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Abstract. We investigate a periodic quantum graph in form of a square lattice with
a general self-adjoint coupling at the vertices. We analyze the spectrum, in particular,
its high-energy behaviour. Depending on the coupling type, bands and gaps have
different asymptotics. Bands may be flat even if the edges are coupled, and non-flat
band widths may behave like O(nj), j = 1, 0,−1,−2,−3, as the band index n → ∞.
The gaps may be of asymptotically constant width or linearly growing with the latter
case being generic.

1. Introduction

Origins of the quantum graph concept can be traced back to Linus Pauling’s

considerations about the structure of organic molecules in 1930’s, however, it was

roughly the last two decades when the subject became very popular and its true richness

has been revealed. The reason for that was not only the fact that quantum graphs

represent a suitable model of numerous systems prepared by solid state physicists.

Equally important was the inherent structure of such models which allowed us to

study effects uncommon in the “usual” quantum mechanics coming from the nontrivial

topological structure of graph structures as well as from the fact that they mix features

corresponding to different dimensionalities. The bibliography concerning quantum

graphs is nowadays extensive indeed and we restrict ourselves to quoting the proceedings

volume of a recent topical programme at Isaac Newton Institute and references therein

[AGA08].

One often studied class are periodic graphs. Their spectrum has predictably a band

structure, however, in distinction to the usual Schrödinger operators they can exhibit

http://arxiv.org/abs/1006.1446v2


High-energy asymptotics of the spectrum of a square lattice 2

under particular geometric conditions also infinitely degenerate eigenvalues manifesting

invalidity of the unique continuation principle [Ku05]. The aim of the present paper

is to investigate the spectrum in a particular example of periodic graphs, namely

two-dimensional square lattices with a general self-adjoint coupling at the vertices.

This generalizes earlier work in which lattices with δ and δ′s couplings were studied

[Ex96, EG96].

A motivation for the present extension comes from different sources. First of all,

the general vertex coupling became more interesting after several recent results —

cf. [KZ01, EP09, CET10] and references therein — showing how it can be approximated

by graphs or network systems with suitably scaled potentials illustrating thus that it is

not just a mathematical object but also something which can be, in an approximative

sense at least, realized physically. Secondly, already the mentioned examples of δ and δ′s
couplings demonstrated that different couplings yield different asymptotical behaviour

of spectral bands and gaps at high energies.

These asymptotics can have interesting dynamical consequences. Recall that in

the one-dimensional analogue of the present problem, in the generalized Kronig-Penney

model, there are three types of asymptotic behaviour [EG99, CS04] and that the one

corresponding to the δ′ interaction for which spectral gaps are dominating exhibit

absence of transport in the Wannier-Stark situation when an electric field is applied

[AEL94, Ex95, MS95, ADE98]; we stress that the solution of the Wannier-Stark problem

in the other two cases mentioned is still an open question. With these facts in mind

it is natural to ask how many types of asymptotic behaviour a two dimensional square

lattice can show and what they look like. Our approach to this problem is based on the

use of the so-called ST -form of boundary condition introduced in [CET10]. This will

allow us to express the band and gap widths by rather simple expressions involving the

coupling parameters, from which it is easy to determine how the spectral behaviour is

governed by the particular boundary conditions.

We will show that the high-energy behaviour has more types than in the one-

dimensional situation. In fact, the problem has sixteen parameters and offers a zoology

of solutions. The scope of this issue does not allow us to present a complete classification

but we will list all the “generic” cases with respect to the rank of the matrix B in the

condition (1) below and single out cases of particular interest. The two-dimensional

character of the problem has two main consequences. The first one is a possible

occurrence of flat bands, or infinitely degenerate eigenvalues; this is connected with

the invalidity of the principle of unique continuation on graphs of nontrivial topology

mentioned above. The second remarkable feature is the existence of couplings for which

the spectral bands are shrinking as n−1, n−2, or n−3 with respect to the band index

n. This effect again has no analogue in the one-dimensional situation. The most

“generic” situation, however, is the one known from [Ex96, EG96] when the bands are

asymptotically of constant widths and gaps are linearly growing.
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2. Preliminaries and main result

2.1. Square lattice with a general vertex coupling

As we have said we will consider a square lattice graph. To be concrete, the vertices of

Γ are {(ma, na) : m,n ∈ Z} for a fixed a > 0 and the edges are segments of length a

connecting points differing by one in one of the two indices. The state Hilbert space is

the orthogonal sum of the L2 spaces on the edges and the Hamiltonian acts as − d2

dx2 on

each of them, with the domain consisting of the corresponding W 2,2 functions.

It is well known that in order to get a self-adjoint operator one has to impose

boundary conditions at graph vertices which couple the vectors Ψ(0) and Ψ′(0) of the

boundary values — we choose the variables at all the adjacent edges so that they start

at the vertex. The standard form of these conditions is

AΨ(0) +BΨ′(0) = 0 , (1)

where A, B are matrices such that (A|B) has maximum rank and AB∗ is self-adjoint

[KS99]. Being interested in the periodic situation we naturally assume that the matrices

A, B are the same at each vertex of the lattice. A drawback of the conditions (1) is

that the matrix pair is not unique. There are various ways to mend this problem. One

is to rewrite (1) in the form

(U − I)Ψ(0) + i(U + I)Ψ′(0) = 0 , (2)

where U is a unitary matrix. In the quantum graph context these conditions have been

proposed in [Ha00, KS00], however, they were known earlier in the general theory of

boundary forms [GG91]. It is clear that a distinguished role is played by subspaces of

the boundary space values referring to eigenvalues ∓1 of U . An alternative way [Ku04]

to write the conditions is by means of the corresponding orthogonal projection P and

its complement Q := I − P : there is a self-adjoint operator L in QCn such that

PΨ(0) = 0 , QΨ′(0) + LQΨ(0) = 0 . (3)

Here we are going to use yet another version introduced in [CET10] as the ST -form,

(

I(m) T

0 0

)

Ψ′(0) =

(

S 0

−T ∗ I(n−m)

)

Ψ(0) (4)

using matrices T ∈ Cm,n−m and a self-adjoint S ∈ Cm,m, where n is the dimension of the

boundary value space (which will be four in our case) and m = n− dimP ∈ {0, . . . , n}.

2.2. The main result

Let HS,T is the quantum graph Hamiltonian described above. Our results about its

spectrum can be summarized as follows:
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Theorem 2.1. (a) The spectrum of HS,T consists of absolutely continuous spectral bands

and infinitely degenerate eigenvalues. Its negative part consists of at most four bands.

(b) The high-energy asymptotic behaviour of spectral bands and gaps as a function of

the band index n includes the following classes:

• flat bands, i.e. infinitely degenerate point spectrum,

• bands behaving like O(nj), j = 1, 0,−1,−2,−3, as n→ ∞,

• gaps behaving like O(nj), j = 1, 0, as n→ ∞.

Depending on the vertex coupling (1) the high-energy asymptotics of the spectrum may

be a combination of the above listed types.

The rest of the paper is devoted to demonstrating of these claims. We will do that

by analyzing spectrum of the fiber operator coming from the Bloch-Floquet analysis,

discussing subsequently situations corresponding to different values of rank m of the

matrix B in the boundary conditions (1). While this procedure serves best our aim,

it is not very illustrative from of the point of view of particular type of edge coupling.

Apart from the trivial case m = 0 when the lattice decomposes into separate edges

with Dirichlet conditions, each of the other values of m cover several subcases with very

different couplings and spectral behaviours. They would deserve a separate discussion

which we cannot present here due to volume restrictions and we postpone it to another

publication; we limit ourselves to several general statements:

• The generic situation corresponds to m = 4 with all the edges coupled and spectral

gaps growing linearly with the band index,

• each case m = 1, 2, 3, 4 covers a situations with flat bands corresponding to lattice

decoupling into separated edges, or pairs of edges,

• the lattice can separate into “one-dimensional” subsets describing generalized

Kronig-Penney models on lines or zigzag curves, or to “combs”,

• from the spectral point of view the case m = 3 is the richest, including situations

with a powerlike shrinking of spectral bands that occurs for the graph decomposed

into “combs”.

3. Bloch-Floquet analysis

Since our graph is a-periodic w.r.t. shifts in both directions, we are able to employ the

Bloch-Floquet decomposition. The elementary cell is depicted in Fig. 1, together with

the notation of the wave function components on the edges.

The analysis follows the same pattern as in [Ex96, EG96] but the general vertex

coupling makes it substantially more complicated. The fiber operator corresponding to

fixed values of Floquet parameters (quasimomentum components) has a purely discrete

spectrum and the number of its negative eigenvalues is at most four. The last claim

follows from general principles [We80, Sec. 8.3] and from a comparison to the square
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Figure 1. A periodic two-dimensional network

graph Hamiltonian with Kirchhoff coupling at the vertices the spectrum of which equals

by [Ex96] R+; it is enough to notice that the Floquet component of this operator and

that of a general HS,T have a common symmetric restriction with deficiency indices

(n, n), n ≤ 4. Note also that the bands may overlap in general; an example can be

constructed using boundary conditions which separate motion in the two directions

leading to two families of generalized Kronig-Penney models.

Our main interest concerns the positive part of the spectrum, and as usual we are

thus going to investigate solutions of the corresponding stationary Schrödinger equation

with energy E = k2, k > 0. It is obvious that they are at each edge linear combinations

of the functions eikx and e−ikx, specifically

ψ1(x) = C+
1 e

ikx + C−
1 e

−ikx, x ∈ [−a/2, 0]

ψ2(x) = C+
2 e

ikx + C−
2 e

−ikx, x ∈ [0, a/2]

ϕ1(x) = D+
1 e

ikx +D−
1 e

−ikx, x ∈ [−a/2, 0]

ϕ2(x) = D+
2 e

ikx +D−
2 e

−ikx, x ∈ [0, a/2]

(5)

By assumption, they have to satisfy the boundary conditions at the vertex, i.e. it holds

A











ψ1(0)

ψ2(0)

ϕ1(0)

ϕ2(0)











+B











−ψ′
1(0)

ψ′
2(0)

−ϕ′
1(0)

ϕ′
2(0)











= 0 . (6)

In addition to that, of course, they have to satisfy Bloch-Floquet conditions,

ψ2(a/2) = eiθ1ψ1(−a/2) ϕ2(a/2) = eiθ2ϕ1(−a/2) ,

ψ′
2(a/2) = eiθ1ψ′

1(−a/2) ϕ′
2(a/2) = eiθ2ϕ′

1(−a/2) ,
(7)

for fixed values of the quasimomentum components θ1, θ2 ∈ (−π, π]. Substituting (5)

into (7) allows us to express the variables C±
2 and D±

2 in terms of C±
1 and D±

1 ,

C±
2 = C±

1 · ei(θ1∓ak) , D±
2 = D±

1 · ei(θ2∓ak) . (8)
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Using these relations we eliminate C±
2 and D±

2 from (5), after that we substitute (5)

into (6). Simple manipulations then yield the following condition,

[(AM + ikBN)D]











C+
1

C−
1

D+
1

D−
1











= 0 , (9)

where D := diag
(

e
i

2
(θ1−ak), e

i

2
(θ1+ak), e

i

2
(θ2−ak), e

i

2
(θ2+ak)

)

and the matrices M, N are

given by

M :=











e−
i

2
(θ1−ak) e−

i

2
(θ1+ak) 0 0

e
i

2
(θ1−ak) e

i

2
(θ1+ak) 0 0

0 0 e−
i

2
(θ2−ak) e−

i

2
(θ2+ak)

0 0 e
i

2
(θ2−ak) e

i

2
(θ2+ak)











,

N :=











−e−
i

2
(θ1−ak) e−

i

2
(θ1+ak) 0 0

e
i

2
(θ1−ak) −e

i

2
(θ1+ak) 0 0

0 0 −e−
i

2
(θ2−ak) e−

i

2
(θ2+ak)

0 0 e
i

2
(θ2−ak) −e

i

2
(θ2+ak)











.

It follows from (8) that the functions (5) correspond to a nonzero solution iff
(

C+
1 , C

−
1 , D

+
1 , D

−
1

)

is a nonzero vector. Consequently, a number k2 belongs to the

spectrum of the Hamiltonian if and only if (9) has a non-trivial solution for some pair

(θ1, θ2), in other words, if there are θ1, θ2 such that det [(AM + ikBN)D] = 0 which

can be simplified to

det (AM + ikBN) = 0 . (10)

Our aim is to analyze the spectral asymptotics in dependence on the coupling type.

Since four edges join at each vertex, the problem has 16 real parameters. We will take

them into account through the ST form (4) of the boundary conditions, i.e. we set

−A =

(

S 0

−T ∗ I(4−m)

)

, B =

(

I(m) T

0 0

)

,

where m := rank(B). Obviously, each value of m has to be discussed separately.

4. The case of m = 0, or Dirichlet decoupled edges

Consider first the simplest situation when B = 0, A = −I. The ST -form of boundary

conditions is then obviously invariant with respect to the edge labelling and the spectral

condition (10) acquires the form det(−M) = 0. Since det(−M) = det(M) = −4 sin2 ak,

this requires sin ak = 0, hence the spectrum consists of infinitely degenerate eigenvalues,

σ(H) =

{(

nπ

a

)2
∣

∣

∣

∣

n ∈ N

}

.
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5. The case of m = 1

The admissible couplings form a seven-parameter family corresponding to the choice

B =











1 t1 t2 t3
0 0 0 0

0 0 0 0

0 0 0 0











, A = −











s 0 0 0

−t1 1 0 0

−t2 0 1 0

−t3 0 0 1











with s ∈ R and tj ∈ C. Note that while in general the boundary conditions in the

ST -form are not invariant with respect to the edge renumbering, we can choose without

loss of generality the “privileged one” corresponding to the first component. A direct

calculation of the determinant in (10) leads to the spectral condition

−4k sin ak
[

(1 + |t1|
2 + |t2|

2 + |t3|
2) cos ak − 2ℜ(t1e

iθ1 + t2t3e
iθ2)
]

− 4s sin2 ak = 0 .

We see that the condition is solved again by nπ
a

for n ∈ N. In addition to that, there

are solutions coming from the equation

(1 + |t1|
2 + |t2|

2 + |t3|
2) cos ak − 2ℜ(t1e

iθ1 + t2t3e
iθ2) = −

1

k
s sin ak . (11)

Recall that k2 > 0 is in the spectrum if there are θ1, θ2 ∈ (−π, π] which together with

k satisfy (11). It is convenient to rewrite the range of the expression ℜ(t1e
iθ1 + t2t3e

iθ2)

using a single parameter as follows:

Observation 5.1. It holds

{

ℜ(t1e
iθ1 + t2t3e

iθ2)
∣

∣ θ1, θ2 ∈ (−π, π]
}

= {(|t1|+ |t2| · |t3|) cosϑ | ϑ ∈ (−π, π]} .

The spectral condition (11) then yields the following requirement:

(1 + |t1|
2 + |t2|

2 + |t3|
2) cos ak − 2(|t1|+ |t2| · |t3|) cosϑ = −

1

k
s sin ak . (12)

This conditions has various types of solutions in dependence on the parameter values.

Before discussing them, let us mention another useful fact.

Observation 5.2. It holds 2(|t1| + |t2| · |t3|) ≤ 1 + |t1|
2 + |t2|

2 + |t3|
2 and the equality

occurs if and only if |t1| = 1 ∧ |t2| = |t3|.

5.1. Point spectrum

If the expression |t1| + |t2| · |t3| vanishes, i.e. if t1 = 0 and t2 = 0 ∨ t3 = 0 (we may

suppose without loss of generality that t3 = 0), then (11) becomes

cotg ak = −
1

k

s

1 + |t2|2
. (13)
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The rhs being O(k−1) as k → ∞ the solutions are obviously close to the numbers

(−1
2
+ n)π

a
at high energies. Writing them as

k =

(

−
1

2
+ n

)

π

a
+ δ ;

we get cotg ak = aδ +O(δ3) and 1
k
= a

nπ
+O(n−2). A substitution into (13) and a few

manipulations give δ = 1
nπ

· −s
1+|t2|2

+O (n−2), hence this solution represents the spectral

points k2 = k2n behaving like

k2 =

[(

−
1

2
+ n

)

π

a

]2

+
2

a
·

−s

1 + |t2|2
+O(n−1)

for n → ∞. These solutions are independent of the quasimomentum and give rise to

flat spectral bands; it is not difficult to see that the corresponding eigenfunctions can

be chosen compactly supported.

Let us remark that the boundary conditions studied above mean that the

Hamiltonian decouples into a countable direct sum of operators supported on two edges

of the graph, or on individual edges if T = 0 and s = 0, and therefore it is not surprising

that the spectrum is pure point.

5.2. Linearly growing spectral bands and gaps

If |t1|+ |t2| · |t3| 6= 0, we can divide by it and express thus cosϑ from (12). This yields

the spectral condition in the form

∣

∣

∣

∣

1 + |t1|
2 + |t2|

2 + |t3|
2

2(|t1|+ |t2| · |t3|)
cos ak +

1

k
·

s

2(|t1|+ |t2| · |t3|)
sin ak

∣

∣

∣

∣

≤ 1 . (14)

By Observation 5.2, the coefficient of cos ak at the lhs cannot be smaller than one.

In the rest of this section, we focus on the case |t1| 6= 1 ∨ |t2| 6= |t3|; the

remaining situation will be treated in Section 5.3. Since the coefficient of sin ak is

O(k−1), it is evident that (14) can be asymptotically satisfied only away from the points

where | cos ak| = 1, in other words, the spectral bands are neigbourhoods of the points
[(

−1
2
+ n
)

π
a

]2
. Let us set k =

(

−1
2
+ n
)

π
a
+ d and find the range of d. We see that

cos ak = sin ad and 1
k

of the n-th band solution is O(n−1), thus (14) can be rewritten as

| sin ad| ≤
2(|t1|+ |t2| · |t3|)

1 + |t1|2 + |t2|2 + |t3|2
+O(n−1) .

Hence ad ≤ ∆ := arcsin 2(|t1|+|t2|·|t3|)
1+|t1|2+|t2|2+|t3|2

; note that ∆ ∈
(

0, π
2

)

in view of the assumption

and Observation 5.2. Then the spectral bands behave like

(

[(

−
1

2
+ n

)

π

a
−

∆

a
+O

(

1

n

)]2

,

[(

−
1

2
+ n

)

π

a
+

∆

a
+O(n−1)

]2
)

,
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which can be rewritten as
(

(

−
1

2
+ n

)2
π2

a2
− 2

nπ

a2
∆+O(1),

(

−
1

2
+ n

)2
π2

a2
+ 2

nπ

a2
∆+O(1)

)

in the high-energy limit, n → ∞. In other words, both bands and gaps are

asymptotically linearly growing with the band index.

5.3. Asymptotically constant spectral gaps

If |t1| = 1 and |t2| = |t3| 6= 0, the spectral condition (14) has to be treated differently

being now of the form

∣

∣

∣

∣

cos ak +
1

k
·

s

2(1 + |t2|2)
sin ak

∣

∣

∣

∣

≤ 1 . (15)

Let us suppose that s 6= 0 — the case s = 0 is special and will be discussed below

in Section 5.4. Since | cos ak| ≤ 1 and the coefficient at sin ak is small in modulus for

large values of k, we see that the condition (15) is violated only in a small one-sided

neighbourhood of the points where | cos ak| = 1. To describe the corresponding gaps,

we set k = nπ
a
+ δ, then we have

cos ak = (−1)n ·

(

1−
(aδ)2

2
+O

(

δ4
)

)

,

sin ak = (−1)n · aδ +O
(

δ3
)

,

1

k
=

a

nπ
+O

(

δ

n2

)

.

Substituting from here into the negated condition (15) we obtain the gap condition,

∣

∣

∣

∣

1−
(aδ)2

2
+
a2

nπ

s

2(1 + |t2|2)
δ +O

(

δ4
)

+O

(

δ3

n

)

+O

(

δ2

n2

)∣

∣

∣

∣

> 1 ,

which is, in dependence of the sign of s, solved by

δ ∈







(

O
(

1
n2

)

, 1
nπ

· s
1+|t2|2

+O(n−2)
)

for s > 0 ,
(

1
nπ

· s
1+|t2|2

+O
(

1
n2

)

,O(n−2)
)

for s < 0 .

Consequently, the gap boundaries are

(nπ

a

)2

+O(n−1) and
(nπ

a

)2

+
2

a
·

s

1 + |t2|2
+O(n−1) ,

in other words, the gap widths are asymptotically constant and spectral bands grow

linearly w.r.t. the band number n. Note that this case includes lattices with a nontrivial

δ coupling discussed in [Ex96, EG96].
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5.4. No gaps, spectrum on the nonnegative halfline

It remains to discuss the case with |t1| = 1, |t2| = |t3| 6= 0 and s = 0, when the

spectral condition (15) simplifies to |cos ak| ≤ 1 which is obviously satisfied for all

k > 0. Moreover, one checks directly that 0 ∈ σ(H), and putting k = iκ we find

σ(H) ∩ (−∞, 0) = ∅, hence σ(H) = [0,+∞). Referring again to [Ex96, EG96] we note

that this includes the case of a lattice with Kirchhoff coupling.

6. The case of m = 2

The reader has noted already that the boundary conditions in the ST -form are not

invariant with respect to the edge renumbering. Neglecting trivial lattice replacement

corresponding to rotations and mirror images, we must distinguish two situations here:

(i) Linearly independent columns of B are associated with parallel edges; without loss

of generality we may suppose they are the “horizontal” ones. Then we apply the

conditions in ST -form directly,

B =











1 0 t11 t12
0 1 t21 t22
0 0 0 0

0 0 0 0











, A = −











s11 s12 0 0

s12 s22 0 0

−t11 −t21 1 0

−t12 −t22 0 1











,

where s11, s22 are real and the other matrix entries are complex.

(ii) Linearly independent columns of B can correspond also to mutually orthogonal

edges, say, the left “horizontal” and the lower “vertical”. Then we use the conditions

in a permuted form, with second and third row of Ψ(0) and Ψ′(0) interchanged.

Since it is convenient to keep the entries order in these vectors, we interchange

instead the second and the third column of the matrices A, B,

B =











1 t11 0 t12
0 t21 1 t22
0 0 0 0

0 0 0 0











, A = −











s11 0 s12 0

s12 0 s22 0

−t11 1 −t21 0

−t12 0 −t22 1











.

However, since the spectral analysis of situations (i) and (ii) can be done in a very

similar way, and moreover, also the structure of the spectral bands is essentially the

same, we perform the analysis of the case (i) only.

The determinant in (10) leads to the spectral condition which can be written as

V2 · k
2 + V1 · k + V0 = 0 ,
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where V2, V1 and V0 are expressions depending on ak, on the entries of S, T , and on the

quasimomentum components θ1, θ2. By a direct computation we get

V2 = −4 cos2 ak
[

|t11|
2 + |t22|

2 + |t12|
2 + |t21|

2
]

+ 4 sin2 ak
[

1 + |t11t22 − t12t21|
2]

+ 8 cos ak
[

−ℜ
(

(t11t21 + t12t22)e
iθ1
)

+ ℜ
(

(t22t21 + t11t12)e
iθ2
)]

+ 8ℜ
[

t11t22e
i(θ1−θ2)

]

+ 8ℜ
[

t12t21e
i(θ1+θ2)

]

,

V1 = 4 sin ak
[

− cos ak
(

s11(1 + |t21|
2 + |t22|

2) + s22(1 + |t11|
2 + |t12|

2)

−2ℜ
(

s12(t11t21 + t12t22)
))

−2ℜ
(

s12e
iθ1
)

+ 2ℜ
(

(s11t21t22 + s22t11t12 − s12t11t22 − s12t12t21)e
iθ2
)]

,

V0 = −4 sin2 ak · detS .

6.1. Linearly growing bands and gaps, or absence of gaps

If we divide the above spectral condition by k2, we can write it in the asymptotic form

V2(ak) = O (k−1), explicitly

− 4 cos2 ak
[

|t11|
2 + |t22|

2 + |t12|
2 + |t21|

2
]

+ 4 sin2 ak
[

1 + |t11t22 − t12t21|
2]

+ 8 cos ak
[

−ℜ
(

(t11t21 + t12t22)e
iθ1
)

+ ℜ
(

(t22t21 + t11t12)e
iθ2
)]

+ 8ℜ
[

t11t22e
i(θ1−θ2)

]

+ 8ℜ
[

t12t21e
i(θ1+θ2)

]

= O
(

k−1
)

,

from which it is possible to obtain the “generic” spectral behaviour. Let us examine the

lhs of the last relation. To this aim, we denote

Kc := 4
(

|t11|
2 + |t22|

2 + |t12|
2 + |t21|

2
)

Ks := 4
(

1 + |t11t22 − t12t21|
2)

Lc(θ1, θ2) := 8
[

−ℜ
(

(t11t21 + t12t22)e
iθ1
)

+ ℜ
(

(t22t21 + t11t12)e
iθ2
)]

L(θ1, θ2) := 8ℜ
(

t11t22e
i(θ1−θ2)

)

+ 8ℜ
(

t12t21e
i(θ1+θ2)

)

which allows us to write the coefficient V2 ≡ V2(ak, θ1, θ2) as follows

V2(x, θ1, θ2) = −Kc cos
2 x+Ks sin

2 x+ cosx · Lc(θ1, θ2) + L(θ1, θ2) .

To examine the spectral asymptotics, the following functions,

V +
2 (x) := max {V2(x, θ1, θ2) | θ1, θ2 ∈ (−π, π]} ,

V −
2 (x) := min {V2(x, θ1, θ2) | θ1, θ2 ∈ (−π, π]} ,

will be essential, since the spectral condition can be expressed, up to an error of order

of O (k−1), by the inequalities,

V +
2 (ak) > 0 ∧ V −

2 (ak) < 0 . (16)
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As we will see below, the following two constants will play an important role:

L+
0 := 8max

{

ℜ
(

(t11t21 + t12t22)e
iθ1
)

+ ℜ
(

(t22t21 + t11t12)e
iθ2
)

+

+ℜ
(

t11t22e
i(θ1−θ2)

)

+ ℜ
(

t12t21e
i(θ1+θ2)

) ∣

∣ θ1, θ2 ∈ (−π, π]
}

,

L−
π

2

:= 8min
{

ℜ
(

t11t22e
i(θ1−θ2)

)

+ ℜ
(

t12t21e
i(θ1+θ2)

) ∣

∣ θ1, θ2 ∈ (−π, π]
}

;

it is easy to see that L−
π

2

= −8|t11t22| − 8|t12t21|.

With this preliminary we are going to formulate and prove a claim which will be

useful not only here, but also at other places further on.

Proposition 6.1. Let

F (θ1, θ2) = ℜ
(

A1e
iθ1
)

+ ℜ
(

A2e
iθ2
)

+ ℜ
(

A3e
i(θ1−θ2)

)

+ ℜ
(

A4e
i(θ1+θ2)

)

,

where the coefficients Aj, j = 1, 2, 3, 4, are independent of θ1, θ2. Then the range of this

expression, F := {F (θ1, θ2) | θ1, θ2 ∈ (−π, π]}, is an interval which is non-degenerate if

and only if there is an index j ∈ {1, 2, 3, 4} such that Aj 6= 0.

Proof. Since F is continuous and (−π, π]2 is connected, F is an interval. To finish the

proof it remains to check that a constant C ∈ R such that

F (θ1, θ2) = C for all (θ1, θ2) ∈ (−π, π]2 (17)

exists if and only if Aj = 0 for all j = 1, 2, 3, 4.

Consider a fixed θ ∈ R and a number A ∈ C such that argA = α, then

ℜ(Aeiθ) = ℜ(|A|eiαeiθ) = |A| cos(α + θ). We apply this idea to rewrite (17) as

|A1| cos(α1+θ1)+ |A2| cos(α2+θ2)+ |A3| cos(α3+θ1+θ2+ |A4| cos(α4+θ1−θ2)−C = 0

for all (θ1, θ2) ∈ (−π, π]2. It is easy to see that the 5-tuple

1, cos(α1 + θ1), cos(α2 + θ2), cos(α3 + θ1 + θ2), cos(α4 + θ1 − θ2)

is a linearly independent set of functions on [0, 2π)2, therefore (17) is satisfied if and

only if A1 = A2 = A3 = A4 = C = 0.

To solve the spectral conditions (16), we need to know basic characteristics of the

functions V +
2 (x) and V −

2 (x) involved in it.

Proposition 6.2. The functions V +
2 (x) and V −

2 (x) have the following properties:

(i) Both V +
2 (x), V −

2 (x) are π-periodic and satisfy

V +
2

(π

2
− x
)

= V +
2 (x) , V −

2

(π

2
− x
)

= V −
2 (x) .

(ii) Function V −
2 (x) is increasing in

[

0, π
2

]

and

V −
2 (0) < 0 , V −

2

(π

2

)

= Ks + L−
π

2

.
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(iii) It holds V +
2 (0) = −Kc + L+

0 , and there is a number x0 ∈
[

0, π
2

]

such that

– V +
2 is increasing in [0, x0],

– V +
2 (x) > 0 for all x ∈

[

x0,
π
2

]

.

(iv) If at least two entries of T are nonzero, then V +
2 (x) > V −

2 (x) for all x ∈
(

0, π
2

)

.

Proof of this proposition is technical and slightly long, and can be found in the

appendix.

Using the above result we can characterize the spectrum.

Proposition 6.3. If at least two entries of T are nonzero, then the following holds true:

• If L+
0 > Kc and L−

π

2

< −Ks, there is a k0 > 0 such that the interval [k20,+∞) is in

the spectrum.

• If L+
0 < Kc, the spectrum has asymptotically gaps of the form

(

n2π2

a2
−

2bnπ

a2
+O(1),

n2π2

a2
+

2bnπ

a2
+O(1)

)

,

where b ∈
(

0, π
2

)

is the number uniquely determined by the condition V +
2 (b) = 0.

• If L−
π

2

> −Ks, the spectrum has asymptotically gaps of the form

(

(

n +
1

2

)2
π2

a2
−

2cnπ

a2
+O(1),

(

n +
1

2

)2
π2

a2
+

2cnπ

a2
+O(1)

)

,

where c ∈
(

0, π
2

)

is uniquely determined by the condition V −
2

(

π
2
− c
)

= 0.

Proof. The argument is based on Proposition 6.2 (i)-(iv). First we notice that if

L+
0 > Kc, then V +

2 (x) > 0 for all x ∈
[

0, π
2

]

according to (ii), and thus for all x ∈ [0,+∞)

due to (i). Similarly, if L−
π

2

< −Ks, then V −
2 (x) < 0 for all x ∈

[

0, π
2

]

according to (iii),

and thus for all x ∈ [0,+∞) due to (i). Consequently, for both L+
0 > Kc and L−

π

2

< −Ks,

the asymptotic spectral condition (16) is satisfied for all k.

If L+
0 < Kc, then by virtue of (ii) there is a b ∈

(

0, π
2

)

such that V +
2 (x) < 0 on [0, b)

and V +
2 (x) > 0 on

(

b, π
2

)

. Then the first inequality of (16) is not satisfied on
(

0, b
a

)

, and

we infer from (i) that it is not satisfied on each interval
(

nπ
a
− b

a
, nπ

a
+ b

a

)

.

In the same vein, the inequality L−
π

2

> −Ks in combination with (iii) implies

existence of a c ∈
(

0, π
2

)

such that V −
2 (x) < 0 on [0, π

2
− c) and V −

2 (x) > 0 on
(

π
2
− c, π

2

)

.

The second inequality of (16) is then not satisfied on
(

π
2a

− c
a
, π
2a

+ c
a

)

, and by (i) it is

not satisfied on each interval
((

n+ 1
2

)

π
a
− c

a
,
(

n+ 1
2

)

π
a
+ c

a

)

.

Finally, it follows from (iv) that if the matrix T has at least two non-vanishing

entries, we have b < π
2
− c and the gaps cannot overlap asymptotically.
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6.2. Further particular cases

Proposition 6.3 applies if at least two entries of T are nonzero. If this is not the case,

the spectral condition simplifies significantly and one of the following situations occurs:

• s12 = 0. With such boundary conditions, the lattice is decomposed into separated

edges or pairs of edges, and consequently the spectrum is pure point. As above in

similar cases it is infinitely degenerate, of course, but the contribution from each

edge pair has the usual semiclassical behaviour: the number of eigenvalues not

exceeding k2 has Weyl asymptotics with the leading term a
π
.

• s12 6= 0 and T = 0. The spectrum contains points n2π2

a2
and bands of asymptotically

constant width in the vicinity of n2π2

a2
; the points n2π2

a2
may or may not lie in the

bands. The gaps grows linearly as n→ ∞.

• s12 6= 0 and T 6= 0. The spectrum asymptotically consists of bands located in

the vicinity of the points
(

nπ
a
+ 1

2
arccos 1−|t|2

1+|t|2

)2

, where t is the nonzero entry of T .

They are of asymptotically constant width while the gaps are linearly growing as

the band index n→ ∞.

It remains to deal with the special cases L+
0 = Kc, L

−
π

2

= −Ks left out in Proposition 6.3.

We will not go into much detail here, but it is worth to solve this situation in the

particular case of scale-invariant coupling, i.e. for S = 0. It turns out that:

• If S = 0 and L+
0 = Kc, then there are no gaps around n2π2

a2
.

• If S = 0 and L−
π

2

= −Ks, then there are no gaps around
(

n + 1
2

)2 π2

a2
.

7. The case of m = 3

In this case we have a Hermitean S and complex numbers tj determining

B =











1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 0











, A = −











s11 s12 s13 0

s12 s22 s23 0

s13 s23 s33 0

−t1 −t2 −t3 1











.

In contrast to the previous case, there is no problem with the renumbering invariance,

because the edge numbering can be changed if necessary by a trivial rotation of the

lattice. A direct calculation of the determinant in (10) yields the spectral condition,

V3 · k
3 + V2 · k

2 + V1 · k + V0 = 0 ,
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where Vj, j = 0, 1, 2, 3, are expressions depending on ak, on the entries of the matrices

S, T , and on the quasimomentum components θ1, θ2, given explicitly by

V3 = 4 sin ak
[(

1 + |t1|
2 + |t2|

2 + |t3|
2
)

cos ak + 2ℜ(t1t2e
iθ1)− 2ℜ(t3e

iθ2)
]

,

V2 = 4 cos2 ak
[

−(s11 + s22)
(

1 + |t3|
2
)

− s33(|t1|
2 + |t2|

2) + 2ℜ
(

(s13t1 + s23t2)t3
)]

+ 4 sin2 ak
[

s11|t2|
2 + s22|t1|

2 + s33 − 2ℜ
(

s12t1t2
)]

+ 8 cos ak
[

ℜ
(

(−s12 + s23t1t3 + s13t2t3 − s12|t3|
2 − s33t1t2)e

iθ1
)

+ℜ
(

((s11 + s22)t3 − s13t1 − s23t2) e
iθ2
)]

+ 8ℜ
(

(s12t3 − s23t1)e
i(θ1+θ2)

)

+ 8ℜ
(

(s12t3 − s13t2)e
i(θ1−θ2)

)

,

V1 = 4 sin ak cos ak
[

(|s12|
2 − s11s22)(1 + |t3|

2) + (|s13|
2 − s11s33)(1 + |t2|

2)

+ (|s23|
2 − s22s33)(1 + |t1|

2)+

+2ℜ
(

(s12s33 − s13s23)t1t2
)

+ 2ℜ
(

(s23s11 − s13s12)t2t3
)

+ 2ℜ
(

(s13s22 − s12s23)t1t3
)]

+ 8 sin ak · ℜ
(

(s13s23 − s33s12)e
iθ1
)

+ 8 sin ak · ℜ
[(

(s12s23 − s22s13)t1 + (s12s13 − s11s23)t2 + (s11s22 − |s12|
2)t3
)

eiθ2
]

,

V0 = −4 sin2 ak · detS .

The case m = 3 is probably the most interesting one. While in the one-dimensional

case we have bands and gaps which are asymptotically either of constant width or

linearly growing with the band index, a square lattice withm = 3 exhibits a considerably

richer spectral behaviour. The band are here of two types, mutually interlaced:

• “even” bands in the vicinity of n2π2

a2
with n ∈ N,

• “odd” bands in the vicinity of
(

n+ 1
2

)2 π2

a2
with n ∈ N,

In this section we focus on the generic situation, |t1| 6= |t2| or |t3| 6= 1, when we

will be able to describe several interesting asymptotic types. The other possibility,

|t1| = |t2| ∧ |t3| = 1, will be briefly commented at the end.

Let us start with the spectral condition in the form V3 = O(k−1), i.e.

4 sin ak
[(

1 + |t1|
2 + |t2|

2 + |t3|
2
)

cos ak + 2ℜ(t1t2e
iθ1)− 2ℜ(t3e

iθ2)
]

= O(k−1) . (18)

The lhs of the last equation should be close to zero for large k, which can be achieved

either for small absolute value of sin ak or for small absolute value of the expression in

the brackets. These possibilities refer to the “even” and “odd” bands mentioned above,

respectively; they will be described in detail below. Unless stated otherwise, we suppose

that |t1| 6= |t2| ∨ |t3| 6= 1.
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7.1. Generic case: asymptotically constant spectral bands around n2π2

a2

We start with the bands corresponding to small values of | sin ak|. Let us consider the

spectral condition in the form V3 +
V2

k
= O(k−2), divide it by four and rewrite it as

sin ak
[(

1 + |t1|
2 + |t2|

2 + |t3|
2
)

cos ak + 2ℜ(t1t2e
iθ1)− 2ℜ(t3e

iθ2)

−
sin ak

k

(

s11|t2|
2 + s22|t1|

2 + s33 − 2ℜ
(

s12t1t2
))

]

= −
cos2 ak

k

[

−(s11 + s22)
(

1 + |t3|
2
)

− s33(|t1|
2 + |t2|

2) + 2ℜ
(

(s13t1 + s23t2)t3
)]

− 2
cos ak

k

[

ℜ
(

(−s12 + s23t1t3 + s13t2t3 − s12|t3|
2 − s23t1t2)e

iθ1
)

+ℜ
(

((s11 + s22)t3 − s13t1 − s23t2) e
iθ2
)]

−
2

k
ℜ
(

(s12t3 − s23t1)e
i(θ1+θ2)

)

−
2

k
ℜ
(

(s12t3 − s13t2)e
i(θ1−θ2)

)

+O(k−2) . (19)

We restrict our considerations to the values of k such that | cos ak| > c where c is a

constant satisfying 2(|t1t2|+|t3|)
1+|t1|2+|t2|2+|t3|2

< c < 1; recall that such c exists in view of the initial

assumption |t1| 6= |t2|∨|t3| 6= 1. Due to this restriction, the absolute value of the term in

the brackets at the lhs of (19) can be asymptotically estimated from below by a positive

constant, whence it is easy to see that high in the spectrum we have sin ak = O(k−1).

We set

k =
nπ

a
+
d

n
,

then sin ak = (−1)n · ad
n
+ O(n−3), cos ak = (−1)n + O(n−2) and 1

k
= a

nπ
+ O(n−2).

We substitute from these relations into (19), divide both sides by the expression in the

brackets at the lhs and after elementary manipulations we arrive at

ad

n
·
[(

1 + |t1|
2 + |t2|

2 + |t3|
2
)

+ 2(−1)nℜ(t1t2e
iθ1)− 2(−1)nℜ(t3e

iθ2)
]

=

= −
a

nπ

[

−(s11 + s22)
(

1 + |t3|
2
)

− s33(|t1|
2 + |t2|

2) + 2ℜ
(

(s13t1 + s23t2)t3
)]

− 2
(−1)na

nπ

[

ℜ
(

(−s12 + s23t1t3 + s13t2t3 − s12|t3|
2 − s23t1t2)e

iθ1
)

+ℜ
(

((s11 + s22)t3 − s13t1 − s23t2) e
iθ2
)]

−
2a

nπ
ℜ
(

(s12t3 − s23t1)e
i(θ1+θ2)

)

−
2a

nπ
ℜ
(

(s12t3 − s13t2)e
i(θ1−θ2)

)

+O(n−2) .

We observe that all the terms (−1)n can be “absorbed” into θ1 and θ2 by the shift

(θ1, θ2) 7→ (θ1 + nπ, θ2 + nπ), and thus neglected. Therefore the asymptotic condition

can be written in the form

d =
1

π
·
−W2(S, T, θ1, θ2)

W3(T, θ1, θ2)
+O(n−1)

for

W3(T, θ1, θ2) :=
(

1 + |t1|
2 + |t2|

2 + |t3|
2
)

+ 2(−1)nℜ(t1t2e
iθ1)− 2(−1)nℜ(t3e

iθ2) ,
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W2(S, T, θ1, θ2) := −(s11 + s22)
(

1 + |t3|
2
)

− s33(|t1|
2 + |t2|

2) + 2ℜ
(

(s13t1 + s23t2)t3
)

+ 2ℜ
(

(−s12 + s23t1t3 + s13t2t3 − s12|t3|
2 − s33t1t2)e

iθ1
)

+ 2ℜ
(

((s11 + s22)t3 − s13t1 − s23t2) e
iθ2
)

+ 2ℜ
(

(s12t3 − s23t1)e
i(θ1+θ2)

)

+ 2ℜ
(

(s12t3 − s13t2)e
i(θ1−θ2)

)

.

Now we denote

D :=

{

−W2(S, T, θ1, θ2)

W3(T, θ1, θ2)

∣

∣

∣

∣

θ1, θ2 ∈ (−π, π]

}

;

note that D is an interval which is bounded due to the condition |t1| 6= |t2| ∨ |t3| 6= 1.

The spectral bands are then described in terms of D as follows,

k =
nπ

a
+

d

nπ
+O(n−2) , d ∈ D , (20)

which yields the allowed energy values

k2 =
n2π2

a2
+ 2

d

a
+O(n−1) , d ∈ D .

Consequently, these bands are of asymptotically constant width as n→ ∞.

Furthermore, it is easy to show that if

(a) T = 0 and s12 = 0, or

(b) t1t2 = 0, t3 = 0 and S is diagonal,

then the fraction −W2(S,T,θ1,θ2)
W3(T,θ1,θ2)

is independent of (θ1, θ2), and thus the interval D shrinks

to a point. These cases need a special approach.

One can check that (b) refers to the situation when the lattice is decomposed either

to individual edges (if T = 0) or to pairs of edges (if T 6= 0), with infinitely degenerate

eigenvalues in the vicinity of
(

nπ
a

)2
. The case (a) is much more interesting and we will

analyze it below.

7.2. Spectral bands around n2π2

a2
shrinking as n−2

Under the assumptions of the case (a) above the spectral condition simplifies to

4k3 sin ak cos ak + 4k2
[

−(s11 + s22) cos
2 ak + s33 sin

2 ak
]

+ 4k sin ak
[

(|s13|
2 + |s23|

2 − s11s22 − (s11 + s22)s33) cos ak + 2ℜ
(

s13s23e
iθ1
)]

− 4 sin2 ak · det S = 0 .

The spectrum is given by (20) with D =
{

a
π
(s11 + s22)

}

. Since the latter is a one-point

set, the spectral band is determined by the next term in the expansion. We set

k =
nπ

a
+

a

nπ
(s11 + s22) +

d′

n2
,
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and performing a calculation similar to that of Sec. 7.1, we arrive at the expression for

d′. Surprisingly, d′ itself behaves like n−1, i.e. the last term above is of order of O(n−3),

d′

n2
=
a(s11 + s22)

n3π3

[

−(s11 + s22) + a

(

s211 + s222
2

+ 2s11s22 + |s13|
2 + |s23|

2

)

− 2aℜ
(

s13s23e
iθ1
)

]

.

Thus k2 belongs asymptotically to the spectrum if

k =
nπ

a
+
s11 + s22
nπ

+
a(s11 + s22)

n3π3

[

−(s11 + s22) + a

(

s211 + s222
2

+ 2s11s22 + |s13|
2 + |s23|

2

)]

+
2a2

n3π3
|s11 + s22| · |s13s23| cosϑ+O(n−4) for ϑ ∈ [0, 2π) .

The left and right endpoint of the spectral band are then given as k2L and k2R with ϑL = π

and ϑR = 0, respectively, hence the band width behaves like

k2R − k2L = (kR − kL)(kR + kL) = 8
a

n2π2
|s11 + s22| · |s13s23|+O(n−3)

in the asymptotic regime, n→ ∞.

Note that there are two exceptional cases here, namely:

• s13 = 0 or s23 = 0. The spectral condition is independent of θ1, θ2, thus it has only

point solutions.

• s11 + s22 = 0. The spectral condition factorizes, sin ak
[

cos ak +O
(

1
k

)]

= 0,

producing no (true) band in the vicinity of n2π2

a2
.

7.3. Generic case: linearly growing spectral bands around
(

n + 1
2

)2 π2

a2

Now we proceed to the “odd” bands, i.e. those corresponding to asymptotically small

values of the expression
∣

∣(1 + |t1|
2 + |t2|

2 + |t3|
2) cos ak + 2ℜ(t1t2e

iθ1)− 2ℜ(t3e
iθ2)
∣

∣.

Their structure can be derived directly from the spectral condition (18), we just replace

for the sake of simplicity the term 2ℜ(t1t2e
iθ1) − 2ℜ(t3e

iθ2) by 2(|t1t2| + |t3|) cosϑ in

analogy with what we did in Section 5.2, cf. Observation 5.1:

4 sin ak
[(

1 + |t1|
2 + |t2|

2 + |t3|
2
)

cos ak + 2(|t1t2|+ |t3|) cosϑ
]

= O(k−1)

Suppose that |t1t2| + |t3| 6= 0 (the case t1t2 = t3 = 0 is postponed to Sec. 7.4 below),

then we may divide the equation by 8(|t1t2|+ |t3|) obtaining

sin ak

[

1 + |t1|
2 + |t2|

2 + |t3|
2

2(|t1t2|+ |t3|)
cos ak + cosϑ

]

= O(k−1) . (21)

Since the situation when | sin ak| is very small has been treated in the part devoted to

“even” bands, here we adopt the premise that | sin ak| is large enough. More precisely,

we restrict our considerations to such values k that | sin ak| > c, where c is a constant

satisfying 0 < c < 1, the exact value plays no role. Then (21) can be rewritten as

cosϑ =
1 + |t1|

2 + |t2|
2 + |t3|

2

2(|t1t2|+ |t3|)
cos ak +O(k−1) .
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Such a condition has a solution for some parameter ϑ if the modulus of the rhs rhs is

smaller than one, i.e. for

| cos ak| <
2(|t1t2|+ |t3|)

1 + |t1|2 + |t2|2 + |t3|2
+O(k−1) . (22)

In analogy with Sec. 5.2, we infer that the spectral bands are neigbourhoods of the

points
[(

n+ 1
2

)

π
a

]2
. We set k =

(

n+ 1
2

)

π
a
+ d, thus | cos ak| = | sin ad| and 1

k
of the

n-th band solution is O(n−1). Then (22) can be rewritten as

| sin ad| <
2(|t1t2|+ |t3|)

1 + |t1|2 + |t2|2 + |t3|2
+O(n−1) .

Recall that it follows from the initial assumption |t1| 6= |t2| ∨ |t3| 6= 1 that the first

term at the rhs is smaller than one, cf. Observation 5.1, hence it makes sense to set

∆ := arcsin 2(|t1t2|+|t3|)
1+|t1|2+|t2|2+|t3|2

∈
(

0, π
2

)

. The spectral bands are then given by

(

(

n+
1

2

)2
π2

a2
− 2

nπ

a2
∆+O(1),

(

n+
1

2

)2
π2

a2
+ 2

nπ

a2
∆+O(1)

)

,

in the high-energy asymptotics, n→ ∞.

7.4. Asymptotically constant spectral bands at
(

n+ 1
2

)2 π2

a2

Let the matrix T satisfy t1t2 = t3 = 0. We may suppose without loss of generality that

t2 = 0. The substitution t3 = t2 = 0 into the spectral condition V3 +
V2

k
= O(k−2) gives

sin ak cos ak
(

1 + |t1|
2
)

=
cos2 ak

k

(

s11 + s22 + s33|t1|
2
)

−
sin2 ak

k

(

s22|t1|
2 + s33

)

+
2 cos ak

k

[

ℜ
(

s12e
iθ1
)

+ ℜ
(

s13t1e
iθ2
)]

+
2

k
ℜ
(

t1s23e
i(θ1+θ2)

)

+O(k−2) . (23)

We proceed in a way analogous to Sec. 7.1 setting k =
(

n+ 1
2

)

π
a
+ δ and substituting

the expansions

cos ak = −(−1)n · aδ +O
(

δ3
)

, sin ak = (−1)n +O
(

δ2
)

,
1

k
=

a

nπ
+O(n−2)

into (23), which yields after a simple manipulation an expression for δ,

δ =
1

nπ
·

[

−
s22|t1|

2 + s33
1 + |t1|2

+
2

1 + |t1|2
|ℜ
(

t1s23e
i(θ1+θ2)

)

]

+O(n−2) .

Hence the spectral bands are determined by the values of k satisfying

k =

(

n+
1

2

)

π

a
−

1

nπ
·
s22|t1|

2 + s33
1 + |t1|2

+
1

nπ
·
2|t1s23|

1 + |t1|2
cos ϑ+O(n−2)
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so that

k2 =

(

n+
1

2

)2
π2

a2
+

2

a
·
s22|t1|

2 + s33
1 + |t1|2

+
2

a
·
2|t1s23|

1 + |t1|2
cosϑ+O(n−1) , ϑ ∈ [0, 2π) .

giving rise to asymptotically constant-width bands.

Note that the leading “band-producing” term may collapse to a single point which

happens if t1 = 0 or s23 = 0. The first named situation will be discussed in detail in

Sections 7.5–7.7, the second one will be omitted, since the analysis is in principle similar.

7.5. Spectral bands at
(

n+ 1
2

)2 π2

a2
shrinking as n−1

The bands in the vicinity of
(

n+ 1
2

)2 π2

a2
may shrink as n−1 provided the matrices S and

T satisfy certain conditions in addition to t2 = t3 = 0, namely t1 = 0 and s13s23 6= 0.

We will demonstrate this fact in the first case, t1 = 0.

We proceed as in Sec. 7.4, but we take one more term in the expansion of k, i.e.

we set

k =

(

n+
1

2

)

π

a
+
s33
nπ

+ δ ,

and substitute into the spectral condition in the form V3 + V2

k
+ V1

k2
= O(k−3). A

calculation leads to the expression δ = 1
n2

[

−s33
2π

+ 2a
π2ℜ

(

(s13s23)e
iθ1
)]

in the leading

order, hence

k =

(

n +
1

2

)

π

a
+
s33
nπ

−
s33
2n2π

+
2a

n2π2
|s13s23| cosϑ+O(n−3) , ϑ ∈ [0, 2π) .

The band edges correspond to ϑL = π, 0, respectively, and the band width equals

8

nπ
|s13s23|+O(n−2) ,

i.e. the bands shrink asymptotically as n−1 unless s13 = 0 or s23 = 0 – these cases will

be discussed in the following sections.

7.6. Spectral bands at
(

n+ 1
2

)2 π2

a2
shrinking as n−2

If T = 0 and s23 = 0, the following spectral band asymptotics can be derived,

k =

(

n+
1

2

)

π

a
+
s33
nπ

−
s33
2n2π

+
C

n3
−

a

n3
·
s33
π2

|s12| cosϑ+O(n−4) , ϑ ∈ [0, 2π) ,

where C depends only on S and a. This determines bands of the widths

4

n2π
|s33s12|+O(n−3) ,

i.e. they shrink asymptotically as n−2 providing that s33 6= 0 and s12 6= 0.

Remark 7.1. If T = 0, s23 = 0 and s12 = 0, the spectral condition is independent of

θ1, θ2, thus the spectrum is pure point.
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7.7. Spectral bands at
(

n+ 1
2

)2 π2

a2
shrinking as n−3

Let T = 0 and s23 = s33 = 0. Then the spectral bands are characterized by the following

asymptotical condition,

k =

(

n +
1

2

)

π

a
−
a2

n3
·
|s13|

2s22
π3

+
a2

n4
·
3|s13|

2s22
2π3

+
a3

n4
·
2|s13|

2s22
2π4

|s12| cosϑ+O(n−5)

with ϑ ∈ [0, 2π), thus the band widths are given by

8
a2

n3
·
|s13|

2s22
2π3

|s12| cosϑ+O(n−4) ,

i.e. they shrink asymptotically as n−3 providing s12 6= 0, s13 6= 0 and s22 6= 0.

Remark 7.2. Let T = 0, s23 = 0 and s33 = 0. Then:

• If s12 = 0, the spectral condition is independent of the quasimomentum components

θ1, θ2 so the spectrum is pure point.

• If s13 = 0 or s22 = 0, the spectral condition can be factorized in the form

cos ak ·
[

sin ak +O
(

1
n

)]

, and consequently, the band in the vicinity of
(

n + 1
2

)2 π2

a2

collapses into a single point.

7.8. The particular case |t1| = |t2| ∧ |t3| = 1

This situation will not be treated in detail, but we will comment on the prominent

case S = 0 which corresponds to the scale-invariant vertex coupling. If S vanishes, the

spectral condition simplifies to V3 = 0 which can be rewritten as

4 sin ak
[(

2 + 2|t1|
2
)

cos ak − 2|t1|
2 cos ϑ1 − 2 cosϑ2

]

= 0 ,

where ϑ1 and ϑ2 are properly shifted θ1, θ2. The choice ϑ1 = ϑ2 = ak sets the expression

in the brackets to zero, therefore the spectrum contains the positive halfline.

8. The case of m = 4

Finally, we pass to the case which is generic from the viewpoint of the boundary

condition (1) when the matrix B is regular. Following the discussion in the opening

we set

B =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











, A = −











s11 s12 s13 s14
s12 s22 s23 s24
s13 s23 s33 s34
s14 s24 s34 s44











There is obviously no problem with the renumbering the lattice edges. A direct

calculation of the determinant in (10) leads to the spectral condition

V4 · k
4 + V3 · k

3 + V2 · k
2 + V1 · k + V0 = 0 ,
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where Vj, j = 0, 1, 2, 3, 4, are expressions depending on ak, on entries of the matrix S,

and on the quasimomentum components θ1, θ2, given be the formulæ

V4 = −4 sin2 ak ,

V3 = 4 sin ak
[

(s11 + s22 + s33 + s44) cos ak + 2ℜ
(

s12e
iθ1
)

+ 2ℜ
(

s34e
iθ2
)]

,

V2 = 4 cos2 ak
(

|s13|
2 − s11s33 + |s14|

2 − s11s44 + |s23|
2 − s22s33 + |s24|

2 − s22s44
)

+

+ 4 sin2 ak
(

s11s22 − |s12|
2 + s33s44 − |s34|

2
)

+ 8 cos ak
[

−(s33 + s44) · ℜ
(

s12e
iθ1
)

+ ℜ
(

(s13s23 + s14s24)e
iθ1
)

−(s11 + s22) · ℜ
(

s34e
iθ2
)

+ ℜ
(

(s13s14 + s23s24)e
iθ2
)]

+ 8ℜ
[

(s14s23 − s12s34)e
i(θ1+θ2)

]

+ 8ℜ
[

(s13s24 − s12s34)e
i(θ1−θ2)

]

,

V0 = −4 sin2 ak · detS .

The remaining term V1 will not be needed – it is sufficient to know that it is bounded

with respect to the parameters. The spectral condition can be written as

sin2 ak =
sin ak

k
·
[

(s11 + s22 + s33 + s44) cos ak + 2ℜ
(

s12e
iθ1
)

+ 2ℜ
(

s34e
iθ2
)]

+
cos2 ak

k2
(

|s13|
2 − s11s33 + |s14|

2 − s11s44 + |s23|
2 − s22s33 + |s24|

2 − s22s44
)

+
2 cos ak

k2
[

−(s33 + s44) · ℜ
(

s12e
iθ1
)

+ ℜ
(

(s13s23 + s14s24)e
iθ1
)

−(s11 + s22) · ℜ
(

s34e
iθ2
)

+ ℜ
(

(s13s14 + s23s24)e
iθ2
)]

+
2

k2
ℜ
[(

(s14s23 − s12s34)e
i(θ1+θ2)

)

+ 8ℜ
(

(s13s24 − s12s34)e
i(θ1−θ2)

)]

+
sin2 ak

k2
(

s11s22 − |s12|
2 + s33s44 − |s34|

2
)

+O
(

k−3
)

.

(24)

Since the rhs is of the order of O(k−2), it follows that the values of k that solve the

spectral condition are asymptotically close to the points nπ
a

, n ∈ N. With this fact in

mind it is convenient to express k introducing d such that

k =
nπ

a
+

d

nπ
. (25)

Substituting this into (24), we get after a simple manipulation,

d2 − d ·
[

s11 + s22 + s33 + s44 + 2 · (−1)n · ℜ
(

s12e
iθ1
)

+ 2 · (−1)n · ℜ
(

s34e
iθ2
)]

−
(

|s13|
2 − s11s33 + |s14|

2 − s11s44 + |s23|
2 − s22s33 + |s24|

2 − s22s44
)

− 2 · (−1)n ·
[

−(s33 + s44) · ℜ
(

s12e
iθ1
)

+ ℜ
(

(s13s23 + s14s24)e
iθ1
)

−(s11 + s22) · ℜ
(

s34e
iθ2
)

+ ℜ
(

(s13s14 + s23s24)e
iθ2
)]

− 2ℜ
[

(s14s23 − s12s34)e
i(θ1+θ2)

]

− 2ℜ
[

(s13s24 − s12s34)e
i(θ1−θ2)

]

= O
(

n−1
)

. (26)
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We observe that the last relation has the structure

d2 + 2p · d+ q = O
(

n−1
)

(27)

with the quantities p, q depending only on S, θ1, θ2 and the sign of n. A value k2 > 0

with k of the form (25) belongs to the spectrum if there are θ1, θ2 such that the above

condition is satisfied. The solutions of (27) are given by

d1,2 = −p±
√

p2 − q +O
(

n−1
)

. (28)

Proposition 8.1. It holds max{p2 − q | θ1, θ2 ∈ (−π, π]} ≥ 0.

Proof. Taking the value of q from (26) and p2 arranged into the form

p2 =
1

4
(s11 + s22 − s33 − s44)

2 + (s11s33 + s11s44 + s22s33 + s22s44)+

(−1)n · (s11 + s22 + s33 + s44)
[

ℜ
(

s12e
iθ1
)

+ ℜ
(

s34e
iθ2
)]

+
[

ℜ
(

s12e
iθ1
)

+ ℜ
(

s34e
iθ2
)]2

,

we find

p2 − q =
1

4
(s11 + s22 − s33 − s44)

2 +
[

ℜ
(

s12e
iθ1
)

− ℜ
(

s34e
iθ2
)]2

+ (−1)n · ℜ
[

((s11 + s22 − s33 − s44) s12 + 2 (s13s23 + s14s24)) e
iθ1
]

+ (−1)n · ℜ
[

((−s11 − s22 + s33 + s44) s34 + 2 (s13s14 + s23s24)) e
iθ2
]

+ |s14|
2 + |s23|

2 + 2ℜ
(

s14s23e
i(θ1+θ2)

)

+ |s13|
2 + |s24|

2 + 2ℜ
(

s13s24e
i(θ1−θ2)

)

. (29)

It obviously holds

|s14|
2 + |s23|

2 + 2ℜ
(

s14s23e
i(θ1+θ2)

)

≥ (|s14| − |s23|)
2 ≥ 0 ,

|s13|
2 + |s24|

2 + 2ℜ
(

s13s24e
i(θ1−θ2)

)

≥ (|s13| − |s24|)
2 ≥ 0 ,

and θ1, θ2 can be chosen so that the terms on the second and third line of (29) are

non-negative. Therefore

max{p2 − q | θ1, θ2 ∈ (−π, π]}

≥
1

4
(s11 + s22 − s33 − s44)

2 + (|s14| − |s23|)
2 + (|s13| − |s24|)

2 ≥ 0 ,

which we have set up to prove.

Corollary 8.2. If max{p2 − q | θ1, θ2 ∈ (−π, π]} = 0, then S = diag(s11, s22, s33, s44)

and s11 + s22 − s33 − s44 = 0.

Proof. It follows from the last part of the previous proof that the premise requires

s11 + s22 − s33 − s44 = 0. If we substitute this into rhs of (29) and make the same

estimate as in the proof, we infer s13s23+s14s24 = 0, s13s14+s23s24 = 0. Then θ1, θ2 can

be obviously chosen such that p2−q = (|s14|+ |s23|)
2+(|s13|+ |s24|)

2, hence necessarily

s14 = s23 = s13 = s24 = 0. Now (29) gives p2 − q =
[

ℜ
(

s12e
iθ1
)

− ℜ
(

s34e
iθ2
)]2

which

does not exceed zero only if s12 = s34 = 0.
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8.1. Point spectrum for a diagonal matrix S

If m = 4 and all the off-diagonal entries of S vanish, then the boundary conditions

(4) describe the system of decoupled edges of the length a. Such system has a point

spectrum which is not difficult to find. We have two edges types:

• “horizontal”, with the boundary conditions ψ′(0) = s22ψ(0), ψ
′(a) = −s11ψ(a),

• “vertical”, with the boundary conditions ψ′(0) = s44ψ(0), ψ
′(a) = −s33ψ(a).

The corresponding spectral conditions are

(s1+2j,1+2j + ks2+2j,2+2j) cos ka = (k − s1+2j,1+2js2+2j,2+2j) sin ka , j = 0, 1 .

Their solutions are thus

k =
nπ

a
+

arctg s2+2j,2+2j

a
+
s1+2j,1+2j

nπ
+O

(

n−2
)

, j = 0, 1 ,

giving rise the eigenvalues, or flat bands of the lattice Hamiltonian,

k2 =
(nπ

a

)2

+ 2
nπ arctg s2+2j,2+2j

a2
+

(

arctg s2+2j,2+2j

a

)2

+ 2
s1+2j,1+2j

a
+O

(

n−2
)

for j = 0, 1 corresponding the two edge orientations.

8.2. A general matrix S

Let us next consider the following sets related to solutions to condition (28),

D1,2 = {−p±
√

p2 − q | θ1, θ2 ∈ (−π, π]} ∩ R ,

It follows from Proposition 8.1 that D1 6= ∅ 6= D2. We will show now that if one of them

contains more than one point, then both contain a non-degenerated interval.

Proposition 8.3. Let one of the expressions −p+
√

p2 − q, −p−
√

p2 − q be independent

of (θ1, θ2), then the same is true for the other one.

Proof. Let us suppose that −p +
√

p2 − q = c with c ∈ R holds for (θ1, θ2). In such a

case
√

p2 − q = p + c, hence −q − 2pc = c2, in other words, the expression −q − 2pc is

independent of (θ1, θ2). Since

− q − 2pc =
(

|s13|
2 − s11s33 + |s14|

2 − s11s44 + |s23|
2 − s22s33 + |s24|

2 − s22s44
)

+ 2 · (−1)n ·
[

−(s33 + s44) · ℜ
(

s12e
iθ1
)

+ ℜ
(

(s13s23 + s14s24)e
iθ1
)

−(s11 + s22) · ℜ
(

s34e
iθ2
)

+ ℜ
(

(s13s14 + s23s24)e
iθ2
)]

+ 2ℜ
[

(s14s23 − s12s34)e
i(θ1+θ2)

]

+ 2ℜ
[

(s13s24 − s12s34)e
i(θ1−θ2)

]

+ c ·
[

s11 + s22 + s33 + s44 + 2 · (−1)n · ℜ
(

s12e
iθ1
)

+ 2 · (−1)n · ℜ
(

s34e
iθ2
)]

,
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we easily find that also the expression

(−1)n · ℜ
[

((−(s33 + s44) + c) · s12 + s13s23 + s14s24) e
iθ1
]

(−1)n · ℜ
[

((−(s11 + s22) + c) · s34 + s13s14 + s23s24) e
iθ2
]

+ ℜ
[

(s14s23 − s12s34)e
i(θ1+θ2)

]

+ ℜ
[

(s13s24 − s12s34)e
i(θ1−θ2)

]

should be independent of (θ1, θ2). It follows from Proposition 6.1 that this is true if and

only if the whole expression identically equals zero. This in turn means that the lhs of

the condition (27) is independent of θ1, θ2, and consequently, both roots of the equation

d2 + 2pd+ q = 0 are independent of θ1, θ2.

Proposition 8.3 in fact says that only two situations are possible, either both sets

D1, D2 are non-degenerate intervals, or each of them contains a single element only.

Proposition 8.4. The sets D1, D2 are single-element sets iff at most one pair of off-

diagonal elements of S is nonzero, and moreover, s12 = s34 = 0.

Proof. D1, D2 are one-element iff both −p +
√

p2 − q, −p −
√

p2 − q are independent

of θ1, θ2, and this obviously holds iff both p, q are independent of θ1, θ2. With regard

to the definition of p, q, we have

s12 = 0 , s34 = 0 , s13s23 + s14s24 = 0 , s13s14 + s23s24 = 0 ,

s13s24 = 0 , s14s23 = 0 .

Hence s12 = 0, s34 = 0, and it is easy to see that at least three elements from the set

{s13, s14, s23, s24} have to vanish as well.

Corollary 8.5. The sets D1, D2 are one-element sets iff the lattice decouples either into

separate edges of the length a, or into identical copies of L-shaped pairs of edges.

Proof. See the previous proposition. If all the off-diagonal elements of S vanish, the

system decouples into separate edges and we return the the situation considered above.

The second possibility is that just one of the numbers s13, s14, s23, s24 is nonzero, then

the system is decoupled into L-shaped edge pairs. More precisely, s13 6= 0, s14 6= 0,

s23 6= 0 and s23 6= 0 corresponds to q, y, p and x shaped pairs, respectively, cf. Fig. 1

and the boundary conditions (6).

Apparently, if s12 = s34 = 0 and S contains just one nonzero off-diagonal element

pair, the spectrum consists of isolated points.

8.3. Linearly growing spectral gaps, constant bands

Consider now the case when at least two off-diagonal elements of S are nonzero,

i.e. the situation when both D1, D2 are intervals. Then the spectral asymptotics is

determined by (25) where d is given by (28). Employing the symbols D1,D2 introduced
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at the beginning of this section, we may characterize the values k corresponding to the

spectrum as

k ∈
⋃

j=1,2

(

nπ

a
+
d↓j
nπ

+O(n−2),
nπ

a
+
d↑j
nπ

+O(n−2)

)

,

where d↓j = minDj, d
↑
j = maxDj . Note that d±1 , d

±
2 depend only on S, since the term

(−1)n can be absorbed into θ1, θ2. The above relation gives spectral values in the form

k2 ∈
⋃

j=1,2

(

n2π2

a2
+ 2

d↓j
a

+O(n−1),
n2π2

a2
+ 2

d↑j
a

+O(n−1)

)

, (30)

which means that spectral bands (or their overlapping pairs) are of asymptotically

constant width as the band number goes to infinity, and consequently, the spectral gaps

are linearly growing with the band index. We also remark that the case a nontrivial δ′s
coupling considered in [Ex96, EG96] corresponds to S with all the entries nonzero and

identical and thus has the described gap behaviour as expected.

The band structure depends on the parameter values, in particular, the band

corresponding to D1 and D2 in (30) may or may not overlap. The former situation

occurs, e.g., if only the elements s12 and s34 are nonzero, the latter if s11+s22−s33−s44
is large in comparison with the off-diagonal elements.

Let us finish this section with a short note on the prominent examples of the δ′s
and δ′ coupling. A direct substitution of the appropriate boundary conditions into the

expressions for dj leads to these results:

• In the case of the δ′s coupling, it holds d↑2 = d↓1 = 0. At the same time, one of

the sets D1,D2 equals {d↑2}. Consequently, the spectrum consists of asymptotically

constant bands and linearly growing gaps between them. We remark that if d↑2 = d↓1
and at the same time D1 and D2 are non-degenerate intervals, a special analysis is

needed to find whether there is a gap between the bands corresponding to D1 and

D2 or not.

• In the case of the δ′ coupling, we have d↑2 < d↓1, thus the sets D1 and D2 are disjoint.

Consequently, the spectrum has asymptotically the pattern · · ·GbgbGbgbGbgbG · · ·

where G represents linearly growing gaps and b, g stand for bands and gaps whose

widths are asymptotically constant.

Appendix: proof of Proposition 6.2

We will prove the claims in the order of their presentation:

(i) It holds −Kc cos
2 x+Ks sin

2 x = −Kc+Ks

2
− Kc+Ks

2
cos 2x and

max {cosx · Lc(θ1, θ2) + L(θ1, θ2) | θ1, θ2 ∈ (−π, π]}

= max {cosx · Lc(θ1, θ2) + L(θ1, θ2) | θ1, θ2 ∈ (−2π, 0]}

= max {cosx · Lc(θ1 − π, θ2 − π) + L(θ1 − π, θ2 − π) | θ1, θ2 ∈ (−π, π]}

= max {− cosx · Lc(θ1, θ2) + L(θ1, θ2) | θ1, θ2 ∈ (−π, π]} ,
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therefore V +
2 (x) equals

−Kc +Ks

2
−
Kc +Ks

2
cos 2x+max {| cosx| · Lc(θ1, θ2) + L(θ1, θ2) | θ1, θ2 ∈ (−π, π]} ,

and the function V +
2 (x) can be treated in the same way. To finish the proof of (i),

it suffices to realize that both cos 2x and | cosx| are π-periodic functions satisfying

cos 2
(

π
2
− x
)

= cos 2x and | cos
(

π
2
− x
)

| = | cosx|.

(ii) The part of V −
2 (x) independent of θ1, θ2 is obviously increasing on

[

0, π
2

]

,

because − cos 2x does. As for the second part, for all x′ ∈
[

0, π
2

)

it holds: if θ̃1, θ̃2
satisfy

min {cosx′ · Lc(θ1, θ2) + L(θ1, θ2) | θ1, θ2 ∈ (−π, π]} = cosx′ · Lc(θ̃1, θ̃2) + L(θ̃1, θ̃2) ,

then Lc(θ̃1, θ̃2) ≤ 0. If this was not the case one could shift both θ̃1, θ̃2 by π, which would

change the sign of L(θ̃1, θ̃2), and therefore make the value of cosx′ ·Lc(θ̃1, θ̃2)+L(θ̃1, θ̃2)

smaller, however, this would contradict the assumed minimality.

Let now x′′ < x′ ∈
(

0, π
2

]

. Then cosx′′ · Lc(θ̃1, θ̃2) + L(θ̃1, θ̃2) ≤ cos x′ · Lc(θ̃1, θ̃2) +

L(θ̃1, θ̃2), and therefore

min {cosx′′ · Lc(θ1, θ2) + L(θ1, θ2) | θ1, θ2 ∈ (−π, π]}

≤ min {cosx′ · Lc(θ1, θ2) + L(θ1, θ2) | θ1, θ2 ∈ (−π, π]} ,

thus min {cosx′ · Lc(θ1, θ2) + L(θ1, θ2) | θ1, θ2 ∈ (−π, π]} is an increasing function of x

in the interval
[

0, π
2

]

.

(iii) Let θ̃1(x) and θ̃2(x) be functions defined on
[

0, π
2

]

such that

max {cosx · Lc(θ1, θ2) + L(θ1, θ2) | θ1, θ2 ∈ (−π, π]}

= cosx · Lc(θ̃1(x), θ̃2(x)) + L(θ̃1(x), θ̃2(x)) ;

it follows that

cosx ·
∂Lc

∂θ̃j
(θ̃1(x), θ̃2(x)) +

∂L

∂θ̃j
(θ̃1(x), θ̃2(x)) = 0 , j = 1, 2, (31)

which we will use below. The function V +
2 (x) can be then written as

V +
2 (x) =

−Kc +Ks

2
−
Kc +Ks

2
cos 2x+ cos x · Lc(θ̃1(x), θ̃2(x)) + L(θ̃1(x), θ̃2(x)) ,

so we can compute its derivative with respect to x,

d

dx
V +
2 (x) = (Kc +Ks) sin 2x− sin x · Lc(θ̃1(x), θ̃2(x))

+ cosx

(

∂Lc

∂θ̃1
θ̃1

′
(x) +

∂Lc

∂θ̃2
θ̃2

′
(x)

)

+
∂L

∂θ̃1
θ̃1

′
(x) +

∂L

∂θ̃2
θ̃2

′
(x) .

The expression on the second line vanishes due to (31), hence

d

dx
V +
2 (x) = sin x

[

2(Kc +Ks) cosx− Lc(θ̃1(x), θ̃2(x))
]

.
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Now we will show that d
dx
V +
2 (x) ≤ 0 ⇒ V +

2 (x) ≥ 1 — once this is proved, the proof

of statement (iii) is finished. We have d
dx
V +
2 (x) ≤ 0 ⇒ −Kc cosx ≥ Ks cosx −

1
2
Lc(θ̃1(x), θ̃2(x)). A substitution for Kc cosx into V +

2 (x) gives the inequality

V +
2 (x) ≥ Ks +

1

2
cosx · Lc(θ̃1(x), θ̃2(x)) + L(θ̃1(x), θ̃2(x)) .

Since Ks ≥ 1, it only remains to check that 1
2
cosx·Lc(θ̃1(x), θ̃2(x))+L(θ̃1(x), θ̃2(x)) ≥ 0.

The argument leans on the following two statements:

S1. Lc(θ̃1(x), θ̃2(x)) ≥ 0.

S2. If L(θ̃1(x), θ̃2(x)) < 0, then cosx · Lc(θ̃1(x), θ̃2(x)) ≥ 2|L(θ̃1(x), θ̃2(x))|.

Statement S1 can be demonstrated using the same idea as in part (ii) of this proof,

S2 can be proved by reductio ad absurdum. Let us suppose that L(θ̃1(x), θ̃2(x)) < 0

and | cosx · Lc(θ̃1(x), θ̃2(x))| < 2|L(θ̃1(x), θ̃2(x))|. Then we define θ̂1 = θ̃1(x) + ρ and

θ̂2 = θ̃2(x)+ρ where ρ = π
2

or ρ = −π
2

— the sign of ρ is chosen such that Lc(θ̂1, θ̂2) ≥ 0.

Then it holds

cosx · Lc(θ̂1, θ̂2) + L(θ̂1, θ̂2) ≥ cos x · 0− L(θ̃1(x), θ̃2(x)) = |L(θ̃1(x), θ̃2(x))|

>
1

2
cosx · Lc(θ̃1(x), θ̃2(x)) >

1

2
cosx · Lc(θ̃1(x), θ̃2(x)) + L(θ̃1(x), θ̃2(x)) ,

hence

V2(x, θ̂1, θ̂2) > V2(x, θ̃1(x), θ̃2(x)) = V +
2 (x) ,

which is in contradiction with the definition of V +
2 (x).

(iv) It follows from their construction that the functions V +
2 , V −

2 (x) satisfy

V +
2 (x) ≥ V −

2 (x) for all x ∈
(

0, π
2

)

. The strict inequality V +
2 (x) > V −

2 (x) is equivalent to

the fact that the image of the function cosx · Lc(θ1, θ2) + L(θ1, θ2) defined on (−π, π]2

forms a non-degenerate interval. Since cosx · Lc(θ1, θ2) + L(θ1, θ2) equals

ℜ
(

−8 cos ak(t11t21 + t12t22)e
iθ1
)

+ ℜ
(

8 cos ak(t22t21 + t11t12)e
iθ2
)

+ ℜ
(

8t11t22e
i(θ1−θ2)

)

+ ℜ
(

8t12t21e
i(θ1+θ2)

)

,

i.e. it is of the type examined in Proposition 6.1, we infer that the image degenerates

to a single point iff

t11t21 + t12t22 = 0 ∧ t22t21 + t11t12 = 0 ∧ t11t22 = 0 ∧ t12t21 = 0 ;

it is straightforward to check that these four conditions are satisfied iff at most one of

the numbers t11, t12, t21, t22 is nonzero. This concludes the proof.
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