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In contrast to the usual quantum systems which have at most a finite number of open spectral gaps
if they are periodic in more than one direction, periodic quantum graphs may have gaps arbitrarily
high in the spectrum. This property of graph Hamiltonians, being generic in a sense, inspires the
question about the existence of graphs with a finite and nonzero number of spectral gaps. We
show that the answer depends on the vertex couplings together with commensurability of the graph
edges. A finite and nonzero number of gaps is excluded for graphs with scale invariant couplings;
on the other hand, we demonstrate that graphs featuring a finite nonzero number of gaps do exist,
illustrating the claim on the example of a rectangular lattice with a suitably tuned δ-coupling at
the vertices.

PACS numbers: 03.65.-w, 02.30.Tb, 02.10.Db, 73.63.Nm

Quantum graphs [1] attracted a lot of attention both
from the practical point of view as models of nanostruc-
tures as well as a tool to study properties of quantum
systems with a nontrivial topology of the configuration
space. The topological richness of quantum graphs al-
lows them to exhibit properties different from those of the
‘usual’ quantum Hamiltonians; examples are well known,
for instance, the existence of compactly supported eigen-
functions on infinite graphs [1, Sec. 3.4] or the possibil-
ity of having flat bands only as is the case for magnetic
chain graphs with a half-of-the-quantum flux through
each chain element [2].

In this letter we are going to consider another situation
where quantum graphs are known to behave unusually.
Our problem concerns the gap structure of the spectrum
of periodic quantum graphs. Recall that the finiteness
of the open gap number for periodic quantum systems
in dimension two or more was conjectured in the early
days of quantum theory by Bethe and Sommerfeld [3].
The validity of the conjecture was taken for granted even
if its proof turned out to pose a mathematically rather
hard problem. It took a long time before it was rigorously
established for the ‘usual’ periodic Schrödinger operators
[4–8]. Nevertheless, the situation appears to be different
for quantum graphs, as we will see below.

The traditional reasoning behind the Bethe-
Sommerfeld conjecture relies on the behavior of
the spectral bands identified with the ranges of the
dispersion curves or surfaces which, in contrast to the
one-dimensional situation, typically overlap making
opening of gaps more and more difficult as we proceed
to higher energies. The situation with graphs might
be similar [1, Sec. 4.7] but the spectral behavior need

not be the same, one reason being the possibility of
resonant gaps. The existence of gaps coming from
a graph decoration was first observed in the discrete
graph context [9] and the effect is present for metric
graphs as well [1, Sec. 5.1]. In addition, the recently
discovered universality property of periodic graphs [10]
valid in the generic situation when the graph edges
are incommensurate and the vertex coupling is the
simplest possible, usually called Kirchhoff, shows that
the occurrence of infinitely many open gaps is quite
typical.

This prompts one to ask whether there are quantum
graphs with the band spectrum similar to that of the
‘usual’ multidimensional periodic systems, i.e. a nonzero
and finite number of open gaps; for the sake of brevity we
shall speak of the Bethe–Sommerfeld property. With this
question in mind, our aim in this letter is twofold. On
the one hand we will show that the answer depends on
the vertex coupling and there are classes of couplings for
which such a behavior is excluded. On the other hand,
using a simple example we are going to demonstrate that
periodic graphs with the Bethe–Sommerfeld property do
exist.

Consider an infinite graph Γ periodic in ν directions,
with a slight abuse of notation we will speak of a Zν-
periodicity, ν ≥ 2. The Hamiltonian is supposed to act as

− d2

dx2 on each edge; to make it a self-adjoint operator, one
has to impose appropriate coupling conditions at each
vertex. The most general form of them [11, 12] is (U −
I)Ψ + i(U + I)Ψ′ = 0, where Ψ, Ψ′ are vectors of the
function and derivative values at the vertex, respectively,
and U is a unitary n×n matrix for n denoting the degree
of the vertex. According to the eigenvalues of U one
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can split the coupling into the Dirichlet, Neumann, and
Robin parts [1, Sec. 1.4]. Equivalently, the coupling can
be written in so-called ST-form [13],(

I(r) T
0 0

)
Ψ′ =

(
S 0
−T ∗ I(n−r)

)
Ψ (1)

for certain r, S, and T , where I(r) is the identity matrix
of order r and S is a Hermitian matrix that refers to the
Robin part. A coupling is called scale-invariant if the
matrix U has no eigenvalues other than ±1; it is easy to
see that this happens if and only if S = 0 [14]. Recall
that the on-shell scattering matrix S(k) for the vertex in
question is in the ST -formalism given by

S(k) = −I(n)+2

(
I(r)

T ∗

)(
I(r) + TT ∗ − 1

ik
S

)−1 (
I(r) T

)
and it is obvious that S(k) is independent of k iff S = 0.

The spectrum is obtained using the Bloch-Floquet the-
ory [1, Sec. 4.2]. We cut from Γ its elementary cell Γper

which is assumed to be a finite graph with a family of
pairs of ‘antipodal’ vertices related mutually by the con-
ditions ψ(v+) = eiϑlψ(v−) and ψ′(v+) = eiϑlψ′(v−) with
some ϑl ∈ (−π, π], where l = 1, . . . , ν with ν being the
dimension of translation group associated with graph pe-
riodicity; the pair of edges with the endpoints v± can be
turned into a single edge by identifying these endpoints,
and the acquired phase ϑl coming from the Bloch condi-
tions can be also regarded as being induced by a suitable
magnetic potential.

The spectral problem can be solved in the usual way,
cf. [1, Sec. 2.1] or [10]. Assuming that Γper has E edges,
we consider three 2E × 2E matrices. The diagonal ma-
trix L is determined by the lengths of the directed edges
(bonds) of Γper, the diagonal matrix A has the entries
eiϑl or e−iϑl at the positions corresponding to the edges
created by the mentioned vertex identification, and all
its other entries are zero, and finally, the matrix S is the
bond scattering matrix, which contains directed edge-to-
edge scattering coefficients. Using them, we define

F (k; ~ϑ) := det
(
I− ei(A+kL)S(k)

)
; (2)

then k2 ∈ σ(H) holds iff there is a ϑ ∈ (−π, π]ν such

that the secular equation F (k; ~ϑ) = 0 is satisfied.
Suppose now that the couplings at all the vertices

of Γ are scale-invariant. This, in particular, means
the matrix S entering formula (2) is independent of k,

hence the value F (k; ~ϑ) depends on the vectors ~ϑ and
k`0, k`1, . . . , k`d, where {`0, `1, . . . , `d}, d ≤ E − 1, is the

set of mutually different edge lengths of Γ, and F (k; ~ϑ) is
obviously 2π-periodic in the terms k`0, k`1, . . . , k`d. The
secular equation can be then written as

F ({k`0}(2π), {k`1}(2π), . . . , {k`d}(2π); ~ϑ) = 0 , (3)

where {x}(2π) := 2π{ x2π}, for {·} denoting the difference
between the number and its nearest integer. This allows
us to prove that

(i) if σ(H) has a gap, then it has infinitely many gaps,

(ii) the gaps can be divided into series with asymptoti-
cally constant lengths with respect to k, and

(iii) in particular, if all the edge lengths are commensu-
rate, the momentum spectrum is periodic.

The easiest part to check is (iii). In that case there is an
elementary length L > 0 and integers mj ∈ N such that
`j = mjL holds for j = 0, 1, . . . , d, and consequently, the
left-hand side of (3) is 2π/L-periodic with respect to k.
Parts (i) and (ii) are more involved and we just sketch
the argument referring to [15] for the full proof.

To prove (i) we consider a k > 0 satisfying k2 /∈ σ(H)
and use it to prove the existence, for any given C > 0, a
k′ > C such that (k′)2 /∈ σ(H). Due to the continuity of
F it is sufficient to find a k′ so that the values k′`j are ar-
bitrarily close to k`j up to an integer multiple of 2π. To

this aim, we denote αj =
`j
`0

and employ the simultane-
ous version of the Dirichlet’s approximation theorem by
which for any N ∈ N there are integers p1, . . . , pd, q ∈ Z,
1 ≤ q ≤ N , such that∣∣∣αj − pj

q

∣∣∣ ≤ 1

qN1/d
. (4)

Choosing integers m > `0C
2π and N >

(
2π
δ m

)d
, and

putting k′δ := k+2πm q
`0

, it is straightforward to see that

k′δ > C and, using (4), to check that
∣∣ {k′δ`j − k`j}(2π) ∣∣ <

δ for all j. Moreover, the latter inequality in combination
with the argument used to prove (i) yields the claim (ii).

In fact, one can exclude the Bethe–Sommerfeld prop-
erty for a wider class of graphs. Given a vertex coupling
described by condition (1), we consider the associated
scale-invariant one obtained by replacing the Robin part
S by zero. The vertex scattering matrix can be then
written as S(k) = S0+ 1

kS1(k), where S0 is the scattering
matrix of the associated scale-invariant vertex coupling.
Then the function F (k; ~ϑ) in the secular equation is

F0({k`0}(2π), {k`1}(2π), . . . , {k`d}(2π); ~ϑ) +
1

k
F1(k; ~ϑ) ,

where the subscript zero at F0 refers to the Hamiltonian
H0 of the graph in which all the couplings have been
replaced by the associated scale-invariant ones. Using the
fact that the leading behavior of F (·; ~ϑ) at high energies
comes from the scale-invariant term, it is not difficult to
see that [15]

(i) if σ(H0) has an open gap, then σ(H) has infinitely
many gaps,

(ii) if all the edge lengths of Γ are commensurate, then
the gaps of σ(H) asymptotically coincide with those
of σ(H0).



3

FIG. 1. The rectangular-lattice graph

Let us turn to our second topic, the existence of graphs
with the Bethe-Sommerfeld property. To this goal we re-
visit the lattice Kronig-Penney model introduced in [16]
and further discussed in [17, 18]. In this case Γ is a rect-
angular lattice graph in the plane with edges of lengths
a and b, cf. Fig. 1. The Hamiltonian H = Hα,a/b is the
negative Laplacian with the δ coupling condition in each
vertex, i.e. the functions are continuous there and satisfy∑4
j=1 ψ

′(v) = αψ(v) with a fixed parameter α ∈ R.

According to [17], a number k2 > 0 belongs to a gap if
and only if k > 0 satisfies the gap condition, which reads

tan

(
ka

2
− π

2

⌊
ka

π

⌋)
+ tan

(
kb

2
− π

2

⌊
kb

π

⌋)
<
|α|
2k

(5)

for α > 0 and the analogous one with tan replaced by cot
if α < 0; we neglect the case α = 0 where the spectrum is
trivial, σ(H) = [0,∞). For α < 0 the spectrum extends
to the negative part of the real axis and may have a gap
there, but since such a gap always has a positive part
[18], we may restrict our attention to examining gaps in
the positive spectrum.

The crucial quantity is the ratio θ = a
b . It is obvious

that σ(H) has infinitely many gaps once α 6= 0 and θ is
rational, and the same is true for the ‘well approximable’
irrationals [17]. We thus focus on the other irrationals,
called badly approximable, i.e those to which there is a
c > 0 such that ∣∣∣θ − p

q

∣∣∣ > c

q2

for all p, q ∈ Z with q 6= 0. These numbers form a
set of zero Lebesgue measure. Alternatively they can
be characterized as irrationals for which the sequence in
the continued-fraction representation, θ = [c0; c1, c2, . . .],
is bounded [19], or as numbers whose Markov constant
µ(θ), defined [20] for θ ∈ R as

µ(θ) = inf
{
c > 0

∣∣∣ (∃∞(p, q) ∈ N2
)(∣∣∣θ − p

q

∣∣∣ < c

q2

)}
,

(6)
is strictly positive. It is convenient to introduce a one-
sided analogue υ(θ) of the Markov constant, with the last
inequality in (6) replaced by 0 < θ − p

q <
c
q2 . We have

µ(θ) = min{υ(θ), υ(θ−1)}; the number υ(θ) may or may
not coincide with the Markov constant [21].

To get the existence claim we focus on the situation
where θ is the ‘worst approximable’ irrational, the golden

mean, φ =
√
5+1
2 . Our result about golden-mean lattice

is the following:

(i) If α > π2
√
5a

or α ≤ − π2
√
5a

, the spectrum has in-

finitely many gaps.

(ii) If − 2π
a tan

(
3−
√
5

4 π
)
≤ α ≤ π2

√
5a

there are no gaps

in the spectrum.

(iii) If − π2
√
5a

< α < − 2π
a tan

(
3−
√
5

4 π
)

, there is a

nonzero and finite number of gaps in the spectrum.

(iv) Moreover, put Aj :=
2π(φ2j−φ−2j)√

5
tan

(
π
2φ
−2j),

then there are exactly N gaps in the spectrum if
−AN+1 ≤ α < −AN .

Note that the window in which Bethe–Sommerfeld prop-
erty occurs in this example (statement (iii)), is rather
narrow, roughly 4.298 . −αa . 4.414.

The proof of these claims is rather involved and we
limit ourselves with mentioning its key elements referring
to [15] for the full exposition. The central notion is that of
the Diophantine approximation of third type from below
(from above, respectively). The former is a number p

q
with p, q ∈ Z such that

0 < q(qθ − p) < q′(q′θ − p′) (7)

holds for all p′

q′ ≥ θ with p′

q′ 6=
p
q , p′, q′ ∈ Z and

0 < q′ ≤ q; the approximation from above has (7) re-
placed by 0 < q(p − qθ) < q′(p′ − q′θ). We note that
υ(θ) is the infimum of those q(qθ − p) for which p

q is a
best approximation from below to θ. These approxima-
tions are also closely related to convergents obtained from
truncated continued-fraction representation of θ. Specif-
ically, every best approximation of the third kind from
below to a θ ∈ R is a convergent of θ, and on the other
hand, every best approximation from above is either dθe
or a convergent of θ, where d·e is the ceiling function.

The described Diophantine approximation in combi-
nation with the gap condition allows us to estimate the
number of gaps for a given ratio θ = a/b and coupling
parameter α. This has to be done for each sign of α
separately. If α > 0, condition (5) yields that

• if α < π2 · min
{
υ(θ)
b , υ(θ

−1)
a

}
, the spectrum has

at most finitely many gaps. If the opposite (sharp)
inequality holds true, the number of gaps is infinite;

• if α ≤ γ+ for γ+ given by

γ+ := min
η=θ,θ−1

inf
m∈N

{
2πm

√
η

ab
tan

(π
2

(mη − bmηc)
)}

,

(8)
the spectrum has no gaps. If α > γ+, there are
gaps in the spectrum;

• in particular, if γ+ < α < π2 · min
{
υ(θ)
b , υ(θ

−1)
a

}
,

there is a nonzero and finite number of gaps in the
spectrum.
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The golden mean φ in our example has continued-fraction
representation φ = [1; 1, 1, . . . ], therefore, its conver-

gents are ratios Fn+1

Fn
of the Fibonnaci numbers Fn =

φn−(−φ)−n

√
5

, and we have µ(φ) = υ(φ) = 1√
5

in view of

the Hurwitz theorem [22]. Hence we get

γ+ =
π2

√
5a

and π2 ·min

{
υ(φ)

b
,
υ(φ−1)

a

}
=

π2

√
5a

,

which implies for all positive α either infinite number of
spectral gaps or none at all. On the other hand, for α < 0
the gap condition implies that

• if |α| < π2 ·min
{
υ(θ)
a , υ(θ

−1)
b

}
, the number of gaps

in the positive spectrum is at most finite. By con-
trast, for |α| greater than the right-hand side of the
above inequality, there are infinitely many spectral
gaps, while

• if |α| ≤ γ− for γ− given by the relation analogous to
(8) in which mη−bmηc is replaced by dmηe−mη,
the spectrum has no gaps. If |α| > γ−, there are
gaps in the spectrum;

• in particular, if γ− < |α| < π2 ·min
{
υ(θ)
a , υ(θ

−1)
b

}
,

there is a nonzero and finite number of gaps in the
spectrum.

The last one of these results together with the easily ver-
ifiable formula

γ− =
2π

a
tan

(3−
√

5)π

4

proves the claim (iii) above, demonstrating thus the ex-
istence of graphs with the Bethe–Sommerfeld property.
To prove (iv), the first step consists in showing that the
number of gaps in the golden-mean lattice graph is equal
to the number of solutions m ∈ N of

2πm

a
tan

(π
2

(dmφe −mφ)
)
< |α| .

If −AN+1 ≤ α < −AN , one can check that the inequality
is satisfied only for m = Fn with n = 2, 4, 6, . . . , 2N ; this
implies the existence of exactly N gaps.

Since a finite nonzero number of gaps occurred in the
above example only for attractive vertex couplings, it is
natural to ask whether the attractivity of the coupling is
always a necessary condition for the Bethe–Sommerfeld
property. It appears that it is not the case, a more thor-
ough analysis of the gap condition [15] shows that, for

instance, the edge ratio

θ =
2t3 − 2t2 − 1 +

√
5

2(t4 − t3 + t2 − t+ 1)
with t ∈ N, t ≥ 3 ,

which has the continued-fraction representation
[0; t, t, 1, 1, 1, 1, . . .], yields the lattice graph spec-
trum with the said property for a certain α > 0 and for
a certain α < 0 as well. This observation can be stated
more generally [15] and allows to explicitly construct
ratios to achieve the Bethe–Sommerfeld property.

In conclusion, we have proved and demonstrated
on concrete examples that there are periodic quantum
graphs the spectrum of which contains a nonzero and fi-
nite number of open gaps. We have also described how
this property depends on the type of the vertex coupling;
in particular, we showed that a quantum graph cannot be
of the Bethe–Sommerfeld type if its couplings are scale
invariant or associated to scale-invariant ones.
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