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1. Introduction

Quantum graphs attracted a lot of interest recently. There are several rea-

sons for that. On one hand these models are useful as descriptions of vari-

ous structures prepared from semiconductor wires, carbon nanotubes, and

other substances. On the other hand they provide a tool to study proper-

ties of quantum dynamics in situations when the system has a nontrivial

geometrical or topological structure.

Quantum graph models contain typically free parameters related to cou-

pling of the wave functions at the graph vertices, and to get full grasp of the

theory one has to understand their physical meaning. A natural approach

to this question is to investigate “fat graphs”, that is, systems of thin tubes

built over the skeleton of a given graph, and to analyze its limit as the tube

thickness tends to zero.

While simple at a glance, the problem is in fact rather difficult and its

understanding is being reached through a long series of works. The aim of

the present paper is to review some recent achievements in this area. We

present this survey in a non-technical way referring for detailed proofs and

a wider background to the literature, in particular, to our recent papers

http://arxiv.org/abs/1011.6019v2
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[7,19]. Having said that it is important to stress that we will formulate the

problem and the results in a fully rigorous way.

2. Quantum graphs

2.1. A bit of history

The quantum graph concept was born in early days of quantum mechanics

being first suggested in the 1930’s by Linus Pauling as a model of aromatic

hydrocarbons, and worked out later by Ruedenberg and Scherr [37]. Then,

as it sometimes happen in the history of science, it was happily forgotten.

In a sense it might be surprising because the idea of a quantum particle

living on a graph is theoretically attractive, however, it was not enough

and for three decades quantum graph models enjoyed the status of an ob-

scure textbook example. This changed in the eighties, when the diminishing

size of structures produced in solid-state-physics laboratories reached the

state when the electron transport in them became dominantly ballistic and

quantum graphs suddenly reemerged as a useful model.

The list of physical system to which these methods can be applied kept

expanding. At the beginning it included microstructures fabricated from

semiconductor or metallic materials, later carbon nanotubes were added.

It is worth mentioning, however, that the same technique can be used also

to investigation of electromagnetic phenomena in large network-type struc-

tures [27], at least as long stationary situation is considered.

Quantum dynamics of a particle confined to a graph can mean var-

ious things, of course. Typically one considers a nonrelativistic situation

described by a Schrödinger operator supported by the graph. Often the

motion is free but in other situations one adds potentials corresponding to

external electric or magnetic fields, spin degrees of freedom, etc. Graphs

can support also Dirac operators. Such a model, too, was for a long time

regarded as a theoretician toy and attracted a limited attention only [3,4].

The situation changed dramatically two or three years ago with the discov-

ery of graphene in which electron behave effectively as relativistic particles

which triggered a wave of papers of the subject.

The literature on quantum graphs is nowadays immense; we are not

going to try to give a bibliographical review and refer instead to the pro-

ceedings volume of a recent Isaac Newton Institute programme [15] where

one can find an extensive guide to further reading.
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2.2. Vertex coupling

For simplicity let us consider a graph having a single vertex in form of a

star, i.e. n halflines with the endpoint connected. The state Hilbert space

H of such a system is =
⊕n

j=1 L
2(R+) and the particle Hamiltonian acts

on H as ψj 7→ −ψ′′
j ; the values of physical constants are irrelevant for our

discussion and we put conventionally ~ = 2m = 1.

The Hamiltonian domain consists of W 1,2 functions; in order to make it

self-adjoint we need to impose suitable boundary conditions at the vertex.

Since we deal with a second-order operator, the latter involve boundary

value Ψ(0) := {ψj(0)} and Ψ′(0) := {ψ′
j(0)}; conventionally they are writ-

ten in the form

AΨ(0) +BΨ′(0) = 0 (1)

proposed by Kostrykin and Schrader [28], where the n × n matrices A,B

give rise to a self-adjoint operator iff they satisfy the conditions

• rank (A|B) = n

• AB∗ is self-adjoint

The obvious drawback of (1) is that the pair A,B is not unique. The com-

mon way to remove the non-uniqueness [24,26,29] is to choose

A = U − I , B = i(U + I) , (2)

where U is an n × n unitary matrix; there are also other unique forms

more suitable for some purposes [7,8,30]; one of them we will need in Sec. 6

below. It is obvious from (2) that the coupling of n edges is characterized

in general by n2 real parameters.

There is a simple way to derive the boundary conditions with which

can be traced to [23] where it was used for n = 2. Self-adjointness requires

vanishing of the boundary form,
n∑

j=1

(ψ̄jψ
′
j − ψ̄′

jψj)(0) = 0 ,

which occurs iff the norms ‖Ψ(0)± iℓΨ′(0)‖Cn with a fixed ℓ 6= 0 coincide,

since the difference of the squared norms is just the lhs of the displayed rela-

tion. Consequently, the vectors must be related by an n×n unitary matrix,

which yields immediately (U − I)Ψ(0) + iℓ(U + I)Ψ′(0) = 0. It may seem

that we have an extra parameter here, however, matrices corresponding to

two different values of ℓ are related by

U ′ =
(ℓ + ℓ′)U + ℓ− ℓ′

(ℓ − ℓ′)U + ℓ+ ℓ′
,
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so it just fixes the length scale of the problem and we can put ℓ = 1

without loss of generality. Note also that the parameter matrix is closely

related to the scattering at the vertex, specifically, it coincides with the

on-shell scattering matrix at the momentum k = 1.

2.3. Examples of vertex coupling

Denote by J the n × n matrix whose all entries are equal to one; then

the unitary matrix U = 2
n+iαJ − I corresponds to the standard δ coupling

characterized by the conditions

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,

n∑

j=1

ψ′
j(0) = αψ(0) (3)

of “coupling strength” α ∈ R; we include also the case α = ∞, or U = −I,

when the edges are decoupled with Dirichlet conditions at the endpoints.

Another particular case of interest is α = 0 corresponding to the “free

motion”. It would be natural to call then (3) free boundary conditions,

however, they are mostly called Kirchhoff in the literaturea. Note that the

δ-couplings are the only ones with wave functions continuous at the vertex.

The second example to mention is the δ′s coupling, a counterpart to the

above one with the roles of functions and derivatives interchanged. The

corresponding unitary matrix is U = I − 2
n−iβJ giving

ψ′
j(0) = ψ′

k(0) =: ψ′(0) , j, k = 1, . . . , n ,

n∑

j=1

ψj(0) = βψ′(0) (4)

with β ∈ R; for β = ∞ we get decoupled edges with Neumann conditions.

3. Vertex understanding through approximations

3.1. Statement of the problem

The first question to pose is why we should be interested in quantum graph

vertex couplings. There are several reasons for that:

• One is mathematical. Different couplings define different Hamilto-

nians which have different spectral properties. Sometimes they can

be quite involved; as an example let us number theoretic properties

of rectangular lattice-graph spectra [13].

aThe name is generally accepted but unfortunate because in electricity it is associated
with current conservation at the junction, and in the quantum case any self-adjoint
coupling preserves probability current.
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• On a more practical side, the conductivity of nanostructures is

controlled typically by application of external fields. Understanding

of vertex coupling would give us an alternative mean to this goal.

• As a specific example, the authors of Ref. 10 used the generalized

point interaction on line as a model of a qubit; in a similar way

star graphs with n > 2 edges can similarly model qudits.

At a glance the vertex parameters can be interpreted easily. One should

replace the graph in question by a family of “fat graphs”, i.e. a tube net-

work built around the graph skeleton, with appropriate Laplacian as the

Hamiltonian. Such a system has no free parameters, so it would be enough

to inspect the squeezing limit with the tube diameter tends to zero and to

see which graph Hamiltonian we obtain. Unfortunately, as it is often the

case with simple answers, the problem is in reality rather complicated:

• The answer depends substantially on the type of the Laplacian sup-

ported by the tube network. The Neumann case is easier and after

an effort more than a decade long an understanding was reached

[17,18,22,31,34,36,38]. The drawback was that the limit gave the

free (Kirchhoff) boundary conditions only.

• the Dirichlet case is more difficult and only recently some substan-

tial results were obtained [1,5,12,25,32,33], nevertheless, a lot of

work remains to be done

Before proceeding to our main topic, let us review briefly the existing results

we have mentioned above.

3.2. Briefly on Dirichlet networks

The distinctive feature of the Dirichlet case is the energy blow-up associ-

ated with the fact that the transverse part of the Dirichlet Laplacian has

lowest eigenvalue proportional to d−2 where d is the tube diameter. To get

a meaningful result we have thus to use an energy renormalization which

can be done in different ways. Molchanov and Vainberg [32] chose the en-

r r r
✚✙
✛✘ r

0 λ1 λ λ2

Fig. 1. Energy renormalization
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ergy λ to be subtracted between the first and second transverse eigenvalue,

cf. Fig. 1, and obtained a nontrivial limit determined by scattering prop-

erties of the corresponding “fat star”. A drawback of this approach is that

leads to energy spectrum unbounded from below which is a feature one tries

to avoid in meaningful nonrelativistic models.

Most authors choose therefore the transverse threshold λ1 as the energy

to subtract. In such a case the limit is generically trivial giving disconnected

edges with Dirichlet endpoints [32,33]. However, the limit can be nontrivial

provided the tube system we start with has a threshold resonance [1,5,25];

a similar, closely related effect using finite star graphs was proposed in [12].

3.3. A survey on Neumann network results

Consider first for simplicity a finite connected graph M0 with vertices vk,

k ∈ K and edges ej ≃ Ij := [0, ℓj], j ∈ J ; the corresponding Hilbert space is

thus L2(M0) :=
⊕

j∈J L
2(Ij). The form u 7→ ‖u′‖2M0

:=
∑

j∈J ‖u′‖2Ij with

u ∈W 1,1(M0) is associated with the operator which acts as −∆M0
u = −u′′j

and satisfies the free boundary conditions.

M0 Mε

ej

vk

Uε,j

Vε,k

Fig. 2. Graph M0 and fat graph Mε

On the other hand, consider a Riemannian manifold X of dimension

d ≥ 2 and the corresponding space L2(X) w.r.t. volume dX equal to

(det g)1/2dx in a fixed chart. For u ∈ C∞
comp(X) we set

qX(u) := ‖du‖2X =

∫

X

|du|2dX , |du|2 =
∑

i,j

gij∂iu ∂ju ; (5)

the closure of this form is associated with the self-adjoint Neumann Lapla-

cian ∆X on the X . Let us stress that within this framework we can treat

both “solid” tubes with the boundary at which Neumann condition is im-

posed, as well as “sleeve-type” manifolds without a boundary when the
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particle is supposed to live on the surface – cf. Fig. 2. This is made possible

by the similarity of the transverse ground-state eigenfunction in both cases.

The “fat graphs” Mε associated with the graph M0 are all constructed

from X by taking a suitable ε-dependent family of metrics. This the ap-

proach was used in [17]; in contrast to earlier work such as [31] one also

need not assume that the network is embedded in a Euclidean space since

only intrinsic geometrical properties are involved.

The analysis requires dissection of Mε into a union of edge and vertex

components, Uε,j and Vε,k, respectively, with appropriate scaling properties,

• for edge regions we assume that Uε,j is diffeomorphic to Ij × F

where F is a compact and connected manifold (with or without a

boundary) of dimension m := d− 1

• for vertex regions we assume that the manifold Vε,k is diffeomorphic

to an ε-independent manifold Vk

In this setting one can prove the following result [17]:

Theorem 3.1. Under the stated assumptions we have eigenvalue conver-

gence, λk(Mε) → λk(M0) , k = 1, 2, . . . , as ε→ 0.

The shrinking limit thus leads to free boundary conditions only, but also

in other respects the stated result is not particularly strong, for instance,

in that it concerns the eigenvalue convergence in finite graphs only. One

can do better: in Ref. 34 Olaf Post proved a norm-resolvent convergence

∆Mε
→ ∆M0

as ε → 0+ on generally infinite graphs under natural uni-

formity conditions analogous to those of used in Theorem 4.3, namely (i)

existence of nontrivial bounds on vertex degrees and volumes, edge lengths,

and the second Neumann eigenvalues at vertices, (ii) appropriate scaling

(analogous to the described above) of the metrics at the edges and ver-

tices. The involved operators act on different Hilbert spaces, of course, and

the stated limiting relation makes sense with a suitable identification map

which we will describe below.

Other extensions are possible. For graphs with semi-infinite “outer”

edges, e.g., the problem typically exhibits series of resonances, and one

may ask what happens with them if the graph is replaced by a family of

“fat” graphs. Using exterior complex scaling in the “longitudinal” variable

one can prove a convergence result for resonances as ε → 0 [18]; the same

is true for embedded eigenvalues of the graph Laplacian which may remain

embedded or become resonances for ε > 0.

Hence we have a number of convergence results is available for squeez-
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ing limit of Neumann-type thin tube networks, however, the limiting oper-

ator corresponds always to free boundary conditions only. The question is

whether one can do better.

4. Beyond the free coupling

4.1. A graph inspiration

It is obvious that one has to add a new feature to the approximating family

to get more general results. Let us look how one can approximate δ coupling

on graphs using families of scaled potentials. For simplicity we will consider

again the n-edge star graph as in Sec. 2.2, however, we replace the Laplacian

at the edges by a Schrödinger operator, ψj 7→ −ψ′′
j +Vjψj . In order make the

problem well-defined we have to impose requirement on the potential; we

suppose that Vj ∈ L1
loc(R+) , j = 1, . . . , n. If the boundary conditions at the

vertex are (3) with the parameter α ∈ R we get a self-adjoint operator which

we denote as Hα(V ). Let now the potential contain a scaled component,

Wε,j :=
1

ε
Wj

(x
ε

)
, j = 1, . . . , n , (6)

then we have the following result [14]:

Theorem 4.1. Suppose that the potentials Vj ∈ L1
loc(R+) are below

bounded and Wj ∈ L1(R+) for j = 1, . . . , n . Then

H0(V +Wε) −→ Hα(V )

as ε→ 0+ in the norm resolvent sense, with the coupling parameter defined

as α :=
∑n

j=1

∫∞

0
Wj(x) dx.

Our aim is to “lift” this result to tube networks.

4.2. Single vertex networks

Consider first a star graph again. Let G have one vertex v and deg v

adjacent edges of lengths ℓe ∈ (0,∞]. The corresponding Hilbert space

is L2(G) :=
⊕

e∈E L
2(Ie), the decoupled Sobolev space of order k is

W 2,k
max(G) :=

⊕
e∈E W

2,k(Ie) together with its natural norm.

Let p = {pe} have components pe > 0 for e ∈ E; we introduce it because

we want to consider squeezing limits also in the situation when the tubes

have different cross sections. The Sobolev space associated with weight p is

W 2,k
p (G) :=

{
f ∈W 2,k

max(G) : f ∈ Cp
}
,
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where f := {fe(0)}, in particular, if all the components are equal, p =

(1, . . . , 1), we arrive at the continuous Sobolev space W 2,1(G) :=W 2,1
p (G).

Next we have to introduce operators on the graph. We start with the

(weighted) free Hamiltonian ∆G defined via the quadratic form d = dG,

d(f) := ‖f ′‖2G =
∑

e

‖e′‖2Ie and dom d :=W 1,1
p (G)

for a fixed p (we drop the index p); the form is a closed as related to the

Sobolev norm ‖f‖2W 1,1(G) = ‖f ′‖2G+‖f‖2G. The Hamiltonian with δ-coupling

of strength q is defined via the quadratic form h = h(G,q) given by

h(f) := ‖f ′‖2G + q(v)|f(v)|2 and dom h :=W 2,1
p (G)

Using standard Sobolev arguments one can show [19] that the δ-coupling

is a “small” perturbation of ∆G by estimating the difference h(f)− d(f).

The manifold model of the “fat” graph is constructed as in the previous

section. Given ε ∈ (0, ε0] we associate a d-dimensional manifold Xε to the

graph G in the following way: to the edge e ∈ E and the vertex v we ascribe

the Riemannian manifolds

Xε,e := Ie × εYe and Xε,v := εXv ,

respectively, where εYe is a manifold Ye equipped with metric hε,e := ε2he
and εXε,v carries the metric gε,v = ε2gv . As before, we use the ε-

independent coordinates (s, y) ∈ Xe = Ie × Ye and x ∈ Xv, so the radius-

type parameter ε only enters via the Riemannian metric. Let us stress this

includes the case of the ε-neighborhood of an embedded graph G ⊂ Rd, but

only up to a longitudinal error of order of ε; this problem can be dealt with

again using an ε-dependence of the metric in the longitudinal direction.

The Hilbert space of the manifold model L2(Xε) can be decomposed as

L2(Xε) =
⊕

e

(
L2(Ie)⊗ L2(εYe)

)
⊕ L2(εXv)

with the norm given accordingly by

‖u‖2Xε
=
∑

e∈E

εd−1

∫

Xe

|u|2dyeds+ εd
∫

Xv

|u|2dxv ,

where dxe = dyeds and dxv denote the Riemannian volume measures asso-

ciated to the (unscaled) manifolds Xe = Ie × Ye and Xv, respectively. We

also introduce the Sobolev space W 1,1(Xε) of order one defined conven-

tionally as the completion of the space of smooth functions with compact

support under the norm ‖u‖2W 1,1(Xε)
= ‖du‖2Xε

+ ‖u‖2Xε
.
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Next we pass to operators on the manifold. The Laplacian ∆Xε
on Xε

is given via its quadratic form dε(u) equal to

‖du‖2Xε
=
∑

e∈E

εd−1

∫

Xe

(
|u′(s, y)|2+

1

ε2
|dYe

u|2he

)
dyeds+ε

d−2

∫

Xv

|du|2gv dxv

where u′ is the longitudinal derivative, u′ = ∂su, and du is the exterior

derivative of u. Again, dε is closed by definition. Adding a potential, we

define the Hamiltonian Hε as the operator associated with the form hε =

h(Xε,Qε) given by

hε = ‖du‖2Xε
+ 〈u,Qεu〉Xε

,

where the potential Qε is supported in the vertex region Xv only. Now we

use graph result mentioned as an inspiration and choose

Qε(x) =
1

ε
Q(x) ,

where Q = Q1 is a fixed bounded and measurable function on Xv. The

reader may wonder that in comparison to (6) the factor ε−1 is missing in

the argument, however, this is due to our choice to perform the squeezing

by the change of the metric only.

One can establish the relative (form-)boundedness of Hε with respect

to the free operator ∆Xε
: to a given η ∈ (0, 1) there is εη > 0 such that the

form hε is relatively form-bounded with respect to the free form dε, that is,

there is C̃η > 0 such that

|hε(u)− dε(u)| ≤ η dε(u) + C̃η‖u‖
2
Xε

whenever 0 < ε ≤ εη with explicit constants εη and C̃η. The latter are given

explicitly in [19]; what is important that they are expressed in terms of the

parameters of the model which we give below.

We have mentioned above that our operators acts in different spaces,

namely the Hilbert spaces H = L2(G) and H̃ε = L2(Xε) and their Sobolev

counterparts, hence we need to define quasi-unitary operators to relate the

graph and manifold Hamiltonians. For further purposes we denote

pe := (vold−1Ye)
1/2 and q(v) =

∫

Xv

Qdxv ;

recall that we introduced the weights pe to be able to treat situations when

the tube cross sections Ye are mutually different.

First we define the graph-to-manifold map, J : H → H̃ε, by

Jf := ε−(d−1)/2
⊕

e∈E

(fe ⊗ 1−e)⊕ 0 , (7)
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where 1−e is the normalized eigenfunction of Ye associated to the lowest

(zero) eigenvalue, i.e. 1−e(y) = p−1
e . Next introduce the following averaging

operators

∫
−vu :=

∫
−

Xv

udxv and
∫
−eu(s) :=

∫
−

Ye

u(s, ·)dye

The map in the opposite direction, J ′ : H̃ε → H, is given by the adjoint,

(J ′u)e(s) = ε(d−1)/2〈1−e, ue(s, ·)〉Ye
= ε(d−1)/2pe

∫
−

e
u(s) .

In an analogous way one can construct identification maps between the

Sobolev spaces. They are need in the proofs but not for stating the result,

hence we refer the reader to [19] for their explicit forms.

Using these notions in combination with an abstract convergence result

of [34] one can then arrive at the following conclusions [19]:

Theorem 4.2. As ε→ 0, we have

‖J(H − z)−1 − (Hε − z)−1J‖ = O(ε1/2),

‖J(H − z)−1J ′ − (Hε − z)−1‖ = O(ε1/2)

for z /∈ [λ0,∞). Moreover, φ(λ) = (λ − z)−1 can be replaced by any mea-

surable, bounded function converging to a constant as λ → ∞ and being

continuous in a neighborhood of σ(H).

Corollary 4.1. The spectrum of Hε converges to σ(H) uniformly on any

finite energy interval, and the same is true for the essential spectra.

Corollary 4.2. For any λ ∈ σdisc(H) there exists a family {λε} with λε ∈

disc(Hε) such that λε → λ as ε → 0, and moreover, the multiplicity is

preserved. If λ is a simple eigenvalue with normalized eigenfunction φ, then

there exists a family of simple normalized eigenfunctions {φε}ε of Hε such

that ‖Jφ− φε‖Xε
→ 0 holds as ε→ 0.

4.3. The general case

So far we have talked for simplicity about the star-shaped graphs only. The

same technique of “cutting” the graph and the corresponding manifold into

edge and vertex regions works also in the general case. As a result of the

analysis performed in Ref. 19 we get

Theorem 4.3. Assume that G is a metric graph and Xε the corresponding

approximating manifold. If

sup
v∈V

volXv

vol∂Xv
<∞ , sup

v∈V
‖Q↾Xv‖∞ <∞ , inf

e∈E
ℓe > 0
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and

inf
v∈V

λ2(v) > 0 , inf
e∈E

λ2(e) > 0 ,

where λ2 denotes the second Neumann eigenvalue in the appropriate mani-

fold region, then the corresponding Hamiltonians H = ∆G+
∑

v q(v)δv and

Hε = ∆Xε
+
∑

v ε
−1Qv are O(ε1/2)-close with the error depending only on

the above indicated global constants.

In this way we have managed to solve the problem for quantum graphs with

δ-couplings under mild uniformity conditions.

5. Discontinuity at the vertex: the example of δ′
s

While the above results break the Kirchhoff restriction of the previous stud-

ies, they do not give a full answer; recall that the δ-couplings at a vertex v

represent a one-parameter subfamily in the n2 parameter family, n = deg v,

of all self-adjoint couplings. Let us now investigate the case of δ′s as a prime

example of coupling with functions discontinuous at the vertex.

5.1. The idea of Cheon and Shigehara

Our strategy will be the same as before, first we will construct an approx-

imation on the graph itself and then we we will lift it to the manifold.

The problem is not easy and its core is the question whether one can ap-

proximate the δ′-interaction on the line by means of (regular or singular)

potentials. It was believed for a considerable time that this problem has

no solution, until Cheon and Shigehara in the seminal paper [9] demon-

strated a formal approximation by means of of three δ-interaction; a sub-

sequent mathematical analysis [2,16] showed that it converges in fact in

norm-resolvent sense.

�
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�
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�
�
�
��

❅
❅

❅

q
�

�
�

❍❍❍❍

�
�
�
��

❅
❅

❅

r−→
a→ 0

βa

b(a)

c(a)

HβHb,c

Fig. 3. CS approximation scheme on a graph
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The idea can be extended to δ′s-coupling on a graph. A scheme of the

approximation is given on Fig. 3. One starts with a δ-coupling of strength

b(a) and adds δ-interactions of strength c(a) at the graph edges; the param-

eter a is the distance of the additional interactions from the vertex. Core of

the approximation lies in a suitable, a-dependent choice of the interaction

strengths: we put

Hβ,a := ∆G + b(a)δv0 +
∑

e

c(a)δve , b(a) = −
β

a2
, c(a) = −

1

a

which corresponds to the quadratic form

hβ,a(f) :=
∑

e

‖f ′
e‖

2 −
β

a2
|f(0)|2 −

1

a

∑

e

|fe(a)|
2, dom ha =W 2,1(G) .

Then we have the following result [6]:

Theorem 5.1. ‖(Hβ,a − z)−1 − (Hβ − z)−1‖ = O(a) holds as a → 0 for

z /∈ R, where ‖ · ‖ is the operator norm on L2(G).

Proof is by a direct computation. We note that the result is highly non-

generic, both resolvents are strongly singular as a→ 0 but in the difference

those singularities cancel.

5.2. The convergence result

XεG

aε = εα

v0 veea e1
ε

εα

ε ε

Xε,veXε,eε Xε,e1

Xε,v0

Fig. 4. Scheme of the lifting

Now we will lift the above graph approximation result to the manifold

according to the scheme depicted on Fig. 4. For simplicity assume that

the star graph in question is finite with all edges having the same length;

without loss of generality we may put it equal to one. In contrast to the
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previous section we have two parameters to deal with, the tube width ε and

the distance of the additional potentials; we choose a = aε = εα with α ∈

(0, 1) to be specified later. The crucial point is the choice of the additional

potentials. The simplest option is to assume that they are constant,

Qε,v(x) :=
1

ε
·
qε(v)

volXv
, x ∈ Xv

so that
∫
Xv
Qε,vdx = ε−1qε(v), where we put

qε(v0) := b(εα) = −βε−2α and qε(ve) := c(εα) = −ε−α .

The corresponding manifold Hamiltonian and the respective quadratic form

are then given by

Hβ
ε = ∆Xε

− ε−1−2α β

volXv0

χXv0
− ε−1−α

∑

e∈E

χXve
,

where χX is the indicator function of the set X , and

hβε (u) = ‖du‖2Xε
− ε−1−2α β

volXv0

‖u‖2Xε,v0
− ε−1−α

∑

e∈E

‖u‖2Xε,ve
,

respectively. Note that the unscaled vertex neighborhood Xve of each of the

added vertices ve has volume one by construction.

We employ again the identification operator (7). Using the same tech-

nique as in the δ case, one can prove the following result [19]:

Theorem 5.2. Assume that 0 < α < 1/13, then
∥∥(Hβ

ε − i)−1J − J(Hβ − i)−1
∥∥→ 0

holds as the radius parameter ε→ 0.

Remark 5.1. The theorem has analogous corollaries as the δ-coupling

result of the previous section, however, a caveat is due. If β < 0 the the

spectrum of Hβ,a is uniformly bounded from below as a → 0. If β ≥ 0, on

the other hand, the spectrum of Hβ,a is asymptotically unbounded from

below, inf σ(Hβ,a) → −∞ as a → 0. At the same time, for β ≥ 0 the

spectrum of the approximating operator Hβ
ε is asymptotically unbounded

from below, inf σ(Hβ
ε ) → −∞ as ε→ 0. This fact, existence of eigenvalues

which escape to −∞ in the limit does not contradict the fact that the limit

operator Hβ is non-negative. Recall that the spectral convergence holds

only for compact intervals I ⊂ R, in particular, σ(Hβ)∩ I = ∅ implies that

σ(Hβ
ε ) ∩ I = ∅ and σHβ,ε ∩ I = ∅ for ε > 0 small enough.

Remark 5.2. While it is easy to see that the parameter α in the approx-

imation must less than one, the value 1
13 is certainly not optimal.
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6. Full solution on the graph level

6.1. Going beyond δ and δ
′

s

The network approximations of the δ and δ′s-couplings described in the

two previous sections represent the present state of art in this question.

One naturally asks whether one can extend the technique to other vertex

couplings. Following the philosophy used here we should look first whether

such approximations exist on the graph level.

The simplest extension covers the class of couplings invariant w.r.t. per-

mutations of edges. It is a two-parameter family containing δ and δ′s as

particular cases; in the parametrization (2) its elements are characterized

by matrices U = aJ + bI with |b| = 1 and |b+ a deg v| = 1. The appropri-

ate approximation in the spirit of Theorem 5.1 was worked out in Ref. 20;

note that, as with δ and δ′s, the problem again splits into a one-dimensional

component in the subspace symmetric over the edges and its complement

which is trivial from the coupling point of view.

If we relax the symmetry requirement things become more complicated.

The first question is what we can achieve by modifications of the original

Cheon and Shigehara idea, placing a finite number of properly scaled δ-

interactions on each edge. The answer is given by the following claim [21]:

Proposition 6.1. Let G be an n-edged star graph and G(d) obtained by

adding a finite number of δs at each edge, uniformly in d, at the distances

O(d) as d → 0+. Suppose that these approximations yield conditions (1)

with some A, B as d → 0. The family which can be obtained in this way

depends on 2n parameters if n > 2, and on three parameters for n = 2.

It was demonstrated in Ref. 21 that a family with the maximum number

of parameters given in the proposition can be indeed constructed.

In order to get a wider class one has to pass to a more general approx-

imation. The idea put forward in Ref. 21 was to change locally the graph

topology by adding new edges in the vicinity of the vertex whose lengths

shrink to zero in the approximation. This yielded a family of couplings with(
n+1
2

)
parameters and real matrices A,B. To get a better result which will

be described below one has to do two more things:

• together with adding edges in the vicinity of the vertex one has also

to remove parts of the graph to optimize locally the approximating

graph topology,

• furthermore, one has to add local magnetic fields described by suit-

able vector potentials to be able to get couplings which are not
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invariant w.r.t. time reversion.

6.2. An alternative unique parametrization

In order to present the indicated approximation result we have to first

introduce another form of the boundary conditions (1) derived in Ref. 7.

Theorem 6.1. Consider a quantum graph vertex of degree n. If m ≤ n,

S ∈ C
m,m is a self-adjoint matrix and T ∈ C

m,n−m, then the relation
(
I(m) T

0 0

)
Ψ′ =

(
S 0

−T ∗ I(n−m)

)
Ψ (8)

expresses self-adjoint boundary conditions of the type (1). Conversely, for

any self-adjoint vertex coupling there is an m ≤ n and a numbering of the

edges such that the coupling is described by the boundary conditions (8) with

uniquely given matrices T ∈ Cm,n−m and self-adjoint S ∈ Cm,m.

Remark 6.1. As we have mentioned there are several unique forms of

the conditions (1). Kuchment [30] splits the boundary value space using

projections P,Q corresponding to Dirichlet, PΨ = 0, and Neumann, QΨ′ =

0, parts and the mixed conditions in the complement. It is easy to see

that parts singled out correspond to eigenspaces of U corresponding to

eigenvalues ∓1, respectively. The conditions (8) which one call the ST-form

single out the eigenspace corresponding to −1. There is also an analogue of

(8) symmetric w.r.t. the two singular parts, called PQRS-form, cf. Ref. 8.

6.3. A general graph approximation

In view of the above result one can put general self-adjoint boundary con-

ditions into the form (8) renumbering the edges if necessary. We will now

describe how those can be approximated by a family of graphs with locally

changed topology and added magnetic fields. For notational purposes we

adopt the following convention: the lines of the matrix T are indexed from

1 to m, the columns are indexed from m+ 1 to n.

The general vertex-coupling approximation, schematically depicted in

Fig. 5, consists of the following sequence of steps:

• Take n halflines, each parametrized by x ∈ R+, with the endpoints

denoted as Vj , and put a δ-coupling to the edges specified below

with the parameter vj(d) at the point Vj for all j = 1, . . . , n.

• Some pairs Vj , Vk, j 6= k, of halfline endpoints are connected by

edges of length 2d, and the center of each such joining segment is



October 28, 2018 11:47 WSPC - Proceedings Trim Size: 9in x 6in delhitalk10

17

Fig. 5. The scheme of the approximation. All the inner links are of length 2d, some
may be missing. The grey line symbolizes the vector potential A(j,k)(d).

denoted as W{j,k}. This happens if one of the following conditions

is satisfied:

(a) j = 1, . . . ,m, k ≥ m+ 1, and Tjk 6= 0 (or j ≥ m+ 1,

k = 1, . . . ,m, and Tkj 6= 0),

(b) j, k = 1, . . . ,m, and Sjk 6= 0 or (∃l ≥ m+ 1 )

(Tjl 6= 0 ∧ Tkl 6= 0 ).

• At each middle-segment point W{j,k} we place a δ interaction with

a parameter w{j,k}(d). The connecting edges of length 2d are con-

sidered as consisting of two segments of length d, and on each of

them the variable runs from zero atW{j,k} to d at the points Vj , Vk.

• On each connecting segment we put a vector potential of constant

value between the points Vj and Vk. We denote its strength between

the pointsW{j,k} and Vj asA(j,k)(d), and between the pointsW{j,k}

and Vk as A(k,j)(d). It follows from the continuity that A(k,j)(d) =

−A(j,k)(d) for any pair {j, k}.

The choice of the dependence of vj(d), w{j,k}(d) and A(j,k)(d) on the param-

eter d is crucial for the approximation. In order to describe it we introduce

the set Nj ⊂ {1, . . . , n} containing indices of all the edges that are joined

to the j-th one by a connecting segment, i.e.

Nj ={k ≤ m|Sjk 6= 0} ∪ {k ≤ m| (∃l ≥ m+ 1)(Tjl 6= 0 ∧ Tkl 6= 0)}

∪ {k ≥ m+ 1|Tjk 6= 0} for j ≤ m (9)

Nj ={k ≤ m|Tkj 6= 0} for j ≥ m+ 1
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We distinguish two cases regarding the indices involved:

Case I. First we suppose that j = 1, . . . ,m and l ∈ Nj\{1, . . . ,m}. Then

the vector potential strength may be chosen as follows,

A(j,l)(d) =

{
1
2d arg Tjl if ReTjl ≥ 0 ,

1
2d (arg Tjl − π) if ReTjl < 0

while for vl and w{j,l} with l ≥ m+ 1 we put

vl(d) =
1−#Nl +

∑m
h=1〈Thl〉

d
∀l ≥ m+ 1 ,

w{j,l}(d) =
1

d

(
−2 +

1

〈Tjl〉

)
∀j, l indicated above ,

where the symbol 〈·〉 here has the following meaning: if c ∈ C, then

〈c〉 =

{
|c| if Re c ≥ 0 ,

−|c| if Re c < 0 .

We remark that the choice of vl(d) is not unique. This is related to the

fact that for m = rankB < n the number of parameters of the coupling is

reduced from n2 to at most n2 − (n−m)2.

Case II. Suppose next that j = 1, . . . ,m and k ∈ Nj ∩ {1, . . . ,m}.

A(j,k)(d) =
1

2d
arg

(
d · Sjk +

n∑

l=m+1

TjlTkl − µπ

)
,

where µ = 0 if

Re

(
d · Sjk +

n∑

l=m+1

TjlTkl

)
≥ 0

and µ = 1 otherwise. The functions w{j,k} are given by

w{j,k} = −
1

d


2 +

〈
d · Sjk +

n∑

l=m+1

TjlTkl

〉−1



and vj(d) for j = 1, . . . ,m by

vj(d) = Sjj−
#Nj

d
−

m∑

k=1

〈
Sjk +

1

d

n∑

l=m+1

TjlTkl

〉
+
1

d

n∑

l=m+1

(1+〈Tjl〉)〈Tjl〉 .

Having constructed the approximating graph we may now investigate

how the corresponding Hamiltonian behaves in the limit d→ 0. We denote
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the Hamiltonian of the star graph G with the coupling (8) at the vertex as

Hstar and Happrox
d will stand for the approximating operators constructed

above; the symbols Rstar(z) and Rapprox
d (z), respectively, will denote the

corresponding resolvents. Needless to say, the operators act on different

spaces: Rstar(z) on L2(G), while Rapprox
d (k2) acts on L2(Gd), where Gd is

the Cartesian sum G⊕(0, d)
∑n

j=1
Nj . To compare the resolvents, we identify

RAd(z) with the orthogonal sum

Rstar
d (z) = Rstar(z)⊕ 0 ,

which acts as zero on the added edges. Comparing the resolvents is in prin-

ciple a straightforward task, however, computationally rather demanding.

Performing it we arrive at the following conclusion [7] which provides us

with the full answer to our problem on the graph level:

Theorem 6.2. In the described setting, the operator family Happrox
d con-

verges to Hstar in the norm-resolvent sense as d→ 0.

Remark 6.2. There are various modifications of the approximation de-

scribed above. In Ref. 11, for instance, the δ-interactions on the connecting

segments have been replaced by varying lengths of those segments; the con-

struction is there performed for scale-invariant vertex couplings, i.e. the

conditions (8) with S = 0 and any T .

7. Concluding remarks

We have demonstrated how one can use scaled Schrödinger operators to

approximate quantum graph Hamiltonians with different vertex couplings.

We have worked out the argument for the δ and δ′s-couplings. On the graph

level we have provided a full solution of the problem.

This suggests how one could proceed further. The approximating graph

of the previous section has to be replaced by a network with a fat edge

width ε and the δ-couplings by constant potentials of the appropriated

strength at the segment of fat edge of length ε. Similarly the Laplacian is

to be replaced by magnetic Laplacian on the added edges, the halflength

of which is set to be d = εα. We call the resulting magnetic Schrödinger

operator Hω
ε , where ω stands now for the appropriate family of parameters,

and by Hω the corresponding limiting operator on the graph itself.

Conjecture 7.1. If α > 0 is sufficiently small the approximation result

analogous to Theorem 5.2 is valid in the described setting for any vertex

coupling (8) with the same identification operator J .
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Scaled potentials are not the only way how approximations of nontrivial

vertex couplings can be constructed. There are other possibilities such as

replacement of Neumann by suitable position dependent boundary condi-

tions – for a survey of fresh results we recommend Ref. 35. A more difficult

question is whether one can accomplish the goal by geometric means. A

naive inclusion of curvature-induced potentials does not give the answer

[19] a more elaborate approach has to be sought.

Let us finally comment on possible physical application of the results

surveyed here. Thinking of the network as of a model of a semiconductor

system, one can certainly vary the material parameters. Doping the network

locally changes the Fermi energy at the spot creating effectively a potential

well or barrier. From the practical point of view, however, this does not

help much because our approximations need potentials which get stronger

with the diminishing tube width ε.

A more promising alternative is to use external fields. In experiment

with nanosystems one often adds “gates”, or local electrodes, to which a

voltage can be applied. In this way one can produce local potentials fitting

into our approximation scheme, without material restrictions. This opens

an rather intriguing possibility of creating quantum graphs with the vertex

coupling controllable by an experimentalist.
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10. T. Cheon1, I. Tsutsui, T. Fülőp: Quantum abacus, Phys. Lett. A330 (2004),

338–342.
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