MATRIX CANONICAL REALIZATIONS OF THE LIE
ALGEBRA o(m, n).

II. CASIMIR OPERATORS
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The matrix canonical realizations of the Lie algebra of pseudo-orthogonal group O(m, n)
described in the first part of this paper are further investigated. The explicit formulae for values
of the Casimir operators (which are multiples of identity in these realizations) are obtained.

1. INTRODUCTION

In the first part of this paper [1] we expressed the generators of the Lie algebra
of the pseudoorthogonal group O(m, n) by means of matrices, the elements of which
were polynomials in the quantum canonical variables p' and q;. This is what
we call the matrix canonical realization of the algebra o(m, n)'). We proved among
others that these realizations are Schur-realizations, i.e., that all Casimir operators
are realized by multiples of the identity element. Now we are interested in their
“eigenvalues”.

In ref. [1] we described two sets of matrix canonical realizations of o(m, n). Every
realization from the first set was determined by a sequence of n real numbers and
if m — n = 2 by some finite-dimensional skew-hermitean irreducible representation
of the compact Lie algebra o(m — n). As any such representation is uniquely (up to
equivalence) determined by its signature («y, . . ., 0zm—y)), i.€. by a certain sequence
of integers or half-integers®) [2], we can say that every realization of o(m, n) from
the first set is determined by the sequence a,,, = (1; &y, . . ., Uyeminy), Where the
first [ 3(m — n)] numbers correspond to the signature of the representaiion of o(m — n)
and the remaining n numbers are the mentioned real parameters; we call this sequence
the signature of realization.

The realizations of the second set are the usual canonical realizations, i.e., gene-
rators of o(m, n) in them are realized as polynomials in canonical variables only.
They are similarly determined by the signature (d; oy, ..., opymemy) 4 = 1,2, ...,
n — 1, where now «; = ... = dgmin-a = 0 and the rest are real numbers.

*Y Mpyslikova 7, 110 00 Praha 1, Czechoslovakia.

) For the exact definitions of all the concepts used here and details we refer
to ref. [1]. '

%) The only exception concerns the algebra o(2) when the number o, ,; assumes
any real value.
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In this paper we shall give a simple formula for calculation of generating Casimir
operators. They are expressed as the sum of matrix elements of powers of a certain
matrix. The “exceptional” generating Casimir operator 1™ in the case of o(m, n)
with m + n even is given explicitly (theorem 1).

It will be shown that with the exception of I™™ all generating Casimir opera-
tors are certain symmetric polynomials in variables (B;), ..., (Brsonon-2a3)>
(g men—2a3+1)% - - o> (Opzememy)’s Where B, s=1,...,[#m — n — 2d)], are
linear functions of . Casimir operator I is also a symmetric polynomial, however,
only in the first degrees of constants B, ..., oy msny- Due to this symmetry property
there is a finite number of realizations in both the sets with the same “eigenvalues”
of Casimir operators only. As order of numbers in the “subsignature” (x, ...
cees Upzm—nyy) 18 fixed, the signatures of all these realizations differ, with the exception
of some cases if m + n is even, either in the permutation of the last d components
or in the signs d" £ d of them.

In the last part of the paper the connection with our earlier results [3] is briefly
discussed.

2. PRELIMINARIES

A. For o(m, n), m = n = 1, we conventionally use the metric tensor in the form
9y = diag (g115 - - s Gman—2.min—2o —1, +1). Together with the tensor basis

L, = —L,(s,v=1,2,...,m + n), the elements of which obey the commutation
relations
(1) [Luva LQT] = gngur - gugLvr + gergu - gytLgv

we use also the following one:
Lij: Pi = Li,m+n + Li,m+n—1’ Qi = Li,m+n - Li,m+n—19 R = Lm+11~1,m+n

i,j=1,2,...,m +n—2%. As we said in the introduction, to every signature
O = (d; &g, « - ., Aggmeny) there corresponds the Schur-realization 1 = 7(a,,)
of o(m, n)in Wyt n—2+m"). We obtain this realization using the recurrent formulae
(see theorems 1, 3 of [1]):

(2) T(Pi) = Di, T(Lij) = q;p; = q;P; + My;,
«R) —(gp) — [3(m +n —2) —ia]l, «eR,
T(Qi) ‘qui — 2q; T(R) - 2quki >
(ap) =4d'pi, 4* = qd’,

I

il

%) Indices i, j, k, I will run always from 1 to m + n — 2.

) Remember that Wy 5 (matrix Weyl-algebra) denotes the associative algebra
generated by N’ canonical pairs p’, g;, [p', q;] = 6}/, with complex M x M-matrix
coefficients; t is 2 homomorphism of o(m, 1) into Waimsn2+x)m-
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where p; = g,,p', ¢' = g”q; and M;; = —M; is the realization of generators
of o(m — 1,n — 1) in W,y ,°). The difference between both the sets of realizations
is that in the first case we continue the “reduction” to realization of the compact
algebra o(m — n), while in the second one (d < n) we use the trivial realization
of o(m — d, m — d).

B. The number of generating Casimir operators of the algebra o(m, n) equals
to [3(m + n)]. For m + n odd they can be all found among Casimir operators

W = L LM, r=1,2,3, ..

(we understand I{™™ = L * = 0 and define also I{™ = m + n). For m + n even
we must add to them the Casimir operator

Fmm) _ Vi BL120m )] VIL2(m 4 n)]

I =& ” e Lmvx ° L#[x/Z(m+n)]vu/z(m+n)] ¥

where &”* is the completely antisymmetric Levi-Cita tensor in m + n indices
with normalization: g'2--m*" = 1,

C. The statements of the part B are, of course, valid also for compact algebra o(m, 0)=
= o(m). As we have reminded, every irreducible skew-hermitean representation
of this algebra is uniquely (up to equivalence) determined by the signature (o, ...
<., Upymy)- Values of the generating Casimir operators in this representation can
be expressed explicitly by means of its signature [4, 5].

To this purpose we shall define special sort of symmetric polynomials in [$m]
variables Xy, ..., Xpynp- Let us firstly define recurrently the m x m — matrices
Sul(X15 - - -5 Xpamy):

S, =0, Sz(xx) = (:)CD 0 ),

s — Xy
(3) S(X15 o5 Xpgm) =
Xp3my + 3(m = 2), —er_, , 0 \
= 0 5 Sm—l(xl’ rers x[-%(m"z)]) + Em—l > —€m_2
0 B 0 . —'X[%m] -+ %(m — 2)

Here e;_, = (1,1, ...,1) (e,-) is the (m — 2)-dimensional row (column) con-
sisting of unities and E,,., is the identity (m — 2) x (m — 2)-matrix. This recurrent
relation is solved explicitly in [4] (see eq. (16) and Table 1). The polynomials ™ =

%) Form + n = 2,3 we define M;; = 0.
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= ¢"(xy, ..., Xpzm) are defined as follows
+ y ’ ‘ '
o (em  SulX1s v Xpgm) €n> T =1,2, ...
(4) o, -
m bl ; v = 0 .

Note 1. The main important property of ¢ is that any 6™ is a polynomial function
of Newton sums of even degree s,, s, .. ., S5p4,) Where
[m/{2]

S, =, X}
i=1

and on the contrary any Newton sum s,, is a polynomial function of ¢{™, ... ¢

(see eq. (90) of [ 5]).
The value of the Casimir operator I®™® = I/ m > 2, in the representation
characterized by signature (ay, .. ., opy.;) is [4]°)

I™ = o™(By, ..., Brsm)) » r=01, ...

B =otp, m=dm—s, s=12...,[4m].

The value of Casimir operator [»® = [™ (for m even) in this representation is the
following: ’
It = (20 (3m)! . By .. Bym -

3. REALIZATIONS OF CASIMIR OPERATORS OF o(m, n)

Lo (r : . .
Lemma 1. Let J™™ =Y (s) I and I = §,,. Then in the realization of
s=0

o(m,n), m + n 2 3, given recurrently by the formulae (2) the following formulae are
valid:

®) In the paper [4] the Casimir operators C,, r = 1,2,... and Cj,, m — even,
of the Lie algebra o(m) are defined. The definitions of operators C, and Cj,, are
formally the same as the definitions of our I™ and I™, however, another (two-
indexed) basis is used. The connection between these two bases has the usual tenso-
rial character so that, as C, behave as scalars, I™ = C,, r=1,2,.... On the other
hand, Casimir opérator Cj, is a pseudoscalar and therefore the connection with

I™ has the form
I — (—1)bmemn=2) (j)im

zm?

where (i)¥™ is the determinant of the lincar transformation (eq. (3) in [4]) inducing
the mentioned tensorial transformation of bases. The sign factor (—1)&~2
arises due to distinct normalization of the Levi-Civita tensor .
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O Sl (aaRt e et P
s=0 ﬂ _ ﬁ

X JOLATD g gnsias g gty 0,1,...
where § = ia + %(m + n — 2)and in the case when m + n is even
(6) 1™ = jg(m + n) J0n=tr=
Proof: Any element 2 € Wy, 4n—2+n),m Can be written in the form
P=Yo,q.p
rs

(O S TFUOPIIRY | DO v B SR v
where o, ;€ Wy y < WZ(m+n—2+N),M)~
Let us introduce the “projection” operator "abs” in Wy 1,—-24x).4 by the relation
abs Z = oy, .

Directly from the definition we see that

(7) abs q,2 = abs Zp; =0
abs M ;7 = M;;abs 7,
abs (2 + #') = abs ? + abs 2’
abs (p;q,) =abs(qp; +1) =1, etc

As we proved in ref. [1] (see proof of theorem 1), the realization 1(z) of any Casimir
operator z of o(m, n) in the realization (2) does not depend on canonical variables
q;, p;- We can write therefore for (™) the relation

1(IfM) = abs 1(II"M) = g*” abs (T).
Here T is defined recurrently:
(r) __ r—1 (0) __
Tuv) - Lug T_n(v ): Tpv) - guv .

As the proof of formula (5) for r = 0 is trivial we can assume r > 1 and further
write:
t(lﬁm’")) = abs T {R(Tn(lr+_n1—)1,m+n - Trflr+—r:l)n+n-—1) + %(Pl + Q') (Trfur-{-_ntz - ’Tt(,rn-l:l-lr)t) +
+ (P = Q) (T — TWa21) + (MY + ¢'p) — ¢/p") TV}

This expression can be, due to the special form of realization of the basis elements (2),
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simplified by means of the relations (7) to

1:([5'”"')) = —p abs T(Tn(lr-l-_nlll,m+n - Trgr:nl,r)n+n—1) +
+ gabs o [P TG0 — TOrl) + Tordoy — TR, 0]) + MY abs <1 Y),
where abs R = —f = ia — %(m + n — 2). Using the commutation relations
(Lo TX] = 90T — 9T + 9.1 — 9 T0

we further obtain
. -1 -1 ij -
T(I'gm n)) - ﬂ abs T(Tn(tr+n—)1,m+n - Trr(lr+n,1)11+n—1) + MU abS T(T'j(ir l)) .

In order to prove the formula (5) we need to express the right-hand side of the last
equation in terms of Casimir operators of o(m - 1,n~— 1). Let us define

A, = abs T( rszr-{)-n—l,m%—n - Trfxrln,m+n—1) s
B, = abs T(Tngr-z-n,m+n - Trftrln—l,mi'ﬂ"l) :

Using the same calculation as above we derive easily the recurrent relations for these
guantities:

Ay = ioB,_y + 4(m + 1 = 2) A, = gPabs(TY),
B, = iad,, +3(m + n = 2)B,_, — g”abs {(T§ D).
it further gives
(8) A, — B, = B(Ar—l - Br—l)

from which
B, = A, + 2.

Substituting it into the above relations for 4,, B,, we obtain the single relation
A, = PA,_q + 2ia . T — gYabs (TS P) =
=pA,; + (B - B)F ' — gV abs (T V).

Using once more the above calculation and eq. (8) we derive easily the recurrent
relation for abs o(T{):

abs f(T{P) = M abs (TG V) — g8,
where
M;;=M;+g;.

One can solve this relation as follows

ij »

r=1
abs o(T) = MY — ¥ B~
5=0

954 Czech. J. Phys. B 28 [1978]
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where
~ gi; +rM;;, r=0,1
M® ={ ! T

MM, ... r>1.

Spe1,§ 3

Using it we obtain
C, = g abs TY) = F1© —':223"3-11\‘4@ ,
where M® = M7, . g" and
M abs o(T) = FIC*D — 20 + (1 ~ B)'i[fr-s-lms) Y
= FOTD 20 4 (1= TP+ (m k= D

The relation for A, we shall now write in the form

A =BA +(B-B)F ' - Cy

which is solved by
r—1
A, =fF-F -3 FC.
5=0
Substituting now for M* abs (T{;~ V) and 4, into the equation

(1) = pA,_, + MY abs TV
we finally obtain

r=2 Br-—s—l _ Br-—s-—l
T(Igm,n)) — ﬁr+ ﬁ_r _ =Z° [ﬂr—s-—l + ﬂ‘r—s—l + ﬂ — B ]M(s) +

+ B — 2§

From the definitions of #;;, M® we obtain directly

MO =3 (r) M,
5;0 S

MO — m+n-2)1—-r), r=0,1
MM, M, ", r>1.

Sp~1 2

where

As the elements M;;, i, j=1,2,..., m + n — 2, generate a given realization
of o(m — 1, n — 1), the quantities M are just the Casimir operators (more exactly:
their realizations) of o(m — 1, n — 1), i.e.

M® = ISm—l,n-—l) = M® = me—l,n—l)

and formula (5) is proved.
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As to the formula (6), the realization of generating Casimir operator I™" does
not depend also on canonical variables and we can write

F(m,n)y __ BIV1eel1/2(m+0) V1/2(m+n)
T(I ) = abs T(S Luxvx e Lﬂl/2(m+n)\’1/2(m+n)) .

Let us denote h = $(m + n) and notice that since the only non-zero terms are those
having all the indices py, V¢, .., liy, v, mutually different, we are absolutely free
in interchanging L), s (see the commutation relations (1)) so that we can write

T(j(m,n)) = 2% abs T(8m+n——1,m+n,iz,i2,...,in,thm+n_1’m+”Lilj2 o Lin]’h) +
(2h hmdn— L, J b0, i indn T ‘
+12 2] 2h | abs t(&" At st w1 Ly mnLigys - L)

where the latin indices run from 1 to 2k — 2. Further with the help of egs. (1) (2), (7)
we have: '

(Im) = g2 min[ —2hB abs 1(Li, - .. Ly,;,) —
— h(h — 1)abs «([P;,, Q;,] Lij, - - - Lyyj) =
= 2h(—B + h — 1) /> n abs 'F[(Mizjz + 4,05, — 45,P5) Liyjy -+ Liyp] =
= (= + h — 1)ePbing, M

2j2 "0 inn *

But since M;, i,j = 1,2, ..., 2h — 1, generate the realization of o(m — 1, n — 1),
the last equation one can write in the form

(1) = [=2hB + 2h(h — )] I 1m0,
According to the definition
~B+h—l=ie—4m+n—-2)+im+n—-1=ia, 2h=m+n
and the validity of the formula (6) is proved. .

Lemma 2: Let a realization of o(m,n), m + n = 3, of the type (2) be given.
If the corresponding Schur-realization of o(m — 1,n ~ 1) is such that the values
of the Casimir operators can be expressed as

Jemmtn=D = M5 L), N=m+n—-2, r=0,1,....

for some complex numbers (34, ..., §1x;), then the values of Casimir operators
in the realization of o(m, n) are

1™ = g6, L, Spypys 1)

Proof. From the definition (3) one can prove easily by induction the relation
between r-th powers of the matrices Sy(xy, ..., Xp3ny) = Sy and Syi,(xy, - ..

cees x[%(N+2)]) = Syeat
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f _Lr—l r—2 yr—-s—l _ Zr—s—-l
Vo —ew XV T NS+ En)s en Y, ————(Sy + Ey)f ey
s=0 , s=0 y—2z
r =‘ 1 r—1
WrTlo,  SerEY L — S B e
s=0
0 [ 0 ’ Zr
Wherey = X[%(N.;_;)] + %N, z = _x[%(N+2)] + %N

Using the definition (4) of the polynomials ¢ we obtain the relation between
o™ (xy, ..., Xy and oD xy, L Xyva )

(N+2)(. _

(10) o P x1s s Xpgrean) =

r—2 yr—s—l _ Zr—s—i

=)+ =Y [V ST+ o™ — 20 + o™,

s=0 z -~y

where
Ny N +
o = o™(xy, ..., xpum) = en(Sy + Ey) ey =

D~

ry o
<)0‘§ )(Xl,...,X[%N]), 7‘=0,1....

N

s=0

Substituting into the relation (10)
X1=51,...,x[%m=5[%m, N=n+1n“"2,

x[%(N+2)]:i°‘=>)’=ﬁs z=f,

—-1,n—1 N -1,n—1 N N
Ism " ) - O-'(, )(51, v 5[_}1\”) 5 J'(,m " ) = (l)f, )(51, vees OE%N])
we obtain with the help of formula (5)
m :
I = 651, o Siymen2)p 1)
which just proves the lemma. »
Now we are in the position to prove our main result.

Theorem 1: Let o, , = (d; @, ..., Syemeny;) e signature of the realization (2)
of Lie algebra o(m, n), m 2 n 2 1. Then the values of Casimir operators are

(i) Iﬁm’") = 0£m+")(ﬁ1, ) ﬂ[%(m+n—2d)]7 ia[é(m+n—2d)]+1» e ia[%(m—#n)]) s
(11) ‘ r=0,1,...,

where

— 2d ' —
Bs =05+ 7, Vszl_n‘i_—’;“‘"*—s, S=l,2,.”,[r_n._i—%__@],
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(i) for m + neven
° V4 m-+n
(12) I(m,ll) = 5d" . (21)7("""") (—T) ! ﬁl’ PPN ﬁé_(m_n)a_;_(m_"+2), ey a%(m_,_n) .

Proof. By induction: (i)

a) Let us firstly consider the realization of the type (2) of the algebra o(m 1) with
signature o, ; = (1 Oy Oy - v sy octi(mﬂ)]), m > 2. As it was pointed out in the part
C of Preliminaries the Casimir operators I~ "% in the realization of o(m — 1,0) =
= o(m — 1) characterized by signature (o, ..., &ym-1y) bhave just the form (11)
in variables By, ..., fr3on—1); SO that lemma 2 can be applied. In the case of o(2, 1)
the assertion follows also from lemma 2 if we put I? = ¢!V = §,, (see Footnote
5) and eq. (4)) and for o(1, 1) it can be verified directly.

b) Suppose now that the assertion (i) is valid for o(m — I,n — 1), m 2 n 2 2,
and let us take realization of o(m, n) corresponding to signature U = (ds 0q, ...

- s %g3mny)- For d > 1 the realization of o(m — 1, n — 1) from the formulae (2)
corresponds to the signature

(d —Liay, ..., a[%(rn*'n)]—l)

and because, by the induction assumption, Casimir operators have the desired form,
the lemma 2 can be applied.

If signature a,,, = (1;0, ..., 0, &yom+ny), the realization of o(m — 1,n — 1)
used in eqs. (2) is trivial and we have to prove that Casimir operators I 1"~ 1) = 0
can be expressed as the values of polynomials 6{"*"~2) at the point (¥, ..., Ys(m+n—2)1)
This fact is, however, proved in ref. [5] (see, ¢.g., relations (55)—(57)) so that lemma 2
again can be applied and the proof of assertion (i) is completed.

(ii) The proof is a simple consequence of eq. (6) and of the form of the Casimir
operator 1™~ ™ given in Preliminaries, part C. n

Now we shall deal with the question how the values of Casimir operators differ
for different signatures of realizations. We denote by @, , the following subset of
the set of all signatures with fixed m and n:

Qm,n = {(d9 (xls LS a[%(m+n)]) IO é o(K + 5mn(laKl —aK) é
§_OCK+1§ [N éa[%(m+n)], K=[%‘(m—n)]+1;
ifm—niseventhend + n — 1 and dpypmenyr: = 0= Azm-ny 2 0 7).

Theorem 2: (i) For every signature «,,, there exists a,, , € Q,, such that the
values of any Casimir operator in the corresponding realizations are the same.

(ii) The signature o, , € @, is determined uniquely, i.e., for two different signa-
tures from @, , the corresponding realizations differ by the value of at least one
Casimir operator.

7) This condition is automatically satisfied if either d < n or m = n.
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Proof: (i) The assertion is a simple consequence of the symmetry of polynomials
in the last d squared components of the signature «,, ,. If m — n is even, the signa-
tures (n — 1; 0, ..., 0, Ogmenye2s - - +» Uzmeny) May be excluded from @, , be-
cause they give the same values of Casimir operators as the signature (n; 1, ..., 1,
0, dpymoma+2s - - > Ogyemeny (€€ €gs. (11)—(12)). As to signature a,, = (n;
Uy ooes Opgomamyy)s M — I Ve, Upsmeinyl+ 1+, - - - Upaemeny F 0, When also excep-
tional invariant ™™ has to be considered, the signature ), , € Q,,, has the form

Uy = (15 0y, + o s By eyt 2y |Bsas - - o [0s]) 5
where & = SgN Uy mon)i+ 146, « - - Ypsmeny; @0d Sy, ..o, Sy, 0 =1 — §,,,, is such
permutation of indices [4(m — n)] + 1 + 8,,,, ..., [3(m + n)] that |o; | < |a,| ...

o

Sn’

.

(i) As we pointed out in Preliminaries, any Newton’s sum of even degree s,, =
N

= Y (x,)*" can be written as the polynomial in variables o{" = ¢!™(x, ..., xy),

s=1
s=1,2,...,2r. Even Newton’s sum s,, can be considered as the Newton’s sum
s, in variables x{ = x?,s =1, ..., N.

Consider now the so-called elementary symmetric polynomials &, r = 1,2, ...
...,N,in variables x; defined as follows;

EM =M, LX) =Y XL X

r
(S150055p)

where summation runs over all sequences (sl, e 8y) with 1< s, <5, < ...

.. <5, £ N.Itis known [6] that every symmetric polynomial £ )tan be expressed
by'means of Newton’s sums s, = i(x;)t and therefore any symmetric polynomial
EM can be expressed also by mearsl_s 1of polynomials ¢{™.

So, two signatures a,, ,, «, , giving the same values of any Casimir operator give
also the same values of &2 *M1 _ polynomials:

ér = 51[»—21—(m+")](ﬁl12’ « ey (iafé(m-}-n—ld’)]-{'- 1)23 RN (iai—i—(m-i-n)])z) =
= iy, (i“é(mﬂ—zw')lﬂ)z’ SRR (i“f%(mnn)z)-

It is, however, further known [6] that the set of all solutions of the [4(m + n)]-th
order equation

(m+ 3 -1
y[ (m+n)] + ély[a-(m-Fn)] + ...+ 5[%(m+n)]-1y + é[%(m'f-n)] — 0

equals just to

{ﬁiz’ -~~>(i°‘['%(m+n)])2} = {ﬂ'fz’ SRR (i“é(mﬂ)])z} :
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As oc,,, n> O € Q,,,,,,, the elements of these sets are ordered®):

:> .8 cee > B[é(m+n—2d')] 20z (la[l-(m+n 24" )]+1) Z...2 (Iafl(mﬂ)[)z‘
Z ”2 2 2
n > ﬁ > ﬁif,%(m+n—2d”)] =202z (Hx[%(m+n 2d")]+1) g L= (ld[;(m.;.n)]) >
For m 4+ n odd Biymin-24y > 05 Blagmin—2ag > 0 (see eq. (12)) and therefore
d" = d' and, consequently, a,, , = oy, ,, i.e., assertion (ii) is proved. If, however
q y n,n m,n P >
m—n is even, then beside the possibility d'=d” which implies again Uy = 0l 7),
also Blym+n-2a7 = 0 = Agimin-20141 {or Blsmin—2amy = 0 = Uy (m = 247 )]+1)
could be allowed which implies d” = d’ — 1 (d" = d” — 1). For d’ < n it contradicts
the equation fy =y} = B = y{ so that d' = n, d" = n — 1. The signatures with
d” = n — 1 are not, however, included in the set 2, , and uniqueness of «,, ,, is proved
in this last case too. ‘ n

4, CONCLUSION

In the first part of this paper we proved that two described realizations v and 7’
of the Lie algebra o{m, n) characterized by different signatures are nonrelated, i.e.,
no endomorphism 6 of W,y 4, H(ﬂ) = [, exists such that eitherl o 7 = 7" or 8- ¢, = 1.
It may happen, of course, that by a proper embedding of W,y ,, in a larger structure
(e.g., in the case of W,y embedding in its quotient division ring) when more general
endomorphisms are allowed, the non-related realizations appear as related ir the
generalized sense, (¢.g., non-related realizations (2) of o(2, 1) in W, with opposite
o's are related in quotient division ring D, > W,; the endomorphism @ has the form:
&p,) = py» 8(g:) = q; — i(20/p,)). This possibility is, however, excluded in the
case of our realizations, the signatures of which lie in @, ,. The reason is that the
element z from the centre of the enveloping algebra of o(m, n) exists such that 1(z) =
= a0, 7(z) = o], o, o, € C with a, % o and therefore for no endomorphism 6,
6(f) = I of any structure containing W,y ” equation @ o 7(z) = 7'(2) can be valid be-
cause it would imply immediately a, = o,.

It means that as related realizations in the generalized sense the realizations with
signatures differing only in permutation of the last n components and their signs
(with the exception of some cases if m + n is even) can appear. :

In our earlier paper [3], dealing with the minimal canonical realizations of the
complexification oC(m, n) of the Lie algebra o(m,n)'®), we studied also the

%) See also eq. (12) and remember that for d = n and m ~ n 2 2 the components

&1, + .., Grzem—pny fOrm the signature of an irreducible skew-hermitean representation
of o(m — n) and they are ordered: o; = 0, = ... 2 Uzimony = 0if m — nis 0dd
and oy 2 ... Z [ogmony| if m — nis even.

®) The uncertainty af;m—nyj+smm = &% sm—mi+s,, Which may arise for d’ = d” = n
is excluded either by definition of Q,, (% sm-m1+1 = 0 = Ayimomy = Praem—my = 0)
or by means of Casimir operator 1™,

1%) Note that in Cartan cla551ﬁcat10n of simple Lie algebra o €(m n) ~ Di(mﬂ)
if m + niseven and oC(m n) = Bypmin-1yif m + nis odd.
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question of the mutual dependence of Casimir operators in canonical realization
in Wagem—2y (i-e., when generators of o(m, n) are expressed as polynomials in
m + n — 2 pairs of canonical variables). We showed that if m + n = 7 in any such
realization 7, realization of any generating Casimir operator 7(I§}"™) (and the square
1(I™™)? if m + n is even) depends polynomially on t(I{"™); there are at most two
types of these polynomials and they do not depend on realization 7. The one-para-
metrical set of realizations with signatures (1; 0, ..., 0, &z m+ny) lies in Wansn-2)
and we can easily see that the above assertion is valid in this case. The realizations
t(I157™) are now symmetric polynomials in one variable ¢ only and «? is a linear
function of 7(1%"™); the fact that this polynomial dependence is really one of the
two above-mentioned dependences needs, of course, a special proof. The realization
of Casimir operator 1™ equals zero.

Increasing d, the number of independent Casimir operators in realization also
increases.

If d < n,thent(I$)"™), r > d,is the polynomial function in the variables «(I{™"), . . .

St 5’3’”)), which considered as the functions of the parameters dpyom+m1-a+1s - - -

» Up3(m+myp> are.mutually independent and t(I™™) = 0 if m + nis even.

In accordance with note 1 and theorem 1 Newton’s sums s,, ..., S5y poly-
nomially depend on t(I§7™) = 637*", s < d. The remaining Newton’s sums 5,4 s - -
depend on the first d even ones, as they are, following our assumption, functions
of d variables only. Therefore all 7(I$;"™) depend in this case on Newton’s sums
S25 - - -» S34 Only, 1.e., on 7(I§™W), . (1537).

Ifd = n the realizations of all [4(m + n)] generating Casimir operators 7(I§""), ...

s TS ot my1—2) and (I, 1) (or o(I™™) if m + n is even) are independent*).
The proof is the same as in the preceding case; onlyif m + niseventhe [(m + n)]-th
Casimir operator IS}, ; o, can be substituted by I,

If m—n=0,1,2, then no “right” matrix canonical realizations of o(m, n)
exist in our set, i.e., the realization with any signature is a usual canonical one. In
this case the maximal number [4(m + n)] of independent Casimir operators is
achieved taking maximal d = n, i.e., considering the set of realizations with maximal
number of canonical pairs N(n) = n(m — 1).

e

1) In the case d = n when part of the parameters can allow only discrete values
we generalize the concept of independent polynomials in the following way:

a) Let subset Q = RY have the property: if a polynomial P(x) = 0 for all xe Q
then P(x) = Oforallx e RY,

b) the set {P{, ..., Py} of functions on € which are restrictions of some poly-
nomials Py, ..., Py to Q are called independent if P, ..., P, are independent.

The condition (a) guarantees uniqueness of the extension P; to any PP, It is clear
that the condition (a) is respected by the set of all signatures (n; ay, . . ., Grymeny)
considered as the subset of R0,
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On the contrary if m — n > 2 the canonical realizations form the proper subset
in the described set which is characterized by the signature with d < n or d = n and
Ay = .. = Upimomyy = 0

In this case at most n < [4(m + n)] independent Casimir operators can be ob-
tained in the set of canonical realizations with N(n) = n(m — 1) canonical pairs.

So to reach the full number [4(m + n)] of independent Casimir operators the
use of right matrix canonical realizations is necessary.

Formulae for the eigenvalues of Casimir operators in matrix canonical realizations
of noncompact Lie algebra o(m, n), n = 1 derived in this paper are closely related to
formulae for the eigenvalues of Casimir operators in irreducible representations
of compact Lie algebra o(m + n) derived by PereLomov and Popov [4, 5]. Our
formulae (11) and (12) arise, essentially from the formulae of PERELOMOY and PoPOY
(see Preliminaries part C) simply by substitution of Bizomen—2ay+1> «- -» Bragmeny
bY 10 (mtn—2ay141s - - -5 I%4(m+m- This interesting circumstance should indicate some
sort of exceptionality of the matrix canonical realizations of o(m, n) described and
investigated in our paper.

Received 10. 2, 1978.
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