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get three-dimensional estimates for the eigenvalue moments of the corresponding
magnetic Laplacians.
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Abstract. The aim of the paper is to derive spectral estimates into several
classes of magnetic systems. They include three-dimensional regions with
Dirichlet boundary as well as a particle in R3conﬁned by a local change of
the magnetic ﬁeld. We establish two-dimensional Berezin-Li-Yau and Lieb-
Thirring-type bounds in the presence of magnetic ﬁelds and, using them, get
three-dimensional estimates for the eigenvalue moments of the corresponding
magnetic Laplacians.
1 Introduction
Let −∆Ωbe the Dirichlet Laplacian corresponding to an open bounded do-
main Ω ⊂Rd, deﬁned in the quadratic form sense on H1
0(Ω). The operator
is obviously non-negative and since the embedding H1
0→L2(Ω) is compact,
its spectrum is purely discrete accumulating at inﬁnity only. It is well known
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that for d= 3, up to a choice of the scale, the eigenvalues describe energies
of a spinless quantum particle conﬁned to such a hard-wall ‘bottle’.
Motivated by this physical problem, we consider in the present work a
magnetic version of the mentioned Dirichlet Laplacian, that is, the operator
HΩ(A)=(i∇+A(x))2associated with the closed quadratic form
k(i∇+A)uk2
L2(Ω) , u ∈ H1
0(Ω) ,
where the real-valued and suﬃciently smooth function Ais a vector potential.
The magnetic Sobolev norm on the bounded domain Ω is equivalent to the
non-magnetic one and the operator HΩ(A) has a purely discrete spectrum as
well. We shall denote the eigenvalues by λk=λk(Ω, A), assuming that they
repeat according to their multiplicities.
One of the objects of our interest in this paper will be bounds of the
eigenvalue moments of such operators. For starters, recall that for non-
magnetic Dirichlet Laplacians the following bound was proved in the work
of Berezin, Li and Yau [Be72a, Be72b, LY83],
X
k
(Λ −λk(Ω,0))σ
+≤Lcl
σ,d |Ω|Λσ+d
2for any σ≥1 and Λ >0,(1.1)
where |Ω|is the volume of Ω and the constant on the right-hand side,
Lcl
σ,d =Γ(σ+ 1)
(4π)d
2Γ(σ+1+d/2) ,
is optimal. Furthermore, the bound (1.1) holds true for 0 ≤σ < 1 as well,
but with another, probably non-sharp constant on the right-hand side,
X
k
(Λ −λk(Ω,0))σ
+≤2σ
σ+ 1σ
Lcl
σ,d |Ω|Λσ+d
2,0≤σ < 1.(1.2)
see [La97]. In the particular case σ= 1 the inequality (1.1) is equivalent, via
Legendre transformation, to the lower bound
N
X
j=1
λj(Ω,0) ≥Cd|Ω|−2
dN1+ 2
d, Cd=4πd
d+ 2Γ(d/2 + 1) 2
d.(1.3)
Turning next to the magnetic case, we note ﬁrst that the pointwise dia-
magnetic inequality [LL01], namely
|∇|u(x)|| ≤ |(i∇+A)u(x)|for a.a. x∈Ω,
2




            

                                            

            
                
implies λ1(Ω, A)≥λ1(Ω,0), however, the estimate λj(Ω, A)≥λj(Ω,0) fails
in general if j≥2. Nevertheless, momentum estimates are still valid for
some values of the parameters. In particular, it was shown [LW00] that the
sharp bound (1.1) holds true for arbitrary magnetic ﬁelds provided σ≥3
2,
and the same sharp bound holds true for constant magnetic ﬁelds if σ≥1,
see [ELV00]. Furthermore, in the dimension d= 2 the bound (1.2) holds true
for constant magnetic ﬁelds if 0 ≤σ < 1 and the constant on its right-hand
side cannot be improved [FLW09].
Our main aim in the present work is to derive suﬃciently precise two-
dimensional Berezin-type estimates for quantum systems exposed to a mag-
netic ﬁeld and to apply them to the three-dimensional case. We are going
to address two questions, one concerning eigenvalue moments estimates for
magnetic Laplacians on three dimensional domains having a bounded cross
section in a ﬁxed direction, and the other about similar estimates for mag-
netic Laplacians deﬁned on whole R3.
Let us review the paper content in more details. In Sec. 2 we will describe
the dimensional-reduction technique [LW00] which allows us to derive the
sought spectral estimates for three-dimensional magnetic ‘bottles’ using two-
dimensional ones. Our next aim is to derive a two-dimensional version of
the Li-Yau inequality (1.3) in presence of a constant magnetic ﬁeld giving
rise to an extra term on the right-hand side. The result will be stated and
proved in ﬁrst part of Sec. 3. This in turn will imply, by means of Legendre
transformation, a magnetic version of the Berezin inequality which we are
going to present in second part of Sec. 3. It has to be added that the question
of semiclassical spectral bounds for such systems has been addressed before,
in particular, another version of the magnetic Berezin inequality was derived
by two of us [KW13]. In ﬁnal part of Sec. 3 we are going to compare the
two results and show that the one derived here becomes substantially better
when the magnetic ﬁeld is strong.
In some cases the eigenvalues of the magnetic Dirichlet Laplacian with a
constant magnetic ﬁeld can be computed exactly in terms of suitable special
functions. In the ﬁrst part of Sec. 4 we are present such an example con-
sidering the magnetic Dirichlet Laplacian on a two-dimensional disc with a
constant magnetic ﬁeld. Its eigenvalues will be expressed in terms of Kummer
function zeros. Next, in the second part, we are going to consider again the
magnetic Dirichlet Laplacian on a two-dimensional disc, now in a more gen-
eral situation when the magnetic ﬁeld is no longer homogeneous but retains
the radial symmetry; we will derive the Berezin inequality for the eigenvalue
3




            

                                            

            
                
moments. In Sec. 5 we shall return to our original motivation and use the
mentioned reduction technique to derive Berezin-type spectral estimates for
a class of three-dimensional magnetic ‘bottles’ characterized by a bounded
cross section in the x3direction.
Turning to the second one of the indicated questions, from Sec. 6 on, we
shall be concerned with magnetic Laplacians in L2(R3) associated with the
magnetic ﬁeld B:R3→R3which is as a local perturbation of a constant
magnetic ﬁeld of intensity B0>0. Again, as before, we ﬁrst derive suitable
two-dimensional estimates; this will be done in Sec. 6. In the last two sections
we apply this result to the three-dimensional case. In Sec. 7 we show that the
essential spectrum of the magnetic Laplacian with corresponding perturbed
magnetic ﬁeld coincides with [B0,∞). The Sec. 7.1 we then prove Lieb-
Thirring-type inequalities for the moments of eigenvalues below the threshold
of the essential spectrum for several types of magnetic ‘holes’.
2 Dimensional reduction
As indicated our question concerns estimating eigenvalues due to conﬁne-
ment in a three-dimensional ‘bottle’ by using two-dimensional Berezin type
estimates. In such situation one can use the dimension-reduction tech-
nique [LW00]. In particular, let −∆Ωbe the Dirichlet Laplacian on an open
domain Ω ⊆R3, then for any σ≥3
2the inequality
tr (Λ −(−∆Ω))σ
+≤Lcl
1,σ ZR
tr Λ−(−∆ω(x3))σ+1
2
+dx3(2.1)
is valid, where −∆ω(x3)is the Dirichlet Laplacian on the section
ω(x3) = x0= (x1, x2)∈R2|x= (x0, x3) = (x1, x2, x3)∈Ω,
see [LW00], and also [ELM04, Wei08]. The integral at the right-hand side of
(2.1), in fact restricted to those x3for which inf spec(−∆ω(x3))<Λ, yields the
classical phase space volume. Note that in this way one can obtain estimates
also in some unbounded domains [GW11] as well as remainder terms [Wei08].
A similar technique can be used also in the magnetic case. To describe
it, consider a suﬃciently smooth magnetic vector potential A(·) : Ω →R3
generating the magnetic ﬁeld
B(x) = (B1(x), B2(x), B3(x)) = rot A(x).
4




            

                                            

            
                
For the sake of deﬁniteness, the shall use the gauge with A3(x) = 0. Fur-
thermore, we consider the magnetic Dirichlet Laplacians
HΩ(A) = (i∇x−A(x))2on L2(Ω)
and e
Hω(x3)(e
A)=(i∇x0−e
A(x))2on L2(ω(x3)) ,
where e
A(x) := (A1(x), A2(x)). Note that for the ﬁxed x3the two-dimensional
vector potential e
A(x0, x3) corresponds to the magnetic ﬁeld
˜
B(x0, x3) = B3(x) = ∂A2
∂x1−∂A1
∂x2
.
Referring to [LW00, Sec. 3.2] one can then claim that for a σ≥3
2we have
tr(Λ − HΩ(A))σ
+≤Lcl
1,σ ZR
tr(Λ −e
Hω(x3)(e
A))σ+1/2
+dx3.(2.2)
3 Berezin-Li-Yau inequality with a constant
magnetic ﬁeld
Suppose that the motion is conﬁned to a planar domain ωbeing exposed to
inﬂuence of a constant magnetic ﬁeld of intensity B0perpendicular to the
plane, and let A:R2→R2be a vector potential generating this ﬁeld. We
denote by Hω(A) the corresponding magnetic Dirichlet Laplacian on ωand
µj(A) will be its eigenvalues arranged in the ascending with repetition ac-
cording to their multiplicity. Our ﬁrst aim is to extend the Li-Yau inequality
(1.3) to this situation with an additional term on the right-hand side depend-
ing on B0only. This will be then used to derive the Berezin-type inequality.
Conventionally we denote by Nthe set of natural numbers, while the set of
integers will be denoted by Z.
The following result is not new. Indeed, it can be recovered from [ELV00,
Sec. 2], however, for the sake of completeness we include a proof.
3.1 Li-Yau estimate
Theorem 3.1. Assume that ω⊂R2is open and ﬁnite. Then the inequality
X
j≤N
µj(A)≥2πN 2
|ω|+B2
0
2π|ω|m(1 −m) (3.1)
5




            

                                            

            
                
holds, where m:= n2πN
B0|ω|ois the fractional part of 2πN
B0|ω|.
Proof. Without loss of generality we may assume that B0>0. Let Pkbe the
orthogonal projection onto the k-th Landau level, B0(2k−1), of the Landau
Hamiltonian (i∇+A(x))2in L2(R2) which is an integral operator with the
kernel Pk(x, y) – see [KW13]. Note that we have
Pk(x, x) = 1
2πB0,(3.2)
ZR2Zω|Pk(y, x)|2dxdy=ZωZR2
Pk(y, x)Pk(x, y) dydx
=Zω
Pk(x, x) dx=B0
2π|ω|.(3.3)
Let φjbe a normalized eigenfunction corresponding to the eigenvalue µj(A).
We put fk,j(y) := RωPk(y, x)φj(x) dx, where y∈R2, and furthermore
FN(k) := X
j≤Nkfk,j k2
L2(R2).
We have the following identity,
X
j≤N
µj(A) = X
j≤Nk(i∇ − A)φjk2
L2(ω)
=X
j≤NX
k∈Nk(i∇ − A)fk,j k2
L2(R2)
=X
k∈N
B0(2k−1) X
j≤Nkfk,j k2
L2(R2)
=X
k∈N
B0(2k−1)FN(k) =: J[FN].
Moreover, the normalization of the functions φjimplies
X
k∈N
FN(k) = X
j≤NX
k∈Nkfk,j k2
L2(R2)=X
j≤Nkφjk2
L2(ω)=N . (3.4)
6




            

                                            

            
                
Finally, in view of Bessel’s inequality the following estimate holds true,
FN(k) = X
j≤Nkfk,j k2
L2(R2)=ZR2X
j≤NZω
Pk(y, x)φj(x) dx
2
dy
≤ZR2Zω|Pk(y, x)|2dxdy=B0
2π|ω|.(3.5)
Let us now minimize the functional J[FN] under the constraints (3.4) and
(3.5). To this aim, recall ﬁrst the bathtub principle [LL01]:
Given a σ-ﬁnite measure space (Ω,Σ, µ), let fbe a real-valued measurable
function on Ω such that µ{x:f(x)< t}is ﬁnite for all t∈R. Fix further a
number G > 0 and deﬁne a class of measurable functions on Ω by
C=g: 0 ≤g(x)≤1 for all xand ZΩ
g(x)µ(dx) = G.
Then the minimization problem of the functional
I= inf
g∈C ZΩ
f(x)g(x)µ(dx)
is solved by
g(x) = χ{f<s}(x) + cχ{f=s}(x),(3.6)
giving rise to the minimum value
I=Z{f<s}
f(x)µ(dx) + csµ{x:f(x) = s},
where
s= sup{t:µ{x:f(x)< t} ≤ G}
and
cµ{x:f(x) = s}=G−µ{x:f(x)< s}.
Moreover, the minimizer given by (3.6) is unique if G=µ{x:f(x)< s}or
if G=µ{x:f(x)≤s}.
Applying this result to the functional J[FN] with the constraints (3.4) and
(3.5) we ﬁnd that the corresponding minimizers are
FN(k) = B0
2π|ω|, k = 1,2, . . . , M ,
7




            

                                            

            
                
FN(M+ 1) = B0
2π|ω|m ,
FN(k) = 0, k > M + 1,
where M=h2πN
B0|ω|iis the entire part and m=n2πN
B0|ω|o, so that M+m=2πN
B0|ω|.
Consequently, we have the lower bound
J[FN]≥B0
2π|ω|
M
X
k=1
(2k−1)B0+B0
2π|ω|m(2M+ 1)B0
=B0
2π|ω|(M2+ 2Mm +m)
=B2
0
2π|ω|(M+m)2+B2
0
2π|ω|(m−m2)
which implies X
j≤N
µj(A)≥2πN 2
|ω|+B2
0
2π|ω|m(1 −m).
This is the claim we have set out to prove.
Since 0 ≤m < 1 by deﬁnition the last term can regarded as a non-
negative remainder term, which is periodic with respect to N
Φ, where Φ = B0|ω|
2π
is the magnetic ﬂux, i.e. the number of ﬂux quanta through ω. Note that for
N < Φ the right-hand side equals NB and for large enough B0this estimate
is better than the lower bound in terms of the phase-space volume.
3.2 A magnetic Berezin-type inequality
The result obtained in the previous subsection allows us to derive an exten-
sion of the Berezin inequality to the magnetic case. We keep the notation
introduced above, in particular, Hω(A) is the magnetic Dirichlet Laplacian
on ωcorresponding to a constant magnetic ﬁeld B0and µj(A) are the respec-
tive eigenvalues. Without loss of generality we assume again that B0>0.
Then we can make the following claim.
Theorem 3.2. Let ω⊂R2be open and ﬁnite, then for any Λ> B0we have
N
X
j=1
(Λ −µj(A)) ≤(Λ2−B2
0)|ω|
8π+(Λ −B0)B0|ω|
4πΛ + B0
2B0.(3.1)
8




            

                                            

            
                
Proof. Subtracting NΛ from both sides of inequality (3.1), we get
N
X
j=1
(Λ −µj(A)) ≤NΛ−2πN 2
|ω|−B2
0
2π|ω|m(1 −m),(3.2)
and consequently
N
X
j=1
(Λ −µj(A))+≤NΛ−2πN 2
|ω|−B2
0
2π|ω|m(1 −m)+
.
We are going to investigate the function f:R+→R,
f(z) := zΛ−2πz2
|ω|−B2
0|ω|
2π2πz
B0|ω|1−2πz
B0|ω|,
on the intervals
B0|ω|k
2π≤z < B0|ω|(k+ 1)
2π, k = 0,1,2,...,
looking for an upper bound. It is easy to check that
f0(z) = Λ −4π
|ω|z−B2
0|ω|
2π
2π
B0|ω|+2B2
0|ω|
2π2πz
B0|ω|2π
B0|ω|
= Λ −4π
|ω|z−B0+ 2B02πz
B0|ω|,
thus the extremum of fis achieved at the point z0such that
Λ−B0−4π
|ω|z0+ 2B02πz0
B0|ω|= 0 .(3.3)
Denoting x0:= 2πz0
B0|ω|, the condition reads Λ −2B0x0−B0+ 2B0{x0}= 0
giving
x0=Λ−B0+ 2B0{x0}
2B0
.
9




            

                                            

            
                
It yields the value of function fat z0, namely
f(z0) = ΛB0|ω|
2π
(Λ −B0+ 2B0{x0})
2B0−B2
0|ω|
2πΛ−B0+ 2B0{x0}
2B02
−B2
0|ω|
2π{x0}(1 − {x0})
=Λ|ω|
4π(Λ −B0+ 2B0{x0})−|ω|
8π(Λ −B0+ 2B0{x0})2
−B2
0|ω|
2π{x0}(1 − {x0})
=|ω|
4πΛ(Λ −B0+ 2B0{x0})−(Λ −B0+ 2B0{x0})2
2
−2B2
0{x0}(1 − {x0})
=|ω|
4πΛ2−ΛB0+ 2ΛB0{x0} − Λ2
2+ ΛB0−B2
0
2−2ΛB0{x0}
+2B2
0{x0} − 2B2
0{x0}2−2B2
0{x0}+ 2B2
0{x0}2
=|ω|(Λ2−B2
0)
8π.(3.4)
Furthermore, the values of fat the endpoints B0k|ω|
2π, k = 0,1,2, . . . , equal
fB0k|ω|
2π=B0Λk|ω|
2π−2π
|ω|
B2
0k2|ω|2
4π2=B0k|ω|
2π(Λ −kB0).
10




            

                                            

            
                
Consider now an integer msatisfying 1 ≤m≤hΛ+B0
2B0i, then
fB0|ω|
2πΛ + B0
2B0−m
=B0|ω|
2πΛ + B0
2B0−mΛ−Λ + B0
2B0−mB0
≤B0|ω|
2πΛ + B0
2B0−mΛ−Λ + B0
2B0−mB0+Λ + B0
2B0B0
=(Λ −(2m−1)B0)|ω|
4πΛ + (2m−1)B0
2+Λ + B0
2B0B0
=(Λ2−(2m−1)2B2
0)|ω|
8π+(Λ −(2m−1)B0)B0|ω|
4πΛ + B0
2B0
≤(Λ2−B2
0)|ω|
8π+(Λ −B0)B0|ω|
4πΛ + B0
2B0.(3.5)
On the other hand, for integers satisfying k≥hΛ+B0
2B0ione can check easily
that
4B2
0k2−4B0Λk+ Λ2−B2
0≥0,
which means B0k|ω|
2π(Λ −B0k)≤(Λ2−B2
0)|ω|
8π.(3.6)
Combining inequalities (3.5) and (3.6) we conclude that at the interval end-
points, z=B0k|ω|
2π, k = 0,1,2, . . . , the value of function fdoes not exceed
(Λ2−B2
0)|ω|
8π+(Λ−B0)B0|ω|
4πnΛ+B0
2B0o. Hence in view of (3.4) we have
f(z)≤(Λ2−B2
0)|ω|
8π+(Λ −B0)B0|ω|
4πΛ + B0
2B0
for any z≥0. Combining this inequality above with the bound (3.2), we
arrive at the desired conclusion.
Remark 3.3. Using the Aizenman-Lieb procedure [AL78] and the fact that
inf σ(Hω(A)) ≥B0we can get also bound for other eigenvalue moments.
11




            

                                            

            
                
Speciﬁcally, for any σ≥3/2 Theorem 3.2 implies
N
X
j=1
(Λ −µj(A))σ+1/2
+=Γ(σ+ 3/2)
Γ(σ−1/2)Γ(2) Z∞
0
(Λ −t)σ−3/2
+
N
X
j=1
(t−µj(A))+dt
≤Γ(σ+ 3/2)
Γ(σ−1/2) Z∞
0
(Λ −t)σ−3/2
+(t2−B2
0)+|ω|
8π
+(t−B0)+B0|ω|
4πΛ + B0
2B0dt
≤Γ(σ+ 3/2)|ω|
Γ(σ−1/2) (Λ2−B2
0)+
8π
+(Λ −B0)+B0
4πΛ + B0
2B0Z∞
0
(Λ −t)σ−3/2
+dt
=Γ(σ+ 3/2)Λσ−1/2|ω|
Γ(σ−1/2)(2σ−1) (Λ2−B2
0)+
4π+(Λ −B0)+B0
2πΛ + B0
2B0.
3.3 Comparison to earlier results
Given a set ω⊂R2and a point x∈ω, we denote by
δ(x) = dist(x, ∂ω) = min
y∈∂ω |x−y|
the distance of xto the boundary, then
R(ω) = sup
x∈ω
δ(x)
is the in-radius of ω. Furthermore, given a β > 0 we introduce
ωβ={x∈ω:δ(x)< β}, β > 0,
and deﬁne the quantity
σ(ω) := inf
0<β<R(ω)|ωβ|
β.(3.7)
Using these notions and the symbols introduced above we can state the fol-
lowing result obtained in the work of two of us [KW13]:
12




            

                                            

            
                
Theorem 3.4. Let ω⊂R2be an open convex domain, then for any Λ> B0
we have
N
X
j=1
(Λ −µj(A)) ≤Λ2|ω|
8π−1
512π
σ2(ω)
|ω|Λ (3.8)
−B2
01
2−Λ + B0
2B02|ω|
2π−1
128π
σ2(ω)
|ω|Λ.
To make a comparison to the conclusions of the previous section, let us make
both B0and Λ large keeping their ratio ﬁxed. Speciﬁcally, we choose a Λ
from the interval (B0,2B0) writing it as Λ = B0(1 + α) with an α∈(0,1).
The second term on the right-hand side of (3.1) is then α2B2
0|ω|
8π, and we want
to show that the diﬀerence between the bounds (3.8) and (3.1) tends to plus
inﬁnity as B0→ ∞. To this aim, we write Λ = B0(1 + α) with an α∈(0,1),
then
(Λ2−B2
0)|ω|
8π+(Λ −B0)B0|ω|
4πΛ + B0
2B0=B2
0|ω|
4πα(1 + α).(3.9)
On the other hand, a short calculation shows that for our choice of B0and
Λ the right-hand side of the bound (3.8) becomes
=Λ2|ω|
8π−B2
0|ω|
2π1
2−α
22
+Λ
512π
σ2(ω)
|ω|−1 + (1 −α)2
(1 + α)2,
in particular, after another easy manipulation we ﬁnd that for large B0this
expression behaves as B2
0|ω|
2πα+O(B0). Comparing the two bounds we see
that
rhs of (3.8) −rhs of (3.1) = B2
0|ω|
4πα(1 −α) + O(B0) (3.10)
tending to plus inﬁnity as B0→ ∞. At the same time,
rhs of (3.8)
rhs of (3.1) =2
1 + α+O(B−1
0) (3.11)
illustrating that the improvement represented by Theorem 3.2 is most pro-
nounced for eigenvalues near the spectral threshold.
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4 Examples: a two-dimensional disc
Spectral analysis simpliﬁes if the domain ωallows for a separation of vari-
ables. In this section we will discuss two such situations.
4.1 Constant magnetic ﬁeld
We suppose that ωis a disc and the applied magnetic ﬁeld is homogeneous.
As usual in cases of a radial symmetry, the problem can be reduced to de-
generate hypergeometric functions. Speciﬁcally, we will employ the Kummer
equation
rd2ω
dr2+ (b−r)dω
dr−aω = 0 (4.1)
with real valued parameters aand bwhich has two linearly independent
solutions M(a, b, r) and U(a, b, r), the second one of which has a singularity
at zero [AS64].
Given an α > 0, we denote by ak
|m|,αk∈Nthe set of the ﬁrst parameter
values such that M(ak
|m|,α,|m|+ 1, α) = 0. Since for any a, b ≥0 the function
M(a, b, r) has no positive zeros [AS64], all the ak
|m|,α are negative. Then the
following claim is valid.
Theorem 4.1. Let Hω(A)be the magnetic Dirichlet Laplacian corresponding
to a constant magnetic ﬁeld B0and ωbeing the two dimensional disc with
center at the origin and radius r0>0. The eigenvalues of Hω(A)coincides
with nB0+B0|m| − m−2ak
|m|,√B0r0/√2om∈Z, k∈N.
Proof. We employ the standard partial wave decomposition – see, e.g., [Er96]
L2(ω) = ∞
M
m=−∞
L2((0, r0),2πr dr),(4.2)
and Hω(A) = L∞
m=−∞ hm, where
hm:= −d2
dr2−1
r
d
dr+m
r−B0r
22
.(4.3)
The last named operator diﬀers by mB0from the operator
˜
hm=−d2
dr2−1
r
d
dr+m2
r2+B2
0r2
4(4.4)
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on the interval (0, r0) with Dirichlet boundary condition at the endpoint r0.
Looking for solutions to the eigenvalue equation
˜
hmu=λu (4.5)
we employ the Ansatz
u(r) = r|m|e−B0r2/4v(r),
where v∈L2((0, r0), rdr). Computing the ﬁrst two derivatives we get
˜
hmu=−v00 −2|m|+ 1
rv0+B0(|m|+ 1)v(r) + B0rv0r|m|e−B0r2/4,
hence the equation (4.5) can rewritten as
v00 +2|m|+ 1
r−B0rv0−(B0(|m|+ 1) −λ)v= 0 .(4.6)
Using the standard substitution we pass to the function g(r) = v√2r
√B0
belonging to L2(0, B0r2
0/2). Expressing the derivatives of vin terms of those
of g, one can rewrite equation (4.6) as
rg00(r)+(|m|+ 1 −r)g0−((|m|+ 1)B0−λ)
2B0
g(r) = 0 ,
which is the Kummer equation with b=|m|+ 1 and a=(|m|+1)B0−λ
2B0. The
mentioned singularity of its solution U(a, b, r) for small r, namely [AS64]
U(a, b, r) = Γ(b−1)
Γ(a)r1−b+O(rb−2) for b > 2
and
U(a, 2, z) = 1
Γ(a)
1
r+O(ln r), U(a, 1, r) = −1
Γ(a)ln r+O(1)
means that u(r) = r|m|e−B0r2/4U(|m|+1)B0−λ
2B0,|m|+ 1,B0r2
2does not belong
to H1
0((0, r0), rdr). Consequently, the sought solution of (4.5) has the form
r|m|e−B0r2/4M(|m|+ 1)B0−λ
2B0
,|m|+ 1,B0r2
2,
15




            

                                            

            
                
and in view of the Dirichlet boundary conditions at r0we arrive at the spec-
tral condition
M(|m|+ 1)B0−λ
2B0
,|m|+ 1,B0r2
0
2= 0 .
which gives n(|m|+ 1)B0−2B0ak
|m|,√B0r0/√2om∈Z, k∈Nas the eigenvalue set;
returning to the original operator hmwe get the claim of the theorem.
4.2 Radial magnetic ﬁeld
If the magnetic ﬁeld is non-constant but still radially symmetric, in general
one cannot ﬁnd the eigenvalues explicitly but it possible to ﬁnd a bound to
the eigenvalue moments in terms of an appropriate radial two-dimensional
Schr¨odinger operator.
Theorem 4.2. Let Hω(A)be the magnetic Dirichlet Laplacian Hω(A)on a
disc ωof radius r0>0centered at the origin with a radial magnetic ﬁeld
B(x) = B(|x|). Assume that
α:= Zr0
0
sB(s) ds < 1
2.(4.7)
Then for any Λ, σ ≥0, the following inequality holds true
tr(Λ −Hω(A))σ
+≤1
√1−2α+ sup
n∈Nn
√1−2α (4.8)
×tr 
Λ−
−∆ω
D+1
x2+y2 Z√x2+y2
0
sB(s) ds!2


σ
+
.
In particular, the estimate (4.8) implies
inf σ(Hω(A)) ≥inf σ
−∆ω
D+1
x2+y2 Z√x2+y2
0
sB(s) ds!2
.
Proof. Let us again employ the partial-wave decomposition (4.2), with the
angular component (4.3) replaced by
hm:= −d2
dr2−1
r
d
dr+m
r−1
rZr
0
sB(s) ds2
,(4.9)
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and inspect the eigenvalues of this operator. Obviously, for m≤0 we have
hm≥ − d2
dr2−1
r
d
dr+m2
r2+1
r2Zr
0
sB(s) ds2
,(4.10)
while for any m > 0 we can use the inequality
2|m|
r2Zr
0
sB(s) ds≤2m2
r2Zr
0
sB(s) ds
which in view of the assumption (4.7) yields
hm≥ − d2
dr2−1
r
d
dr+ (1 −2α)m2
r2+1
r2Zr
0
sB(s) ds2
.
Next we divide the set of natural numbers into groups such that for all the
elements of any ﬁxed group the entire part √1−2α mis the same, and we
estimate the operator hmfrom below by
hm≥ − d2
dr2−1
r
d
dr+√1−2α m2
r2+1
r2Zr
0
sB(s) ds2
.(4.11)
Since the number of elements in each group is bounded from above by the
sum 1
√1−2α+ supn∈Nnn
√1−2αo, using (4.10) and (4.11) one infers that
tr(Λ −Hω(A))σ
+≤1
√1−2α+ sup
n∈Nn
√1−2α
×∞
X
m=−∞
tr  Λ− −d2
dr2−1
r
d
dr+m2
r2+1
r2Zr
0
sB(s) ds2!!σ
+
=1
√1−2α+ sup
n∈Nn
√1−2α
×tr  Λ−∞
M
m=−∞  −d2
dr2−1
r
d
dr+m2
r2+1
r2Zr
0
sB(s) ds2!!σ
+
with any σ, Λ≥0. However, the direct sum in the last expression is nothing
else than a partial-wave decomposition of the two-dimensional Schr¨odinger
operator with the radial potential V(r) = 1
r2Rr
0sB(s) ds2and the Dirichlet
condition at the boundary of the disc; this yields the desired claim.
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5 Application to the three-dimensional case
Let us return now to our original motivation of estimating eigenvalues due to
conﬁnement in a three-dimensional ‘bottle’. One can employ inequality (2.2)
in combination with the results of the previous sections to improve in some
cases the spectral bound by taking the magnetic ﬁeld into account instead
of just dropping it.
Let Ω ⊂R3with the bounded x3cross sections. The class of ﬁelds to
consider are those of the form B(x) = (B1(x), B2(x), B3(x3)), that is, those
for which the component B3perpendicular to the cross section depends on
the variable x3only. Such ﬁelds certainly exist, for instance, one can think of
the situation when the ‘bottle’ is placed into a homogeneous magnetic ﬁeld.
The ﬁeld is induced by an appropriate vector potential A(·):Ω→R3,
B(x) = (B1(x), B2(x), B3(x3)) = rot A(x),
and we consider the magnetic Dirichlet Laplacians
HΩ(A) = (i∇x−A(x))2on L2(Ω).
We use the notion introduced in Sec. 2. In view of the variational principle
we know that the ground-state eigenvalue of e
Hω(x3)(e
A) cannot fall below the
ﬁrst Landau level B3(x3). Consequently, integrating with respect to x3in the
formula (2.2) one can drop for all the x3for which B3(x3)≥Λ. Combining
this observation with Remark 3.3 we get
tr(Λ − HΩ(A))σ
+≤Γ(σ+ 3/2)Λσ−1/2
4π(2σ−1)Γ(σ−1/2) Lcl
1,σ Z{x3:B3(x3)<Λ}|ω(x3)|
×Λ2−B3(x3)2+ 2B3Λ−B3(x3)Λ + B3
2B3dx3
for any σ≥3/2.
Example 5.1. (circular cross section) Let Ω be a three-dimensional cusp
with a circular cross section ω(x3) of radius r(x3) such that r(x3)→0 as
x3→ ∞. Then the above formula in combination with Theorem 4.1 yields
tr(Λ − HΩ(A))σ
+≤Lcl
1,σ X
m∈Z, k∈NZRΛ−B3(x3)
−B3(x3)|m| − m−2ak
|m|,√B3(x3)r0(x3)/√2σ+1/2
+
dx3
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for any σ≥3/2. The particular case B(x) = {0,0, B}applies to a cusp-
shaped region placed to a homogeneous ﬁeld parallel to the cusp axis.
Example 5.2. (radial magnetic ﬁeld) Consider the same cusp-shaped region
Ω in the more general situation when the third ﬁeld component can depend
on the radial variable, B(x)=(B1(x), B2(x), B3(x2
1+x2
2, x3)), assuming that
sup
x3∈R
α(x3) = sup
x3∈RZr0(x3)
0
sB3(s, x3) ds < 1
2.
Then the dimensional reduction in view of Theorem 4.2 gives
tr(Λ − HΩ(A))σ
+≤Lcl
1,σ ZR 1
p1−2α(x3)+ sup
n∈N(n
p1−2α(x3))!
×tr 
Λ−
−∆ω(x3)
D+1
x2
1+x2
2 Z√x2
1+x2
2
0
sB3(s, x3) ds!2


σ+1/2
+
for any σ≥3/2.
6 Spectral estimates for eigenvalues from
perturbed magnetic ﬁeld
Now we change the topic and consider situations when the discrete spectrum
comes from the magnetic ﬁeld alone. We are going to demonstrate a Berezin-
type estimate for the magnetic Laplacian on R2with the ﬁeld which is a radial
and local perturbation of a homogeneous one. We consider the operator
H(B) in L2(R2) deﬁned as follows,
H(B) = −∂2
x+ (i∂y+A2)2, A =0, B0x−f(x, y),(6.1)
with fgiven by
f(x, y) = −Z∞
x
g(pt2+y2) dt .
with g:R+→R+; the operator H(B) is then associated with the magnetic
ﬁeld
B=B(x, y) = B0−g(px2+y2).
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Since have chosen the vector potential in such a way that the unperturbed
part corresponds to the Landau gauge, we have
H(B0) = −∂2
x+ (i∂y+B0x)2.
Using a partial Fourier transformation, it is easy to conclude from here that
the corresponding spectrum consists of identically spaced eigenvalues of inﬁ-
nite multiplicity, the Landau levels,
σ(H(B0)) = {(2n−1)B0, n ∈N}.(6.2)
It is well known that inf σess(H(B)−B) = 0, hence the relative compactness
of B0−Bwith respect to H(B)−B0in L2(R2) implies
inf σess(H(B)) = B0.
We have to specify the sense in which the magnetic perturbation is local. In
the following we will suppose that
(i) the function g∈L∞(R+) is non-negative and such that both fand
∂x2fbelong to L∞(R2), and
lim
x2
1+x2
2→∞ |∂x2f(x1, x2)|+|f(x1, x2)|= 0 .
(ii) kgk∞≤B0.
Let us next rewrite the vector potentials A0and Aassociated to B0and B
in the polar coordinates. Passing to the circular gauge we obtain
A0= (0, a0(r)) , A = (0, a(r)) ,(6.3)
with
a0(r) = B0r
2, a(r) = B0r
2−1
rZr
0
g(s)sds . (6.4)
Hence the operators H(B0) and H(B) are associated with the closures of the
quadratic forms in L2(R+, rdr) with the values
Q(B0)[u] = Z2π
0Z∞
0|∂ru|2+|ir−1∂θu+a0(r)u|2rdrdθ(6.5)
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and
Q(B)[u] = Z2π
0Z∞
0|∂ru|2+|ir−1∂θu+a(r)u|2rdrdθ , (6.6)
respectively, both deﬁned on C∞
0(R+). Furthermore, for every k∈N0we
introduce the following auxiliary potential,
Vk(r) := 2k
r(a0(r)−a(r)) + a2(r)−a2
0(r),(6.7)
and the functions
ψk(r) = sB0
Γ(k+ 1) B0
2k/2
rkexp −B0r2
4.(6.8)
Finally let us denote by
α=Z∞
0
g(r)rdr(6.9)
the ﬂux associated with the perturbation; recall that in the rational units we
employ the ﬂux quantum value is 2π. Now we are ready to state the result.
Theorem 6.1. Let the assumptions (i) and (ii) be satisﬁed, and suppose
moreover that α≤1. Put
Λk=ψk,Vk(·)−ψkL2(R+,rdr).(6.10)
Then the inequality
tr(H(B)−B0)γ
−≤2γ∞
X
k=0
Λγ
k, γ ≥0,(6.11)
holds true whenever the right-hand side is ﬁnite.
Remark 6.2. For a detailed discussion of the asymptotic distribution of
eigenvalue of the operator H(B) we refer to [RT08].
Proof. We are going to employ the fact that both A0and Aare radial func-
tions, see (6.3), and note that by the partial-wave decomposition
tr (H(B)−B0)γ
−=X
k∈Z
tr (hk(B)−B0)γ
−,(6.12)
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where the operators hk(B) in L2(R+, rdr) are associated with the closures of
the quadratic forms
Qk[u] = Z∞
0 |∂ru|2+
k
ru−a(r)u
2!rdr ,
deﬁned originally on C∞
0(R+), and acting on their domain as
hk(B) = −∂2
r−1
r∂r+k
r−a(r)2
.
In view of (6.7) it follows that
hk(B) = hk(B0) + Vk(r),
where
hk(B0) = −∂2
r−1
r∂r+k
r−a0(r)2
.
To proceed we need to recall some spectral properties of the two-dimensional
harmonic oscillator,
Hosc =−∆ + B2
0
4(x2+y2) in L2(R2).
It is well known that the spectrum of Hosc consists of identically spaced
eigenvalues of a ﬁnite multiplicity,
σHosc={nB0, n ∈N},(6.13)
where the ﬁrst eigenvalue B0is simple and has a radially symmetric eigen-
function. The latter corresponds to the term with k= 0 in the partial-wave
decomposition of Hosc, which implies
σHosc=[
k∈Z
σ−∂2
r−1
r∂r+k2
r2+B2
0r2
4,
where the operators in the brackets at the right-hand side act in L2(R+, rdr).
Hence in view of (6.13) we have
inf
k6=0 σ−∂2
r−1
r∂r+k2
r2+B2
0r2
4≥2B0.(6.14)
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On the other hand, for k < 0 it follows from (ii), (6.7) and (6.9) that
Vk(r) = 2k
rZr
0
g(s)sds−B0Zr
0
g(s)sds+1
r2Zr
0
g(s)sds2
≥kB0−B0.
By (6.14) we thus obtain the following inequality which holds in the sense of
quadratic forms on C∞
0(R+) for any k < 0,
hk(B) = hk(B0) + Vk(r) = −∂2
r−1
r∂r+k2
r2+B2
0r2
4−kB0+Vk(r)
≥ −∂2
r−1
r∂r+k2
r2+B2
0r2
4−α B0
≥(2 −α)B0.
Since α≤1 holds by hypothesis, this implies that
tr (H(B)−B0)γ
−=X
k∈Z
tr (hk(B)−B0)γ
−=X
k≥0
tr (hk(B)−B0)γ
−,(6.15)
see (6.12). In order to estimate tr (hk(B)−B0)γ
−for k≥0 we employ
Πk= (·, ψk)L2(R+,rdr)ψk,
the projection onto the subspace spanned by ψk, and note that
ψk∈ker(hk(B0)−B0),kψkkL2(R+,rdr)= 1 ∀k∈N∪ {0}.(6.16)
Let Qk= 1 −Πk. From the positivity of Vk(·)−it follows that for any
u∈C∞
0(R+) it holds
u, ΠkVk(·)−Qk+QkVk(·)−Πku
≤u, ΠkVk(·)−Πku+u, QkVk(·)−Qku,(6.17)
where the scalar products are taken in L2(R+, rdr). From (6.17) we infer
that
hk(B)−B0= (Πk+Qk) (hk(B0)−B0+Vk(·)) (Πk+Qk)
≥(Πk+Qk)hk(B0)−B0−Vk(·)−(Πk+Qk)
≥Πkhk(B0)−B0−2Vk(·)−Πk
+Qkhk(B0)−B0−2Vk(·)−Qk.(6.18)
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The operator hk(B0) has for each k∈N0discrete spectrum which consists
of simple eigenvalues. Moreover, from the partial-wave decomposition of the
operator H(B0) we obtain
σ(H(B0)) = {(2n−1)B0, n ∈N}=[
k∈Z
σ(hk(B0)) ,
see (6.2). It means that
∀k∈Z:σ(hk(B0)) ⊂ {(2n−1)B0, n ∈N},
and since ψkis an eigenfunction of hk(B0) associated to the simple eigenvalue
B0, see (6.16), it follows that
Qk(hk(B0)−B0)Qk≥2B0Qk,∀k∈N∪ {0}.(6.19)
On the other hand, by (6.7) and (6.9) we infer
sup
r>0Vk(r)−≤α B0∀k∈N∪ {0}.
The last two estimates thus imply that
Qkhk(B0)−B0−2Vk(·)−Qk≥Qk(2 B0(1 −α)) Qk≥0,
where we have used the assumption α≤1. With the help of (6.18) and the
variational principle we then conclude that
tr (hk(B)−B0)γ
−≤tr Πkhk(B0)−B0−2Vk(·)−Πkγ
−
= tr −2 ΠkVk(·)−Πkγ
−= 2γtr ΠkVk(·)−Πkγ
= 2γψk,Vk(·)−ψkγ
L2(R+,rdr)= 2γΛγ
k,
see (6.10). To complete the proof it now remains to apply equation (6.15).
7 Three dimensions: a magnetic ‘hole’
Let us return to the three-dimensional situation and consider a magnetic
Hamiltonian H(B) in L2(R3) associated to the magnetic ﬁeld B:R3→R3re-
garded as a perturbation of a homogeneous magnetic ﬁeld of intensity B0>0
pointing in the x3-direction,
B(x1, x2, x3) = (0,0, B0)−b(x1, x2, x3),(7.1)
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with the perturbation bof the form
b(x1, x2, x3) = −ω0(x3)f(x1, x2),0, ω(x3)gqx2
1+x2
2.
Here ω:R→R+,g:R+→R+and
f(x1, x2) = −Z∞
x1
gqt2+x2
2dt . (7.2)
The resulting ﬁeld Bthus has the component in the x3-direction given the
B0plus a perturbation which is a radial ﬁeld in the x1, x2−plane with a
x3−dependent amplitude ω(x3). The ﬁrst component of Bthen ensures that
∇ · B= 0, which is required by the Maxwell equations which include no
magnetic monopoles; it vanishes if the ﬁeld is x3-independent.
A vector potential generating this ﬁeld can be chosen in the form
A(x1, x2, x3) = (0, B0x1−ω(x3)f(x1, x2),0) ,
which reduces to Landau gauge in the unperturbed case, and consequently,
the operator H(B) acts on its domain as
H(B) = −∂2
x1+ (i∂x2+B0x1−ω(x3)f(x1, x2))2−∂2
x3.(7.3)
We have again to specify the local character of the perturbation: we will
suppose that
(i) the function g∈L∞(R+) is non-negative, such that fand ∂x2fbelong
to L∞(R2), and
lim
x2
1+x2
2→∞ |∂x2f(x1, x2)|+|f(x1, x2)|= 0 ,
(ii) ω≥0, ω∈L2(R)∩L∞(R), and
kωk∞kgk∞≤B0,lim
|x3|→∞ ω(x3) = 0 .
Lemma 7.1. The assumptions (i) and (ii) imply σess (H(B)) = [B0,∞).
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Proof. We will show that the essential spectrum of H(B) coincides with the
essential spectrum of the operator
H(B0) = −∂2
x1+ (i∂x2+B0x1)2−∂2
x3,
which is easy to be found, we have σ(H(B0)) = σess (H(B0)) = [B0,∞). Let
T=H(B)− H(B0) = −2ωf (i∂x2+B0x1)−iω ∂x2f+ω2f2.
From assumption (i) in combination with [Da, Thm. 5.7.1] it follows that the
operator (ω ∂x2f+ω2f2)(−∆ + 1)−1is compact on L2(R3). The diamagnetic
inequality and [Pi79] thus imply that the sum iω ∂x2f+ω2f2is relatively
compact with respect to H(B0).
As for the ﬁrst term of the perturbation T, we note that since (i∂x2+B0x1)
commutes with H(B0), it holds
ωf (i∂x2+B0x1) (H(B0) + 1)−1
=ωf (H(B0) + 1)−1/2(i∂x2+B0x1) (H(B0) + 1)−1/2.(7.4)
In the same way as above, with the help of [Da, Thm.5.7.1], diamagnetic
inequality, and [Pi79], we conclude that ω f (H(B0) + 1)−1/2is compact on
L2(R3). On the other hand, (i∂x2+B0x1) (H(B0) + 1)−1/2is bounded on
L2(R3). As their product the operator (7.4) is compact; by Weyl’s theorem
we then have σess (H(B)) = σess(H(B0)) = [B0,∞).
7.1 Lieb-Thirring-type inequalities for H(B)
Now we are going to formulate Lieb-Thirring-type inequalities for the nega-
tive eigenvalues of H(B)−B0in three diﬀerent cases corresponding to diﬀer-
ent types of decay conditions on the function g. Let us start from a general
result. We denote by
α(x3) = ω(x3)Z∞
0
g(r)rdr
the magnetic ﬂux (up to the sign) through the plane {(x1, x2, x3):(x1, x2)∈
R2}associated with the perturbation. From Theorem 6.1 and inequality
(2.2) we make the following conclusion.
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Theorem 7.2. Let assumptions (i) and (ii) be satisﬁed. Suppose, moreover,
that supx3α(x3)≤1and put
Λk(x3) = ψk,Vk(·;x3)−ψkL2(R+,rdr).(7.5)
Then the inequality
tr (H(B)−B0)σ
−≤Lcl
σ,12σ+1
2ZR
∞
X
k=0
Λk(x3)σ+1
2dx3, σ ≥3
2,(7.6)
holds true whenever the right-hand side is ﬁnite.
7.1.1 Perturbations with a power-like decay
Now we come to the three cases mentioned above, stating ﬁrst the results
and then presenting the proofs. We start from magnetic ﬁelds (7.1) with the
perturbation gwhich decays in a powerlike way. Speciﬁcally, we shall assume
that
0≤g(r)≤B0(1 + pB0r)−2β, β > 1.(7.7)
We have included the factor √B0on the right hand side of (7.7) having
in mind that B−1/2
0is the Landau magnetic length which deﬁnes a natural
length unit in our model.
For any β > 1 and γ > max n1
β−1,2owe deﬁne the number
K(β, γ ) = 2−γ+∞
X
k=1 Γ ((k+ 1 −β)+)
Γ(k)+1
2√2πk γ
,(7.8)
and recall also the classical Lieb-Thirring constants in one dimension,
Lcl
1,σ =Γ(σ+ 1)
2√πΓ(σ+ 3/2) , σ > 0.(7.9)
Theorem 7.3. Assume that gsatisﬁes (7.7) and that kωk∞≤2(β−1).
Then
tr (H(B)−B0)σ
−≤Lcl
1,σ Kβ, σ +1
22B0
β−1σ+1
2ZR
ω(x3)σ+1
2dx3
holds true for all
σ > max 3
2,3−β
2β−2.(7.10)
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Remark 7.4. Since ω∈L∞(R)∩L2(R), it follows that ω∈Lσ+1
2(R) for
any σ≥3/2. Note also that by the Stirling formula we have
Γ (k+ 1 −β)
Γ(k)∼k1−βas k→ ∞.
Hence the constant Kβ, σ +1
2is ﬁnite for any σsatisfying (7.10).
7.1.2 Gaussian decay
Next we assume that the perturbation ghas a Gaussian decay, in other words
0≤g(r)≤B0e−εB0r2, ε > 0.(7.11)
Theorem 7.5. Assume that gsatisﬁes (7.11) and that kωk∞≤2ε. Then
for any σ > 3/2it holds
tr (H(B)−B0)σ
−≤Lcl
σ,1B0
εσ+1
2
G(ε, σ)ZR
ω(x3)σ+1
2dx3,
where
G(ε, σ) = 1 + ∞
X
k=1 (1 + 2ε)−k+1
2√2πk σ+1
2
.(7.12)
7.1.3 Perturbations with a compact support
Let Dbe a circle of radius Rcentered at the origin and put
g(r) = B0r≤R
0r > R .(7.13)
Theorem 7.6. Assume that gsatisﬁes (7.13) with Rsuch that B0R2≤2.
Suppose moreover that kωk∞≤1. Then for any σ > 3/2it holds
tr (H(B)−B0)σ
−≤Lcl
σ,1JB0, σBσ+1
2
0ZR
ω(x3)σ+1
2dx3,(7.14)
where
J(B0, σ) = B0R2σ+1
2
1 + ∞
X
k=1  B0R2
2k+1 1
k!+1
2√2πk !σ+1
2
.
(7.15)
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7.2 The proofs
Note that the assumptions of these theorems ensure that supx3α(x3)≤1,
hence in all the three cases we may apply Theorem 6.1 and, in particular,
the estimate (7.6). To this note it is useful to realize that by (6.4), (6.7) and
(6.9) we have
Vk(r;x3) = −α(x3)B0+2α(x3)k
r2−2k ω(x3)
r2Z∞
r
g(s)sds
+B0ω(x3)Z∞
r
g(s)sds+ω2(x3)
r2Zr
0
g(s)sds2
.(7.16)
Consequently, we obtain a simple upper bound on the negative part of Vk,
Vk(r;x3)−≤2k ω(x3)
r2Z∞
r
g(s)sds+α(x3)B0−2k
r2+
(7.17)
for all k∈N∪ {0}. For k= 0 we clearly we have
Λ0(x3)≤α(x3)B0,(7.18)
by (6.16). In order to estimate Λk(x3) with k≥1 we denote by λk(x3) the
contribution to Λk(x3) coming from the ﬁrst term on the right-hand side of
(7.17), i.e.
λk(x3) = 2 ω(x3)kZ∞
0
ψ2
k(r)Z∞
r
g(s)sdsr−1dr . (7.19)
Before coming to the proofs we need an auxiliary result.
Lemma 7.7. For any k∈Nit holds
Λk(x3)≤λk(x3) + α(x3)B0
√2πk .
Proof. In view of (7.5), (7.17), and (7.19) the claim will follow if we show
that Z∞
0
ψ2
k(r)B0−2k
r2+
rdr≤B0
√2πk .(7.20)
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Let rk=q2k
B0. Using (6.8) and the substitution s=B0r2
2we then ﬁnd
Z∞
0
ψ2
k(r)B0−2k
r2+
rdr=B0Z∞
rk
ψ2
k(r)rdr−2kZ∞
rk
ψ2
k(r)r−1dr
=B0
Γ(k+ 1) Z∞
k
e−sskds−B0
Γ(k)Z∞
k
e−ssk−1ds .
Integration by parts gives
Z∞
k
e−sskds=e−kkk+kZ∞
k
e−ssk−1ds ,
hence Z∞
0
ψ2
k(r)B0−2k
r2+
rdr=e−kkkB0
Γ(k+ 1) ,
and inequality (7.20) follows from the Stirling-type estimate [AS64, Eq. 6.1.38]
Γ(k+ 1) = k!≥√2π k k+1
2e−k, k ∈N;
this concludes the proof.
Proof of Theorem 7.3. In view of (7.18) and Lemma 7.7 it suﬃces to
estimate λk(x3) in a suitable way from above for k≥1. Using (7.7) we ﬁnd
Z∞
0
g(r)rdr≤B0Z∞
0
(1 + pB0r)−2βrdr≤B0Z∞
0
(1 + pB0r)1−2βdr
=Z∞
0
(1 + s)1−2βds=1
2(β−1) ,
which implies
α(x3)≤ω(x3)
2(β−1) .(7.21)
Moreover, by virtue of (7.7)
Z∞
r
g(s)sds≤pB0Z∞
r
(1 + pB0s)1−2βds=1
2β−2(1 + pB0r)2−2β.
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Assume ﬁrst that 1 ≤k≤β−1. In this case a combination of (6.8) and the
last equation gives
λk(x3)≤ω(x3)B0
(β−1) Γ(k)B0
2kZ∞
0
e−B0r2
2r2k−1(1 + pB0r)2−2βdr
=ω(x3)B0
(β−1) Γ(k)Z∞
0
e−ssk−1(1 + √2s)2−2βds
≤ω(x3)B0
(β−1) Γ(k)Z∞
0
e−sds=ω(x3)B0
(β−1) Γ(k),(7.22)
where we have used again the substitution s=B0r2
2.
On the other hand, for k > β −1 we have
λk(x3)≤ω(x3)B0
(β−1) Γ(k)B0
2kZ∞
0
e−B0r2
2r2k−1(1 + pB0r)2−2βdr
≤ω(x3)B0
(β−1) Γ(k)B0
2kZ∞
0
e−B0r2
2r2k−1(B0r2)1−βdr
≤ω(x3)B0
(β−1) Γ(k)Z∞
0
e−ssk−βds=ω(x3)B0Γ(k+ 1 −β)
(β−1) Γ(k).
This together with equations (7.21), (7.18), (7.22) and Lemma 7.7 shows that
∞
X
k=0
Λγ
k(x3)≤K(β, γ )B0
β−1γ
ω(x3)γ,
with the constant K(β, γ) given by (7.8). The claim now follows from (7.6)
upon setting γ=σ+1
2.
Proof of Theorem 7.5. We proceed as in the proof of Theorem 7.3 and
use equation (7.18) and Lemma 7.7. Since
α(x3)≤ω(x3)B0Z∞
0
B0e−εB0r2rdr=ω(x3)
2ε(7.23)
holds in view of (7.11), for k= 0 we get
Λ0(x3)≤α(x3)B0≤ω(x3)B0
2ε.
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On the other hand,
Z∞
r
g(s)sds≤B0Z∞
r
e−εB0s2sds=1
2εe−εB0r2.
Hence using the substitution s=B0r2
2(1 + 2ε), we obtain
λk(z)≤ω(x3)B0
εΓ(k)B0
2kZ∞
0
e−B0r2
2(1+2ε)r2k−1dr
=ω(x3)B0
2ε
(1 + 2ε)−k
Γ(k)Z∞
0
e−ssk−1ds=ω(x3)B0
2ε(1 + 2ε)−k
for any k≥1. Summing up gives
∞
X
k=0
Λγ
k(x3)≤ω(x3)B0
2εγ 1 + ∞
X
k=1 (1 + 2ε)−k+1
2√2πk γ!.
Theorem 6.1 applied with γ=σ+1
2then completes the proof.
Proof of Theorem 7.6. In this case we have
α(x3) = ω(x3)B0R2
2.
Inequality (7.18) thus implies
Λ0(z)≤ω(z)B2
0R2
2.
For k≥1 we note that in view of (7.13)
Z∞
r
g(s)sds=


1
2(R2−r2)r≤R
0r > R
Hence from (6.8) and (7.19) we conclude that
λk(z)≤B2
0R2ω(x3)
Γ(k)B0
2kZR
0
e−B0r2
2r2k−1dr
≤B2
0R2ω(x3)
2Γ(k)ZB0R2
2
0
e−ssk−1ds
≤B2
0R2ω(z)
2kΓ(k)B0R2
2k
=B0ω(x3)
Γ(k+ 1) B0R2
2k+1
, k ∈N.
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This in combination with the above estimate on Λ0(x3) and Lemma 7.7 im-
plies
∞
X
k=0
Λγ
k(x3)≤ω(x3)γBγ
0B0R2
2γ 1 + ∞
X
k=1  B0R2
2k1
k!+1
√2πk !γ!,
and the claim follows again by applying Theorem 6.1 with γ=σ+1
2.
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