however, the implicit-function-theorem argument still works and the spectrum is absolutely continuous away from the "Dirichlet points".

3.2. More About the Spectral Condition for $E=k^2>0$

Consider again the positive part of the spectrum and examine the range of the right-hand side of (10) for $\theta_1, \theta_2 \in (-\pi, \pi]$. The range is obviously an interval. The maximum is found easily; using

$$\frac{\cos \theta_1}{\sin ak \sin bk} \le \frac{1}{|\sin ak \sin bk|}$$

and similar estimates for the other two θ -dependent terms, we get

$$\begin{split} \max_{\theta_1,\theta_2 \in (-\pi,\pi]} \left\{ \frac{1}{\sin^2 ak} + \frac{1}{\sin^2 bk} + \frac{1}{\sin^2 ck} + 2\left(\frac{\cos \theta_1}{\sin ak \sin bk} \right. \right. \\ \left. + \frac{\cos \theta_2}{\sin ak \sin ck} + \frac{\cos(\theta_1 - \theta_2)}{\sin bk \sin ck} \right\} &= \left(\frac{1}{|\sin ak|} + \frac{1}{|\sin bk|} + \frac{1}{|\sin ck|}\right)^2. \end{split}$$

The maximum is obviously attained for θ_1 , θ_2 chosen such that $\cos \theta_1 = \operatorname{sgn}(\sin ak \sin bk)$, $\cos \theta_2 = \operatorname{sgn}(\sin ak \sin ck)$. On the other hand, the minimum of the expression will be found using the following lemma which is not difficult to prove.

Lemma 3.3. Let $f(\theta_1, \theta_2) = A\cos(\theta_1 - \theta_2) + B\cos\theta_2 + C\cos\theta_1$ for $A, B, C \in \mathbb{R}$ such that ABC > 0. It holds

• if
$$\frac{1}{|A|} + \frac{1}{|B|} + \frac{1}{|C|} \ge 2 \max\left\{\frac{1}{|A|}, \frac{1}{|B|}, \frac{1}{|C|}\right\}$$
, then

$$\min_{\theta_1, \theta_2 \in (-\pi, \pi]} f(\theta_1, \theta_2) = -\frac{ABC}{2} \left(\frac{1}{A^2} + \frac{1}{B^2} + \frac{1}{C^2} \right);$$

• $if \frac{1}{|A|} + \frac{1}{|B|} + \frac{1}{|C|} \le 2 \max \left\{ \frac{1}{|A|}, \frac{1}{|B|}, \frac{1}{|C|} \right\}, then$

$$\min_{\theta_1,\theta_2 \in (-\pi,\pi]} f(\theta_1,\theta_2) = -(|A| + |B| + |C|) + 2\min\{|A|,|B|,|C|\}.$$

Let us apply the result on the right-hand side of (10). We need to set $A = (\sin bk \sin ck)^{-1}$, $B = (\sin ak \sin ck)^{-1}$, $C = (\sin ak \sin bk)^{-1}$. Then the condition $\frac{1}{|A|} + \frac{1}{|B|} + \frac{1}{|C|} \ge 2 \max\left\{\frac{1}{|A|}, \frac{1}{|B|}, \frac{1}{|C|}\right\}$ can be shown to be equivalent to $\frac{1}{|\sin ak|} + \frac{1}{|\sin bk|} + \frac{1}{|\sin ck|} \ge 2 \max\left\{\frac{1}{|\sin ak|}, \frac{1}{|\sin bk|}, \frac{1}{|\sin bk|}, \frac{1}{|\sin ck|}\right\}$ (and similarly for the opposite sign). When we substitute the minima of f found in Lemma 3.3 into the right-hand side of (10), we get

$$\bullet \quad \text{zero if } \tfrac{1}{|\sin ak|} + \tfrac{1}{|\sin bk|} + \tfrac{1}{|\sin ck|} \ge 2 \max\left\{ \tfrac{1}{|\sin ak|}, \tfrac{1}{|\sin bk|}, \tfrac{1}{|\sin ck|} \right\};$$

•
$$\left(2\max\left\{\frac{1}{|\sin ak|}, \frac{1}{|\sin bk|}, \frac{1}{|\sin ck|}\right\} - \frac{1}{|\sin ak|} - \frac{1}{|\sin bk|} - \frac{1}{|\sin ck|}\right)^2$$
 otherwise.

The results on the minimum and maximum allow us to estimate the left-hand side of (10) from below and above; taking the square roots we get the condition

$$\max \left\{ 0, 2 \max \left\{ \frac{1}{|\sin ak|}, \frac{1}{|\sin bk|}, \frac{1}{|\sin ck|} \right\} - \left(\frac{1}{|\sin ak|} + \frac{1}{|\sin bk|} + \frac{1}{|\sin ak|} \right) \right\} \le \left| \cot ak + \cot bk + \cot ck + \frac{\alpha}{k} \right|$$
$$\le \frac{1}{|\sin ak|} + \frac{1}{|\sin bk|} + \frac{1}{|\sin ck|}.$$

The first term at the left-hand side is obviously non-negative, hence we arrive at the conclusion which can be stated as two gap conditions:

• Condition GC1: $E = k^2$ belongs to a gap in $\sigma(H)$ if

$$\left|\cot ak + \cot bk + \cot ck + \frac{\alpha}{k}\right| > \frac{1}{|\sin ak|} + \frac{1}{|\sin bk|} + \frac{1}{|\sin ck|}; \quad (12)$$

• Condition GC2: $E = k^2$ belongs to a gap in $\sigma(H)$ if

$$2\max\left\{\frac{1}{|\sin ak|}, \frac{1}{|\sin bk|}, \frac{1}{|\sin ck|}\right\} - \left(\frac{1}{|\sin ak|} + \frac{1}{|\sin bk|} + \frac{1}{|\sin ck|}\right)$$
$$> \left|\cot ak + \cot bk + \cot ck + \frac{\alpha}{k}\right|. \tag{13}$$

We will consider them separately.

3.3. Gap Condition GC1

The gap condition GC1 (12) obviously has no solution for $\alpha = 0$. Therefore, our goal is to explore the case $\alpha \neq 0$.

Observation 3.4. If the gap condition GC1 (12) is satisfied, then

$$\operatorname{sgn}(\operatorname{cotg} ak) = \operatorname{sgn}(\operatorname{cotg} bk) = \operatorname{sgn}(\operatorname{cotg} ck) = \operatorname{sgn}(\alpha) \quad \vee \quad k < |\alpha|.$$

Proof. We employ reductio ad absurdum. Let $k \geq |\alpha|$ and, for instance, $\operatorname{sgn}(\cot g \, ak) = -\operatorname{sgn}(\alpha)$. We have

$$\left|\cot g\,ak + \cot g\,bk + \cot g\,ck + \frac{\alpha}{k}\right| \le |\cot g\,bk| + |\cot g\,ck| + \left|\cot g\,ak + \frac{\alpha}{k}\right|.$$

Since $\cot ak$ and α have opposite signs and $|\cot x| \le \frac{1}{|\sin x|}$ for any admissible $x \in \mathbb{R}$, it holds

$$\left|\cot g\,ak + \frac{\alpha}{k}\right| \leq \max\left\{|\cot g\,ak|, \frac{|\alpha|}{k}\right\} \leq \max\left\{|\cot g\,ak|, 1\right\} \leq \frac{1}{|\sin ak|}.$$

Hence

$$\left|\cot g \, ak + \cot g \, bk + \cot g \, ck + \frac{\alpha}{k}\right| \le \frac{1}{|\sin ak|} + \frac{1}{|\sin bk|} + \frac{1}{|\sin ck|},$$

i.e., the gap condition GC1 (12) is violated.

Let $\|\cdot\|$ be the nearest-integer function on \mathbb{R} , that is, $\|x\|$ is the nearest integer to $x \in \mathbb{R}$. In the following we will need the function the value of which represents the difference between a given number and the nearest integer, i.e. $x \mapsto x - \|x\|$. For the sake of brevity, we introduce the symbol

$$\{x\} := x - \|x\|; \tag{14}$$

it holds obviously $\{x\} \in [-1/2, 1/2]$ for any $x \in \mathbb{R}$.

Corollary 3.5. For $k \ge |\alpha|$, the gap condition (12) is satisfied if and only if $\operatorname{sgn}(\cot g \, ak) = \operatorname{sgn}(\cot g \, bk) = \operatorname{sgn}(\cot g \, ck) = \operatorname{sgn}(\alpha)$ and

$$\left| \operatorname{tg} \left(\left\{ \frac{ak}{\pi} \right\} \frac{\pi}{2} \right) \right| + \left| \operatorname{tg} \left(\left\{ \frac{bk}{\pi} \right\} \frac{\pi}{2} \right) \right| + \left| \operatorname{tg} \left(\left\{ \frac{ck}{\pi} \right\} \frac{\pi}{2} \right) \right| < \frac{|\alpha|}{k},$$

where $\{\cdot\}$ is the function defined by (14).

Proof. Suppose that $k \ge |\alpha|$ and (12) holds. It follows from Observation 3.4 that condition (12) implies $\operatorname{sgn}(\cot g \, ak) = \operatorname{sgn}(\cot g \, bk) = \operatorname{sgn}(\cot g \, ck) = \operatorname{sgn}(\alpha)$. The inequality (12) is thus equivalent to $\operatorname{sgn}(\cot g \, ak) = \operatorname{sgn}(\cot g \, bk) = \operatorname{sgn}(\cot g \, ck) = \operatorname{sgn}(\alpha)$ together with

$$|\cot ak| + |\cot bk| + |\cot ck| + \frac{|\alpha|}{k} > \frac{1}{|\sin ak|} + \frac{1}{|\sin bk|} + \frac{1}{|\sin ck|}.$$
 (15)

For any $x \in \mathbb{R}$, it holds

$$\frac{1}{|\sin x|} - |\cot g x| = \frac{1 - |\cos x|}{|\sin x|} = \begin{cases} \frac{1 - \cos x}{|\sin x|} = \left| \lg \frac{x}{2} \right| & \text{for } \cos x > 0 \\ \frac{1 + \cos x}{|\sin x|} = \left| \cot g \frac{x}{2} \right| & \text{for } \cos x < 0 \end{cases}$$

$$= \min \left\{ \left| \lg \frac{x}{2} \right|, \left| \cot g \frac{x}{2} \right| \right\} = \left| \lg \left(\left\{ \frac{x}{2} \cdot \frac{2}{\pi} \right\} \frac{\pi}{2} \right) \right| = \left| \lg \left(\left\{ \frac{x}{\pi} \right\} \frac{\pi}{2} \right) \right|.$$

Consequently, (15) can be rewritten as

$$\left| \operatorname{tg} \left(\left\{ \frac{ak}{\pi} \right\} \frac{\pi}{2} \right) \right| + \left| \operatorname{tg} \left(\left\{ \frac{bk}{\pi} \right\} \frac{\pi}{2} \right) \right| + \left| \operatorname{tg} \left(\left\{ \frac{ck}{\pi} \right\} \frac{\pi}{2} \right) \right| < \frac{|\alpha|}{k}.$$

To conclude, the last inequality together with the condition $\operatorname{sgn}(\cot g \, ak) = \operatorname{sgn}(\cot g \, bk) = \operatorname{sgn}(\cot g \, ck) = \operatorname{sgn}(\alpha)$ is equivalent to gap condition (12), as we have set up to prove.

Observation 3.6. Local minima of the function

$$F(k) := \left| \operatorname{tg} \left(\left\{ \frac{ak}{\pi} \right\} \frac{\pi}{2} \right) \right| + \left| \operatorname{tg} \left(\left\{ \frac{bk}{\pi} \right\} \frac{\pi}{2} \right) \right| + \left| \operatorname{tg} \left(\left\{ \frac{ck}{\pi} \right\} \frac{\pi}{2} \right) \right|$$

for k > 0 occur at the points $\frac{m\pi}{a}$, $\frac{m\pi}{b}$, $\frac{m\pi}{c}$ with $m \in \mathbb{N}$.

An immediate consequence, in combination with Corollary 3.5, is that the spectrum has open gaps for any $\alpha \neq 0$ when the lattice edges are commensurate. If at least two of them are not commensurate, existence of gaps due the condition GC1 depend on how fast the minima of F(k) decrease as $k \to \infty$; we will discuss it in more detail in the next section.

3.4. Gap Condition GC2

Obviously, condition GC2 can be satisfied only if $\frac{1}{|\sin \ell_1 k|} > \frac{1}{|\sin \ell_2 k|} + \frac{1}{|\sin \ell_3 k|}$ holds for a certain choice $\{\ell_1, \ell_2, \ell_3\} = \{a, b, c\}$. We begin with the following auxiliary result.

Lemma 3.7. If $x_1, x_2, ..., x_N$ are all greater or equal to one and they satisfy $x_1 > x_2 + \cdots + x_N$, then

$$x_1 - \sum_{i=2}^{N} x_i < \sqrt{x_1^2 - 1} - \sum_{i=2}^{N} \sqrt{x_i^2 - 1}.$$

Proof. We prove the statement by induction in N. To begin with, we prove for N=2 and any $x_1>x_2\geq 1$ the implication

$$x_1 > x_2 \quad \Rightarrow \quad x_1 - x_2 < \sqrt{x_1^2 - 1} - \sqrt{x_2^2 - 1}$$

We rewrite this statement as $x_1 - \sqrt{x_1^2 - 1} < x_2 - \sqrt{x_2^2 - 1}$, which is equivalent to

$$\frac{1}{x_1 + \sqrt{x_1^2 - 1}} < \frac{1}{x_2 + \sqrt{x_2^2 - 1}},$$

and this is obviously valid under the assumption $x_1 > x_2$. Next we assume that the claim holds true for an $N \ge 2$, and we want to demonstrate for any $x_1, x_2, \ldots, x_N, x_{N+1} \ge 1$ the implication

$$x_1 > x_2 + \dots + x_{N+1} \quad \Rightarrow \quad x_1 - \sum_{i=2}^{N+1} x_i < \sqrt{x_1^2 - 1} - \sum_{i=2}^{N+1} \sqrt{x_i^2 - 1}.$$

We set $x_N + x_{N+1} = y$. The induction hypothesis applied on the N-tuple x_1, \ldots, x_{N-1}, y implies that $x_1 - x_2 - \cdots - x_{N-1} - (x_N + x_{N+1})$ is less than

$$\sqrt{x_1^2 - 1} - \sum_{i=2}^{N-1} \sqrt{x_i^2 - 1} - \sqrt{(x_N + x_{N+1})^2 - 1};$$

thus it suffices to check for any $x_N, x_{N+1} \ge 1$ the inequality

$$\sqrt{(x_N + x_{N+1})^2 - 1} > \sqrt{x_N^2 - 1} + \sqrt{x_{N+1}^2 - 1},$$

which is a straightforward task.

Corollary 3.8. If $\frac{1}{|\sin \ell_1 k|} > \frac{1}{|\sin \ell_2 k|} + \frac{1}{|\sin \ell_3 k|}$ and $\alpha \cot \ell_1 k \geq 0$, then

$$\frac{1}{|\sin \ell_1 k|} - \frac{1}{|\sin \ell_2 k|} - \frac{1}{|\sin \ell_3 k|} \le \left| \cot \ell_1 k + \cot \ell_2 k + \cot \ell_3 + \frac{\alpha}{k} \right|.$$

Proof. In view of the assumption $\alpha \cot \ell_1 k \geq 0$ we have

$$\left|\cot \ell_1 k + \cot \ell_2 k + \cot \ell_3 + \frac{\alpha}{k}\right| \ge \left|\cot \ell_1 k + \frac{\alpha}{k}\right| - \left|\cot \ell_2 k\right|$$
$$-\left|\cot \ell_3 k\right| \ge \left|\cot \ell_1 k\right| - \left|\cot \ell_2 k\right| - \left|\cot \ell_3 k\right|;$$

thus it suffices to prove

$$\frac{1}{|\sin \ell_1 k|} - \frac{1}{|\sin \ell_2 k|} - \frac{1}{|\sin \ell_3 k|} \le |\cot \ell_1 k| - |\cot \ell_2 k| - |\cot \ell_3 k|.$$

This is, however, a straightforward consequence of Lemma 3.7, it is enough to set $N=3, x_1=\frac{1}{|\sin\ell_1 k|}, x_2=\frac{1}{|\sin\ell_2 k|}$ and $x_3=\frac{1}{|\sin\ell_3 k|}$.

To sum up, the condition GC2 can give rise to an open gap only if the greatest element of the set $\left\{\frac{1}{|\sin ak|}, \frac{1}{|\sin bk|}, \frac{1}{|\sin ck|}\right\}$ is greater than the sum of the other two and the sign of the corresponding cotangent is opposite to the sign of α . In particular, condition GC2 gives rise to no open gaps in the Kirchhoff case, $\alpha = 0$.

3.5. Negative Spectrum

Let us finally discuss briefly the negative spectrum of H, which is obviously nonempty if and only if $\alpha < 0$. Spectral condition (11) can be rephrased into two gap conditions, similarly as it has been done in Section 3.2 for E > 0. Specifically, the gap conditions for $E = -\kappa^2$ acquire the following form:

$$\left|\coth a\kappa + \coth b\kappa + \coth c\kappa + \frac{\alpha}{\kappa}\right| > \frac{1}{\sinh a\kappa} + \frac{1}{\sin b\kappa} + \frac{1}{\sin c\kappa}, \tag{16}$$

$$\left|\coth a\kappa + \coth b\kappa + \coth c\kappa + \frac{\alpha}{\kappa}\right| < \frac{2}{\sinh \ell_{\min}\kappa} - \frac{1}{\sinh a\kappa} - \frac{1}{\sinh b\kappa} - \frac{1}{\sinh c\kappa}, \tag{17}$$

where $\ell_{\min} := \min\{a, b, c\}$. One can describe circumstances under which the spectrum has an open gap in its negative part.

Proposition 3.9. The negative part of $\sigma(H)$ contains a gap adjacent to zero exactly in the following two cases:

- $\begin{array}{ll} \bullet & |\alpha| > \frac{2}{a} + \frac{2}{b} + \frac{2}{c}, \\ \bullet & \frac{2}{\ell_{\min}} > \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ \ and \ \ \frac{2}{a} + \frac{2}{b} + \frac{2}{c} \frac{2}{\ell_{\min}} < |\alpha| < \frac{2}{\ell_{\min}}. \end{array}$

Proof. We begin with condition (16) and compare the asymptotic behavior of the two sides in the limit $\kappa \searrow 0$. Up to higher-order term we have

$$\left| \coth a\kappa + \coth b\kappa + \coth c\kappa - \frac{|\alpha|}{\kappa} \right| \approx \frac{1}{\kappa} \left| \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - |\alpha| \right|,$$

$$\frac{1}{|\sinh a\kappa|} + \frac{1}{|\sin b\kappa|} + \frac{1}{|\sin c\kappa|} \approx \frac{1}{\kappa} \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right),$$

hence the first gap condition can be for small values of κ satisfied provided $\left|\frac{1}{a} + \frac{1}{b} + \frac{1}{c} - |\alpha|\right| > \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$, which is true if and only if $|\alpha| > \frac{2}{a} + \frac{2}{b} + \frac{2}{c}$. Let us proceed to (17). In the regime $\kappa \searrow 0$ we have

$$\frac{2}{\sinh \ell_{\min} \kappa} - \frac{1}{\sinh a\kappa} - \frac{1}{\sinh b\kappa} - \frac{1}{\sinh c\kappa} \approx \frac{1}{\kappa} \left(\frac{2}{\ell_{\min}} - \frac{1}{a} - \frac{1}{b} - \frac{1}{c} \right),$$

therefore the condition acquires for small values of κ the form

$$\left| \frac{1}{a} + \frac{1}{b} + \frac{1}{c} - |\alpha| \right| < \frac{2}{\ell_{\min}} - \frac{1}{a} - \frac{1}{b} - \frac{1}{c}.$$

This inequality can be satisfied only if $\frac{2}{\ell_{\min}} > \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$, and under this condition it is valid iff $\frac{2}{a} + \frac{2}{b} + \frac{2}{c} - \frac{2}{\ell_{\min}} < |\alpha| < \frac{2}{\ell_{\min}}$.

4. The Case b=c

The spectral picture with respect to all four parameters of the model is rather complex. In order to simplify the discussion, we focus from now on at the case when the lattice can be stretched in one direction only assuming b=c. The above gap conditions acquire then the following form,

• Condition GC1: $E = k^2$ belongs to a gap in $\sigma(H)$ if

$$\left|\cot g \, ak + 2 \cot g \, bk + \frac{\alpha}{k}\right| > \frac{1}{|\sin ak|} + \frac{2}{|\sin bk|}; \tag{18}$$

• Condition GC2: $E = k^2$ belongs to a gap in $\sigma(H)$ if

$$\frac{1}{|\sin ak|} - \frac{2}{|\sin bk|} > \left|\cot ak + 2\cot bk + \frac{\alpha}{k}\right|; \tag{19}$$

note that (19) cannot be satisfied if $|\sin bk| < |\sin ak|$.

4.1. Gap Condition GC1 for b = c

According to Corollary 3.5, the gap condition for sufficiently large k ($k \ge |\alpha|$) is equivalent to the conditions $\operatorname{sgn}(\cot g \, ak) = \operatorname{sgn}(\cot g \, bk) = \operatorname{sgn}(\alpha)$ and $F(k) < \frac{|\alpha|}{k}$, where

$$F(k) = \left| \operatorname{tg} \left(\left\{ \frac{ak}{\pi} \right\} \frac{\pi}{2} \right) \right| + 2 \left| \operatorname{tg} \left(\left\{ \frac{bk}{\pi} \right\} \frac{\pi}{2} \right) \right|$$

with $\{\cdot\}$ defined by (14). To state the next result, we have to introduce two classes of irrational numbers. A $\theta \in \mathbb{R}$ is called *badly approximable* if there exists a constant $\gamma > 0$ such that $\left|\theta - \frac{p}{q}\right| > \frac{\gamma}{q^2}$ holds for all $p, q \in \mathbb{N}$. Irrational numbers that do not have this property will be called, following [3], Last admissible [8]. Thus a $\theta \in \mathbb{R} \setminus \mathbb{Q}$ is Last admissible if there exist increasing integer sequences $\{p_n\}_{n=1}^{\infty}$, $\{q_n\}_{n=1}^{\infty}$ such that $\lim_{n\to\infty} q_n^2 \left|\theta - \frac{p_n}{q_n}\right| = 0$. Another way to characterize them is through the continued fraction representation: a number $\theta = [a_0; a_1, a_2, \dots]$ belongs to the class of Last admissible numbers if the coefficient sequence $\{a_i\}$ is unbounded.

Theorem 4.1. Let $\theta = \frac{a}{b}$.

- (i) If $\theta \in \mathbb{Q}$, then the gap condition GC1 generates infinitely many gaps in the spectrum of H for any $\alpha \neq 0$.
- (ii) If θ is a Last admissible irrational number, then the gap condition GC1 generates infinitely many gaps for any $\alpha \neq 0$.
- (iii) Let θ be a badly approximable irrational number. There is a positive α_0 such that the condition GC1 generates no gaps above the threshold $k = |\alpha|$ provided $0 \le |\alpha| \le \alpha_0$. On the other hand, if the coupling constant satisfies $|\alpha| > \frac{2\pi}{\sqrt{5}} \min\{\frac{2}{a}, \frac{1}{b}\}$, there are infinitely many gaps.

- Proof. (i) If θ is rational, then there exists an L>0 such that aL^{-1},bL^{-1} are integers, and therefore, F(k)=0 holds true for $k=m\pi/L$ for every $m\in\mathbb{N}$. Moreover, if $k=\frac{m\pi}{L}+\operatorname{sgn}(\alpha)\cdot\delta$ for an even m and a sufficiently small $\delta>0$, it holds $F(k)<\frac{|\alpha|}{k}$ and $\operatorname{sgn}(\cot gak)=\operatorname{sgn}(\cot gbk)=\operatorname{sgn}(\alpha)$. Corollary 3.5 then implies the existence of infinitely many gaps.
- (ii) If θ is Last admissible, then there exist increasing integer sequences $\{p_n\}_{n=1}^{\infty}$, $\{q_n\}_{n=1}^{\infty}$ such that $\lim_{n\to\infty}q_n^2\left|\theta-\frac{p_n}{q_n}\right|=0$. Moreover, one can find sequences having, in addition, the property $\theta-\frac{p_n}{q_n}>0$ or $\theta-\frac{p_n}{q_n}<0$, respectively. Let us choose the sequences such that $\operatorname{sgn}\left(\theta-\frac{p_n}{q_n}\right)=\operatorname{sgn}(\alpha)$, and set $k_n=\frac{q_n\pi}{b}$. Obviously, $\operatorname{sgn}(\cot(ak_n))=\operatorname{sgn}\left(\left\{\frac{a}{b}q_n\right\}\right)$. It holds

$$\left\{\frac{a}{b}q_n\right\} = \theta q_n - \|\theta q_n\| = q_n \left(\theta - \frac{\|\theta q_n\|}{q_n}\right) = q_n \left(\theta - \frac{p_n}{q_n}\right), \quad (20)$$

where we have used the fact that p_n is equal to $\|\theta q_n\|$, which immediately follows from $\lim_{n\to\infty} q_n^2 \left|\theta - \frac{p_n}{q_n}\right| = 0$. Consequently, the equality $\operatorname{sgn}(\cot(ak)) = \operatorname{sgn}(\alpha)$ holds for $k = k_n$, as well as for k in a certain neighbourhood of k_n . Furthermore, (20) implies that

$$q_n \lim_{k \to \frac{q_n \pi}{b}} F(k) = q_n \left| \operatorname{tg} \left(\left\{ \frac{a}{b} q_n \right\} \frac{\pi}{2} \right) \right| < 4q_n \left| \left\{ \frac{a}{b} q_n \right\} \right|$$
$$= 4q_n^2 \left| \theta - \frac{p_n}{q_n} \right| \to 0$$

holds as $n \to \infty$. At the same time,

$$q_n \lim_{k \to \frac{q_n \pi}{b}} \frac{|\alpha|}{k} = \frac{|\alpha|b}{\pi} > 0 \quad \text{for all } n \in \mathbb{N}.$$

Comparing the two limits, we see that for any $n \in \mathbb{N}$ there exists a neighbourhood of k_n on which it holds $F(k) < \frac{|\alpha|}{k}$. If we choose the right neighbourhood for $\alpha > 0$ and the left neighbourhood for $\alpha < 0$, the remaining condition $\operatorname{sgn}(\cot g \, b k) = \operatorname{sgn}(\alpha)$ will be satisfied there as well. To sum up, we have found infinitely many points k_n with certain neighbourhoods on which the gap condition (18) is satisfied. In other words, the spectrum of the Hamiltonian has infinitely many gaps located at certain integer multiples of $\frac{\pi^2}{b^2}$. In the same way one can check the existence of neighbourhoods of a sequence of points $\frac{q_n \pi}{a}$ where the gap condition is satisfied.

(iii) When θ is badly approximable, there exists, by definition, a constant $\gamma > 0$ such that $\left|\theta - \frac{p}{q}\right| > \frac{\gamma}{q^2}$ holds for all $p, q \in \mathbb{N}$. This yields

$$F\left(\frac{m\pi}{b}\right) = \left| \operatorname{tg}\left(\left\{\frac{a}{b}m\right\}\frac{\pi}{2}\right) \right| > \left| \left\{\frac{a}{b}m\right\} \right| \frac{\pi}{2} = |\theta m - \|\theta m\| \frac{\pi}{2}$$
$$= m \left| \theta - \frac{\|\theta m\|}{m} \right| \frac{\pi}{2} > m \frac{\gamma}{m^2} \frac{\pi}{2} = \frac{\gamma \pi}{2m},$$

and consequently, $F\left(\frac{m\pi}{b}\right) > |\alpha| \left(\frac{m\pi}{b}\right)^{-1}$ holds if $|\alpha| \leq \frac{\gamma\pi^2}{2b}$, i.e. the condition (18) is violated in this case in all the local minima $\frac{m\pi}{b}$ of F.

It remains to show that the gap condition is violated in the local minima of F at the points $\frac{m\pi}{a}$ as well. It is a well known fact that a number θ is badly approximable if and only if $1/\theta$ is badly approximable. Moreover, if $\gamma>0$ is the minimal constant such that $\left|\theta-\frac{p}{q}\right|>\frac{\gamma}{q^2}$ holds for all $p,q\in\mathbb{N}$, then γ is at the same time the minimal constant such that $\left|\frac{1}{\theta}-\frac{q}{p}\right|>\frac{\gamma}{p^2}$ for all $q,p\in\mathbb{N}$. Hence we obtain, similarly as above,

$$F\left(\frac{m\pi}{a}\right) = 2\left|\operatorname{tg}\left(\left\{\frac{b}{a}m\right\}\frac{\pi}{2}\right)\right| > 2\left|\left\{\frac{b}{a}m\right\}\right|\frac{\pi}{2} > 2m\frac{\gamma}{m^2}\frac{\pi}{2} = \frac{\gamma\pi}{m}.$$

Thus $F\left(\frac{m\pi}{a}\right) > |\alpha| \left(\frac{m\pi}{a}\right)^{-1}$ holds if $|\alpha| \leq \frac{\gamma\pi^2}{a}$, i.e. the gap condition GC1 is violated at the local minima $\frac{m\pi}{a}$ of F as well. To sum up, for any α such that $0 < |\alpha| < \gamma\pi^2 \min\{\frac{1}{a}, \frac{1}{2b}\}$ all the local minima of F satisfy $F(k) > \frac{|\alpha|}{k}$. In other words, the condition GC1 (18) is violated everywhere for $k \geq |\alpha|$ (the threshold $k \geq |\alpha|$ follows from Corollary 3.5).

On the other hand, by the Hurwitz extension of the Dirichlet theorem [10, Chap. II] for any irrational θ there are increasing integer sequences $\{p_n\}_{n=1}^{\infty}$ and $\{q_n\}_{n=1}^{\infty}$ such that $\left|\theta-\frac{p_n}{q_n}\right|<\frac{1}{\sqrt{5}q_n^2}$ holds for all $n\in\mathbb{N}$. In addition, one can find such sequences with the property $\theta-\frac{p_n}{q_n}>0$ or $\theta-\frac{p_n}{q_n}<0$ for all $n\in\mathbb{N}$, respectively. This allows us to assume that $\operatorname{sgn}\left(\theta-\frac{p_n}{q_n}\right)=\operatorname{sgn}(\alpha)$, and setting $k_n:=\frac{q_n\pi}{b}$, we obtain

$$F(k_n) = \left| \operatorname{tg} \left(\left\{ \frac{a}{b} q_n \right\} \frac{\pi}{2} \right) \right|.$$

Since $\{x\} \in [-1/2,1/2]$ holds for any $x \in \mathbb{R}$ by definition, we infer that $\left|\left\{\frac{a}{b}q_n\right\}\frac{\pi}{2}\right| \leq \frac{\pi}{4}$. Furthermore, since $|\lg x| \leq \frac{4}{\pi}|x|$ holds for any $|x| \leq \frac{\pi}{4}$, we get

$$F(k_n) < 2\left|\left\{\frac{a}{b}q_n\right\}\right| = 2q_n\left|\theta - \frac{\|\theta q_n\|}{q_n}\right| = 4q_n\left|\theta - \frac{p_n}{q_n}\right| < 2q_n\frac{1}{\sqrt{5}q_n^2} = \frac{2}{\sqrt{5}q_n}.$$

At the same time, we have

$$\frac{|\alpha|}{k_{\rm m}} = \frac{|\alpha|b}{a_{\rm m}\pi},$$

and consequently, $|\alpha| > \frac{2\pi}{\sqrt{5}b}$ implies existence of neighbourhoods of $\frac{q_n\pi}{b}$ on which the gap condition is satisfied. In a similar way one can prove that for $|\alpha| > \frac{4\pi}{\sqrt{5}a}$ there are neighbourhoods of $\frac{q_n\pi}{a}$ on which the condition GC1 is satisfied. To conclude, the spectrum of H has infinitely many open gaps generated by the condition (18) provided $|\alpha| > \frac{2\pi}{\sqrt{5}} \min\{\frac{2}{a}, \frac{1}{b}\}$.

4.2. Gap Condition GC2 for b=c

As we have indicated, the "lower" gap condition acquires now the form (19).

Lemma 4.2. If $k > |\alpha|$ and the condition (19) is satisfied, then necessarily $\frac{1}{|\sin ak|} > \frac{2}{|\sin bk|}$, $\alpha \cot ak < 0$ and $\cot ak \cot bk < 0$.

Proof. Inequality (19) implies $\frac{1}{|\sin ak|} - \frac{2}{|\sin bk|} > 0$, which gives the first claim. The second claim, $\alpha \cot ak < 0$, follows from Corollary 3.8. It remains to show that $\cot ak \cot bk < 0$. Note that $\frac{1}{|\sin ak|} > \frac{2}{|\sin bk|}$ implies $|\sin ak| < \frac{1}{2}$, hence $ak \in (m\pi - \frac{\pi}{6}, m\pi + \frac{\pi}{6})$ for an $m \in \mathbb{N}$, and therefore $|\cot ak| > \sqrt{3}$.

We use again reductio ad absurdum and suppose that $\cot g \, ak \cot g \, bk \ge 0$. Then for any $k > |\alpha|$ we have, with regard to $|\cot g \, ak| > \sqrt{3}$,

$$\left|\cot g \, ak + 2 \cot g \, bk + \frac{\alpha}{k}\right| \ge \left|\cot g \, ak\right| + 2\left|\cot g \, bk\right| - \frac{|\alpha|}{k},$$

and since $-\frac{|\alpha|}{k} > -1$, we get

$$\left|\cot ak + 2\cot bk + \frac{\alpha}{k}\right| - \frac{1}{|\sin ak|} + \frac{2}{|\sin bk|}$$

$$> 2\left(\frac{1}{|\sin bk|} + |\cot bk|\right) - \left(\frac{1}{|\sin ak|} - |\cot bk|\right) - 1.$$

It is easy to check that $\frac{1}{|\sin x|} + |\cot x| \ge 1$ and $\frac{1}{|\sin x|} - |\cot x| \le 1$ for all $x \in \mathbb{R}$, hence

$$\left|\cot g \, ak + 2 \cot g \, bk + \frac{\alpha}{k}\right| - \frac{1}{|\sin ak|} + \frac{2}{|\sin bk|} > 0,$$

which contradicts the inequality (19).

Corollary 4.3. For each $k > |\alpha|$ the gap condition (19) is satisfied if and only if $\frac{1}{|\sin ak|} > \frac{2}{|\sin bk|}$, $\cot gak \cot gbk < 0$, $a \cot gak < 0$, and $\left|G(k) - \frac{|\alpha|}{k}\right| < \frac{1}{|\sin ak|} - \frac{2}{|\sin bk|}$, where

$$G(k) = |\cot g \, ak| - 2|\cot g \, bk|. \tag{21}$$

Proof. With regard to Lemma 4.2, the gap condition (19) for a fixed $k > |\alpha|$ requires $\cot ak \cot bk < 0$, $\alpha \cot ak < 0$. Consequently, the gap condition for $k > |\alpha|$ is satisfied if and only if $\cot ak \cot bk < 0$, $\alpha \cot ak < 0$, and

$$\left| |\cot g \, ak| - 2|\cot g \, bk| - \frac{|\alpha|}{k} \right| < \frac{1}{|\sin gk|} - \frac{2}{|\sin gk|},\tag{22}$$

which concludes the argument.

Before we pass to analysis of the gaps generated by the condition GC2, we prove a lemma that will be useful in dealing with rational ratio $\frac{a}{b}$ and with $\frac{a}{b}$ being a badly approximable irrational number.

Lemma 4.4. Let $\theta = \frac{a}{b}$.

- (i) If $\theta \in \mathbb{Q}$, then there exists $a \ c > 0$ such that for all k > 0 it holds $\cot ak \cot bk < 0 \land |\sin bk| \ge 2|\sin ak| \Rightarrow G(k) \ge c$.
- (ii) If θ is a badly approximable irrational number, then there exists a c > 0 such that for all k > 0 it holds

$$\cot ak \cot bk < 0 \land |\sin bk| \ge 2|\sin ak| \quad \Rightarrow \quad G(k) > \frac{c}{k}.$$

Proof. Our aim is to estimate the function $G(k) = |\cot gak| - 2|\cot gbk|$ from below subject to the condition $\cot gak \cot gbk < 0 \land |\sin bk| \ge 2|\sin ak|$.

The function G(k) attains local minima for $|\sin ak| = 1$ and tends to $-\infty$ for $\sin bk = 0$. Since both $|\sin ak| = 1$ and $\sin bk = 0$ contradict the condition $|\sin bk| \ge 2|\sin ak|$, minimal values of G(k) in the regions given by $\cot ak \cot bk < 0 \land |\sin bk| \ge 2|\sin ak|$ are attained for $|\sin bk| = 2|\sin ak|$.

The equality $|\sin bk| = 2|\sin ak|$ gives

$$\begin{split} |\cot g \, ak| - 2|\cot g \, bk| &= \frac{\sqrt{1 - \sin^2 ak}}{|\sin ak|} - 2\frac{\sqrt{1 - \sin^2 bk}}{|\sin bk|} \\ &= \frac{\sqrt{1 - \sin^2 ak}}{|\sin ak|} - \frac{\sqrt{1 - 4\sin^2 ak}}{|\sin ak|} \\ &= \frac{3|\sin ak|}{\sqrt{1 - \sin^2 ak} + \sqrt{1 - 4\sin^2 ak}} \ge \frac{3|\sin ak|}{2}, \end{split}$$

hence $G(k) \ge \frac{3}{2} |\sin ak|$.

Let $m \in \mathbb{N}$ be chosen such that $m\pi$ is the integer multiple of π closest to ak, i.e., $|ak-m\pi| \leq \frac{\pi}{2}$. In the same way we introduce $n \in \mathbb{N}$ such that $n\pi$ is the integer multiple of π closest to bk. Obviously, the condition $\cot g \, ak \cdot \cot g \, bk < 0$ implies $(ak-m\pi) \cdot (bk-n\pi) < 0$.

It holds trivially $|\sin bk| \le |bk - n\pi|$. The condition $|\sin bk| = 2|\sin ak|$ implies $|\sin ak| \le \frac{1}{2}$, hence $|ak - m\pi| \le \frac{\pi}{6}$. Since $|x| \le \frac{\pi}{6} \Rightarrow |\sin x| \ge \frac{3}{\pi}|x|$, we have $|\sin ak| = |\sin(ak - m\pi)| \ge \frac{3}{\pi}|ak - m\pi|$.

With regard to the estimates of $|\sin ak|$ and $|\sin bk|$ obtained above, it is easy to see that the quantity $|\sin ak|$ for k solving the equation $|\sin bk| = 2|\sin ak|$ is necessarily greater or equal to the quantity $\frac{3}{\pi}|ak - m\pi|$ for k solving the equation $|bk - n\pi| = 2 \cdot \frac{3}{\pi}|ak - m\pi|$. Let us find such a k. The condition $(ak - m\pi) \cdot (bk - n\pi) < 0$ together with $|bk - n\pi| = 2 \cdot \frac{3}{\pi}|ak - m\pi|$ gives the equation $bk - n\pi = -2 \cdot \frac{3}{\pi}(ak - m\pi)$. Its solution reads $k' = \frac{6m + \pi n}{6a + \pi b}\pi$. Therefore, $\cot ak \cot bk < 0 \land |\sin bk| \ge 2|\sin ak|$ implies

$$G(k) \ge \frac{3}{2} \cdot \frac{3}{\pi} |ak' - m\pi| = \frac{9}{2\pi} \left| a \frac{6m + \pi n}{6a + \pi b} \pi - m\pi \right| = \frac{9\pi}{2} \cdot \frac{|an - bm|}{6a + \pi b}.$$
 (23)

(i) Let $\theta \in \mathbb{Q}$, i.e., a = pL, b = qL for certain $p, q \in \mathbb{N}$ and L > 0. Then the just obtained bound (23) gives

$$G(k) \ge \frac{9\pi}{2} \cdot \frac{|pLn - qLm|}{6pL + \pi qL},$$

where L at the right-hand side can be obviously canceled. Note that the expression pn-qm is necessarily nonzero: was it zero, then $|ak'-m\pi|$ would hold in view of (23), contradicting thus the condition $(ak-m\pi)\cdot(bk-n\pi)<0$. Since $m,n,p,q\in\mathbb{N}$ by assumption, we have the trivial estimate $|np-mq|\geq 1$. To sum up,

$$\cot g \, ak \cot g \, bk < 0 \, \wedge \, |\sin bk| \geq 2 |\sin ak| \quad \Rightarrow \quad G(k) \geq \frac{9\pi}{2} \cdot \frac{1}{6p + \pi q},$$

which proves the first claim with $c = \frac{9\pi}{2(6p+\pi q)}$.

(ii) Let θ be badly approximable. Then $\theta' := 1/\theta$ is badly approximable as well, i.e. there exists a $\gamma > 0$ such that $|\theta' - \frac{n}{m}| > \frac{\gamma}{m^2}$ holds for all $n, m \in \mathbb{N}$. Using the estimate (23) again, we obtain

$$G(k) \ge \frac{9\pi}{2} \cdot \frac{|an - bm|}{6a + \pi b} = \frac{9\pi}{2} am \frac{\left|\frac{n}{m} - \frac{b}{a}\right|}{6a + \pi b} = \frac{9\pi}{2} \frac{am}{6a + \pi b} \left|\theta' - \frac{n}{m}\right|$$

$$> \frac{9\pi}{2} \frac{am}{6a + \pi b} \cdot \frac{\gamma}{m^2} = \frac{9\pi}{2} \frac{\gamma}{6a + \pi b} \cdot \frac{a}{m}.$$

We already know that $|ak-m\pi| \leq \frac{\pi}{6}$, hence $k \geq \frac{\pi}{a} \left(m - \frac{1}{6}\right) \geq \frac{\pi}{a} \cdot \frac{5m}{6}$. It means that $\frac{a}{m} \geq \frac{5\pi}{6} \cdot \frac{1}{k}$, which allows us to estimate kG(k) as follows,

$$kG(k) > \frac{9\pi}{2} \frac{\gamma}{6a + \pi b} \cdot \frac{5\pi}{6}.$$

This yields the claim (ii) with $c = \frac{15\pi^2\gamma}{4(6a+\pi b)}$ concluding thus the proof.

Corollary 4.5. Let $\theta = \frac{a}{b}$.

- (i) If $\theta \in \mathbb{Q}$, then the condition (19) generates at most finitely many gaps.
- (ii) If θ is a badly approximable irrational, there exists a positive α_0 such that the condition (19) generates no gaps for $0 \le |\alpha| \le \alpha_0$.

Proof. According to Corollary 4.3, if k is a solution of (19), then $\frac{1}{|\sin ak|} \ge \frac{2}{|\sin bk|}$, $\cot g \, ak \cot g \, bk < 0$, and $\left| G(k) - \frac{|\alpha|}{k} \right| \le \frac{1}{|\sin ak|} - \frac{2}{|\sin bk|}$.

(i) Let $\theta \in \mathbb{Q}$. With regard to Lemma 4.4, there exists a c > 0 such that

$$\frac{1}{|\sin ak|} > \frac{2}{|\sin bk|} \wedge \cot ak \cot bk < 0 \quad \Rightarrow \quad G(k) \ge c$$

holds for all k>0. Consequently, for $k\to\infty$ we have $G(k)>\frac{|\alpha|}{k}$. This allows us to remove the absolute value at the left-hand side of the condition $\left|G(k)-\frac{|\alpha|}{k}\right|\leq \frac{1}{|\sin ak|}-\frac{2}{|\sin bk|}$, which yields

$$2\left(\frac{1}{|\sin bk|} - |\cot gbk|\right) - \left(\frac{1}{|\sin ak|} - |\cot gak|\right) \le \frac{|\alpha|}{k}.\tag{24}$$

One can see, similarly as in the proof of Lemma 4.4, that the left-hand side of (24) attains its local minima with respect to the condition $\frac{1}{|\sin ak|} \ge \frac{2}{|\sin bk|} \wedge \cot ak \cot bk < 0$ at values k satisfying $\frac{1}{|\sin ak|} = \frac{2}{|\sin bk|}$. This gives a necessary condition: Inequality (24) can be satisfied only if

$$-2|\cot bk| + |\cot ak| \le \frac{|\alpha|}{k},$$

i.e., for $G(k) \leq \frac{|\alpha|}{k}$. This is, however, impossible for $k \to \infty$, because $\frac{|\alpha|}{k} \to 0$ and $G(k) \geq c > 0$ due to the result of Lemma 4.4.

(ii) Let θ be badly approximable. In Lemma 4.4 we proved the existence of a c > 0 such that for all k > 0,

$$\frac{1}{|\sin ak|} > \frac{2}{|\sin bk|} \ \land \ \cot g\, ak \cot g\, bk < 0 \quad \Rightarrow \quad G(k) > \frac{c}{k}.$$

In the rest of the proof we will demonstrate that one can set $\alpha_0 := c$.

Let us consider an α obeying $|\alpha| \leq \alpha_0 := c$. For such α we have $G(k) > \frac{c}{k} \geq \frac{|\alpha|}{k}$. Therefore, we can again remove the absolute value at the left-hand side of $\left|G(k) - \frac{|\alpha|}{k}\right| \leq \frac{1}{|\sin ak|} - \frac{2}{|\sin bk|}$, and obtain the condition (24). Since the left-hand side attains its minimum with respect to the condition $\frac{1}{|\sin ak|} \geq \frac{2}{|\sin bk|} \wedge \cot ak \cot bk < 0$ at k satisfying $\frac{1}{|\sin ak|} = \frac{2}{|\sin bk|}$, it must hold $G(k) \leq \frac{|\alpha|}{k}$. However, for $|\alpha| < \alpha_0$ we have $G(k) > \frac{|\alpha|}{k}$ (see above), i.e., the last inequality cannot be fulfilled.

Theorem 4.6. Let $\theta = \frac{a}{b}$.

- (i) If θ is a Last admissible irrational number, then the condition (19) generates infinitely many gaps for any $\alpha \neq 0$.
- (ii) If θ is a badly approximable irrational, the condition (19) generates infinitely many gaps provided $|\alpha| \ge \frac{4\pi}{\sqrt{5}a}$.

Proof. We have shown that condition (19) is equivalent to $\frac{1}{|\sin ak|} > \frac{2}{|\sin bk|}$, $\alpha \cot bk > 0$, $\alpha \cot ak < 0$, and $\left|G(k) - \frac{|\alpha|}{k}\right| < \frac{1}{|\sin ak|} - \frac{2}{|\sin bk|}$ for G given by equation (21), see Corollary 4.3. In particular, in the proof of Lemma 4.2 we have demonstrated that the system of conditions can be satisfied only for $ak \in \left(m\pi - \frac{\pi}{6}, m\pi + \frac{\pi}{6}\right)$, i.e. for k in certain neighbourhoods of $\frac{m\pi}{a}$. (i) If θ is a Last admissible number, the same is true for $\theta' := 1/\theta$. We

(i) If θ is a Last admissible number, the same is true for $\theta' := 1/\theta$. We can proceed in a way similar to the proof of Theorem 4.1. There are integer sequences $\{p_n\}_{n=1}^{\infty}$ and $\{q_n\}_{n=1}^{\infty}$ such that $\lim_{n\to\infty}q_n^2\left|\theta'-\frac{p_n}{q_n}\right|=0$ and $\operatorname{sgn}\left(\theta'-\frac{p_n}{q_n}\right)=\operatorname{sgn}(\alpha)$. Since $\lim_{k\to\frac{q_n\pi}{a}}G(k)=\infty$, it holds $G(k)-\frac{|\alpha|}{k}>0$ in sufficiently small neighbourhoods of $\frac{q_n\pi}{a}$. Therefore, in small neighbourhoods of $\frac{q_n\pi}{a}$ the condition $\left|G(k)-\frac{|\alpha|}{k}\right|<\frac{1}{|\sin ak|}-\frac{2}{|\sin bk|}$ acquires the form

$$2\left(\frac{1}{|\sin bk|} - |\cot gbk|\right) - \left(\frac{1}{|\sin ak|} - |\cot gak|\right) < \frac{|\alpha|}{k}; \tag{25}$$

let us denote $2\left(\frac{1}{|\sin bk|}-|\cot bk|\right)-\left(\frac{1}{|\sin ak|}-|\cot ak|\right)=:W(k)$ for the sake of brevity. Then

$$q_n \lim_{k \to \frac{q_n \pi}{a}} W(k) = 2q_n \left(\frac{1}{\left| \sin \frac{b}{a} q_n \pi \right|} - \left| \cot \frac{b}{a} q_n \pi \right| \right) = 2q_n \left| \operatorname{tg} \left(\left\{ \frac{b}{a} q_n \right\} \frac{\pi}{2} \right) \right|.$$

Since $\left|\left\{\frac{b}{a}q_n\right\}\frac{\pi}{2}\right| \leq \frac{\pi}{4}$ according to the definition (14) and $|x| \leq |\lg x| \leq \frac{4}{\pi}|x|$ holds for $|x| \leq \frac{\pi}{4}$, we get

$$q_n \lim_{k \to \frac{q_n \pi}{a}} W(k) < 4q_n \left| \left\{ \frac{b}{a} q_n \right\} \right| = 4q_n^2 \left| \theta' - \frac{\|\theta' q_n\|}{q_n} \right| = 4q_n^2 \left| \theta' - \frac{p_n}{q_n} \right| \to 0$$

as $n \to \infty$. At the same time we have

$$q_n \lim_{k \to \frac{q_n \pi}{a}} \frac{|\alpha|}{k} = \frac{|\alpha|a}{\pi} = const. > 0,$$

and therefore inequality (25) is satisfied on a certain neigbourhood of $\frac{q_n\pi}{a}$ for every $n \in \mathbb{N}$. Let us check the remaining conditions from Corollary 4.3. We will show that $\alpha \cot bk > 0$ and $\alpha \cot ak < 0$. The equation $\alpha \cot bk > 0$ is satisfied due to the choice of the sequence $\{q_n\}_{n=1}^{\infty}$. The equation $\alpha \cot ak < 0$ can be satisfied by choosing a left (if $\alpha > 0$) or right (if $\alpha < 0$) neighbourhood of $\frac{q_n\pi}{a}$. To sum up, there are infinitely many integers $q_n \in \mathbb{N}$ such that the gap condition (19) is satisfied for k belonging to certain right or left neighbourhood of $\frac{q_n\pi}{a}$ for every $n \in \mathbb{N}$.

(ii) Let θ be an irrational number and $\theta'=1/\theta$. We shall demonstrate that if $|\alpha|\geq \frac{\pi^2}{\sqrt{5}a}$, then there are infinitely many $q\in\mathbb{N}$ such that k in certain neighbourhoods of $\frac{q\pi}{a}$ satisfy the inequalities $\frac{1}{|\sin ak|}>\frac{2}{|\sin bk|}$ and $\left|G(k)-\frac{|\alpha|}{k}\right|<\frac{1}{|\sin ak|}-\frac{2}{|\sin bk|}$ together with the conditions $\alpha \cot bk>0$ and $\alpha \cot ak<0$. The first inequality is obviously valid for all k sufficiently close to $\frac{q\pi}{a}$ with any $q\in\mathbb{N}$. As for the second one, note that for k sufficiently close to $\frac{q\pi}{a}$ it holds $G(k)>\frac{|\alpha|}{k}$, therefore, we shall prove that

$$\lim_{k \to \frac{q\pi}{a}} W(k) < \lim_{k \to \frac{q\pi}{a}} \frac{|\alpha|}{k}$$

for W(k) introduced in part (i) above. We have

$$\lim_{k \to \frac{q\pi}{a}} W(k) = 2 \left(\frac{1}{\left| \sin \frac{b}{a} q\pi \right|} - \left| \cot g \frac{b}{a} q\pi \right| \right) = 2 \left| \operatorname{tg} \left(\left\{ \frac{b}{a} q \right\} \frac{\pi}{2} \right) \right|.$$

Similarly as in part (i), we estimate the right-hand side of the last equation from above by $4\left|\left\{\frac{b}{a}q\right\}\right|$. For any irrational θ there are infinitely many $p,q\in\mathbb{N}$ such that $\left|\theta-\frac{p}{q}\right|<\frac{1}{\sqrt{5}q^2}$; in particular, for infinitely many $q\in\mathbb{N}$ it holds

$$\left|\left\{\frac{b}{a}q\right\}\right| = \left|\theta q - \|\theta q\|\right| = q\left|\theta - \frac{\|\theta q\|}{q}\right| < q\frac{1}{\sqrt{5}q^2} = \frac{1}{\sqrt{5}q}.$$

Consequently, for such q we have

$$\lim_{k \to \frac{q\pi}{a}} W(k) < \frac{4}{\sqrt{5}q}.$$

On the other hand, $\lim_{k\to \frac{q\pi}{a}}\frac{|\alpha|}{k}=\frac{|\alpha|a}{q\pi}$, and therefore

$$\lim_{k \to \frac{q\pi}{a}} W(k) < \lim_{k \to \frac{q\pi}{a}} \frac{|\alpha|}{k},$$

holds provided $|\alpha| \geq \frac{4\pi}{\sqrt{5}a}$. In other words, there are infinitely many $q \in \mathbb{N}$ such that the inequality $G(k) < \frac{|\alpha|}{k}$ is valid in a certain neighbourhood of $\frac{q\pi}{a}$.

Let us proceed to the condition $\alpha \cot bk > 0$. There are infinitely many $q \in \mathbb{N}$ such that $\left\{\frac{b}{a}q\right\} > 0$ and infinitely many $q \in \mathbb{N}$ such that $\left\{\frac{b}{a}q\right\} < 0$. Since $\operatorname{sgn}\left(\cot b\frac{q\pi}{a}\right) = \operatorname{sgn}\left\{\frac{b}{a}q\right\}$, we conclude that inequality (25) and $\alpha \cot bk > 0$ can be satisfied simultaneously in certain "Dirichlet point" neighbourhoods for infinitely many $q \in \mathbb{N}$. Finally, the last condition

$ \alpha $	$\theta := \frac{a}{b}$	Number	Number	Total
		of gaps generated by condition (18)	of gaps generated by condition (19)	number of gaps
0	$\in \mathbb{R}$	0	0	0
$\neq 0$	$\in \mathbb{Q}$	∞	$< \infty$	∞
$\neq 0$	Last admissible	∞	∞	∞
Large	Badly approximable	∞	∞	∞
Small	Badly approximable	$< \infty$	$< \infty$	$< \infty$

Table 1. Number of gaps in $\sigma(H)$

 $\alpha \cot ak < 0$ is obviously fulfilled in a sufficiently small left (if $\alpha > 0$) or right (if $\alpha < 0$) neighbourhood of $\frac{q\pi}{a}$ for any $q \in \mathbb{N}$.

4.3. Summary

The structure of gaps in the spectrum of H is obtained as a combination of the results of Sections 4.1 and 4.2. The summary is displayed in Table 1.

We see that essentially three situations are possible, namely:

- $\sigma(H) = [0, \infty)$. This situation is characteristic for Kirchhoff couplings in the vertices of our graph, regardless of the edge lengths ratio θ .
- $\sigma(H)$ has finitely many gaps. This happens when the edge lengths ratio θ is a badly approximable irrational number and the vertices support a sufficiently weak (but nonzero) δ -coupling.
- In all the remaining cases there are infinitely many gaps in $\sigma(H)$.

5. Conclusions and Open Questions

We have analyzed the spectrum of the quantum graph Hamiltonian describing a stretched hexagonal lattice with a δ -coupling in the vertices, with a particular attention to the case when the stretch is parallel to one of the edges. In contrast to the case of a rectangular lattice [3,4] we have two different conditions determining the spectral gaps. They have nevertheless common features with respect to the number-theoretic properties of the lattice geometry, in particular, the existence of a critical coupling strengths needed to open spectral gaps in case of badly approximable edge lengths ratios.

We have recalled in the introduction the result of the paper [1], namely that under the incommensurability requirement the gap density is independent in the Kirchhoff case of the edge lengths. This is certainly true here as for $\alpha=0$ we have no gaps; note that for a Last admissible θ all the gaps close in the limit $\alpha\to 0$, for a badly approximable one they close already for a sufficiently small but nonzero α . The authors of [1] conjectured that the result about the gaps density remains valid qualitatively also for other vertex couplings. The above mentioned conclusion is in accord with the conjecture, at least for a badly approximable θ and small α . We expect, however, that the gap density will be zero for all values of α ; to prove this claim one has to

work out the gap asymptotic behavior for $k \to \infty$ in a similar way as it was done in [3,4] for a rectangular lattice. The results of those papers also show that the claim about the qualitatively same behavior has to be formulated with a certain caution. If the δ coupling in a rectangular lattice is replaced by a δ'_s one [3], the density is again independent of the edge lengths, however, its value is now substantially different, since it is now the spectral *bands* which have density zero.

Our results leave various other questions open. An obvious one concerns the general case where we know that there are infinitely many open gaps for commensurate edges and $\alpha \neq 0$; once the commensurability hypothesis is abandoned we expect number-theoretic effect similar to those we have seen in the particular situation discussed in Sect. 4. In addition to that, however, one wonders whether there are other number theoretic spectral features for $|\alpha|$ beyond the critical values similar to those observed in [4]. In connection with Corollary 4.5(i) it would be also interesting to know whether one can have situations with a finite number of open gaps analogous to a Bethe–Sommerfeld-type spectrum of usual periodic Schrödinger operators in dimension two.

Acknowledgments

We are grateful to the referee for useful comments which helped to improve the presentation. The work was supported by the Czech Science Foundation under the project 14-06818S.

References

- [1] Band, R., Berkolaiko, G.: Universality of the momentum band density of periodic networks. Phys. Rev. Lett. 111, 130404 (2013)
- [2] Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Amer. Math. Soc., Providence (2013)
- [3] Exner, P.: Contact interactions on graph superlattices. J. Phys. A: Math. Gen. 29, 87–102 (1996)
- [4] Exner, P., Gawlista, R.: Band spectra of rectangular graph superlattices. Phys. Rev. B 53, 7275-7286 (1996)
- [5] Kuchment P., private communication following the publication of [3]
- [6] Kuchment, P.: Quantum graphs: II. Some Spectral Properties of Quantum and Combinatorial Graphs. J. Phys. A.: Math. Gen. 38, 4887–4900 (2005)
- [7] Kuchment, P., Post, O.: On the spectra of carbon nano-structures. Commun. Math. Phys. 275(3), 805–826 (2007)
- [8] Last, Y.: Zero measure spectrum for almost Mathieu operator. Commun. Math. Phys. 164, 421–432 (1994)
- [9] Schanz, H., Kottos, T.: Scars on quantum networks ignore the Lyapunov exponent. Phys. Rev. Lett. 90, 234101 (2003)
- [10] Schmidt W.M.: Diophantine Approximations and Diophantine Equations Lecture Notes in Mathematics, vol. 1467. Springer, Berlin (1991)

- [11] de Verdière Y.C.: Semi-classical measures on Quantum Graphs and the Gauss map of the determinant manifold (preprint). arXiv:1311.5449
- [12] Veselic, I.: Spectral analysis of percolation Hamiltonians. Math. Ann. 331, 841–865 (2005)

Pavel Exner(⊠) Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Hlavní 130, 250 68 Řež, Czech Republic e-mail: exner@ujf.cas.cz

Pavel Exner
Doppler Institute,
Czech Technical University,
Břehová 7, 11519 Prague, Czech Republic
Ondřej Turek
Nuclear Physics Institute,
Academy of Sciences of the Czech Republic,
Hlavní 130, 250 68 Řež, Czech Republic
e-mail: turek@theor.jinr.ru

Ondřej Turek Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia

Received: May 4, 2014. Revised: October 25, 2014.