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We consider a two-dimensional electron with an anomalous magnetic moment,

g > 2, interacting with a nonzero magnetic field B perpendicular to the plane

which gives rise to a flux F . Recent results about the discrete spectrum of

the Pauli operator are extended to fields with the O(r−2−δ) decay at infinity:

we show that if |F | exceeds an integer N , there is at least N +1 bound states.

Furthermore, we prove that weakly coupled bound states exist under mild

regularity assumptions also in the zero flux case.

1 Introduction

Several recent papers — see [3]–[6], and references therein — discussed the discrete
spectrum of the two-dimensional Pauli operator with a localized magnetic field B,
coming from an excess magnetic moment, g > 2. The most general result available
concerns fields with a compact support [3]. In this situation the discrete spectrum
is nonempty whenever B is nonzero, and its dimension is 1 + [F ] where [F ] is the
integer part of the related flux (in natural units).

The main aim of this letter is to extend this result to non-compactly supported
fields which satisfy a mild regularity requirement and behave as O(|x|−2−δ) for |x| →
∞. As long as we consider a powerlike bound, this is an almost optimal condition,
because B has to be integrable. We use a variational method to prove that if B is
a nontrivial field with the stated decay and the absolute value of the flux exceeds
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an integer N , then the Pauli operator with spin antiparallel to the flux has at least
N + 1 bound states, counting multiplicity. The variational proof follows the same
idea as in the compact-support case, but several modifications are needed.

Comparing to the mentioned theorem obtained in [3] the indicated result is
slightly weaker giving one bound state less for integer values of the flux. The reason
is that without the compact-support assumption we have less information about the
asymptotic behaviour of the Aharonov-Casher states used in the construction, in
particular, in case of integer flux the “last” one need not be bounded. On the other
hand, we can replace the sophisticated mollifier of [3] by a simpler one.

The said difference is important in the case of zero flux when our main result,
Theorem 3.1 below, becomes trivial. It was shown in [3] that the existence of a
discrete spectrum can be then established for weak fields by the Birman-Schwinger
technique (see also [4] for the strong field case), and moreover, that a bound state
exists in this situation for both spin orientations. The drawback of this result was
that it employed a (rather restrictive) assumption about the decay of the vector
potential in the used gauge. We shall show that this condition can be relaxed and
the existence of weakly coupled bound states can be proven under the mentioned
assumptions on the magnetic field alone.

2 Preliminaries

We consider a two-dimensional electron interacting with a non-homogeneous mag-
netic field B = ∂1A2 − ∂2A1 perpendicular to the plane. For the sake of simplicity,
we employ everywhere the natural units 2m = ~ = c = e = 1. The field corresponds
to a vector potential A = (A1, A2) for which we choose conventionally [12] the gauge
A1 = −∂2φ, A2 = ∂1φ, where

φ(x) :=
1

2π

∫

R2

B(y) ln |x− y| d2y , (2.1)

Below we give conditions under which the vector potential components exist in the
sense of distributions. The particle is described by the Pauli Hamiltonian

H
(±)
P (A) = (−i∇−A(x))2 ±

g

2
B(x) = D∗D +

1

2
(2 ± g)B(x) (2.2)

with D := (p1−A1)+ i(p2−A2), where the two signs correspond to the two possible
spin orientations. We are particularly interested in the case when the electron has
an excess magnetic moment, g > 2.

As in [3] we shall suppose that B ∈ L1(R2). This ensures the existence of a
global quantity characterizing the field,

F :=
1

2π

∫

R2

B(x) d2x , (2.3)

i.e., the total flux measured in the natural units (2π)−1. Without loss of generality
we may assume F ≥ 0 ; in that case we will be interested primarily in the operator
H

(−)
P (A) which describes an electron with its magnetic moment parallel to the flux.
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The function (2.1) can be used to define the Aharonov-Casher states which
satisfy Dχj = 0 and thus yield zero-energy solutions of the Pauli equation without
the anomalous moment, g = 2. They are given by

χj(x) = e−φ(x) (x1 + ix2)
j , j = 0, 1, . . . (2.4)

For fields with a compact support we have χj(x) = O(|x|−F+j) as |x| → ∞ – cf.
[2], [12, Sec.7.2]. It means that if F = N + ε, ε ∈ (0, 1] for a positive integer N ,

the operator H
(−)
P (A) with g = 2 has N zero energy eigenvalues. Moreover, χ[F ]

and possibly χ[F ]−1 (in case that F is a positive integer; as usual, the symbol [·]
denotes the integer part) are zero energy resonances, since they solve the equation

H
(−)
P (A)χj = 0 and remain bounded at large distances.

We shall assume the following:

(A.1) B(x) = O(|x|−2−δ) for some δ > 0,

(A.2) B ∈ L1+ǫ
loc (R2) for some ǫ > 0.

Remark 2.1 If a positive number ǫ exists we can always choose it in such a way
that δ(1 + ǫ−1) > 8. Under the decay requirement of (A.1) the second assumption
means that B ∈ L1(R2) ∩ L1+ǫ(R2), in particular, that the flux (2.3) makes sense
and the same is true for the integral (2.1) as we shall see in a while.

The AC states now exist and their decay is given by the following result.

Proposition 2.2 Assume (A.1) and (A.2). Then φ is locally bounded and to any
ε > 0 there is a positive R such that

|φ(x) − F ln |x|| < ε ln |x| (2.5)

holds for all |x| > R.

Proof: Given a positive c we denote 〈y〉c :=
√

c + y2. Since B〈·〉δ/2
c ∈ L1+ǫ, and

〈·〉−δ/2
c ln |x − ·| ∈ L1+ǫ−1

for δ(1 + ǫ−1) > 4, the Hölder inequality yields a bound
on |φ(x)|. To prove the inequality (2.5), we denote BR := {x : |x| ≤ R} and
B̄R := R2 \ BR. Furthermore, we set

FR :=
1

2π

∫

BR

B(x) d2x , (2.6)

and

φR(x) :=
1

2π

∫

BR

B(y) ln |x− y| d2y , φ̃R(x) := φ(x) − φR(x) . (2.7)

By assumption, to a given ε > 0 there is R1 such that

1

2π

∫

B̄R1

|B(y)| max{1, ln |y|} d2y <
1

4
ε . (2.8)
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It follows that

|F − FR1
| <

1

4
ε . (2.9)

For any R > 0 the quantity FR is the flux of a cut-off field and φR is the corresponding
“potential”. This allows us to employ the above mentioned estimate [12, Sec.7.2] by
which

φR(x) − FR ln |x| = O(|x|−1) (2.10)

as |x| → ∞. Finally, we shall prove that

|φ̃R1
(x)| <

ε

4
(ln |x| + 1 + 2 ln 2) + c|x|−2−δ (2.11)

for some c > 0 and all |x| large enough. To this end we decompose φ̃R1
= φ1 + φ2

corresponding to the integration over |x − y| ≤ R1 and |x − y| > R1, respectively.
The decay assumption yields

|φ1(x)| ≤
1

2π

∫

|x−z|>R1,|z|≤R1

c1|x− z|−2−δ ln |z| d2z

for some c1 > 0; we have used here the change of variable x − y = z. We have
|x−z|−2−δ ≤ (|x|−R1)

−2−δ ≤ |x|−2−δ for |x| > R1, and therefore φ1(x) = O(|x|−2−δ)
as |x| → ∞. Without loss of generality we may suppose that R1 > 1 and |x| ≥ 1.
Since |x− y| ≤ |x|+ |y| ≤ (1+ |x|)(1+ |y|), the remaining part φ2(x) is then in view
of

0 ≤ ln |x− y| ≤ ln(1 + |x|) + ln(1 + |y|) ≤ 2 ln 2 + ln |x| + ln |y|

and of (2.8) estimated by the first term at r.h.s. of (2.11). Putting now (2.9)-(2.11)
together we find

|φ(x) − F ln |x|| <
1

2
ε ln |x| +

ε

4
(1 + 2 ln 2) + c2|x|

−1

with a suitable c2. There is an R2 such that the sum of the last two terms is smaller
than 1

4
ε ln |x| for |x| > R2, so it is sufficient to set R := max{1, R1, R2}.

The above assumptions allow us to prove a stronger claim about the regularity
of φ. Let us first recall two definitions [1]. Given an open ball B(1) centered at
x ∈ Rn and an open ball B(2) not containing x, the set Cx = B(1) ∩{x+λ(y−x); y ∈
B(2), λ > 0} is called a finite cone having vertex at x. An open domain Ω ⊂ R

n has
the cone property if there exists a finite cone C such that each point x ∈ Ω is the
vertex of a finite cone Cx contained in Ω and congruent to C. In particular, every
non-empty open ball in Rn has the cone property. We shall employ the Sobolev
imbedding theorem (cf. the case C of the part 1 of Theorem 5.4 in [1]) for the sets

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for 0 ≤ |α| ≤ m} ,

Cj
B(Ω) = {u ∈ Cj(Ω) : Dαu is bounded on Ω for |α| ≤ j} .
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Lemma 2.3 Let Ω be a domain in Rn. Suppose that j and m are non-negative
integers and 1 ≤ p < ∞, then the imbedding W j+m,p(Ω) → Cj

B(Ω) exists provided
mp > n.

Lemma 2.4 (cf. [8, Thm. 9.9]) Let Ω be a bounded domain in R2 and f ∈ Lp(Ω)
with 1 < p < ∞. Define w(x) =

∫

Ω
Γ(x − y)f(y) dy, where Γ(x) = 1

2π
ln |x|; then

w ∈ W 2,p(Ω).

Now we can state the indicated result:

Proposition 2.5 Under the assumptions (A.1) and (A.2), φ is continuous in R2.

Proof: For arbitrary x0 ∈ R2 and R > 0, we put BR(x0) = {x ∈ R2; |x− x0| < R}.
We split φ as follows:

φ(x) =
1

2π

∫

B2R(x)

B(y) ln |x− y| d2y +
1

2π

∫

R2\B2R(x)

B(y) ln |x− y| d2y.

Since B2R(x) has the cone property, the first term at the r.h.s. is in W 2,1+ǫ(B2R(x)),
and thus also in C0

B(B2R(x)) by the preceding two lemmas. On the other hand,
ln |x1 − y| − ln |x2 − y| < ln 3 holds for any x1, x2 ∈ BR(x) and any y ∈ R

2 \ B2R(x),
so continuity of the second term follows by the Lebesgue dominated-convergence
theorem.

Remark 2.6 Proposition 2.5 can be proven in an alternative way. We define a
probability measure µ(dx) on R2 by

µ(dx) :=
1

2πN
|B(x)|〈x〉δ/2

c d2x,

where N := 1
2π

∫

R2 |B(y)|〈y〉δ/2
c d2y is the normalization factor, and a family of ran-

dom variables {Lx}x∈Bη(x0) by

Lx(y) := 〈y〉−δ/2
c ln |x− y|, y ∈ R

2, x ∈ Bη(x0) .

of which we can check that it is uniformly integrable, i.e.,

lim
a→∞

sup
x∈Bη(x0)

∫

{y | |Lx(y)|≥a}

|Lx(y)|µ(dy) = 0 .

The argument leading to the last claim is based on simple estimates but it is lengthy
and we skip the details. The relation

lim
x→x0

|φ(x) − φ(x0)| = N lim
x→x0

∫

R2

|Lx(y) − Lx0
(y)|µ(dy) = 0, ,

then follows from the abstract result given in [9, Theorem 3.7.4] or [10, Prop. II.5.4].
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We will also need a bound on the vector potential, or equivalently, on the gra-
dient of the potential (2.1). Its components are given by

(∂iφ)(x) =
1

2π

∫

R2

B(x− z)
zi

|z|2
d2z , (2.12)

at least for large enough |x| where B is bounded. While in general they behave as
O(|x|−1), in case of zero flux we have a stronger result.

Proposition 2.7 In addition to the stated integrability and decay assumptions, sup-
pose that

∫

R2 B(y) d2y = 0; then there is µ > 0 such that (∇φ)(x) = O(|x|−1−µ) as
|x| → ∞.

Proof: Consider (∂1φ)(x); the argument for the other component is similar. We

write it as
∑4

j=1A
(j)
2 (x), where the different contributions correspond to integration

over the regions where |x− z| and |z| are respectively smaller and greater that R3.
The last named number depends on |x| and will be specified later.

Since |z| ≥ ||x| − |x − z||, the term A
(1)
2 (x) with |x − z| ≤ R3 and |z| ≤ R3 is

zero provided
|x| > 2R3 . (2.13)

The term A
(2)
2 (x) obtained by changing the first inequality to |x − z| > R3 is esti-

mated easily as

∣

∣

∣
A

(2)
2 (x)

∣

∣

∣
≤

c1
2π

R−2−δ
3

∫

|z|≤R3

d2z

|z|
= c1R

−1−δ
3 . (2.14)

The third term corresponding to integration over M3 := {z : |x−z| ≤ R3, |z| > R3}
is the most complicated. Combining the decay and the zero-flux assumptions we get

∣

∣

∣

∣

∫

|y|≤R3

B(y) d2y

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

|y|>R3

B(y) d2y

∣

∣

∣

∣

≤
2πc1
δ

R−δ
3 . (2.15)

Next we split the field into the positive and negative part, B = B+ −B−, and write

A
(3)
2 (x) =

1

2π

∫

M3

B+(x− z)
zi

|z|2
d2z −

1

2π

∫

M3

B−(x− z)
zi

|z|2
d2z .

It is straightforward to check that |z1|z|−2 − |x|−1 cos θ| ≤ 5R3|x|−2 holds for R3|x|−1

small enough, where θ is the angle corresponding to x in polar coordinates. We use
this inequality to get an upper and lower bound to zi|z|

−2 in the above integrals.

Then we add and subtract cos θ+5R3|x|−1

2π|x|

∫

M3

B−(x− z) d2z obtaining thus

A
(3)
2 (x) ≤

cos θ + 5R3|x|−1

2π|x|

∫

M3

B(x− z) d2z +
5R3

π|x|2

∫

M3

B−(x− z) d2z

≤
2c1
δ
R−δ

3

cos θ

|x|
+

c3
|x|2

R3 (2.16)
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and an analogous lower bound, where in the second step we have used (2.15) and
the integrability of B. If we choose R3 = |x|1−η for η < 1 we get

∣

∣

∣
A

(3)
2 (x)

∣

∣

∣
≤ c4 max{|x|−1−δ(1−η), |x|−1−η} (2.17)

for some c4 > 0 and large |x|; at the same time the condition (2.13) will be satisfied.
The remaining term with |x− z| > R3 and |z| > R3 is estimated by

∣

∣

∣
A

(4)
2 (x)

∣

∣

∣
≤

1

2πR3

∫

|x−z|>R3

B(x− z) d2z ≤
c1
R3

∫ ∞

R3

r−1−δdr =
c1
δ
R−1−δ

3 .

With our choice, R3 = |x|1−η, we get from here and (2.14)

max
{
∣

∣

∣
A

(2)
2 (x)

∣

∣

∣
,
∣

∣

∣
A

(4)
2 (x)

∣

∣

∣

}

≤ c5|x|
−1−δ+η(1+δ) , (2.18)

so it is sufficient to set η < δ(1 + δ)−1 to get a decay power smaller than −1.

3 The main result

Now we are ready to extend the result of [3] about the existence and number of
bound states to fields without a compact support.

Theorem 3.1 Let B be nonzero, satisfying (A.1) and (A.2), and let the correspond-

ing flux be F = N + η for some N ∈ N0 and η > 0. Then the operator H
(−)
P (A) has

for g > 2 at least N + 1 isolated eigenvalues in (−∞, 0), multiplicity being counted.

Proof: First we need to know that the essential spectrum covers the positive halfline.
Since the last term in (2.2) can be viewed as a potential which is ∆-compact, it
follows from [7, Thm. 6.1] and [11, Sec. XIII.4] that

σess(H
(±)
P (A)) = [0,∞) . (3.1)

In view of the minimax principle, it is then sufficient to find an (N +1)-dimensional
subspace in L2(R2) on which the quadratic form

ψ 7→ (ψ,H
(−)
P (A)ψ) =

∫

R2

|(Dψ)(x)|2 d2x−
1

2
(g − 2)

∫

R2

B(x)|ψ(x)|2 d2x

is negative. We will employ trial functions ψα of the following form

ψα(x) =

N
∑

j=0

αj (f̺(r)χj(x) + εhj(x)) (3.2)

with α ∈ CN+1; it is clearly sufficient to consider the unit sphere, |α| = 1. Here
f̺ is a mollifier which will be chosen as f̺(x) := f(|x|/̺) for a real-valued function

7



f ∈ C∞
0 (R+) such that f(u) = 1 for u ≤ 1 and f(u) = 0 for u ≥ 2. The functions

hj ∈ C∞
0 (B̺) will be specified later. By a direct computation,

(ψα, (D
∗D + µB)ψα) =

N
∑

j,k=0

ᾱjαk

{

∫

B̺̄

∣

∣f ′
̺(r)

∣

∣

2
(χ̄jχk)(x) d

2x (3.3)

+ ε2

∫

B̺

(Dh̄j)(x)(Dhj)(x) d
2x+ µ

[
∫

R2

(f 2
̺Bχ̄jχk)(x) d

2x

+ ε

∫

B̺

((h̄jχk + χ̄jhk)B)(x) d2x+ ε2

∫

B̺

(Bh̄jhk)(x) d
2x

]}

where we have employed Dχj = 0 together with the fact that hj and f ′
̺ have by

construction disjoint supports: DΣjαjf̺χj = 0 holds inside B̺ so Dψα = εΣjαjDhj

there, while outside we have instead Dψα = Df̺Σjαjχj = ψα(−ix1 + x2)|x|−1f ′
̺.

We have to show that the r.h.s. is negative as long as µ < 0, in particular, for
µ = −1

2
(g−2).

The mollifier is necessary since the sum (3.2) contains in general terms which
are not L2. The corresponding contribution to the energy form, i.e., the first term
at the r.h.s. of (3.3) is positive and we have to make it small. Since f ′

̺ is supported
in B2̺, it follows from Proposition 2.2 that

1

̺2

∫

B̺̄

∣

∣

∣

∣

f ′

(

|x|

̺

)
∣

∣

∣

∣

2
∣

∣

∣

∣

∣

N
∑

j=0

αjχj(x)

∣

∣

∣

∣

∣

2

d2x ≤
4π‖f ′‖2

∞

1 + ε+N − F
(2̺)2(N−F+ε) (3.4)

provided ̺ > R. Without loss of generality we may assume η ∈ (0, 1]. Choosing
then ε ∈ (0, η), we obtain a bound which tends to zero as ̺ → ∞, and therefore it
allows us to handle the trial function tails.

The main part of the argument consists of checking that there exists a positive
constant β such that

∫

R2

B(x)

∣

∣

∣

∣

∣

f̺(x)
∑

j

αjχj(x)

∣

∣

∣

∣

∣

2

d2x > β (3.5)

holds for ̺ large enough and any α. We shall do it by reductio ad absurdum assuming
the opposite. Now we have to specify the functions hj . We set hj := hχj for a real-
valued h ∈ C∞

0 (R+), in which case the next term linear in ε acquires the form

2ε

∫

R2

∣

∣

∣

∣

∣

N
∑

j=0

αjχj(x)

∣

∣

∣

∣

∣

2

h(x)B(x) d2x .

Since B is nonzero by assumption, and
∑

j αjχj is a product of a positive function

e−φ and a polynomial having thus at most isolated zeros, one can choose h in such
a way that the last expression is negative for any α. Moreover, as a continuous
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function of α on the surface of a hypersphere it reaches a minimum there which is
also negative. This implies that the sum of the second, fourth and fifth terms of
Eq. (3.3), denoted as S, tends to 0 from below as ε tends to 0. Hence there is a
number β > 0 such that for ̺ large enough and any α, one can find h = hα,̺ and
εα,̺ for which S = −2µβ holds. Suppose that

∫

R2

B(x)

∣

∣

∣

∣

∣

f̺(x)
∑

j

αjχj(x)

∣

∣

∣

∣

∣

2

d2x ≤ β (3.6)

holds true. Choosing then hα,̺ and εα,̺ in the described way, we get

S + the third term of Eq. (3.3) ≤ −2µβ + µβ = −µβ < 0 . (3.7)

However, in view of (3.4) we have

the first term of Eq. (3.3) ≤
4π‖f ′‖2

∞

1 + ε− η
(2̺)−2(η−ε) → 0 (3.8)

as ̺ tends to ∞, so the r.h.s. of (3.3) is negative for ̺ large enough. The argument
can be carried over for any fixed value of µ, in particular, for µ = 2. In that case,
however, the supersymmetry property, D∗D + 2B = DD∗, applied to the l.h.s. of
(3.3) leads to the absurd conclusion ‖D∗ψα‖2 < 0, proving thus Eq. (3.5).

This means that the trial functions can be finally chosen in the form (3.2) with
ε = 0. The energy form is then estimated by

(ψα, H
(−)
P (A)ψα) <

4π‖f ′‖2
∞

1 + ε− η
(2̺)−2(η−ε) −

1

2
(g − 2)

∫

R2

B(x)|ψα(x)|2 d2x , (3.9)

where the second term at the r.h.s. is smaller that −1
2
(g − 2)β and dominates for

̺ large enough. With our choice of the mollifier, ψα is within B̺ just a linear
combination of the Aharonov-Casher states (2.4). Since the latter are easily seen to
be linearly independent we have accomplished the task of construction the sought
(N+1)-dimensional subspace.

4 Zero flux case

In distinction to the analogous result in [3], Theorem 3.1 says nothing about the
situation when F = 0. For radially symmetric strong and weak fields the bound
state existence is established in [4] and [3], respectively. For weak fields without
the rotational symmetry we can employ the method of Sec. 6 in [3], but without
the assumption about the decay of ∇φ used there. We need only a slightly stronger
regularity requirement:

(A.2’) B ∈ L2
loc(R

2).
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Recall that the said idea in [3] is based on the weak-coupling behaviour of two-
dimensional Schrödinger operators with a potential depending on a coupling con-
stant in a nonlinear way, specifically

H(λ) = −∆ + λV1(x) + λ2V2(x) (4.1)

with Vj ∈ L1+δ(R2) ∩ L(R2, (1 + |x|δ) d2x), j = 1, 2.

Lemma 4.1 [3, Sec. 4] Suppose that
∫

V1(x) d
2x = 0 and define

γ2 ≡ γ2(V1, V2) :=
1

2π

∫

V2(x) d
2x+

1

4π2

∫

V1(x) ln |x− y| V1(y) d
2x d2y . (4.2)

The operator (4.1) has a weakly bound state for small nonzero λ iff the quantity (4.2)
is negative. In that case the eigenvalue is ǫ(λ) = −e2/u(λ) with u(λ) = γ2λ

2 +O(λ3).

Lemma 4.2 Under (A.1) and (A.2’) the function φ ∈W 1,2(R2).

Proof: The function φ = 1
2π
B∗ ln | · | belongs to the first Sobolev space if the integral

∫

(1 + |k|2)|B̂(k)|2|k|−2d2k is finite. The assumptions imply B ∈ L2, and therefore

also B̂ ∈ L2; hence we have to check only its convergence around k = 0. We have
B̂(0) = F = 0, so

B̂(k) =
1

2π

∫

R2

B(x)
(

eikx − 1
)

d2x .

Further we decompose R2 = BR ∪ B̃R as in the proof of Proposition 2.2 with the
circular boundary situated in the region where B is bounded. We estimate |eikx −1|
by kR in the inner region and by 2|kx|η with η ∈ (0, 1) outside obtaining

|B̂(k)| ≤ c1|k| +
1

π
|k|η

∫

B̃R

|x|η|B(x)| d2x

for some c1 > 0. Choosing now η sufficiently small we can make the last integral
finite; this yields |B̂(k)|2 = O(k2η) around the origin.

Now we can prove the following result.

Theorem 4.3 Let a nonzero B with F = 0 satisfy (A.1) and (A.2’). Then each

of the operators H
(±)
P (λA) with g > 2 has for small nonzero λ a bound state whose

energy satisfies the bound

ǫ(±)(λ) < − exp

{

−

(

cλ2

16π
(g2− 4)

∫

R2

A(x)2 d2x

)−1
}

(4.3)

for any fixed c ∈ (0, 1) and λ small enough.
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Proof: It is established in [3] that the gradient term 2iA · ∇ does not contribute to

the energy form for real-valued functions, and therefore H
(±)
P (λA) can be estimated

from above by the operators (4.1) with

V1(x) = ±
g

2
B(x) , V2(x) = A(x)2 . (4.4)

It remains to evaluate the coefficient (4.2). Since |A| is square integrable by the
preceding lemma and |A(x)| = |(∇φ)(x)|, the first Green identity together with the
equation ∆φ = B and the Gauss theorem yield

∫

R2

A(x)2d2x = lim
R→∞

∮

∂BR

φ(x)(∇φ)(x) · d~σ(x) − lim
R→∞

∫

BR

φ(x)B(x) d2x . (4.5)

Substituting from (2.1) to the last term we see that it remains to establish that
the first term at the r.h.s. vanishes as R → ∞. However, this follows readily from
Propositions 2.2 and 2.7.
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