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Abstract. We analyze spectrum of Laplacian supported by a periodic
honeycomb lattice with generally unequal edge lengths and a δ type
coupling in the vertices. Such a quantum graph has nonempty point
spectrum with compactly supported eigenfunctions provided all the edge
lengths are commensurate. We derive conditions determining the contin-
uous spectral component and show that existence of gaps may depend
on number-theoretic properties of edge lengths ratios. The case when
two of the three lengths coincide is discussed in detail.
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1. Introduction

Quantum graphs, more exactly differential operators on metric graphs
describing quantum motion confined to networks, attracted a lot of atten-
tion recently as a fruitful combination of spectral theory, geometry, combi-
natorics, and other disciplines. The number of results in this area is large
and permanently increasing; we refer to the monograph [2] for an up-to-date
survey.

A class of particular interest are quantum graphs having a periodic
structure. On one hand they are interesting mathematically, in particular,
because the corresponding operators may exhibit properties different from
standard periodic Schrödinger operators, for instance they may have com-
pactly supported eigenfunctions. On the other hand, they provide a physical
model of various systems having crystalline structure which become popular
especially recently in connection with the discovery of graphene and related
material objects such as carbon nanotubes [7].

Physical models of various lattice structures usually involve symmetries
as arrangements which the nature favours. This may be true in the ideal
situation but it can change under influence of external forces, for instance,
mechanical strains. At the same time, we know from the simple model of a
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Figure 1. A dilated honeycomb network and the elemen-
tary cell

rectangular quantum-graph lattice [3,4] that the graph geometry may give
rise to interesting number-theoretic effects in the spectrum. This motivates
us to inspect how edge length variations can affect the spectrum of the lattice
appearing most frequently in the applications, the hexagonal one.

Let us thus consider an infinite honeycomb graph Γ dilated indepen-
dently in all the three directions, as depicted in Fig. 1 below. That is, each
hexagon consists of two antipodal edges of length a, two antipodal edges of
length b and two antipodal edges of length c. The operator to investigate is
the corresponding quantum-graph Hamiltonian, that is, a Laplacian on the
Hilbert space H = L2(Γ) consisting of sequences ψ = {ψj} the elements of
which refer to edges of Γ. The operator acts as Hψ = {−ψ′′

j } on functions
from H1(Γ) ∩ H2(Γ \ V), where V is the set of graph vertices. In order to
make it self-adjoint we have to specify its domain, for instance, by indicating
boundary conditions. We choose the so-called δ-coupling [3] requiring

ψ1(0+) = ψ2(0+) = ψ3(0+) =: ψ(0),
3∑

i=1

ψ′
i(0+) = αψ(0), (1)

where i = 1, 2, 3 number three edges meeting in a vertex, which are para-
metrized by their arc length with zero at the junction. We suppose that the
coupling is the same at each vertex, hence the operators exhibit translational
symmetry corresponding to the geometry of the hexagonal lattice. It would be
thus natural to label the operator by the parameter appearing in (1) writing
it, for instance, as Hα for a fixed α ∈ R, however, since there will be no
danger of misunderstanding, we shall drop the index.

An alternative way is to characterize the operator H by means of the
associated quadratic form which is given by

q[ψ] =
∫

Γ

|ψ′(s)|2ds+ α
∑

i

|ψi|2 (2)

with the domain consisting of all functions from H1(Γ), where the first term
is a shorthand for the sum over all the edges and in the second term we
sum over all the vertices and ψi is the function value at the i-th vertex. It is
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obvious from (2) that H ≥ 0 holds for α ≥ 0, and it is not difficult to check
that for α < 0 we have inf σ(H) < 0.

Our goal in this paper is to analyze the spectrum of H. Since the system
is periodic, it has a band structure but in general it can have a nonempty
point component. This is now a textbook fact [2], discussed previously [7] but
known in fact much earlier [5]. We are going to show, in particular, that the
point spectrum is present iff all the lattice edges are commensurate allowing
thus for “single loop eigenstates”. The role of rationality is not surprising, of
course, being discussed before in various contexts, both for compact [9,11]
and noncompact graphs [7]. In the present model, the conclusion can be made
in a simple way using the secular equation.

Next we derive the condition determining the spectrum, in particular,
its open gaps. The gap structure attracted attention recently, in particular,
in a nice paper [1] the authors demonstrated using an ergodic argument that
the gap measure in the spectrum is independent of the edge lengths as long
as the edges remain incommensurate. This was done, however, under the
assumption that the vertex coupling was Kirchhoff, i.e. α = 0. One of the
aims of the present paper is to show that replacing Kirchhoff by another
coupling, even as simple as the δ-type one, can make the spectral picture
substantially more involved. Indeed, while the hexagonal lattice with α = 0
has no gaps as we shall see in Sects. 3.3 and 3.4 below, for a nonzero α
the graph may have an infinite number of open gaps, and their presence or
absence depends on number-theoretic properties of edge length ratios. The
gap density may be independent of α, however, as we shall mention in the
last section.

The method we use is straightforward and relies on treating the appro-
priate secular equation. After the general discussion, we focus in Sect. 4 on
the particular case when two of the three edge lengths are identical and ana-
lyze the gap structure in detail. The analysis is inevitably somewhat lengthy
and a short summary of the results is given in Sect. 4.3. We conclude the
paper by mentioning a couple of questions about the model which remain
open.

2. Point Spectrum

In contrast to the usual Schrödinger operator theory, quantum graph Hamil-
tonians may violate the unique continuation principle – see, e.g., [6]. It hap-
pens also in our present model; a sufficient condition for that is a commen-
surability of the lattice edges lengths.

Proposition 2.1. If b
a ∈ Q and c

a ∈ Q, then σp(H) �= ∅.
Proof. Under the assumption, there is an infinite number of values k such
that ka, kb, and kc are integer multiples of 2π. Then a sinusoidal function
on a perimeter of a hexagon cell with zeros at the vertices gives rise to an
eigenfunction of H since it solves the equation −φ′′ = k2φ and satisfies the
boundary conditions (1). �
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It is also obvious that such a point spectrum is of infinite multiplicity. On
the other hand, the commensurability is also a necessary condition.

Proposition 2.2. If σp(H) �= ∅, then b
a ∈ Q and c

a ∈ Q.

We postpone the proof of this claim to the next section.

Remark 2.3. While in the present simple model it is possible to state the
result in the above elegant form, one has to recall that necessary conditions
for existence of a discrete spectrum has been considered before and in a
greater generality. A result to mention here is Theorem 4.5.4 of [2] which
states that existence of an eigenvalue of a Z

n-periodic quantum graph, dif-
ferent from the “Dirichlet points”, means existence of compactly supported
eigenfunctions which span the corresponding eigenspace. Proposition 2.2 indi-
cates that one needs not in general to exclude the “Dirichlet points” from the
consideration in the said theorem: if some of them belong to the spectrum,
they have to correspond to compactly supported eigenfunctions. Of course, in
more complicated graphs than the one considered here the existence of such
eigenvalues does not in general imply the full edge commensurability, it suf-
ficient to have enough rational relations to allow for “loop eigenfunctions”,
while other edges may remain incommensurate. Note also that compactly
supported eigenfunctions appear also in different graph contexts, cf. e.g. a
discussion of percolation models in [12].

3. Continuous Spectrum

3.1. Determining the Spectrum

Since we are dealing with a periodic graph, a natural tool to employ is the
Floquet–Bloch decomposition [2, Chap. 4]. The elementary cell of Γ is shown
in Fig. 1, together with the symbols we use to denote the wave function
components on the edges.

We are interested in generalized eigenfunctions of the graph Laplacian
at an energy E. If E > 0, we put conventionally E = k2 with k > 0 and
assume that sin(�k) �= 0 holds for at least one � ∈ {a, b, c}; without loss of
generality we may suppose that sin(ak) �= 0. Since the Hamiltonian acts as a
negative second derivative, the wavefunction on each edge has to be a linear
combination of the exponentials eikx and e−ikx, specifically we can write

ψ1(x) = C+
1 eikx + C−

1 e−ikx, x ∈ [0, a/2] (3a)

ψ2(x) = C+
2 eikx + C−

2 e−ikx, x ∈ [0,b/2] (3b)

ψ3(x) = C+
3 eikx + C−

3 e−ikx, x ∈ [0, c/2] (3c)

ϕ1(x) = D+
1 eikx + D−

1 e−ikx, x ∈ [−a/2, 0] (3d)

ϕ2(x) = D+
2 eikx + D−

2 e−ikx, x ∈ [−b/2, 0] (3e)

ϕ3(x) = D+
3 eiikx + D−

3 e−ikx, x ∈ [−c/2, 0] (3f)
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Obviously, ψ1(0) = ϕ1(0) and ψ′
1(0) = ϕ′

1(0), hence

C+
1 = D+

1 , C−
1 = D−

1 . (4)

The wave functions have to satisfy the following six boundary conditions
corresponding to the δ-couplings in the vertices (1), namely

ψ2(0) = ψ3(0) = ψ1(a/2) (5a)
ψ′

2(0) + ψ′
3(0) − ψ′

1(a/2) = αψ1(0) (5b)
ϕ2(0) = ϕ3(0) = ϕ1(−a/2) (5c)

−ϕ′
2(0) − ϕ′

3(0) + ϕ′
1(−a/2) = αϕ1(0) (5d)

where α ∈ R is the coupling parameter. On the other hand, the Floquet-
Bloch decomposition requires to impose the following conditions,

ψ2(b/2) = eiθ1ϕ2(−b/2), ψ3(c/2) = eiθ2ϕ3(−c/2),
ψ′

2(b/2) = eiθ1ϕ′
2(−b/2), ψ′

3(c/2) = eiθ2ϕ′
3(−c/2) (6)

for some θ1, θ2 ∈ (−π, π].
Substituting (3b)–(3f) into (6) enables one to express variables D±

2 and
D±

3 in terms of C±
2 and C±

3 : we obtain

D+
2 = C+

2 · ei(bk−θ1), D+
3 = C+

3 · ei(ck−θ2),
D−

2 = C−
2 · ei(−bk−θ1), D−

3 = C−
3 · ei(−ck−θ2).

(7)

The continuity at the vertices – cf. conditions (5a), (5c) – together with
(4) allow us to eliminate coefficients C±

1 and D±
1 . In this way we obtain a

system of four linear equations containing C+
2 , C

−
2 , C

+
3 , C

−
3 as the unknown

quantities and a, b, c, k, α as parameters, namely

M

⎛

⎜⎜⎝

C+
2

C−
2

C+
3

C−
3

⎞

⎟⎟⎠ = 0, (8)

where the matrix M is given as

M =

⎛

⎜⎜⎝

1 1 −1 −1
ei(bk−θ1) ei(−bk−θ1) −ei(ck−θ2) −ei(−ck−θ2)

m31 m32 i −i
m41 m42 −iei(ck−θ2) iei(−ck−θ2)

⎞

⎟⎟⎠

with

m3j :=
−e−iσjak + ei(σjbk−θ1)

sin ak
− α

k

and

m4j :=
−ei(σjak+σjbk−θ1) + 1

sin ak
− α

k
ei(σjbk−θ1)
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for j = 1, 2, where σj := (−1)j−1. A nontrivial solution of the form (3)
exists iff

(
C+

2 , C
−
2 , C

+
3 , C

−
3

)
is a nonzero vector. Therefore, k2 belongs to the

spectrum ofH if (8) has a non-trivial solution for certain pair (θ1, θ2), in other
words, if there exist θ1, θ2 ∈ (−π, π] such that det(M) = 0. A straightforward
calculation leads to

det(M) = −4 [2 sin ak cos bk cos ck + 2 cos ak sin bk cos ck
+2 cos ak cos bk sin ck − 3 sin ak sin bk sin ck
−2 sin ak cos(θ1 − θ2) − 2 sin ck cos θ1 − 2 sin bk cos θ2

+2
α

k
(cos ak sin bk sin ck + sin ak cos bk sin ck + sin ak sin bk cos ck)

+
α2

k2
sin ak sin bk sin ck

]
e−i(θ1+θ2)

sin ak
. (9)

The spectral condition can be put into a more convenient form if we exclude
all the “Dirichlet points”, i.e. if we consider k such that sin(�k) �= 0 holds for
all � ∈ {a, b, c}. After a simple manipulation, we then obtain

det(M) = −4 [2(cotg ak cotg bk + cotg ak cotg ck + cotg bk cotg ck)

+ cotg2 ak + cotg2 bk + cotg2 ck − 1
sin2 ak

− 1
sin2 bk

− 1
sin2 ck

− 2
(

cos θ1
sin ak sin bk

+
cos θ2

sin ak sin ck
+

cos(θ1 − θ2)
sin bk sin ck

)

+2
α

k
(cotg ak + cotg bk + cotg ck) +

α2

k2

]
sin bk sin ck

ei(θ1+θ2)
,

hence

det(M) = −4
[(

cotg ak + cotg bk + cotg ck +
α

k

)2

− 1
sin2 ak

− 1
sin2 bk

− 1
sin2 ck

−2
(

cos θ1
sin ak sin bk

+
cos θ2

sin ak sin ck
+

cos(θ1 − θ2)
sin bk sin ck

)]
sin bk sin ck

ei(θ1+θ2)
.

We can conclude that k2 ∈ σ(H) holds if there are θ1, θ2 ∈ (−π, π] such
that

(
cotg ak + cotg bk + cotg ck +

α

k

)2

=
1

sin2 ak
+

1
sin2 bk

+
1

sin2 ck

+2
(

cos θ1
sin ak sin bk

+
cos θ2

sin ak sin ck
+

cos(θ1 − θ2)
sin bk sin ck

)
. (10)

The obtained spectral condition allows us to determine the positive part
of the spectrum. This is sufficient if α ≥ 0, in the opposite case we have to
take also negative energies into account. This can be done in a similar way,
replacing the positive k in the above considerations by k = iκ with κ > 0. In
particular, the condition (10) is then replaced by



Vol. 81 (2015) Spectrum of a Dilated Honeycomb Network 541

(
coth aκ+ coth bκ+ coth cκ+

α

κ

)2

=
1

sinh2 aκ
+

1
sinh2 bκ

+
1

sinh2 cκ

+2
(

cos θ1
sinh aκ sinh bκ

+
cos θ2

sinh aκ sinh cκ
+

cos(θ1 − θ2)
sinh bκ sin cκ

)
; (11)

in distinction to the previous case there is no need to exclude any values of
the spectral parameter κ.

One important conclusion of these considerations is that the spectrum
of H is absolutely continuous away of the “Dirichlet points”. This is a con-
sequence of the following claim.

Proposition 3.1. The solution of the equation det(M) = 0 regarded as a
function of (θ1, θ2) is non-constant on any open subset of (−π, π]2.

Proof. Let us denote F (θ1, θ2, k) = − ei(θ1+θ2)

4 det(M) and consider first the
positive-energy solutions, i.e., values k > 0 satisfying the condition sin ak �= 0.
Obviously, a number k solves det(M) = 0 for a pair (θ1, θ2) ∈ (−π, π]2 if and
only if F (θ1, θ2, k) = 0. We use a reductio ad absurdum argument. Suppose
that the function k = k(θ1, θ2) is constant on an open subset J ⊂ (−π, π]2,
i.e., let F (θ1, θ2, k0) = 0 hold for a k0 > 0 and for every (θ1, θ2) ∈ J . Hence
in view of (9) and the definition of F we have

sin ak0 cos(θ1 − θ2) + sin ck0 cos θ1 + sin bk0 cos θ2 = const on J.

The trigonometric polynomial A cos(θ1 − θ2) + C cos θ1 + B cos θ2
regarded as a function of two variables (θ1, θ2) can be obviously constant
on a non-empty open subset of (−π, π]2 if and only if A = B = C = 0 which
in our case would mean sin ak0 = sin bk0 = sin ck0 = 0, however, this is
excluded by the assumption.
In case of negative energies −κ2 with κ > 0 we have instead a condition

sinh aκ0 cos(θ1 − θ2) + sinh cκ0 cos θ1 + sinh bκ0 cos θ2 = const on J,

which can never be satisfied for κ > 0. �
At the same time, the above argument allows us to prove Proposition 2.2.
Indeed, in view of the periodicity the point spectrum has necessarily an infi-
nite multiplicity, corresponding to a “flat band”, i.e. a solution to the spectral
condition independent of (θ1, θ2). We have seen in Proposition 3.1 that this
can happen only if the energy is positive. We can also exclude the case when
all the edge lengths are commensurate as we already know that b

a ∈ Q and
c
a ∈ Q implies σp(H) �= ∅. Let k2 > 0 and at least two of the lengths
be incommensurate. Then sin ak, sin bk, and sin ck cannot vanish simultane-
ously. We choose a nonzero one and if needed renumber the edges in order
to satisfy the assumption sin ak �= 0. Then Proposition 3.1 implies that k
cannot corrrespond to a “flat band”. �
Corollary 3.2. If b

a �∈ Q or c
a �∈ Q, the spectrum of H is purely absolutely

continuous.

Proof. By Proposition 2.2 the spectrum is purely continuous. By implicit-
function theorem any solution to the conditions (10) is smooth, even analytic,
hence singularly continuous spectrum is excluded. �
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Let us add that if the edge lengths are commensurate, the operator may
have infinitely degenerate eigenvalues, however, the implicit-function-theorem
argument still works and the spectrum is absolutely continuous away from
the “Dirichlet points”.

3.2. More About the Spectral Condition for E = k2 > 0

Consider again the positive part of the spectrum and examine the range of
the right-hand side of (10) for θ1, θ2 ∈ (−π, π]. The range is obviously an
interval. The maximum is found easily; using

cos θ1
sin ak sin bk

≤ 1
| sin ak sin bk|

and similar estimates for the other two θ-dependent terms, we get

max
θ1,θ2∈(−π,π]

{
1

sin2 ak
+

1
sin2 bk

+
1

sin2 ck
+ 2

(
cos θ1

sin ak sin bk

+
cos θ2

sin ak sin ck
+

cos(θ1 − θ2)
sin bk sin ck

)}
=
(

1
| sin ak| +

1
| sin bk| +

1
| sin ck|

)2

.

The maximum is obviously attained for θ1, θ2 chosen such that cos θ1 =
sgn(sin ak sin bk), cos θ2 = sgn(sin ak sin ck). On the other hand, the mini-
mum of the expression will be found using the following lemma which is not
difficult to prove.

Lemma 3.3. Let f(θ1, θ2) = A cos(θ1−θ2)+B cos θ2+C cos θ1 for A,B,C ∈ R

such that ABC > 0. It holds

• if 1
|A| + 1

|B| + 1
|C| ≥ 2max

{
1

|A| ,
1

|B| ,
1

|C|
}
, then

min
θ1,θ2∈(−π,π]

f(θ1, θ2) = −ABC

2

(
1
A2

+
1
B2

+
1
C2

)
;

• if 1
|A| + 1

|B| + 1
|C| ≤ 2max

{
1

|A| ,
1

|B| ,
1

|C|
}
, then

min
θ1,θ2∈(−π,π]

f(θ1, θ2) = −(|A| + |B| + |C|) + 2min{|A|, |B|, |C|}.

Let us apply the result on the right-hand side of (10). We need to set
A = (sin bk sin ck)−1, B = (sin ak sin ck)−1, C = (sin ak sin bk)−1. Then
the condition 1

|A| + 1
|B| + 1

|C| ≥ 2max
{

1
|A| ,

1
|B| ,

1
|C|
}

can be shown to be

equivalent to 1
| sin ak| + 1

| sin bk| + 1
| sin ck| ≥ 2max

{
1

| sin ak| ,
1

| sin bk| ,
1

| sin ck|
}

(and
similarly for the opposite sign). When we substitute the minima of f found
in Lemma 3.3 into the right-hand side of (10), we get

• zero if 1
| sin ak| + 1

| sin bk| + 1
| sin ck| ≥ 2max

{
1

| sin ak| ,
1

| sin bk| ,
1

| sin ck|
}

;

•
(
2max

{
1

| sin ak| ,
1

| sin bk| ,
1

| sin ck|
}

− 1
| sin ak| − 1

| sin bk| − 1
| sin ck|

)2

otherwise.
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The results on the minimum and maximum allow us to estimate the left-
hand side of (10) from below and above; taking the square roots we get the
condition

max
{

0, 2max
{

1
| sin ak| ,

1
| sin bk| ,

1
| sin ck|

}
−
(

1
| sin ak| +

1
| sin bk|

+
1

| sin ck|
)}

≤
∣∣∣cotg ak + cotg bk + cotg ck +

α

k

∣∣∣

≤ 1
| sin ak| +

1
| sin bk| +

1
| sin ck| .

The first term at the left-hand side is obviously non-negative, hence we arrive
at the conclusion which can be stated as two gap conditions:

• Condition GC1: E = k2 belongs to a gap in σ(H) if
∣∣∣cotg ak + cotg bk + cotg ck +

α

k

∣∣∣ >
1

| sin ak| +
1

| sin bk| +
1

| sin ck| ; (12)

• Condition GC2: E = k2 belongs to a gap in σ(H) if

2max
{

1
| sin ak| ,

1
| sin bk| ,

1
| sin ck|

}
−
(

1
| sin ak| +

1
| sin bk| +

1
| sin ck|

)

>
∣∣∣cotg ak + cotg bk + cotg ck +

α

k

∣∣∣ . (13)

We will consider them separately.

3.3. Gap Condition GC1

The gap condition GC1 (12) obviously has no solution for α = 0. Therefore,
our goal is to explore the case α �= 0.

Observation 3.4. If the gap condition GC1 (12) is satisfied, then

sgn(cotg ak) = sgn(cotg bk) = sgn(cotg ck) = sgn(α) ∨ k < |α|.
Proof. We employ reductio ad absurdum. Let k ≥ |α| and, for instance,
sgn(cotg ak) = − sgn(α). We have
∣∣∣cotg ak + cotg bk + cotg ck +

α

k

∣∣∣ ≤ | cotg bk| + | cotg ck| +
∣∣∣cotg ak +

α

k

∣∣∣ .

Since cotg ak and α have opposite signs and | cotg x| ≤ 1
| sin x| for any admis-

sible x ∈ R, it holds
∣∣∣cotg ak +

α

k

∣∣∣ ≤ max
{

| cotg ak|, |α|
k

}
≤ max {| cotg ak|, 1} ≤ 1

| sin ak| .

Hence
∣∣∣cotg ak + cotg bk + cotg ck +

α

k

∣∣∣ ≤ 1
| sin ak| +

1
| sin bk| +

1
| sin ck| ,

i.e., the gap condition GC1 (12) is violated. �
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Let ‖ · ‖ be the nearest-integer function on R, that is, ‖x‖ is the nearest
integer to x ∈ R. In the following we will need the function the value of which
represents the difference between a given number and the nearest integer, i.e.
x �→ x− ‖x‖. For the sake of brevity, we introduce the symbol

{x} := x− ‖x‖ ; (14)

it holds obviously {x} ∈ [−1/2, 1/2] for any x ∈ R.

Corollary 3.5. For k ≥ |α|, the gap condition (12) is satisfied if and only if
sgn(cotg ak) = sgn(cotg bk) = sgn(cotg ck) = sgn(α) and

∣∣∣∣tg
({

ak

π

}
π

2

)∣∣∣∣+
∣∣∣∣tg
({

bk

π

}
π

2

)∣∣∣∣+
∣∣∣∣tg
({

ck

π

}
π

2

)∣∣∣∣ <
|α|
k
,

where {·} is the function defined by (14).

Proof. Suppose that k ≥ |α| and (12) holds. It follows from Observation 3.4
that condition (12) implies sgn(cotg ak) = sgn(cotg bk) = sgn(cotg ck) =
sgn(α). The inequality (12) is thus equivalent to sgn(cotg ak) = sgn(cotg bk)
= sgn(cotg ck) = sgn(α) together with

| cotg ak| + | cotg bk| + | cotg ck| + |α|
k
>

1
| sin ak| +

1
| sin bk| +

1
| sin ck| . (15)

For any x ∈ R, it holds

1
| sinx| − | cotg x| =

1 − | cosx|
| sinx| =

{
1−cos x
| sin x| =

∣∣tg x
2

∣∣ for cosx > 0
1+cos x
| sin x| =

∣∣cotg x
2

∣∣ for cosx < 0

}

= min
{∣∣∣tg

x

2

∣∣∣ ,
∣∣∣cotg

x

2

∣∣∣
}

=
∣∣∣∣tg
({

x

2
· 2
π

}
π

2

)∣∣∣∣ =
∣∣∣tg
({x

π

} π
2

)∣∣∣ .

Consequently, (15) can be rewritten as
∣∣∣∣tg
({

ak

π

}
π

2

)∣∣∣∣+
∣∣∣∣tg
({

bk

π

}
π

2

)∣∣∣∣+
∣∣∣∣tg
({

ck

π

}
π

2

)∣∣∣∣ <
|α|
k
.

To conclude, the last inequality together with the condition sgn(cotg ak)
= sgn(cotg bk) = sgn(cotg ck) = sgn(α) is equivalent to gap condition (12),
as we have set up to prove. �

Observation 3.6. Local minima of the function

F (k) :=
∣∣∣∣tg
({

ak

π

}
π

2

)∣∣∣∣+
∣∣∣∣tg
({

bk

π

}
π

2

)∣∣∣∣+
∣∣∣∣tg
({

ck

π

}
π

2

)∣∣∣∣

for k > 0 occur at the points mπ
a , mπ

b , mπ
c with m ∈ N.

An immediate consequence, in combination with Corollary 3.5, is that the
spectrum has open gaps for any α �= 0 when the lattice edges are commensu-
rate. If at least two of them are not commensurate, existence of gaps due the
condition GC1 depend on how fast the minima of F (k) decrease as k → ∞;
we will discuss it in more detail in the next section.
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3.4. Gap Condition GC2

Obviously, condition GC2 can be satisfied only if 1
| sin �1k| >

1
| sin �2k| + 1

| sin �3k|
holds for a certain choice {�1, �2, �3} = {a, b, c}. We begin with the following
auxiliary result.

Lemma 3.7. If x1, x2, . . . , xN are all greater or equal to one and they satisfy
x1 > x2 + · · · + xN , then

x1 −
N∑

i=2

xi <
√
x2

1 − 1 −
N∑

i=2

√
x2

i − 1.

Proof. We prove the statement by induction in N . To begin with, we prove
for N = 2 and any x1 > x2 ≥ 1 the implication

x1 > x2 ⇒ x1 − x2 <
√
x2

1 − 1 −
√
x2

2 − 1.

We rewrite this statement as x1 −
√
x2

1 − 1 < x2 −
√
x2

2 − 1, which is
equivalent to

1
x1 +

√
x2

1 − 1
<

1
x2 +

√
x2

2 − 1
,

and this is obviously valid under the assumption x1 > x2. Next we assume
that the claim holds true for an N ≥ 2, and we want to demonstrate for any
x1, x2, . . . , xN , xN+1 ≥ 1 the implication

x1 > x2 + · · · + xN+1 ⇒ x1 −
N+1∑

i=2

xi <
√
x2

1 − 1 −
N+1∑

i=2

√
x2

i − 1.

We set xN + xN+1 = y. The induction hypothesis applied on the N -
tuple x1, . . . , xN−1, y implies that x1 −x2 − · · · −xN−1 − (xN +xN+1) is less
than

√
x2

1 − 1 −
N−1∑

i=2

√
x2

i − 1 −
√

(xN + xN+1)2 − 1 ;

thus it suffices to check for any xN , xN+1 ≥ 1 the inequality
√

(xN + xN+1)2 − 1 >
√
x2

N − 1 +
√
x2

N+1 − 1,

which is a straightforward task. �

Corollary 3.8. If 1
| sin �1k| >

1
| sin �2k| + 1

| sin �3k| and α cotg �1k ≥ 0, then

1
| sin �1k| − 1

| sin �2k| − 1
| sin �3k| ≤

∣∣∣cotg �1k + cotg �2k + cotg �3 +
α

k

∣∣∣ .

Proof. In view of the assumption α cotg �1k ≥ 0 we have
∣∣∣cotg �1k + cotg �2k + cotg �3 +

α

k

∣∣∣ ≥
∣∣∣cotg �1k +

α

k

∣∣∣− | cotg �2k|
−| cotg �3k| ≥ | cotg �1k| − | cotg �2k| − | cotg �3| ;
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thus it suffices to prove
1

| sin �1k| − 1
| sin �2k| − 1

| sin �3k| ≤ | cotg �1k| − | cotg �2k| − | cotg �3k|.

This is, however, a straightforward consequence of Lemma 3.7, it is enough
to set N = 3, x1 = 1

| sin �1k| , x2 = 1
| sin �2k| and x3 = 1

| sin �3k| . �

To sum up, the condition GC2 can give rise to an open gap only if the
greatest element of the set

{
1

| sin ak| ,
1

| sin bk| ,
1

| sin ck|
}

is greater than the sum
of the other two and the sign of the corresponding cotangent is opposite to
the sign of α. In particular, condition GC2 gives rise to no open gaps in the
Kirchhoff case, α = 0.

3.5. Negative Spectrum

Let us finally discuss briefly the negative spectrum of H, which is obviously
nonempty if and only if α < 0. Spectral condition (11) can be rephrased into
two gap conditions, similarly as it has been done in Section 3.2 for E > 0.
Specifically, the gap conditions for E = −κ2 acquire the following form:
∣∣∣coth aκ+ coth bκ+ coth cκ+

α

κ

∣∣∣ >
1

sinh aκ
+

1
sin bκ

+
1

sin cκ
, (16)

∣∣∣coth aκ+coth bκ+coth cκ+
α

κ

∣∣∣ <
2

sinh �minκ
− 1

sinh aκ
− 1

sinh bκ
− 1

sinh cκ
,

(17)

where �min := min{a, b, c}. One can describe circumstances under which
the spectrum has an open gap in its negative part.

Proposition 3.9. The negative part of σ(H) contains a gap adjacent to zero
exactly in the following two cases:
• |α| > 2

a + 2
b + 2

c ,
• 2

�min
> 1

a + 1
b + 1

c and 2
a + 2

b + 2
c − 2

�min
< |α| < 2

�min
.

Proof. We begin with condition (16) and compare the asymptotic behavior
of the two sides in the limit κ ↘ 0. Up to higher-order term we have

∣∣∣∣coth aκ+ coth bκ+ coth cκ− |α|
κ

∣∣∣∣ ≈
1
κ

∣∣∣∣
1
a

+
1
b

+
1
c

− |α|
∣∣∣∣ ,

1
| sinh aκ| +

1
| sin bκ| +

1
| sin cκ| ≈ 1

κ

(
1
a

+
1
b

+
1
c

)
,

hence the first gap condition can be for small values of κ satisfied provided∣∣ 1
a + 1

b + 1
c − |α|∣∣ > 1

a + 1
b + 1

c , which is true if and only if |α| > 2
a + 2

b + 2
c .

Let us proceed to (17). In the regime κ ↘ 0 we have

2
sinh �minκ

− 1
sinh aκ

− 1
sinh bκ

− 1
sinh cκ

≈ 1
κ

(
2
�min

− 1
a

− 1
b

− 1
c

)
,

therefore the condition acquires for small values of κ the form
∣∣∣∣
1
a

+
1
b

+
1
c

− |α|
∣∣∣∣ <

2
�min

− 1
a

− 1
b

− 1
c
.



Vol. 81 (2015) Spectrum of a Dilated Honeycomb Network 547

This inequality can be satisfied only if 2
�min

> 1
a + 1

b + 1
c , and under this

condition it is valid iff 2
a + 2

b + 2
c − 2

�min
< |α| < 2

�min
. �

4. The Case b = c

The spectral picture with respect to all four parameters of the model is rather
complex. In order to simplify the discussion, we focus from now on at the
case when the lattice can be stretched in one direction only assuming b = c.
The above gap conditions acquire then the following form,
• Condition GC1: E = k2 belongs to a gap in σ(H) if

∣∣∣cotg ak + 2 cotg bk +
α

k

∣∣∣ >
1

| sin ak| +
2

| sin bk| ; (18)

• Condition GC2: E = k2 belongs to a gap in σ(H) if

1
| sin ak| − 2

| sin bk| >
∣∣∣cotg ak + 2 cotg bk +

α

k

∣∣∣ ; (19)

note that (19) cannot be satisfied if | sin bk| < | sin ak|.
4.1. Gap Condition GC1 for b = c

According to Corollary 3.5, the gap condition for sufficiently large k (k ≥ |α|)
is equivalent to the conditions sgn(cotg ak) = sgn(cotg bk) = sgn(α) and
F (k) < |α|

k , where

F (k) =
∣∣∣∣tg
({

ak

π

}
π

2

)∣∣∣∣+ 2
∣∣∣∣tg
({

bk

π

}
π

2

)∣∣∣∣

with {·} defined by (14). To state the next result, we have to introduce two
classes of irrational numbers. A θ ∈ R is called badly approximable if there
exists a constant γ > 0 such that

∣∣∣θ − p
q

∣∣∣ > γ
q2 holds for all p, q ∈ N. Irra-

tional numbers that do not have this property will be called, following [3],
Last admissible [8]. Thus a θ ∈ R\Q is Last admissible if there exist increas-
ing integer sequences {pn}∞

n=1, {qn}∞
n=1 such that limn→∞ q2n

∣∣∣θ − pn

qn

∣∣∣ = 0.
Another way to characterize them is through the continued fraction represen-
tation: a number θ = [a0; a1, a2, . . . ] belongs to the class of Last admissible
numbers if the coefficient sequence {aj} is unbounded.

Theorem 4.1. Let θ = a
b .

(i) If θ ∈ Q, then the gap condition GC1 generates infinitely many gaps
in the spectrum of H for any α �= 0.

(ii) If θ is a Last admissible irrational number, then the gap condition
GC1 generates infinitely many gaps for any α �= 0.

(iii) Let θ be a badly approximable irrational number. There is a positive
α0 such that the condition GC1 generates no gaps above the threshold
k = |α| provided 0 ≤ |α| ≤ α0. On the other hand, if the coupling
constant satisfies |α| > 2π√

5
min{ 2

a ,
1
b }, there are infinitely many gaps.
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Proof. (i) If θ is rational, then there exists an L > 0 such that aL−1, bL−1

are integers, and therefore, F (k) = 0 holds true for k = mπ/L for every
m ∈ N. Moreover, if k = mπ

L +sgn(α)·δ for an even m and a sufficiently
small δ > 0, it holds F (k) < |α|

k and sgn(cotg ak) = sgn(cotgbk) =
sgn(α). Corollary 3.5 then implies the existence of infinitely many gaps.

(ii) If θ is Last admissible, then there exist increasing integer sequences
{pn}∞

n=1, {qn}∞
n=1 such that limn→∞ q2n

∣∣∣θ − pn

qn

∣∣∣ = 0. Moreover, one
can find sequences having, in addition, the property θ − pn

qn
> 0

or θ − pn

qn
< 0, respectively. Let us choose the sequences such that

sgn
(
θ − pn

qn

)
= sgn(α), and set kn = qnπ

b . Obviously, sgn(cotg(akn)) =

sgn(
{

a
b qn
}
). It holds

{a
b
qn

}
= θqn − ‖θqn‖ = qn

(
θ − ‖θqn‖

qn

)
= qn

(
θ − pn

qn

)
, (20)

where we have used the fact that pn is equal to ‖θqn‖, which immedi-
ately follows from limn→∞ q2n

∣∣∣θ − pn

qn

∣∣∣ = 0. Consequently, the equality
sgn(cotg(ak)) = sgn(α) holds for k = kn, as well as for k in a certain
neighbourhood of kn. Furthermore, (20) implies that

qn lim
k→ qnπ

b

F (k)=qn

∣∣∣tg
({a

b
qn

} π
2

)∣∣∣ < 4qn
∣∣∣
{a
b
qn

}∣∣∣

=4q2n

∣∣∣∣θ−
pn

qn

∣∣∣∣→0

holds as n → ∞. At the same time,

qn lim
k→ qnπ

b

|α|
k

=
|α|b
π

> 0 for all n ∈ N.

Comparing the two limits, we see that for any n ∈ N there exists a
neighbourhood of kn on which it holds F (k) < |α|

k . If we choose the
right neighbourhood for α > 0 and the left neighbourhood for α < 0,
the remaining condition sgn(cotg bk) = sgn(α) will be satisfied there
as well. To sum up, we have found infinitely many points kn with
certain neighbourhoods on which the gap condition (18) is satisfied.
In other words, the spectrum of the Hamiltonian has infinitely many
gaps located at certain integer multiples of π2

b2 . In the same way one
can check the existence of neighbourhoods of a sequence of points qnπ

a
where the gap condition is satisfied.

(iii) When θ is badly approximable, there exists, by definition, a constant
γ > 0 such that

∣∣∣θ − p
q

∣∣∣ > γ
q2 holds for all p, q ∈ N. This yields

F
(mπ
b

)
=
∣∣∣tg
({a

b
m
} π

2

)∣∣∣ >
∣∣∣
{a
b
m
}∣∣∣
π

2
= |θm− ‖θm‖| π

2

= m

∣∣∣∣θ − ‖θm‖
m

∣∣∣∣
π

2
> m

γ

m2

π

2
=
γπ

2m
,
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and consequently, F
(

mπ
b

)
> |α| (mπ

b

)−1 holds if |α| ≤ γπ2

2b , i.e. the
condition (18) is violated in this case in all the local minima mπ

b of F .
It remains to show that the gap condition is violated in the local minima

of F at the points mπ
a as well. It is a well known fact that a number θ is badly

approximable if and only if 1/θ is badly approximable. Moreover, if γ > 0
is the minimal constant such that

∣∣∣θ − p
q

∣∣∣ > γ
q2 holds for all p, q ∈ N, then

γ is at the same time the minimal constant such that
∣∣∣ 1θ − q

p

∣∣∣ > γ
p2 for all

q, p ∈ N. Hence we obtain, similarly as above,

F
(mπ
a

)
= 2

∣∣∣∣tg
({

b

a
m

}
π

2

)∣∣∣∣ > 2
∣∣∣∣

{
b

a
m

}∣∣∣∣
π

2
> 2m

γ

m2

π

2
=
γπ

m
.

Thus F
(

mπ
a

)
> |α| (mπ

a

)−1 holds if |α| ≤ γπ2

a , i.e. the gap condition
GC1 is violated at the local minima mπ

a of F as well. To sum up, for any
α such that 0 < |α| < γπ2 min{ 1

a ,
1
2b} all the local minima of F satisfy

F (k) > |α|
k . In other words, the condition GC1 (18) is violated everywhere

for k ≥ |α| (the threshold k ≥ |α| follows from Corollary 3.5).
On the other hand, by the Hurwitz extension of the Dirichlet theo-

rem [10, Chap. II] for any irrational θ there are increasing integer sequences
{pn}∞

n=1 and {qn}∞
n=1 such that

∣∣∣θ − pn

qn

∣∣∣ < 1√
5q2

n

holds for all n ∈ N. In addi-
tion, one can find such sequences with the property θ− pn

qn
> 0 or θ− pn

qn
< 0 for

all n ∈ N, respectively. This allows us to assume that sgn
(
θ − pn

qn

)
= sgn(α),

and setting kn := qnπ
b , we obtain

F (kn) =
∣∣∣tg
({a

b
qn

} π
2

)∣∣∣ .

Since {x} ∈ [−1/2, 1/2] holds for any x ∈ R by definition, we infer that∣∣{a
b qn
}

π
2

∣∣ ≤ π
4 . Furthermore, since | tg x| ≤ 4

π |x| holds for any |x| ≤ π
4 , we

get

F (kn) < 2
∣∣∣
{a
b
qn

}∣∣∣ = 2qn

∣∣∣∣θ − ‖θqn‖
qn

∣∣∣∣ = 4qn

∣∣∣∣θ − pn

qn

∣∣∣∣ < 2qn
1√
5q2n

=
2√
5qn

.

At the same time, we have
|α|
kn

=
|α|b
qnπ

,

and consequently, |α| > 2π√
5b

implies existence of neighbourhoods of qnπ
b on

which the gap condition is satisfied. In a similar way one can prove that
for |α| > 4π√

5a
there are neighbourhoods of qnπ

a on which the condition GC1
is satisfied. To conclude, the spectrum of H has infinitely many open gaps
generated by the condition (18) provided |α| > 2π√

5
min{ 2

a ,
1
b }. �

4.2. Gap Condition GC2 for b = c

As we have indicated, the “lower” gap condition acquires now the form (19).

Lemma 4.2. If k > |α| and the condition (19) is satisfied, then necessarily
1

| sin ak| >
2

| sin bk| , α cotg ak < 0 and cotg ak cotg bk < 0.
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Proof. Inequality (19) implies 1
| sin ak| − 2

| sin bk| > 0, which gives the first claim.
The second claim, α cotg ak < 0, follows from Corollary 3.8. It remains to
show that cotg ak cotg bk < 0. Note that 1

| sin ak| >
2

| sin bk| implies | sin ak| < 1
2 ,

hence ak ∈ (mπ − π
6 ,mπ + π

6

)
for an m ∈ N, and therefore | cotg ak| > √

3.
We use again reductio ad absurdum and suppose that cotg ak cotg bk ≥

0. Then for any k > |α| we have, with regard to | cotg ak| > √
3,

∣∣∣cotg ak + 2 cotg bk +
α

k

∣∣∣ ≥ | cotg ak| + 2| cotg bk| − |α|
k
,

and since − |α|
k > −1, we get

∣∣∣cotg ak + 2 cotg bk +
α

k

∣∣∣− 1
| sin ak| +

2
| sin bk|

> 2
(

1
| sin bk| + | cotg bk|

)
−
(

1
| sin ak| − | cotg ak|

)
− 1.

It is easy to check that 1
| sin x| + | cotg x| ≥ 1 and 1

| sin x| − | cotg x| ≤ 1
for all x ∈ R, hence

∣∣∣cotg ak + 2 cotg bk +
α

k

∣∣∣− 1
| sin ak| +

2
| sin bk| > 0,

which contradicts the inequality (19). �

Corollary 4.3. For each k > |α| the gap condition (19) is satisfied if and only
if 1

| sin ak| >
2

| sin bk| , cotg ak cotg bk < 0, α cotg ak < 0, and
∣∣∣G(k) − |α|

k

∣∣∣ <
1

| sin ak| − 2
| sin bk| , where

G(k) = | cotg ak| − 2| cotg bk|. (21)

Proof. With regard to Lemma 4.2, the gap condition (19) for a fixed k > |α|
requires cotg ak cotg bk < 0, α cotg ak < 0. Consequently, the gap condition
for k > |α| is satisfied if and only if cotg ak cotg bk < 0, α cotg ak < 0, and

∣∣∣∣| cotg ak| − 2| cotg bk| − |α|
k

∣∣∣∣ <
1

| sin ak| − 2
| sin bk| , (22)

which concludes the argument. �

Before we pass to analysis of the gaps generated by the condition GC2,
we prove a lemma that will be useful in dealing with rational ratio a

b and
with a

b being a badly approximable irrational number.

Lemma 4.4. Let θ = a
b .

(i) If θ ∈ Q, then there exists a c > 0 such that for all k > 0 it holds

cotg ak cotg bk < 0 ∧ | sin bk| ≥ 2| sin ak| ⇒ G(k) ≥ c.

(ii) If θ is a badly approximable irrational number, then there exists a c > 0
such that for all k > 0 it holds

cotg ak cotg bk < 0 ∧ | sin bk| ≥ 2| sin ak| ⇒ G(k) >
c

k
.
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Proof. Our aim is to estimate the function G(k) = | cotg ak|−2| cotg bk| from
below subject to the condition cotg ak cotg bk < 0 ∧ | sin bk| ≥ 2| sin ak|.

The function G(k) attains local minima for | sin ak| = 1 and tends to
−∞ for sin bk = 0. Since both | sin ak| = 1 and sin bk = 0 contradict the
condition | sin bk| ≥ 2| sin ak|, minimal values of G(k) in the regions given by
cotg ak cotg bk < 0 ∧ | sin bk| ≥ 2| sin ak| are attained for | sin bk| = 2| sin ak|.

The equality | sin bk| = 2| sin ak| gives

| cotg ak| − 2| cotg bk| =

√
1 − sin2 ak

| sin ak| − 2

√
1 − sin2 bk

| sin bk|

=

√
1 − sin2 ak

| sin ak| −
√

1 − 4 sin2 ak

| sin ak|
=

3| sin ak|√
1 − sin2 ak +

√
1 − 4 sin2 ak

≥ 3| sin ak|
2

,

hence G(k) ≥ 3
2 | sin ak|.

Let m ∈ N be chosen such that mπ is the integer multiple of π closest to
ak, i.e., |ak−mπ| ≤ π

2 . In the same way we introduce n ∈ N such that nπ is the
integer multiple of π closest to bk. Obviously, the condition cotg ak ·cotg bk <
0 implies (ak −mπ) · (bk − nπ) < 0.

It holds trivially | sin bk| ≤ |bk − nπ|. The condition | sin bk| = 2| sin ak|
implies | sin ak| ≤ 1

2 , hence |ak −mπ| ≤ π
6 . Since |x| ≤ π

6 ⇒ | sinx| ≥ 3
π |x|,

we have | sin ak| = | sin(ak −mπ)| ≥ 3
π |ak −mπ|.

With regard to the estimates of | sin ak| and | sin bk| obtained above, it
is easy to see that the quantity | sin ak| for k solving the equation | sin bk| =
2| sin ak| is necessarily greater or equal to the quantity 3

π |ak − mπ| for k
solving the equation |bk − nπ| = 2 · 3

π |ak − mπ|. Let us find such a k. The
condition (ak−mπ) · (bk− nπ) < 0 together with |bk− nπ| = 2 · 3

π |ak−mπ|
gives the equation bk−nπ = −2· 3

π (ak−mπ). Its solution reads k′ = 6m+πn
6a+πb π.

Therefore, cotg ak cotg bk < 0 ∧ | sin bk| ≥ 2| sin ak| implies

G(k) ≥ 3
2

· 3
π

|ak′ −mπ| =
9
2π

∣∣∣∣a
6m+ πn

6a+ πb
π −mπ

∣∣∣∣ =
9π
2

· |an− bm|
6a+ πb

. (23)

(i) Let θ ∈ Q, i.e., a = pL, b = qL for certain p, q ∈ N and L > 0. Then the
just obtained bound (23) gives

G(k) ≥ 9π
2

· |pLn− qLm|
6pL+ πqL

,

where L at the right-hand side can be obviously canceled. Note that the
expression pn− qm is necessarily nonzero: was it zero, then |ak′ −mπ| would
hold in view of (23), contradicting thus the condition (ak−mπ)·(bk−nπ) < 0.
Sincem,n, p, q ∈ N by assumption, we have the trivial estimate |np−mq| ≥ 1.
To sum up,

cotg ak cotg bk < 0 ∧ | sin bk| ≥ 2| sin ak| ⇒ G(k) ≥ 9π
2

· 1
6p+ πq

,

which proves the first claim with c = 9π
2(6p+πq) .
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(ii) Let θ be badly approximable. Then θ′ := 1/θ is badly approximable as
well, i.e. there exists a γ > 0 such that

∣∣θ′ − n
m

∣∣ > γ
m2 holds for all n,m ∈ N.

Using the estimate (23) again, we obtain

G(k) ≥ 9π
2

· |an− bm|
6a+ πb

=
9π
2
am

∣∣ n
m − b

a

∣∣
6a+ πb

=
9π
2

am

6a+ πb

∣∣∣θ′ − n

m

∣∣∣

>
9π
2

am

6a+ πb
· γ

m2
=

9π
2

γ

6a+ πb
· a
m
.

We already know that |ak −mπ| ≤ π
6 , hence k ≥ π

a

(
m− 1

6

) ≥ π
a · 5m

6 .
It means that a

m ≥ 5π
6 · 1

k , which allows us to estimate kG(k) as follows,

kG(k) >
9π
2

γ

6a+ πb
· 5π

6
.

This yields the claim (ii) with c = 15π2γ
4(6a+πb) concluding thus the proof.

�
Corollary 4.5. Let θ = a

b .
(i) If θ ∈ Q, then the condition (19) generates at most finitely many gaps.
(ii) If θ is a badly approximable irrational, there exists a positive α0 such

that the condition (19) generates no gaps for 0 ≤ |α| ≤ α0.

Proof. According to Corollary 4.3, if k is a solution of (19), then 1
| sin ak| ≥

2
| sin bk| , cotg ak cotg bk < 0, and

∣∣∣G(k) − |α|
k

∣∣∣ ≤ 1
| sin ak| − 2

| sin bk| .
(i) Let θ ∈ Q. With regard to Lemma 4.4, there exists a c > 0 such that

1
| sin ak| >

2
| sin bk| ∧ cotg ak cotg bk < 0 ⇒ G(k) ≥ c

holds for all k > 0. Consequently, for k → ∞ we have G(k) > |α|
k . This

allows us to remove the absolute value at the left-hand side of the condition∣∣∣G(k) − |α|
k

∣∣∣ ≤ 1
| sin ak| − 2

| sin bk| , which yields

2
(

1
| sin bk| − | cotg bk|

)
−
(

1
| sin ak| − | cotg ak|

)
≤ |α|

k
. (24)

One can see, similarly as in the proof of Lemma 4.4, that the left-hand
side of (24) attains its local minima with respect to the condition 1

| sin ak| ≥
2

| sin bk| ∧ cotg ak cotg bk < 0 at values k satisfying 1
| sin ak| = 2

| sin bk| . This
gives a necessary condition: Inequality (24) can be satisfied only if

−2| cotg bk| + | cotg ak| ≤ |α|
k
,

i.e., for G(k) ≤ |α|
k . This is, however, impossible for k → ∞, because |α|

k → 0
and G(k) ≥ c > 0 due to the result of Lemma 4.4.
(ii) Let θ be badly approximable. In Lemma 4.4 we proved the existence of a
c > 0 such that for all k > 0,

1
| sin ak| >

2
| sin bk| ∧ cotg ak cotg bk < 0 ⇒ G(k) >

c

k
.

In the rest of the proof we will demonstrate that one can set α0 := c.
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Let us consider an α obeying |α| ≤ α0 := c. For such α we have G(k) >
c
k ≥ |α|

k . Therefore, we can again remove the absolute value at the left-

hand side of
∣∣∣G(k) − |α|

k

∣∣∣ ≤ 1
| sin ak| − 2

| sin bk| , and obtain the condition (24).
Since the left-hand side attains its minimum with respect to the condition

1
| sin ak| ≥ 2

| sin bk| ∧ cotg ak cotg bk < 0 at k satisfying 1
| sin ak| = 2

| sin bk| , it

must hold G(k) ≤ |α|
k . However, for |α| < α0 we have G(k) > |α|

k (see above),
i.e., the last inequality cannot be fulfilled. �

Theorem 4.6. Let θ = a
b .

(i) If θ is a Last admissible irrational number, then the condition (19) gen-
erates infinitely many gaps for any α �= 0.

(ii) If θ is a badly approximable irrational, the condition (19) generates
infinitely many gaps provided |α| ≥ 4π√

5a
.

Proof. We have shown that condition (19) is equivalent to 1
| sin ak| >

2
| sin bk| ,

α cotg bk > 0, α cotg ak < 0, and
∣∣∣G(k) − |α|

k

∣∣∣ < 1
| sin ak| − 2

| sin bk| for G given
by equation (21), see Corollary 4.3. In particular, in the proof of Lemma 4.2
we have demonstrated that the system of conditions can be satisfied only for
ak ∈ (mπ − π

6 ,mπ + π
6

)
, i.e. for k in certain neighbourhoods of mπ

a .
(i) If θ is a Last admissible number, the same is true for θ′ := 1/θ. We
can proceed in a way similar to the proof of Theorem 4.1. There are inte-
ger sequences {pn}∞

n=1 and {qn}∞
n=1 such that limn→∞ q2n

∣∣∣θ′ − pn

qn

∣∣∣ = 0 and

sgn
(
θ′ − pn

qn

)
= sgn(α). Since limk→ qnπ

a
G(k) = ∞, it holds G(k)− |α|

k > 0 in
sufficiently small neighbourhoods of qnπ

a . Therefore, in small neighbourhoods

of qnπ
a the condition

∣∣∣G(k) − |α|
k

∣∣∣ < 1
| sin ak| − 2

| sin bk| acquires the form

2
(

1
| sin bk| − | cotg bk|

)
−
(

1
| sin ak| − | cotg ak|

)
<

|α|
k

; (25)

let us denote 2
(

1
| sin bk| − | cotg bk|

)
−
(

1
| sin ak| − | cotg ak|

)
=: W (k) for the

sake of brevity. Then

qn lim
k→ qnπ

a

W (k) = 2qn

(
1∣∣sin b
aqnπ

∣∣ −
∣∣∣∣cotg

b

a
qnπ

∣∣∣∣

)
= 2qn

∣∣∣∣tg
({

b

a
qn

}
π

2

)∣∣∣∣ .

Since
∣∣{ b

aqn
}

π
2

∣∣ ≤ π
4 according to the definition (14) and |x| ≤ | tg x| ≤

4
π |x| holds for |x| ≤ π

4 , we get

qn lim
k→ qnπ

a

W (k) < 4qn

∣∣∣∣

{
b

a
qn

}∣∣∣∣ = 4q2n

∣∣∣∣θ
′ − ‖θ′qn‖

qn

∣∣∣∣ = 4q2n

∣∣∣∣θ
′ − pn

qn

∣∣∣∣→ 0

as n → ∞. At the same time we have

qn lim
k→ qnπ

a

|α|
k

=
|α|a
π

= const. > 0,
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and therefore inequality (25) is satisfied on a certain neigbourhood of qnπ
a for

every n ∈ N. Let us check the remaining conditions from Corollary 4.3. We
will show that α cotg bk > 0 and α cotg ak < 0. The equation α cotg bk > 0 is
satisfied due to the choice of the sequence {qn}∞

n=1. The equation α cotg ak <
0 can be satisfied by choosing a left (if α > 0) or right (if α < 0) neighbour-
hood of qnπ

a . To sum up, there are infinitely many integers qn ∈ N such that
the gap condition (19) is satisfied for k belonging to certain right or left
neighbourhood of qnπ

a for every n ∈ N.
(ii) Let θ be an irrational number and θ′ = 1/θ. We shall demonstrate
that if |α| ≥ π2√

5a
, then there are infinitely many q ∈ N such that k in

certain neighbourhoods of qπ
a satisfy the inequalities 1

| sin ak| >
2

| sin bk| and∣∣∣G(k) − |α|
k

∣∣∣ < 1
| sin ak| − 2

| sin bk| together with the conditions α cotg bk > 0
and α cotg ak < 0. The first inequality is obviously valid for all k sufficiently
close to qπ

a with any q ∈ N. As for the second one, note that for k sufficiently
close to qπ

a it holds G(k) > |α|
k , therefore, we shall prove that

lim
k→ qπ

a

W (k) < lim
k→ qπ

a

|α|
k

for W (k) introduced in part (i) above. We have

lim
k→ qπ

a

W (k) = 2

(
1∣∣sin b
aqπ

∣∣ −
∣∣∣∣cotg

b

a
qπ

∣∣∣∣

)
= 2

∣∣∣∣tg
({

b

a
q

}
π

2

)∣∣∣∣ .

Similarly as in part (i), we estimate the right-hand side of the last
equation from above by 4

∣∣{ b
aq
}∣∣. For any irrational θ there are infinitely

many p, q ∈ N such that
∣∣∣θ − p

q

∣∣∣ < 1√
5q2 ; in particular, for infinitely many

q ∈ N it holds
∣∣∣∣

{
b

a
q

}∣∣∣∣ = |θq − ‖θq‖| = q

∣∣∣∣θ − ‖θq‖
q

∣∣∣∣ < q
1√
5q2

=
1√
5q
.

Consequently, for such q we have

lim
k→ qπ

a

W (k) <
4√
5q
.

On the other hand, limk→ qπ
a

|α|
k = |α|a

qπ , and therefore

lim
k→ qπ

a

W (k) < lim
k→ qπ

a

|α|
k
,

holds provided |α| ≥ 4π√
5a

. In other words, there are infinitely many q ∈ N

such that the inequality G(k) < |α|
k is valid in a certain neighbourhood of qπ

a .
Let us proceed to the condition α cotg bk > 0. There are infinitely

many q ∈ N such that
{

b
aq
}
> 0 and infinitely many q ∈ N such that{

b
aq
}
< 0. Since sgn

(
cotg b qπ

a

)
= sgn

{
b
aq
}
, we conclude that inequality

(25) and α cotg bk > 0 can be satisfied simultaneously in certain “Dirichlet
point” neighbourhoods for infinitely many q ∈ N. Finally, the last condition
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Table 1. Number of gaps in σ(H)

|α| θ := a
b Number

of gaps
generated by
condition (18)

Number
of gaps
generated by
condition (19)

Total
number
of gaps

0 ∈ R 0 0 0
�= 0 ∈ Q ∞ < ∞ ∞
�= 0 Last admissible ∞ ∞ ∞
Large Badly approximable ∞ ∞ ∞
Small Badly approximable < ∞ < ∞ < ∞

α cotg ak < 0 is obviously fulfilled in a sufficiently small left (if α > 0) or
right (if α < 0) neighbourhood of qπ

a for any q ∈ N. �

4.3. Summary

The structure of gaps in the spectrum of H is obtained as a combination of
the results of Sections 4.1 and 4.2. The summary is displayed in Table 1.

We see that essentially three situations are possible, namely:
• σ(H) = [0,∞). This situation is characteristic for Kirchhoff couplings

in the vertices of our graph, regardless of the edge lengths ratio θ.
• σ(H) has finitely many gaps. This happens when the edge lengths ratio

θ is a badly approximable irrational number and the vertices support a
sufficiently weak (but nonzero) δ-coupling.

• In all the remaining cases there are infinitely many gaps in σ(H).

5. Conclusions and Open Questions

We have analyzed the spectrum of the quantum graph Hamiltonian describing
a stretched hexagonal lattice with a δ-coupling in the vertices, with a par-
ticular attention to the case when the stretch is parallel to one of the edges.
In contrast to the case of a rectangular lattice [3,4] we have two different
conditions determining the spectral gaps. They have nevertheless common
features with respect to the number-theoretic properties of the lattice geom-
etry, in particular, the existence of a critical coupling strengths needed to
open spectral gaps in case of badly approximable edge lengths ratios.

We have recalled in the introduction the result of the paper [1], namely
that under the incommensurability requirement the gap density is indepen-
dent in the Kirchhoff case of the edge lengths. This is certainly true here as
for α = 0 we have no gaps; note that for a Last admissible θ all the gaps
close in the limit α → 0, for a badly approximable one they close already for
a sufficiently small but nonzero α. The authors of [1] conjectured that the
result about the gaps density remains valid qualitatively also for other vertex
couplings. The above mentioned conclusion is in accord with the conjecture,
at least for a badly approximable θ and small α. We expect, however, that
the gap density will be zero for all values of α; to prove this claim one has to
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work out the gap asymptotic behavior for k → ∞ in a similar way as it was
done in [3,4] for a rectangular lattice. The results of those papers also show
that the claim about the qualitatively same behavior has to be formulated
with a certain caution. If the δ coupling in a rectangular lattice is replaced by
a δ′

s one [3], the density is again independent of the edge lengths, however, its
value is now substantially different, since it is now the spectral bands which
have density zero.

Our results leave various other questions open. An obvious one concerns
the general case where we know that there are infinitely many open gaps for
commensurate edges and α �= 0; once the commensurability hypothesis is
abandoned we expect number-theoretic effect similar to those we have seen
in the particular situation discussed in Sect. 4. In addition to that, how-
ever, one wonders whether there are other number theoretic spectral features
for |α| beyond the critical values similar to those observed in [4]. In con-
nection with Corollary 4.5(i) it would be also interesting to know whether
one can have situations with a finite number of open gaps analogous to a
Bethe–Sommerfeld-type spectrum of usual periodic Schrödinger operators in
dimension two.
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