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The matrix canonical realizations of the Lie algebra of pseudo-orthogonal group O(m, n) 
described in the first part of this paper are further investigated. The explicit formulae for values 
of the Casimir operators (which are multiples of identity in these realizations) are obtained. 

1. I N T R O D U C T I O N  

In the first part of this paper [1] we expressed the generators of the Lie algebra 
of  the pseudoorthogonal group O(m, n) by means of matrices, the elements of which 
were polynomials in the quantum canonical variables pi and qi. This is what 

we call the matrix canonical realization of the algebra o(m, n)l). We proved among 
others that these realizations are Schur-realizations, i.e., that all Casimir operators 
are realized by multiples of the identity element. Now we are interested in their 
"eigenvalues". 

In ref. [1] we described two sets of  matrix canonical realizations of o(m, n). Every 
realization from the first set was determined by a sequence of n real numbers and 
if m - n > 2 by some finite-dimensional skew-hermitean irreducible representation 
of  the compact Lie algebra o(m - n). As any such representation is uniquely (up to 
equivalence) determined by its signature (el . . . .  , e[~,,-,)]), i.e. by a certain sequence 
of  integers or half-integers 2) [2], we can say that every realization of o(m, n) from 

the first set is determined by the sequence era,, = (n; ~1 . . . . .  er~(,,+,n), where the 
first [�89 n)] numbers correspond to the signature of  the representation of o(m - n) 
and the remaining n numbers are the mentioned real parameters; we call this sequence 
the signature of  realization. 

The realizations of  the second set are the usual canonical realizations, i.e., gene- 
rators of  o(m, n) in them are realized as polynomials in canonical variables only. 
They are similarly determined by the signature (d; ~1 . . . .  , ~r~(m+,)]), d = 1, 2, . . . ,  
n - 1, where now ~1 = . . .  = ~t~(m+,,)]-a = 0 and the rest are real numbers. 

*) Mysllkova 7, 110 O0 Praha 1, Czechoslovakia. 

1) For  the exact definitions of  all the concepts used here and details we refer 
t o  ref. [1]. 

2) The only exception concerns the algebra 0(2) when the number u~. 2] assumes 
any real value. 
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In this paper we shall give a simple formula for calculation of generating Casimir 
operators. They are expressed as the sum of matrix elements of powers of a certain 
matrix. The "exceptional" generating Casimir operator [('~'"~ in the case of o(m, n) 
with m + n even is given explicitly (theorem 1). 

It will be shown that with the exception of [(m,.) all generating Casimir opera- 
tors are certain symmetric polynomials in variables (fil)2, . . . ,  (flt~(r,_,_2d)]) 2, 
i 2 1 2d)], are (~t~(=+,-2~)~+1), ...,(ictt~(,~+,)l) 2, where fl~, s = 1, . . . .  [~(m - n - 

linear functions of cq. Casimir operator i (m'"~ is also a symmetric polynomial,however, 
only in the first degrees of constants f l~ , . . . ,  et�89 Due to this symmetry property 
there is a finite number of realizations in both the sets with the same "eigenvalues" 
of Casimir operators only. As order of numbers in the "subsignature" (cq . . . .  
.... ctt~(m_,)l) is fixed, the signatures of all these realizations differ, with the exception 
of some cases if m + n is even, either in the permutation of the last d components 
or in the signs d' < d of them. 

In the last part of the paper the connection with our earlier results [3] is briefly 
discussed. 

2 .  P R E L I M I N A R I E S  

A. For o(m, n), m > n > 1, we conventionally use the metric tensor in the form 
gu~ = diag(gl l  . . . .  ,gm+.-2,m+,-z, - 1 ,  +1). Together with the tensor basis 
L~ = -Lv,(# ,  v = 1, 2, . . . ,  m + n), the elements of which obey the commutation 
relations 

(1) [L,~.Lo. ] = g .QL~. -  o,~L~ + ov~Lo, - g,.Lov 

we use also the following one: 

L,], P,  = Li,m+ n "Jr L~,m+n_ 1, Qi  = L,,m+, - L i , m + n - l ,  R = Lm+,,-1,,,,+,, 

i , j  = 1, 2, . . . .  m .-1- n - 23). As we said in the introduction, to every signature 
cq.,. = (d; e l , . . . ,  c~[{-(,n+,n) there corresponds the Schur-realization z -  z(a,~,,) 
of  o(m, n) in W2(,~+,,_2+s),u'* ). We obtain this realization using the recurrent formulae 
(see theorems 1, 3 of [1]): 

(2) = - q,p - q p, + 

"c(R) = - ( q p ) -  [ l (m + n -  2 ) - i c r  a e n ,  

z(O,) = _ q 2 p ~ _  2q, z ( R ) -  2q1'Mki, 

(qp) = qip~, q2 -~ q i q i ,  

3) Indices i, j ,  k, l will run always from 1 to m + n - 2. 
4) Remember that W2N',M (matrix Weyl-algebra) denotes the associative algebra 

generated by N'  canonical pairs p~, qi, [p~, qj] = fig, with complex M x M-matrix 
coefficients; z is a homomorphism of o(m, n) into Wz(m+._ 2 +N),M. 
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where Pi = g l jP  j, q ~ =  g i jq j  and M i j  = - M j i  is the realization of generators 
of o(m - 1, n - 1)in W2N,Ms). The difference between both the sets of realizations 
is that in the first case we continue the "reduction" to realization of the compact 
algebra o(m - n), while in the second one (d < n) we use the trivial realization 
of o(m - d, m - d). 

B. The number of g e n e r a t i n g  C a s i m i r  o p e r a t o r s  of the algebra o(m,  n) equals 
to [�89 + n)]. For m + n odd they can be all found among Casimir operators 

I .  ('''') = Lu, u~ L.~ u3 L ~ r = 1, 2,  3, 
�9 ' " / / r  ' " " *  

(we understand I~ m'") = Lug' = 0 and define also I(o ' '") - m + n). For m + n even 
we must add to them the Casimir operator 

~(m,n) ~ g/qv~...prZlZ(ra+n)3vDI2(m+n)lLulv I . . .  Lp[u2(m+n)]vDi2(m4n) ] 

where e u : ~ '  is the completely antisymmetric Levi-Cita tensor in m + n indices 
with normalization: d 2 .... +" = 1. 

C. The statements of the part B are, of course, valid also for compact algebra o(m,  O)=- 

- o ( m ) .  As we have reminded, every irreducible skew-hermitean representation 
of this algebra is uniquely (up to equivalence) determined by the signature (cq . . . .  
. . . .  c~t~,q ). Values of the generating Casimir operators in this representation can 
be expressed explicitly by means of its signature [4, 5]. 

i//,/ To this purpose we shall define special sort of symmetric polynomials in [~ ] 
variables x~ . . . .  , Xt~ml. Let us firstly define recurrently the m x rn - m a t r i c e s  

. . . ,  xE  l): 
= ( x , ,  o ) 

S 1 ~ 0 ,  S2(X1) k 0, --X1 

(3) s , , (xl ,  . . ,  = 

x[_~m I q- ~(rrl  - -  2 - - e r a _  2 , 

= 0 S r n _ l ( X  1 . . . . .  X[�89 + E r a _ 2 ,  - - e ra_  2 . 

0 , 0 , - xt~,, 1 + �89 - 2 

Here e,,_ 2 + = (1, 1, . . . ,  1) (e,,_2) is the ( m -  2)-dimensional row (column) con- 
sisting of unities and Era_ 2 is the identity (m - 2) x (m - 2)-matrix. This recurrent 
relation is solved explicitly in [4] (see eq. (16) and Table 1). The polynomials o'~ ") -- 

5) F o r  m + n = 2, 3 we define M~i = 0. 
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- c~m)(x,,  . . . ,  Xt~m] ) are defined as follows 

e+~ Sm(x l ,  , . . , X r ~ m )  em,  r = 1, 2, (4) a~ m) = . . . .  
tin; r = 0 .  

N o t e  1. The main important property of a~ m) is that any ~r~ '~) is a polynomial function 
of Newton sums of even degree s2, s4, . . . ,  s2[r 1 where 

[m/21 
St= 2 X; 

i = l  

and on the contrary any Newton sum s2~ is a polynomial function of a~ m), . . .  o-(2~ ) 
(see eq. (90) of~[5]). 

The value of the Casimir operator I~ m'~ - I~ "),  m > 2, in the representation 
characterized by signature (% . . . . .  c%m ) is [4] 6) 

I~ m) ~--- O'(ra)(]~l . . . . .  ]~[~-m]) , F = 0 ,  l . . . .  

/~, = ~ , + y , ,  y ~ = � 8 9  s = l ,  2 . . . .  , [ �89  

The value of Casimir operator i (m'~ ~ 7 (~) (for m even) in this representation is the 
following: 

i = (2i) *m &m. 

3. REALIZATIONS OF CASIMIR OPERATORS OF o(m, n) 

o ( m ,  n), m + n > 3, given recurrently by the formulae (2) the following formulae are 
valid: 

6) In the paper [4] the Casimir operators Cr, r = 1, 2 . . . .  and C'~m,m - even, 
of the Lie algebra o ( m )  are defined. The definitions of operators C, and C;,~ are 
formally the Same as the definitions of our I~ ml and [('~), however, another (two- 
indexed) basis is used. The connection between these two bases has the usual tenso- 
rial character so that, as C, behave as scalars, I~ ") = Cr, r = 1, 2, . . . .  On the other 
hand; Casimir operator C~m is a pseudoscalar and therefore the connection with 
[(m) has the form 

[(m) = , ( _  1)~,.(,.-2) (i)~m C;m, 

where (i) }m is the determinant of the linear transformation (eq. (3) in [4]) inducing 
the mentioned tensorial transformation of bases. The sSgn factor ( - 1 )  ~m(m-2) 
arises due to distinct normalization of the Levi-Civita tensor.  
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(5) i 7  = + B ' -  5", + + _ 
s = O  /~ 

X j ( m -  l , n -  1) (m- 1,n-  1) j ( m - l , n - 1 )  _~ - 2J ,_  1 + , r = 0 , 1 ,  - - r  �9 " " 

where fl = ic~ + �89 + n - 2) and in the case when m + n is even 

(6) [(m'") = ice(n, + n ) [  ( " -1 ' " -1 )  

P r o o f :  Any e lement  ~ e WZ(,,+,,_E+N),M can be writ ten in the fo rm 

(O~r s qr pS ~ o~ . . . . . . . . . .  2 . . . . . . . . . .  2" q~l . . .  r . . . .  2 s l  s . . . .  2 �9 �9 qm+,-2 �9 Pi ""  P , ,+n-2 ,  

where c% e W:N.M c Wz(m+,-a+si,M)" 

Let  us introduce the "p ro jec t ion"  opera tor  "abs" in W2(m+,-2+N),M by the relat ion 

abs ~ = %0 �9 

Direct ly f rom the definition we see that  

(7) abs q i ~  = abs ~ P i  : 0 

abs M~j~  = Mij  abs ~ ,  

abs ( ~  + ~ ' )  = abs ~ + abs 0~' ,  

a b s ( p l q l )  = a b s ( q , p ,  + 1 ) =  1 ,  etc. 

As we proved  in ref. [1] (see p r o o f  of  theorem 1), the real izat ion z(z) o f  any Casimir  

opera tor  z o f  o(m,  n) in the real izat ion (2) does not  depend on canonical  variables 
q,, Pv We can write therefore  for  z(I~ m'")) the relat ion 

z(I~ ' '"))  = abs z(l~ ' '"))  = 9 ~ abs z(T~:)). 

Here  T (r) iz defined recurrently:  -pV 

T(~) T(r-  1) T(o) v = L f  _ov. , -~v = g u y .  

As the p r o o f  of  fo rmula  (5) for r = 0 is trivial we can assume r > 1 and further 

write: 

f D { T ( r - I )  T ( r - 1 )  ~ " i . ) i  ~ ( T ( r - 1 )  __ T(r-1)~  z(I~ re'n)) = abs z t . . ~ .=+ ._ l ,m+ .  -- *,.+.,m+.-X/ + �89 + ~ . ' , 'm+ . , i  ",,,.+.1 + 

+ �89 _ Qi ) / ,p ( r -1)  -- "r'(r-l) .i) Jr- ( Mi j  4- qlp.i qjpi)  rj(~-l)} 
\ * i , m + n - - 1  J m + n - 1  - -  �9 

This expression can be, due to the special fo rm of  real izat ion of  the basis elements  (2), 
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simplified by means of  the relations (7) to 

~(I~ m'")) = - f l a b s  z (T f f+-~)_ t ,~+,  - T,,('+-~)m+._i) + 

+ �89 a b s  "c([P i, , p ( r - , )  _ T ( r - l )  T ( r - 1 )  __ T ( r - l )  -I~ *r,+.,, ",,m+, + ~, , , .+ . - i  *"+"--',f.U + MUabs 'c(TJ~r- ' ) ) ,  

where abs R = - f l  = ia - l (m  + n - 2). Using the commuta t ion  relations 

[L~,, Tu(: )] = g,uT(o: ) - 9ouT~(: ) + 9 , ,T ( , ;  ) -  9~,T(~: ) 

we further obtain 

, ( I  }"'",) = f labs  ,(Tff+-.l_)l,m+ . - Tff+-~),,+._0 + M iy abs z ( T f f - ' ) ) .  

In order  to prove the formula (5) we need to express the r ight-hand side of  the last 
equat ion in terms of  Casimir operators  of  o ( m  - 1, n - 1). Let  us de f ine  

B r = abs z(Tff+),,,.+. - T~(~._, , , ,+ ._I) .  

Using the same calculation as above we derive easily the recurrent  relations for these 
quantities: 

Ar  = ic~B,- i  + �89 + n -- 2 ) A r - i  - gU'abs "c(T i ( ; - ' ) ) ,  

B r = i aAr - ,  + �89 + n - 2)B~_ 1 - 9~ r 

It further gives 

(s) 
f rom which 

A r -  Br = /~(A~-i - B~-i)  

B r = A r + 2 /~  r . 

Substituting it into the above relations for  A .  Br, we obtain the single relation 

A r = f lA,_,  + 2i~.  f i r - ,  _ a,j  abs z ( T U  1') = 

= f i A r - i  + ( f l  - f l ) f i r - ,  _ g U  abs z ( T . ( , ; - 1 ) ) .  

Using once more  the above calculation and eq. (8) we derive easily the recurrent  
relat ion for abs z(T}~)): 

abs z(T}; )) = ~ i  k abs z(Tk(~ -1)) -- g i j f i  r - '  , 

where 
~ r u = M u + g u .  

One can solve this relat ion as follows 
r - - I  

abs z(T};)) = M~) - E /~ r - , - , /~}~) ,  
S=0 
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where 

Using it we obtain 

]~/[!r.) = ~giJ-[- rMij , r = 0 ,  I 
l J  ~ S1 ~ $ 2  ( M i  Ms, . . . ff l~ . . . .  j r >  1 

r - 1  

C ,  - g i j  abs z(T,.(:)] = )~r(') _ ~ f f - ~ - l ~ ( ~ )  \ lJ t 
s = 0  

where _M(') ~ '  "' = M i .  i . g 's and 

r - -1  

M iJ abs ~ (~ r  )) = )~ r(,+l) - 251 (') + (1 - fl)~2 f f - ~ - l ~ ( ~ )  + (m + n - 2 ) i f - 1  = 
s = l  

r - - 1  

= h~(r+ 1) _ 2~r(o + (1 - fl) Z if-s-11~,(~) + (m + n - 2 ) f t .  
s = 0  

The relat ion for  A, we shall now write in the form 

A, = ~A, -1  + (~ - ~) p , -1  _ c ,_1  

which is solved by 
r - - 1  

s = 0  

Substituting now for M iJ abs z(T~-11) and A, into the equat ion 

Z(I~ 'n)) = flat_ 1 § M ij abs z ( ~ . - 1 ) )  

we finally obtain 

r = r - ~  t ~ ' - s - 1  _ ~ ( s )  z(I~ m'")) fl" + f f  - Z f l r - ~ - i  + + 
s=Ok fl 

+ ~ ( o  _ 2_~( . -1 ) ,  

+ 

F r o m  the definitions o f  ff'Iij, ~(~) we obtain directly 

where 
= + .  - 2 ) ( 1  - r ) ,  

( U f f ' i f f * . . . M s , _ l  s" , 

r = 0 , 1  

r > l .  

As the elements Mij ,  i, j = 1, 2, . . . ,  m + n - 2, generate a given realization 
o f  o ( m  - 1, n - l),  the quantit ies m (') are just the Casimir operators  (more  exactly: 
their  realizations) o f  o ( m  - 1, n - 1), i.e. 

M(O = i~m-1,,-1) ~ h~f(,) = - - r ' ] ( m - l ' n - 1 )  

and formula  (5) is proved.  
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As to the formula  (6), the realization of  generating Casimir operator  i (m'") does 
not  depend also on canonical  variables and we can write 

z([ ("'")) = abs z ( e u m " u ' / 2 " + " " ~ / : " + " ' L u m . . .  L~/2,,.+,,~j/~,..+., ) . 

Let us denote h = �89 + n) and notice that  since the only non-zero terms are those 

having all the indices #1,  vl, : . . , /Zh, Vh mutual ly different, we are absolutely free 
in interchanging L'uvs (see the commuta t ion  relations (1)) so that  we can write 

z(l  '" '")) = 2h abs z(e ~+"-'' '~+"'`~'i~ ..... i"' i"Lm+._l,m+.Chj 2 : . .  Le.ih ) + 

abs ~(g.,n+.-!,j, .+.,,~,j3 ...... "J"Lim+. tLj , .+.L~j~ . .  L~.i. ) 

where the latin indices run from 1 to 2h - 2. Fur ther  with the help of  eqs. (1)(2), (7) 

we have: 

Z(i(m,,)) = ~,~j~...i,j,[__ 2hfl abs z ( L , ~  . . . L i , j ,  ) - 

- h(h - 1) abs z([P,~, Qy~] L i ~ j ~ . . .  Lihjh ) = 

= 2 h ( - f l  + h -  1)ei2J2""ih'inabs'c[(Mi2]2 + q i z P j z -  qj~Pi~)Liaj~ . . .  L,,j~] = 

= 2 h ( - f l  + h -1)eiai2""i~i"Mi:j~ . . .  Mihj~.  

But since Mij ,  i , j  = 1, 2 . . . . .  2h " 1, generate the realization of  o(m - 1, n - 1), 
the last equat ion one can write in the  form 

z(]("'")) = [ -2h ]~  + 2h(h - 1)] i (m-1'"-t)  

According to the definition 

- f l  + h -  1 = i ~ -  �89 + n -  2) + �89 + n ) -  1 =ic~,  2h = m + n 

and the validity of  the formula  (6) is proved.  �9 

Lemma 2: Let a realization of  o(m, n), m + n => 3, of  the type (2) be given. 
If  the corresponding Schur-realization of  o(m " 1, n - 1) is such that  the values 
of  the Casimir operators can be expressed as 

1 (" -1 ' " -1)  = a~N) ( f l , . . . , f t 6Nl ) ,  N = m + n -  2 ,  r = 0,1 . . . . .  

for  some complex numbers (61 . . . . .  gr~-N]), t h e n  the values of  Casimir operators 
in the real izat ion of  o(m, n) are 

= . . . . . .  

P r o o L  F r o m  the definition (3) one can prove easily by induct ion the relat ion 
between r-th powers of  the matrices S~(x~ . . . .  ,xt~m ) = SN and SN+2(x ~ . . . .  

�9 . . ~  X [ ~ ( N + 2 ) ] )  ~ SN+2 . "  
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$5q+2 

y r  
r - t  r - 2  yr-S-i _ z r - s ~ l  

-~ s q- - e N  2 y ' - ' - ' ( S N +  EN) , e N 2 (SN + EN)" eN 
s=O s=O y -  Z 

r--1 
(SN + Eu)" , - E z " - * - l ( S u  + EN) ~ eu 

S=0 
, 

0 ~ 0 ~ Z r 

where y = xt~(u+2)] + �89 z = -x[~(s+2)]  + �89 

Using the definition (4) o f  the polynomials  a~ N) we obtain the relation between 

~!~)(x, . . . .  , x ~ . j )  and 4 ~+' ) (x l ,  � 9  x~(~+~)3:  

(10 )  

r--2 / 
= yr + Z r __ ~ yr-S-1 

s=O 

where 

4 '`+ ~)(~ ,  . . . . .  x~(~ + ~)~) = 

_~ Z r - s - 1  ~_ 

Z 

9 ,(N) r 
"-- ~ r - 1  + 

r - r  . . . .  , x[~m) = e ~ ( S  N + E N ) "  eN = 

$=0 

Substituting into the relation (10) 

xl  = 61 , . . . , x [~u~  = at~N], N = n + m -  2 ,  

xt=,(n+z)] = i c i l y  = fl ,  z = fl ,  

j ~ . - l ! .  1) : 4 N ) ( ~ 1 , ,  ~,~,~), sT-""  1) = ~ N ' ( ~ I , ,  ~.~) 

we obtain with the help o f  formula  (5) 

l~m,n)  _ ( m + n ) { ~  
"~- Or ~01 ,  �9 �9 ", ~)[ �89 

which just proves the lemma. 

N o w  we are in the posi t ion to prove our  main  result. 

T h e o r e m  1: Let % , ,  = (d; ~ . . . . .  ~t=*(,,+,)]) be signature of  the realization (2) 

o f  Lie algebra o(m, n), m > n > 1. Then the values o f  Casimir operators are 

l~m,n) ( m + n ) /  r, 
: O'r t[ ')[ . . . . .  f l [ -~(m+n-2d)],  lO~[�89 1, �9 " ' ,  i ~x [ �89  , 

r = 0 , 1 , . . . ,  

(i) 

(11) 
where 

fls = as + 7~, 7s - 
m + n - 2d [ 2d 1 s ,  s -=  1 , 2 , . . . ,  m + n -  

2 2 ' 
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(ii) f o r m  + n e v e n  

(12) Tin,.) = 6an . (2 i ) ' ( "+")  l m - - 2 n )  , f l l  . . . .  , f l , (m-n)~z,O.- ,+ 2 ) . . . . .  o~�89 . 

P r o o f .  By induction: (i) 

a) Let us firstly consider the realization of the type (2) of the algebra o ( m ,  1) with 
signature 0c~,,1 = (11 ~1, ~2 . . . .  , ~t�89 m > 2. As it was pointed out in the part 
C of Preliminaries the Casimir operators I~"- ~'~ in the realization of o ( m  - 1, O) = 

- o ( m  - 1) characterized by signature (~1 . . . . .  ~t~Cm-~)l) have just the form (11) 
in variables fla, -.., flt~,,- 1)1 so that  lemma 2 can be applied. In the case of o(2, 1) 
the assertion follows also from lemma 2 if we put I~ ~'~ = a~) = 6to (see Footnote 
5) and eq. (4)) and for o(1, 1)i t  can be verified directly: 

b) Suppose now that the assertion (i) is valid for o ( m  - 1, n - 1), m _> n >_ 2, 
and let us take realization of o ( m ,  n)  corresponding to signature 0r = (d; ~1, . . .  
�9 " ", ~t�89 For d > 1 the realization of o ( m  - 1, n - 1) from the formulae (2) 
corresponds to the signature 

(d  - 1; 0q, . . . ,  c~[�89 

and because, by the induction assumption, Casimir operators have the desired form, 
the l e m m a  2 can be applied. 

If  signature am,. = (1; 0, . . . ,  0, at�89 the realization of o ( m  - 1, n - 1) 
used in eqs. (2) is trivial and we have to prove that Casimir operators 1~ "-1 '"-1)  = 0 
can be expressed as thevalues of polynomials a~ "+"-2) at the point (yl . . . . .  Yt�89 a)l) 
This fact is, however, proved in ref. [5] (see, e.g., relations (55)-(57))  so that lemma 2 
again can be applied and the proof  of  assertion (i) is completed. 

(ii) The proof  is a simple consequence of eq. (6) and of the form of the Casimir 
operator i (m-") given in Preliminaries, part C. �9 

Now we shall deal with the question how the values of Casimir operators differ 
for different signatures of realizations. We denote by f2=,, the following subset of 
the set of all signatures with fixed m and n: 

a~,,  = {(d; ~ . . . . .  ~t~+,,~) I0 = ~,, + 6~,(1~ I -~, , )  

< < < K = ) ]  �9 = ~XK+ 1 = . . .  = 0 ~ [ � 8 9  , ~ - n + 1 ,  

if m - n is even then d ~= n - 1 and ~t~r = 0 =~ ~t�89162 > 0 7). 

Theorem 2: (i) For every signature ~,.., there exists ~,, ,  e O,.,, such that the 
values of any Casimir operator in the corresponding realizations are the same. 

(ii) The signature ~;,., e g2,,., is determined uniquely, i.e., for two different signa, 
tures from O,,,, the corresponding realizations differ by the value of at least one 
Casimir operator. 

~) This condition is automatically satisfied if either d < n or m = n. 
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P r o  of :  (i) The assertion is a simple consequence of  the symmetry of  polynomials  
in the last d squared  components  o f  the signature ar,,,. I f  m - n is even, the signa- 

tures (n - 1; 0, . . . ,  0, ~[~(m-,)1+2, . . . ,  ~t~<m+.)l) may  be excluded f rom O,,,, be- 
cause they give the same values of  Casimir operators  as the signature (n; 1 . . . . .  1, 

0, ate(m_,)]+2, . . . ,  ~[�89 (see eqs. (11) - (12) ) .  As to  signature a , , ,  = ( n ;  

0~1, ...~ (~[~(m+n)]),  D ' l -  ~ even, O~[.~(m+n)]+ l +6m n . . .  O~[.~(ra+n)] ~t = O, when also excep- 
t ional  invariant  i ( ' '") has to be considered,  the signature a~,,n e Ore, . has the form 

where 8 = sgn ~t~(m-n)]+x+~,... . .  ~[�89 and sx, . . . ,  s , , ,  n'  = n - (~mn, is such 
permuta t ion  o f  indices [�89 - n)] + 1 + 6~, . . . .  , [�89 + n)] that  [~1 < I~,~] " ' '  
�9 . .  = <  

(i i) As we pointed out in Preliminaries,  any Newton 's  sum of  even degree s2, = 
N 

= Z (x~) 2" can be writ ten as the polynomial  in variables a~N) __= a~N)(xl . . . . .  xN),  
s = l  

s = 1, 2, . . . ,  2r. Even Newton 's  sum s2~ can be considered as the Newton 's  sum 
2 s~ in variables x~ = x~, s = 1, . . . ,  N. 

Consider  now the so-called elementary symmetric polynomials  r r = 1, 2, . . .  
. . . ,  N, in variables x '  i defined as follows; 

' N) _~ ~r ~ X l ,  " ' ' ,  XN : Xsl~ " ' ' ,  X s r ,  
( s l  , . . .  , s t )  

where summat ion  runs over all sequences ( s z , . . . , s , )  with 1 < s~ < s2 < . . .  

�9 . .  < s~ < N. It is known [6] that  every symmetric polynomial  r can be expressed 
N 

b y m e a n s  of  Newton 's  sums s, = ~ ( x ' )  t and therefore any symmetric polynomial  
$ = 1  

~N) can be expressed also by means o f  polynomials  o~ u) 

So, two signatures r  am, . giving the same values o f  any Casimir operator  give 

also the same values of  Ct~(r,+,)l _ polynomials:  

y.[�89 iO~t• 2 �9 t 2 
-=- . .  , . 1  . . . .  , ( = 

Y[ �89  :i :: ",2 ( i  " "~2"~ 
"~r \ t " J .  , " �9 " ,  ~, O ~ [ ~ ( m + n - 2 d " ) ] + l )  , �9 �9 " ,  \ ~[--t-(m+n)]] ) " 

It  is, however,  fur ther  known [6] that  the set o f  all solutions of  the [�89 + n)]-th 
order  equat ion 

y[k(m+.)]  + ~ ly [k(m+n)] -z  + . . .  + ~[~( , ,+, ) ] -zY + ~[-~(m+,)] = 0 

equal  s just to 

�9 t 2 f R t t 2  �9 

. . . .  } - -  t - ,  . . . .  . �9 
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As ~ ' , ,  c~,,, e f2 . . . .  the elements of these sets are orderedS): 
, 2  " ~ 2 �9 t :, ~, 

P ?  > Bi  2 > --.  > >= 0 _--_ -->--- " ' "  -->-- ' 
B,,2 ,,2 ,, ( ) 

For m + n odd /?~(,.+,,-2a,)] > 0, /~'-~(,,+.,2a,,)] > 0 (see eq. (12)) and there, fore 
d " =  d' and, consequently, c ( .  = c~,,,, i.e., assertion ( i i ) i  s proved. I f ,  however, 

f t !  9]  m - n is even, then beside the possibility d ~ d" which implies again am,.= ~,,,. }, 

also /~t~(,.+.-2a,)]t ~- 0 ~. O~[�89 2d,,)]+ ( o r  flr~(m+n- ~--- 0 = O~[�89 ) '  

could be allowed which implies d" = d' - 1 (d' = d" - 1). For d' < n it contradicts 
r tt the equation /?~ ~- Yl = / ~  -= Yl so that d' =- n, d" = n - 1. The signatures with 

d" = n - 1 are not, however, included in the set f2,,,, and uniqueness of ~ ' , .  is proved 
in this last case too. m 

4 .  C O N C L U S I O N  

In the first part of this paper we proved that two described realizations z and z' 
of  the Lie algebra o(m, n) characterized by different signatures are nonrelated, i.e., 
no endomorphism 0 of  W2N,~u, 0( 0 = U, exists such that either 0 o z = z' or 0 o v', = ~. 

It may happen, of course, that by a proper embedding of W2N,M in a larger structure 
(e.g., in the case of W2N embedding in its quotient division ring) when more general 
endomorphisms are allowed, the non-related realizations appear as related i6 the 
generalized sense, (e.g., non-related realizations (2) of 0(2, 1) in W 2 with opposite 
c(s are related in quotient division ring D z ~ W2; the endomorphism 0 has the form: 

O(p,) = p,,  O(ql)= qt -i(2~/p~)). This possibility is, however, excluded in the 
case of  our realizations, the signatures of which lie in f2,,,,. The reason is that the 
element z from the centre of the enveloping algebra of o(m, n) exists such that z(z) = 

= c~j, ~'~(z) ~'J, e=, ~', ~ C with ~, 4= ~'~ and therefore for no endomorphism 0, 
0(0 = ~ of any structure containing W2u,~ z equation 0o -c(z) = z'(z) can be valid be- 
cause it would imply immediately % - c(,. 

It means that as related realizations in the generalized sense the realizations with 
signatures differing only in permutation of  the last n components and their signs 
(with the exception of some cases if rn + n is even) can appear. 

In our earlier paper [3], dealing with the minimal canonical realizations of the 
complexification O C(m, n) of  the Lie algebra o(m, n)~~ we studied also the 

s) See also eq. (12) and remember that for d = n and m - n ~ 2  the components 
cq, . . . ,  ~r~(~-,)] form the signature of an irreducible skew-hermitean representation 
of o(m - n )  and they are ordered: (~1 =-~ ~2 ~ " ' "  ~ 0~[Xa(m-n)] =-~ 0 if m -- n i s o d d  
and az > . . .  > [at~(,,-,)][ if m - n is even. 

�9 , = +  , ,  9) The uncertainty ~[~(,,-0)]+0,.. - ~t~(,,-,)]+~. which may arise for d' = d" = 
is excluded either by definition of f~,,,,(et�89 = 0 ~ et�89 --< /~t�89 = 0) 
or by means of Casimir operator i (''"~. 

~o) Note that in Cartan classification of  simple Lie algebra Oc(m, n) ~- D ~ + , )  
i f m  + n is even and oc(rn, n) ~- B~(~,+,,_~) i f m  + n is odd. 
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question of  the mutual dependence of Casimir operators in canonical realization 

in W2(.+,,-2) (i.e., when generators of  o(m, n) are expressed as polynomials in 

m + n - 2 pairs of canonical variables). We showed that if m + n > 7 in any such 
realization z, realization of any generating Casimir operator z(I(z'~ ''")) (and the square 
z(i("'")) 2 if  m + n is even) depends polynomially on z(l(zm'")); there are at most two 
types of these polynomials and they do not depend on realization z. The one-pard- 
metrical set of realizations with signatures (1; 0 . . . .  ,0,  cr ) lies in W2(,,+,_2) 
and we can easily see that the above assertion is valid in this case. The realizations 
z(l~, ''")) are now symmetric polynomials in one variable c~ 2 only and c~ 2 is a linear 
function of z(I~"'")); the fact that this polynomial dependence is really one of the 

two above-mentioned dependences needs, of course, a special proof�9 The realization 
of  Casimir operator [("'") equals zero�9 

Increasing d, the number of independent Casimir operators in realization also 
increases. 

I f d  < n, then z(l(z~'"~), r > d, is the polynomial function in the variables ~(I(2 m'")) . . . .  
. . . ,  ~(12('~'")), which considered as the functions of  the parameters c~E~(m+,)]_a+ t . . . .  
. . . .  C~[}(m+,,) ], are.mutually independent and z(i r("'")) = 0 if m + n is even. 

In a~cordance with n o t e  1 and t h e o r e m  1 Newton's sums s 2 . . . . .  s2a poly- 
,,(m+,) S < d. The remaining Newton's sums Sz(a+ 1), nomially depend on ~(I(]~'")) --- v2s , 

depend on the first d even ones, as they are, following our assumption, functions 
of  d variables only. Therefore all z(I(2"~ "")) depend in this case on Newton's stuns 

s 2 . . . .  , sza only, i.e., on v(I(2"'")),..., (1(2"~'"1). 

I f d  = n the realizations of all [�89 + n)] generating Casimir operators z(I(2 "'")) . . . .  
z(I(2'~}),,+,)]_/) and "#'("'") ~(or z([ (m'")) if m + n is even) are independent11)�9 

�9 " " ,  ~ \ * [ � 8 9  + n)]] 

The proof  is the same as in the preceding case; only if m + n is even the [�89 + n)]-th 
(re,n) Casimir operator I2[~(,,+,)1 can be substituted by [("'"). 

I f  m -  n = 0, 1, 2, then no "right" matrix canonical realizations of o(rn, n) 
exist in our set, i.e., the realization with any signature is a usual canonical one. In 
this case the maximal number [�89 + n)] of  independent Casimir operators is 
achieved taking maximal d = n, i.e., considering the set of realizations with maximal 
number of canonical pairs N(n)  = n(m - 1). 

al) In the case d = n when part of the parameters can allow only discrete values 
we generalize the concept of  independent polynomials in the following way: 

a) Let subset Q = Ns have the property: if a polynomial P(x)  = 0 for all x e s2 
then P(x)  =-- 0 for all x ~ ~s ,  

b) the set {Pf  . . . .  , P~} of  functions on E2 which are restrictions of some poly- 
nomials P1 . . . . .  P~  to t2 are called independent if P~ . . . .  , PM are independent�9 

The condition (a) guarantees uniqueness of  the extension Pi to any P~. It is clear 
that the condition (a) is respected by the set of all signatures (n; a~, . . . ,  a[~(,,+,)]) 
considered as the subset of  Nil("+")]. 

Czech. J. Phys. B 28 ['~g78] 961 



M. Havli~ek et al.: Matr ix  canonical realizations H .  . . 

On the contrary if m - n > 2 the canonical realizations form the proper subset 
in the described set which is characterized by the signature with d < n or d = n and 
o~ 1 = . . .  = 0~ [~ (m_ . )  ] = 0 .  

1 In this case at most n < [~(m + n)] independent Casimir operators can be ob- 
tained in the set of canonical realizations with N(n) = n(rn - 1) canonical pairs. 

So to reach the full number [ l(m + n)] of independent Casimir operators the 
use of right matrix canonical realizations is necessary. 

Formulae for the eigenvalues of Casimir operators in matrix canonical realizations 
of noncompact Lie algebra o(m, n), n > 1 derived in this paper are closely related to 
formulae for the eigenvalues of Casimir operators in irreducible representations 
of compact Lie algebra o(m + n) derived by PERELOMOV and Povov [4, 5]. Our 
formulae (11) and (12) arise, essentially from the formulae of PEPa~LOMOV and Povov 
(see Preliminaries part C) simply by substitution of/~[~(,.+.-2a)1+1 . . . .  ,/~t~(m+.)] 
by i~t~(, . +._ 2a)] + 1, �9 �9 ", i~t~(., +.)]" This interesting circumstance should indicate some 
sort of exceptionality of the matrix canonical realizations of o(m, n) described and 
investigated in our paper. 

Received 10. 2. 1978. 
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