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We sketch here two mathematical models intended to describe the point,contact spectro- 
scopical experiments. A new item is added tO the list of recently discovered applications of the 
self-adjoint extensions theory. 

11 INTRODUCTION 

The theory of self-adjoint extensions is a standard part  of  functional analysis 

for more than half a'century. In the recent years, it has attracted a new attention con- 
nected with interesting physical applications. Let us recall some of them: 

a) point interactions: one attempts to give a reasonable meaning to the formal 

Schr6dinger operator 
N 

(1) H = - A  + V(x) + E 2j6(x - xj) 
j = l  

on L2(Ra). A mathematically clean and effective way of performing this task starts 

with the operator Ho = - A  + V(x) defined on the domain from which the inter- 

action points are removed, D(Ho) = C~(Rd\  {x 1 . . . . .  xN}). This operator is generally 
symmetric, but not self-adjoint. One looks for its self-adjoint extension which can 
be identified with the formal operator (1), with the coupling constants 2j related 

to parameters of  this extension. 
There is a vast amount  of literature on this subject; let us mention, e.g., [ 1 - 5 ] .  

The method works for d < 3, since in higher dimensions removing of a point f rom 
the domain leaves the Schr6dinger operator e.s.a. At present, the one-dimensional 
and three-dimensional cases are relatively well studied. The one-dimensional case 

has a more rich structure: if we restrict ourselves to one point interaction, then the 
deficiency indices are (1,1) for d = 2, 3, and (2,2) for d = 1. Hence there are other 
self-adjoint extensions of Ho for d = 1, e.g., the so-called 8'-interaction, 

b) another application, closely related to the previous one, concerns a one-di- 
mensional model of three-particle collisions [6] in which impenetrable particles 
on a line interact via two-particle contact interactions plus a three-particle contact 
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interaction. Addition of the last term allows one to solve the model and determine 
resonance behaviour of the system, 

c) singular potentials: consider, e.g., a one-dimensional Schrtidinger operator 
H = -d2 /dx  z + V(x) whose potential has a (repulsive) point singularity at x = 0; 
we ask whether tunneling is possible between R + and E- .  It appears [7] that the 
answer is determined by the potential alone only if H is e.s.a.; the tunneling is then 
forbidden if 

(2) V(x) dX = oo or V(x) 2 dx = 0o 
c 

for some c > 0. Otherwise the conditiOns (2) ensure the absence of tunneling for 
the Friedrichs extension of H; at the same time, a particle whose motion is governed 
by another extension of H can, in general, penetrate the barrier. This can be illu- 
strated on the example of V(x) = gx -2 with 0 < g < �88 where the transmission 
coefficient may be calculated explicitly [7] for each 2 x 2 unitary matrix U charac- 
terizing a particular extension Hv; it is zero if U is diagonal. This result is interesting 
particularly from the viewpoint of conservation of topological charges in some 
field-theoretical models [8]. 

d) again connected to the previous one, there is the problem of regularizing 
singular potentials. This is an often used trick to replace a Schr~idinger operator 
with singular potential by a sequence of operators corresponding to suitably regula- 
rized potentials, and to study the behaviour of its eigenvalues and other characteristics. 
in the limit when the regularization is removed. If the original Schr/Sdinger operator 
is not e.s.a., however, different regularizations may lead to different self-adjoint 
extensions [9, 10]. Recall the example discussed in [9]: the operator H0 ~ = - d2ldx 2 + 
+ V(x) with the natural domain D(H ~ = O(-dZ/dx2) c~ D(V) for V(x)= 
= Ixl-3.xE_l, =(x)is symmetric with the deficiency indices (1, 1). Its self-adjoint 
extensions H,  can be constructed in a standard way; for the regularization procedure 
sketched in fig. 1, one obtains 

2gh f ]G(x, O,i)[ z dx ,  (3) ei~= 1 + h + 2 ~  R 

depending on the parameter h, where e = e n i / 4  and G is the Green's function o f  
Ho = -d2/dx z 4- V(x) (the form sum). On the other hand, in the case of a stronger 
singularity, the sketched procedure leads to a single extension specified by Dirichlet. 
boundary condition [11]. 

e) metallic model of a molecule, in which one starts with its graph (see fig. 2 for  
the anthracene molecule) andass igns  to each of its links a suitable Schrddinger 
operator. The Hamiltonian is then obtained by "glueing" these operators together; 
it is nothing else than the choice of a self-adjoint extension. When combining with 
the free Hamiltonian in ~3, this model can yield quasistationary states of the mole-. 
cule as well [12, 13]. 
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Let us stop the survey, though it is in no case complete. In what follows, we are 
going to  demonstrate another possible application of the theory of self-adjoint 

extensions. 

I I 
, I 

! 

I 

-I -E E 1 

Fig. 1. Scheme of  a regularizat ion procedure.  Fig. 2. Graph of the anthracene 
molecule. 

2. T H E  Q U A N T U M  P O I N T - C O N T A C T  S P E C T R O S C O P Y  

For a metallic contact, the common wisdom suggests a linear relation between 
the applied voltage and the current according to the Ohm's law. This is true, if the 
size of the contact is large enough. On the other hand, once its diameter becomes 
comparable to the mean free path of electrons in the metal, interesting non-linear 
effects appear which gave rise to the new branch of research mentioned in the title; 
a review of this subject can be found in [14]. The small size of the contact causes 
scattering of the electrons giving a backward flow, which adds a negative and voltage- 
dependent contribution to the current. 

Let us describe briefly typical experimental results illustrated in figs. 3, 4 adapted 
from [14]. The non-linear effects represent usually a few per mille to a few per cent 
of the total current. They are visible in the differential resistance dU/dI. The second 
derivative exhibits typically a more complicated shape with peaks corresponding 
to the metal involved; this is the most substantial information provided us by the 
method. Dependence of the characteristics on impurities in the metal, temperature,. 
external magnetic field etc. has been also studied. 

There are two types of point contacts. In the first of them, dubbed spear-and-anvil 
(or pressure-type) contact, a sharply tipped wire is adjusted by a screw against a flat 
metallic surface. The second type consists of two thin metallic films separated by 
an insulating (oxide) layer which is perforated at one point. The contact diameter is 
typically a few .~. The device is placed into a suitable cooling medium, e.g., a liquid 
helium. 

The theory of these contacts is certainly a complicated matter, and we are not. 
going to discuss it here. Our aim is to show that simple mathematical models can be 
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constructed which reproduce some features of such systems. To this purpose, we need 
an expression for the current. We restrict our attention to the case when the two 
parts of the contact are made of the same metal, or more generally, when they have 
the same Fermi energy. Then the current is given by [15] 

(4) I = . . . .  2eh ff#-(E)[fr(E) fr(E eU)] dE, 

a) 
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Fig. 3. Example of a current-voltage characteristic: a) logarithmic scale; b) linear scale. 

where e is the (positively taken) electron charge, U is the applied voltage, 5"(E) 
is the transmission coefficient, and 

(5) fr(E) = I1 + exp(E----Ev~l-l\ kT ]3 

is the electron-gas density at the temperature T and Fermi energy E F (the latter is 
typically a few eV). The relation (4) becomes particularly simple in the zero tempera- 
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ture limit when 
")D ('EF+eU 

(6) I = J( )dE; 
,,/s 

evaluation of  the differential resistance is s t ra ightforward in this case. 

Copper contact 

R=5.79. ,T :l.2K 

Fig. 4. Another example of a current-voltage 
characteristic together with the plot of the second 

derivative. 
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3. A MODEL FOR THE SPEAR-AND-ANVIL CONTACT 

The simplest model  of  this contact ,  in which its linear dimension is supposed to be 

zero, is represented by a free electron moving on the manifold consisting of a half- 
line connected to a plane (fig. 5). For  simplicity, we neglect spin of  the electron so 

R-  

Fig. 5. Configuration manifold for the model of spear-and- 
anvil contact. 

that  the state Hill:ert space is ~ = L2(IR -)  • L2([]-~2). Such a system has bccn discussed 

in [16]; we summarize  here the results. 
Since the electron mot ion  is supposed to be free except at the connect ion point,  

we start the construct ion of  Hami l ton ian  with the opera tor  Ho = Ho,l  @ Ho,2, 

where 
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d 2 
(7a) H o l  = - - -  D(Ho,1) = C~(R-  \ {05) 

' d \  2 ' 

(7b) Ho, 2 = - A ,  D(H0,2) = C~~ {P)).  

The operator Ho is not e.s.a.; introducing polar coordinates in the plane, one finds 
easily that its deficiency indices are (2, 2). Hence it possesses a four-parameter 
family of self-adjoint extensions, which can be constructed in a standard way; they 
are parametrized by 2 • 2 unitary matrices U. 

It is useful to characterize the extensions by means of appropriate boundary 
conditions. In each pair of deficiency functions, one is singular in the connection 
point, but this difficulty can be bypassed by introducing the regularized boundary 
values [4] 

(8) Lo(q~ ) = lira q~(r) Ll(q~ ) - lim liP(r) - L0(~0 ) In r] , �9 

r - * 0  i n  /" r--*O 

For simplicity, we restrict our attention to the ease when 

(9) D(U) - 1 + u~1 - u22 - det U ~= 0 

(the remaining extensions are described in [16]). Then we have 

Proposition 1: Under the condition (9), every extension H v acts on q~ = {qh, ~o2} 
e D(Hv)  as 

Hv{qh,  q ~ 2 i = {  d2~ldx 2 ' A~~ 

and its domain D ( H v ) i s  a subspace in D(H*) specified uniquely by the following 
boundary conditions 

(10) rpi(0_ ) = Arp,(0_) + BLo(rP2), 

Ll(q~2) = Cq~l(0_ ) + DL0(tP2). 

The coefficients here are related to the matrix elements of U by 

(11) A -- [g(1 - u22 ) + 8(u,a -- det U)] D(U) -1 , 

B = , Z - a / 2 u z ,  D(U) -a , C = u,2 D(U) -a , 

[1 + tr U + det U] D(U) -a D = 7 - 1 n 2  +4~ 

where e = e ~i/4 and ? = 0.577216... is the Euler's constant. 

It is clear from the relations (10) and (11), that for a diagonal U, the boundary 
conditions separate; then H v  is of the form r4(a) @ ~( , )  the orthogonal sum of ~ a 0 , 1  a a 0 , 2 ,  

appropriate extensions of the operators (7). From the viewpoint of our model, this 
case is not interesting, since transmission between the two parts of the configuration 
manifold is impossible. 
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Assume therefore that U is non-diagonal .  It is not difficult to calculate the reflec- 
tion coefficient for an electron moving along the hairline; it equals la~(k)l ~, where 

(12) av(k)  = 

(13) 

and introduce 

/Aikt[l+2it   

One can also consider scattering of an electron moving in the plane on the singular 
point. Only its s-wave part is non-trivial; the corresponding on-shell S-matrix is 
non-unitary and fulfils 

1 -Is0(k)12 = ,  - l au(k) l  2 

In other words, the transmission probability is the same in both directions. This 
is just the quantity we need for evaluation of the current voltage characteristics�9 
In order to express it more explicitly, we parametrize the matrix U as follows 

( e'(X+')cosflei(~-~)sinfl ) 
U = e ir - - e  i ( ~ - ~ )  sin fl e -i(~+a) cos fl 

9'  = sin (~ + 6 + �88 cos ~ - sin (r + �88  

= s i n ( ~ + 6 )  c o s f l - s i n 4 ,  

= cos (:~ + 6)cos  3 + cos ~.  

Then one can calculate the transmission coefficient Y-(k 2) = 1 - lau(k)l / to be 

(14) ,Y-(k/) = 
2u2~ /k  sin / fl ( )2( 2 y 

N2 ~ _  2 N k l n k  �89 + � 8 9  + N 2 k  + 2  -3/2sin2fl 

4. A MODEL FOR THE THIN-FILM CONTACT 

We consider again the simplest possible model in which a free electron moves 
on the manifold consisting of two planes connected at one point (fig. 6), neglecting 
the electron spin 1-17]. The state Hilbert space is therefore of the form 9r ' = 
= L2(R 2) @ L2(~ 2) and the construction starts from the operator H 0 = H0, t @ H0,2, 

Fig. 6. Configuration manifold for the model of thin-film 
contact. 

"PJ 
R 2 
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where now both Ho, j are given by (7b). The deficiency indices are again (2, 2) so that 
there is a four-parameter family of selfadjoint extensions H v of H o parametrized 
by 2 x 2 unitary matrices U. As in the preceding case, we restrict our attention 
to a class which contains most of them (referring to [17] for a complete description): 
we assume 

(15) D ( U ) -  1 - t r U  + d e t U * 0 .  

Then one has 

Propos i t ion  2: Under the condition (15), every extension Hv acts on (p = {cp,, ~o2} e 
D(Hc, ) as Hc,~o = {-Acpl ,  -A(P2}, and its domain D(Hv)is a subspace in D(H~) 

determined uniquely by the boundary conditions 

(16) L,(~o,) = A Lo(r ) + B Lo(cpz), 

Lt(cp2) = C Lo(~O,) + D Lo(~% ) , 

where the coefficients are related to the matrix elements of U by 

(17) A = y -  In2 + ~ [1 + u, ,  - u E z -  d e t U ] D ( U ) - '  
4i 

B = ~ ( u )  ~ D ( v ) - '  --u2~ D -~ ,  C = - - u ~ 2  
2i 2i 

rc [1 - u ,1  + u22 - det U]  D(U)-' D = y -  ln2  + 4-i 

As in the preceding section, the case of a diagonal U is not interesting, because 
the motion is then separated between the two planes. Hence we assume again that U 
is non-diagonal, and consider scattering of an electron moving in the first plane 
on the singular point. For the s-wave, we get So(k) = 1 + 2av(k ), where 

2i J OSa) a d k )  = ~ 1 + -,~ ('t - O + h, ;k) balk) 

and 

(18b) 

{[ ,][  14} -' 2i 2i BC b u ( k ) = 2 i c  1+ (~ ,4+ln �89  ~+ (~, D+ln~'k  + 

while the remaining part of the S-matrix is trivial. The scattering is again non-unitary, 
and a straightforward calculation shows that J--(k 2) = 1 - [So(k)[ 2 equals 

(19) Y(k ~) = 4]bu(k)[~; 
it is easy to check that this is the probability current through the connection point. 
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5. DISCUSSION 

Using the transmission coefficients (14) and (19), one can calculate the current- now 
voltage characteristics. In particular, the differential resistance in the zero-tempera- 
ture limit is 

(20) d V _  h .q-(EF + eU) -1 
dI 2e 

2 

L- 

b ~ - ~ - 0 ,  ~ =-} - .  ~/Z, 

d ~ - 0 ,  p - 5 = { o l  

f ~x =~ = 0  8 =~/2,t~=0.001 

o 

E F - 0.2 , T - 0 

eU 

Fig. 7. Differential resistance for various extensions in the model o1" spear-and-anvil contact 

The resulting function depends on the parameters specifying the self-adjoint exten- 
sion used. Their choice requires an additional physical information; it should be 
guided by some concept of what happens to an electron passing through the contact. 
However, we are not going to discuss this question here. 

We limit ourselves to illustrating how much the described method can reproduce 
the measured quantities. Consider the model of sec. 3. The rhs of (20) has four 
adjustable parameters, with the aid of which is it possible to fit the "background" 
non-linear shape of dU/dl  (just to give an example, we plot in fig. 7 the corresponding 
function for six extensions). The unpleasant feature of the model is that the resistance 
is growing at large U: it behaves like ,-~U~/2(ln U) 2. Similar results can be obtained 
for the model of sec. 4 - scc figs. 8, 9. 

On the other hand, the models under consideration cannot give a more complicated 
structure of the current-voltage characteristics, such as peaks in the second derivative 
etc. This is, however, not surprising, because it reflects structure of the metal which 
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Fig. 8. Differential resistance for different Fermi energies in the model of thin-film contact. 
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Fig. 9. Differential resistance for various extensions in the model of thin-film contact. 
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has been completely neglected in our  considerations, where the electrons are assumed 

to be free. 

In conclusion, let us mention a preliminary result concerning another  model 

o f  the pressure-type contact.  In this model,  the plane is replaced by a half-space 

to which a half line is attached. One must  specify now how the electrons behave 

on the surface o f  such a "p la te" ;  this is achieved by imposing the Neumann  conditions 

on the boundary  plane, with exclusion of  the connection point. Adding now a poten- 

tial to the halfspace part  of  the "pre -Hami l ton ian"  and taking a particular extension, 

we obtain zero-temperature resistance curves with a few peaks. According to ou~: 

opinion, this is the line along which models of  this type should be developed further. 

Received 20. 11. 1986. 
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