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This text is a part of an unfinished project which deals with the generalized point interac-

tion (GPI) in one dimension. We employ two natural parametrizations, which are known

but have not attracted much attention, to express the resolvent of the GPI Hamiltonian

as well as its spectral and scattering properties. It is also shown that the GPI yields one

of the simplest models in which a non-trivial Berry phase is exhibited. Furthermore, the

generalized Kronig-Penney model corresponding to the GPI is discussed. We show that

there are three different types of the high-energy behaviour for the corresponding band

spectrum.

1 Introduction

Many projects have a complicated history and some never make it to a paper; most of
us will find examples on our desks. The present text was conceived in the fall of 1993
as a part of a larger study. For various reasons the final result never materialized
and the draft could be easily put into the bin. If we do not do that it is because it
contains some results on generalized point interactions in one dimension which may
be of an independent interest. We reproduce the text as it was written six years ago,
updating the references and adding in places an occasional “remark 99” to reflect
the current state of affairs.

* * *

The intuitively attractive idea of describing interaction of quantum particles with
sharply localized objects by δ-shaped potentials was introduced in the early days
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of quantum mechanics [11, 15]. However, it was only in the beginning of the sixties
when Berezin and Faddeev [7] suggested how such formal Schrödinger operators can
be constructed as mathematically well defined objects, namely as self-adjoint exten-
sions of a symmetric operator which coincides with the free Hamiltonian outside the
support of the interaction.

Two decades later point interactions became an object of a systematic and ex-
tensive study which was summarized in the monograph [2]. At the same time,
numerous generalizations has appeared with contact-type interactions on configura-
tion spaces of a non-trivial geometric structure, for relativistic Hamiltonians, with
applications to the perturbation theory of embedded eigenvalues, i.e., decay and
resonance models etc. – a list of references can be found, e.g., in [4, 10].

Remark 99 -1 We complete the list of references with several new items – see [21]–
[29] – without striving for completeness. The most exhaustive bibliography to the date
can be found in the forthcoming monograph by Albeverio and Kurasov [22].

Somehow unnoticed remained in this developments remarkable properties of
one-dimensional point interactions. Recall that – as long as one stays within the
standard quantum mechanical setting – the self-adjoint extension construction works
for dimensions d ≤ 3 , because otherwise a restriction of the Laplacian to functions
which vanish in the vicinity of a fixed point yields an e.s.a. operator. There is a
substantial difference, however, between d = 2, 3 on one side and one-dimensional
systems on the other coming from the fact that a one-point restriction of the one-
dimensional Laplacian leads to deficiency indices (2, 2) , and therefore to a four-
parameter family of self-adjoint extensions.

The generalized point interaction (GPI) was introduced by Šeba [19]. Until
recently the only particular case of it different from the standard point (or δ )
interaction which was discussed was the so-called δ′-interaction [2], and even this
did not attract the attention of physicists because of the lack of a reasonable physical
model. Recall that in distinction to δ , the δ′-interaction cannot be approximated
by a family of Schrödinger operators with squeezed potentials; in this sense the name
is misleading because δ′ is not an elementary dipole.

Instead, there are other approximations. The first of them was found by Šeba [20]
who demonstrated that δ′ is a limit of a suitable sequence of rank-one perturbations
to the free Hamiltonian. Alternatively, one can use scaled Schrödinger operators but
with velocity-dependent potentials. On a formal level, this was suggested for a two-
parameter family of extensions in [19]. Recently, another approximation of this type
(using non-selfadjoint Schrödinger operators) for a four-parameter class of GPI’s
including the δ′-interaction has been suggested in [8], and a similar procedure has
been proposed for another three-parameter class ”almost disjoint” with the former
one [9]. Still another possibility – physically a very exciting one – is based on the
observation that the scattering properties of δ′ can be reproduced in a fixed energy
interval by a suitable many-loop graph; in this sense δ′-interactions appears to a
paradigm for geometric scatterers [5].
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Remark 99 -2 Another geometric scatterer with similar properties is a sphere with
two leads – see [28] and [26] – although the scattering in this case is more com-
plicated. The above claim about the impossibility of approximation by a family of
Schrödinger operators with squeezed potentials is not quite correct – it was shown
recently [CS] that one can do that with potentials scaled in a nonlinear way. A
rigorous nature of this approximation, however, remains to be clarified.

Moreover, it is known that the δ′ modification of the Kronig-Penney model
exhibits gaps whose widths are growing at large energies - cf. [2, Sec.III.3]. If a ho-
mogeneous electric field is added, this leads to rather interesting spectral properties
[6] which are quite unlike those of the conventional Wannier-Stark ladder [17]. In
particular, such Hamiltonians appear to have empty absolutely continuous part of
the spectrum, and the rest is likely to depend substantially on the slope of the linear
potential: if the latter has a rational value in suitable units, the spectrum is pure
point and nowhere dense, while in an irrational case it covers the whole real line. The
proof of Ref.[6] cannot be adapted for the δ Wannier-Stark ladders whose spectral
properties remain still an open problem. This gives a strong motivation for study
the analogous problem for the general GPI including the the cases “intermediary”
between the δ and δ′ .

Remark 99 -3 A part of the original plan was to extend the result about the absence
of absolutely continuous spectrum to other δ′-type GPI’s. The question is still there,
but in the course of time other aspects of the δ′ Wannier-Stark problem appeared
to be more appealing. In particular, the above claim about the essential spectrum
(formulated as a conjecture in [5, 6]) has been proved, and moreover, the spectrum
has been shown to be pure point for a “large” set of irrational slopes [23].

Another motivation comes from the search for simple models exhibiting a non-
trivial geometric phase. Recently its existence has been demonstrated for a quantum
particle on an interval with a family of boundary conditions coupling the endpoints
[14]. Since the occurrence of eigenvalue crossings is essential for the effect, it cannot
be achieved with a standard Schrödinger operator on line having a potential which
is limit-point at both ±∞ , because the corresponding spectrum is simple. Neither
can any of the standard point interactions be used, since they have at most one
eigenvalue. Unlike the δ and δ′ , the one-center GPI has in general two eigenvalues
which do cross at finite values of the parameters, and therefore it might yield the
simplest example of a system with a nontrivial geometric phase. We shall show that
this is indeed the case.

Remark 99 -4 We intended also to look into the behaviour of the continuous spec-
trum when the GPI parameters change. This appeared to be less urgent after the
paper [SA] was published where analogous question was discussed in a more general
context. Notice, however, that the Berry phase of the example given in Section 3 is
independent of the parameter loop size exhibiting thus the “homeopathic” behaviour
investigated in the framework of another model in [AB].
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It is not our intention to write an exhaustive study which would constitute an-
other chapter of [2]; we want to concentrate primarily on the two above mentioned
physically interesting problems. However, since several authors have addressed al-
ready the question, each of them using his own notation, a general introduction and
mutual comparison is needed.

Let us review briefly the contents of the paper. In the next section we first
introduce two natural parametrizations of the GPI and compare them to those
existing in the literature. Then we derive an explicit expression for the resolvent
kernel and use it to discuss spectral properties of the one-center GPI Hamiltonian,
in particular, its eigenvalues and eigenfunctions. We also find the corresponding
scattering matrix and show how it behaves at low and high energies.

In Section 3 we present the mentioned example of a geometric phase arising
when the coupling-constant vector makes a loop in the parameter space.

In Section 4 we study equidistant arrays of GPI’s. We show that the spectrum
of the generalized Kronig-Penney model has always infinitely many gaps, however,
their behaviour depends substantially on the parameters of the GPI. In addition
to the δ and δ′-type situations, where the gap-to-band width ratio is decreasing
and growing, respectively, we specify a class of the GPI’s for which this ratio is
asymptotically constant with respect to the band number.

2 The one-center generalized point interaction

2.1 Boundary conditions

Without loss of generality, we may assume that the mass is m = 1/2 and the
interaction is supported by the point x = 0 . The standard construction starts from
the restriction of the free Hamiltonian H0 := −d2/dx2 with D(H0) := H2,2(R) to
the subspace D := { f ∈ D(H0) : f(0) = f ′(0) = 0 } , which is a symmetric operator
with the deficiency indices (2, 2) .

The most straightforward way to get the corresponding family of self-adjoint
extensions is to use the von Neumann theory as Šeba did in his pioneering paper
[19], see also [9]. If the operators under consideration are ordinary differential ones,
however, it is more suitable to use boundary conditions; the drawback is that they
usually become singular for some values of the parameters. It is easy to write a
general four-parameter family of boundary conditions. Various choices have been
used in [8, 9, 12, 16, 19]; below we shall present their comparison.

Here we propose two other sets of boundary conditions which seem us to be
natural for the problem under consideration. The first of them is the following

f ′(0+)− f ′(0−) =
α

2
(f(0+)+f(0−)) +

γ

2
(f ′(0+)+f ′(0−)) ,

(2.1)

f(0+)− f(0−) = − γ̄

2
(f(0+)+f(0−)) +

β

2
(f ′(0+)+f ′(0−))
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with α, β ∈ R and γ ∈ C . For brevity, denote A :=
(

α γ
−γ̄ β

)

. This form of

the boundary conditions reduces easily to the standard cases: for β = γ = 0 we
get the δ-interaction with the “coupling constant” α , while α = γ = 0 yields
the δ′-interaction of strength β . The family (2.1) describes almost all self-adjoint
extensions of H0|\ D , with the exception of the four-point set in the parameter space
referring to the situations where the Dirichlet or Neumann conditions are imposed
from both sides of the point x = 0 (see also Remark 2.4a below). The other family
of boundary condition we shall use is

f ′(0+) = af(0+) + cf(0−) , −f ′(0−) = c̄f(0+) + bf(0−) (2.2)

with a, b ∈ R and c ∈ C ; its advantage is that it allows to describe in a simple
way the subset of the parameter space where the conditions decouple and the two
halflines become independent.

Proposition 2.1 Any of the above boundary conditions define a self-adjoint exten-
sion to H0|\ D . The conditions (2.1) decouple separating the motion of the left and
the right halflines iff c = 0 , which is further equivalent to

detA = 4 and Im γ = 0 . (2.3)

The correspondence between the boundary conditions is given by the relations

(

a c
c̄ b

)

=
1

4β

(

4 + detA+ 4Re γ −4 + detA− 4iIm γ
−4 + detA+ 4iIm γ 4 + detA− 4Re γ

)

, (2.4)

(

α γ
−γ̄ β

)

=
4

a+ b− 2Re c

(

ab− |c|2 1
2
(a− b)− iIm c

−1
2
(a− b)− iIm c 1

)

, (2.5)

where detA = αβ + |γ|2 = 4 a+b+2Re c
a+b−2Re c

, provided the denominators are non-zero.

Remarks 2.2 (a) The conditions (2.2) are in fact a particular case (for E = 0 ) of
those used in [10]. More exactly, they are related by the natural isomorphism

U : Uf =
(

f+
f−

)

between L2(R) and L2(R+) ⊕ L2(R+) , where f±(x) :=

f(±x) |\ R+ ; the opposite sign of the derivative in the second condition is due
to the change of the orientation of the negative halfline.

(b) This shows, at the same time, that the GPI on line is unitarily equivalent to
the non-trivial (i.e., s-wave) part of a “two-channel” point interaction in R

3 ;
in the decoupled case we have in each channel just the point interaction of the
strength α/4π and β/4π , respectively.

(c) It is clear from (2.4) that the conditions (2.2) make no sense if β = 0 . In this
case one can use a reformulation, namely

f(0+) = Af ′(0+)− Cf ′(0−) , f ′(0−) = C̄f(0+)− Bf(0−) (2.6)
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with A,B ∈ R and C ∈ C , where

(

A −C
C̄ −B

)

=
1

ab+|c|2
(

b −c
c̄ −a

)

,

(

a c
c̄ b

)

=
1

AB−|C|2
(

B −C
−C̄ A

)

provided again the denominators are non-zero. The conditions (2.6) decouple
clearly iff C = 0 .

Let us further comment on relations between (2.1), (2.2) and the other known
parametrizations of self-adjoint extensions of the operator H0|\ D :

(i) an “almost general” set of boundary conditions

f(0+) = ωãf(0−) + ωb̃f ′(0−) , f ′(0+) = ωc̃f(0−) + ωd̃f ′(0−) , (2.7)

where |ω| = 1 and ã, b̃, c̃, d̃ are real numbers such that ãd̃−b̃c̃ = 1 , have been
used in [9, 12, 16, 19], sometimes without the factor ω which can be removed
by a unitary transformation – cf. Remark 2.4a below. They are related to
(2.1), (2.2) by

a =
d̃

b̃
, b =

ã

b̃
, c = −ω

b̃
(2.8)

and

α =
4c̃

ã+ d̃+ 2Reω
, β =

4b̃

ã+ d̃+ 2Reω
, γ = 2

d̃− ã+ 2iImω

ã + d̃+ 2Reω
. (2.9)

This covers the δ and δ′-interactions (for ω = 1, ã = d̃, b̃ = 0 with α := c̃ ,
and ω = 1, ã = d̃, c̃ = 0 with β := b̃ , respectively), while the decoupled case
is not included,

(ii) in [8], the boundary conditions (2.2) have been used, however, the parameters
have been written in the form

a = ρc+ βc b = ρc+ αc , c = −ρc e
−iθc (2.10)

with αc, βc ∈ R , ρc ≥ 0 and θc ∈ [0, 2π) . The relation to (2.1) is

α = 4
αcβc + ρc(αc + βc)

αc + βc + 4ρc cos2
(

1
2
θc
) , β =

4

αc + βc + 4ρc cos2
(

1
2
θc
)

(2.11)

γ = 2
βc − αc − 2iρc sin θc

αc + βc + 4ρc cos2
(

1
2
θc
) .

The corresponding boundary conditions again do not cover the case β = 0
including the δ-interaction. On the other hand, δ′ corresponds to αc = βc =
θc = 0 and the coupling constant β := ρ−1

c , and the decoupled case to ρc = 0 ,
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(iii) the following two-parameter family was studied in [19]

f(0+) = −γsf(0−)− δsf
′(0−) , f ′(0+) = −βsf(0−)− αsf

′(0−) , (2.12)

where the parameters involved are real numbers such that αs + γs = −2 and
αsγs − βsδs = 1 . The parameters of (2.1) and (2.2) are then given by

αs =
(γs + 1)2

δs
, β = −δs , γ = γs + 1 (2.13)

and

a = − γs + 2

δs
, b =

γs
δs

, c =
1

δs
. (2.14)

This yields the δ′-interaction with γs = −1 and β := −δs , while neither δ
nor the decoupled case make sense here,

(iv) the three-parameter family

f(0+) = e−zf(0−) , rf(0+) + f ′(0−) = ez̄(rf(0−) + f ′(0−)) (2.15)

has been used in [9]; it is disjoint with the previous one with the exception of
the free case. We have

α =
4r(e2Re z− 1)

|1 + ez|2 , β = 0 , γ = 2
ez̄− 1

ez̄+ 1
. (2.16)

Hence this parametrization is suitable for the extensions with β = 0 which are
covered neither by (2.2) nor by (2.12). We can, of course, use the modification
of Remark 2.2c for which the parameters are

A =
1

r(e2Re z− 1)
, B =

e2Re z

r(e2Re z− 1)
, C =

ez̄

r(e2Re z− 1)
. (2.17)

It should be stressed that the Chernoff-Hughes parametrization does not cover
the “pure” δ-interaction either, with the exception of the free case (α = 0 ).
The particular choice r = 0 and z ∈ R has been considered in [16]; it corre-
sponds to the “off-diagonal” interaction with α = β = 0 and γ ∈ R .

Remark 2.3 There has been some confusion concerning the GPI’s in recent phys-
ical literature. Apart from a nonsensical proposal critized by the authors of [2] in
[3], there is a note [13] aiming at correction of the same mistake. The author has
arrived at the just mentioned “off-diagonal” conditions together with the standard
δ-interaction ones, however, he proposed also a generalization to “higher derivatives
of the δ function”, failing to realize that such conditions cannot yield a self-adjoint
operator for the (second-order) Schrödinger equation.
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Remarks 2.4 (a) The relations (2.15) show that the boundary conditions (2.1)
and (2.7) have a“hidden degeneracy”, namely the zero values of all coefficients
describe together with the free Hamiltonian H0 also the one-parameter family
of extensions which are unitarily equivalent to H0 by the operators Uω :
(Uωf)(x) = (Θ(−x) + ωΘ(x))f(x) ; they could be dubbed “quasifree”.

(b) Since the time-reversal operator is represented by complex conjugation on
L2(R) , the extensions invariant w.r.t. the time reversal are those with real
coefficients in the corresponding boundary conditions, i.e., γ, c, C ∈ R in
(2.1), (2.2) and (2.6), respectively; this includes both δ and δ′-interactions,
as well as the decoupled case. For the other boundary conditions mentioned,
this requires ω = ±1 for (2.7) where, of course, the sign can be absorbed into
the coefficients; θc = 0, π for the parametrization (2.10) and z ∈ R for (2.15);
the extensions given by (2.12) are time-reversal invariant.

(c) Notice also that the operator Uω of (a) produces in general one-parameter
families of unitarily equivalent (and therefore isospectral) extensions corre-
sponding to fixed a, b and |c| ; among each family, just the operators with
c = ±|c| are time-reversal invariant.

(d) In the same way, one can ask about extensions invariant w.r.t. the space reflec-
tion. Since the boundary values satisfy (Rf)(0±) = f(0∓) and (Rf)′(0±) =
−f ′(0∓) for R : (Rf)(x) = f(−x) , we see that this requires γ = 0 ; hence
every space-reflection invariant extension is at the same time invariant w.r.t.
the time reversal. In the other parametrizations mentioned, the condition is
equivalent to a = b and c ∈ R for (2.2), or αc = βc, θc = 0, π for (2.10), and
to ã = d̃, ω = ±1 for (2.7). No extension given by (2.12) is space-reflection
invariant, while the class specified by (2.15) has a trivial – quasifree in the
sense of (a) – intersection with the space-reflection invariant extensions. In
particular, the δ and δ′-interactions are space reflection invariant; for the
decoupled case this is true iff a = b .

2.2 The resolvent

For the sake of brevity, we shall use the symbol A for a general point in the param-
eter space referring to the appropriate choice of the coefficients described above; the
corresponding self-adjoint extension of H0|\ D will be denoted HA .

To analyse spectral properties of these operators, we need to know the corre-
sponding resolvent. It is, of course, an integral operator, so we have to find the
corresponding kernel. We denote conventionally k :=

√
z with the cut along the

positive real axis.

Proposition 2.5 The resolvent kernel of HA for A :=
(

α γ
−γ̄ β

)

is

GA(x, x
′; k) =

1

k

(

Θ(x)Θ(x′)eikx> sin kx< − Θ(−x)Θ(−x′)eikx< sin kx>

)
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+
β

2
FA(k)

−1 {Θ(x)Θ(x′) (4 + detA− 4Re γ − 4ikβ)eik(x+x′)

+Θ(−x)Θ(−x′) (4 + detA+ 4Re γ − 4ikβ)e−ik(x+x′) (2.18)

+Θ(x)Θ(−x′) (4− detA+ 4Im γ)eik(x−x′)

+Θ(−x)Θ(x′) (4− detA− 4Im γ)e−ik(x−x′)} ,

where FA(k) := (αβ+ |γ|2− 2ikβ)(2 − ikβ) − |γ|2 , the symbols x>, x< mean the
maximum and minimum of x, x′ , respectively, and Θ is the Heaviside function. In
the parametrization (2.2), it expresses as

GA(x, x
′; k) =

1

k

(

Θ(x)Θ(x′)eikx> sin kx< − Θ(−x)Θ(−x′)eikx< sin kx>

)

+DA(k)
−1 {Θ(x)Θ(x′) (b−ik)eik(x+x′) + Θ(−x)Θ(−x′) (a−ik)e−ik(x+x′) (2.19)

−Θ(x)Θ(−x′) c eik(x−x′) − Θ(−x)Θ(x′) c̄ e−ik(x−x′)}

with DA := (a−ik)(b−ik)− |c|2 .

Proof: Using the Krein-formula argument from Proposition 2.1 of [10] together with
the unitary equivalence of Remark 2.2a, we obtain the latter formula; the former
then follows from (2.4).

In the particular case of δ-interaction, A =
(

α 0
0 0

)

, one can use fact that
β
2
FA(k)

−1 → 1
4
(α− 2ik)−1 as β, γ → 0 together with the identity

1

α− 2ik
=

i

2k
− 2kα

2k + iα

(

i

2k

)2

to check that the resolvent kernel reduces to the standard expression

Gα(x, x
′; k) =

i

2k
eik|x−x′| − 2kα

2k + iα

(

i

2k

)2

eik|x|eik|x
′|

(cf. [2], Chap.I.3). On the other hand, using the identities

− i

2k
+

i+ kβ

k(2− ikβ)
= −

(

i

2π

)2
2βk2

2− ikβ
=

i

2k
− i

k(2− ikβ)
,

we check easily that for α = γ = 0 we arrive back at the standard δ′-expression

Gβ(x, x
′; k) =

i

2k
eik|x−x′| − 2βk2

2− ikβ
G̃(x)G̃(x′) ,

where G̃(x) := i
2k

eikxsgn x (cf. [2], Chap.I.4). A similar simplification can be
obtained in the decoupled case which is not surprising, of course, because the formula
(2.19) was constructed starting from the decoupled resolvent [10, Proposition 2.1].
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2.3 Spectral properties

Since the GPI under consideration represents a finite-rank perturbation to (the
resolvent of) H0 , the essential spectrum is preserved, σess(HA) = R+ . Moreover,
using the explicit form of the resolvent given above, it is easy to check that there is
no singularly continuous spectrum (cf. [18, Thm.XIII.9]), so σac(HA) = R

+ and the
only non-trivial effect the perturbation may produce are eigenvalues of HA without
accumulation points (at most two in (−∞, 0) ).

We know from [10] that if a potential is added to the GPI, the resolvent kernel
may have a singularity at a general point of the complex k-plane. In the present
case, however, the singularities are confined to the imaginary axis only, hence it is
useful to the quantity

κ := −ik .

The spectral condition DA(k) = 0 is then solved by k± corresponding to

κ± = − 1

2
(a+ b) ∓ 1

2

√

(a− b)2 + 4|c|2 , (2.20)

or

κ± =
1

4β

{

−(4 + detA) ±
√

(4− detA)2 + 16|γ|2
}

. (2.21)

These singularities produce an eigenvalue provided the corresponding root κ is
positive, otherwise we have a zero-energy resonance (for κ = 0 ) or an antibound
state, i.e., a resonance hidden deeply on the second sheet of the complex energy
surface, for κ < 0 .

Proposition 2.6 The operator HA has at most two eigenvalues which are given by
the formula

ǫ± := −κ2
± = − 1

2
(a2+ b2+ 2|c|2) ±

√

1

4
(a2− b2)2 + (a+ b)2|c|2 (2.22)

provided the corresponding root κ± is positive, or

ǫ± = − 8(2 + |γ|2) + (detA)2

8β2
± 4 + detA

16β2

√

(4− detA)2 + 16|γ|2 . (2.23)

The corresponding eigenfunction are f± := fκ for κ = κ± , where

fκ(x) := µΘ(x) e−κx + νΘ(−x) eκx (2.24)

with the coefficients

µ± :=

√

2κ±(b+ κ±)

a+ b+ 2κ±
, ν± := − c̄

|c|

√

2κ±(a+ κ±)

a+ b+ 2κ±
. (2.25)
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Proof: The relations (2.22) and (2.23) are obtained by an elementary algebra. Since
fκ is the only square integrable solution to f ′′+κ2f = 0 , it is sufficient to substitute
it into the boundary conditions to get (2.25).

Let us further mention some particular cases:

(i) if ab < 0 , i.e., 4|Re γ| > |4 + detA| , there is always one bound state and one
antibound state,

(ii) if both the decoupled operators on the halflines refer to a repulsive interaction,
a, b > 0 , it is still possible to have a bound state, i.e., an eigenvalue of HA ;
this “binding by conspiracy” occurs iff a 6= b and the coupling is strong
enough, |c| > 1

2

∣

∣

a+b
a−b

∣

∣ ,

(iii) two different eigenvalues exist provided both a, b are negative, non-equal and
the coupling of the halflines is weak enough,

|c| < 1

2

∣

∣

∣

∣

a + b

a− b

∣

∣

∣

∣

. (2.26)

In the parametrization (2.1), these conditions acquire a rather non-transparent
form

(4 + detA)sgn β > Re γ ≥ 0 ,

β2(4 + detA)2 > 4|Re γ|2
(

(4− detA)2+ 16|Im γ|2
)

(iv) the eigenvalue crossing occurs iff a = b and c = 0 . This, in turn, is clear also
in the parametrization of (2.1): the condition detA = 4 and γ = 0 comprises
of the decoupling requirement plus Re γ = 0 , i.e., a = b ,

(v) the δ-interaction does not fit well into this scheme because of the lack of the
parametrization (2.2). Using the modification of Remark 2.2c, we can rewrite
the spectral condition as

(1− ikA)(1− ikB) + k2|C|2 = 0 .

For A = B = C = α−1 it has the only solution κ = −α/2 which yields a
bound state for α < 0 . One can also use the parametrization (2.1): putting
γ = 0 we get

κ± :=
−4− αβ ± |4− αβ|

4β
=







− α
2

− 2
β

(2.27)

for all non-zero β , and only the upper solution survives the limit β → 0 ,

(vi) the δ′-interaction, on the other hand, corresponds to a = b = −c = β−1 . The
resolvent has again a simple pole: the spectral condition DA(k) = 0 is solved
by κ = −2/β and κ = 0 , where the former solution yields a bound state
for β < 0 , while the latter corresponds to no pole because of the vanishing
residuum. We see also that only the lower solution in (2.27) is preserved in
the limit α = 0 .
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2.4 Scattering

Using the observation made at the beginning of the preceding subsection and the
Birman-Kuroda theorem [18, Thm.XI.9], one can check easily that the wave opera-
tors Ω±(H0, HA) exist and are asymptotically complete. It is also straightforward
to find that the on-shell scattering matrix is

S(k) =

(

t(k) r(k)
−r̄(k) t̄(k)

)

(2.28)

with

r(k) = − (a− ik)(b+ ik)− |c|2
(a− ik)(b− ik)− |c|2 = 2

− detA+ (γ − ikβ)(γ̄ − ikβ)

(2− ikβ)(detA− 2ikβ)− 2|γ|2 ,

t(k) =
2ikc

(a− ik)(b− ik)− |c|2 = − ikβ
4− detA+ 4iIm γ

(2− ikβ)(detA− 2ikβ)− 2|γ|2 ,

and to check that it is unitary because |r(k)|2+ |t(k)|2 = 1 . It follows from Proposi-
tion 2.1 that there is no transmission in the decoupled case, and we easily the stan-
dard expressions corresponding to the particular cases of the δ and δ′-interactions
[2, Chap. I.3,4].

The low- and high-energy behaviour of the GPI depends substantially on the
parameters. For small k we have

r(k) = −1 − ik

2α
(4 + detA+ 4Re γ) +O(k2) ,

(2.29)

t(k) = − ik

2α
(4− detA+ 4iIm γ) +O(k2)

provided α 6= 0 ; hence we have a full decoupling in the limit k → 0 . On the other
hand, if α = 0 we find

r(k) =
4Re γ − 2ikβ

4 + |γ|2 − 2ikβ
, t(k) =

4− |γ|2 + 4iIm γ

4 + |γ|2 − 2ikβ
,

so the GPI is transparent in the low-energy limit iff Re γ = 0 (which includes
the case of δ′-interaction) while in general both the reflection and transmission
amplitudes are non-zero.

At high energies the value of β is important; if it is non-zero then the S-matrix
elements behave as

r(k) = −1 +
i

2βk
(4 + detA+ 4Re γ) +O(k−2) ,

(2.30)

t(k) =
i

2βk
(4− detA+ 4iIm γ) +O(k−2) .

12



Hence if the GPI contains a non-zero “component” of the δ′-interaction, it exhibits
a full high-energy decoupling. On the other hand, the limit β → 0 yields

r(k) = − 2α + 4ikRe γ

2α− ik(4 + |γ|2) , t(k) = −ik
4− |γ|2 + 4iIm γ

2α− ik(4 + |γ|2) , (2.31)

so the GPI is transparent in the high-energy limit iff Re γ = 0 (which includes the
case of δ-interaction) while in general again neither the reflection nor transmission
are suppressed. Notice the remarkable duality between the scattering properties at
low and high energies when the roles of α and β are switched.

3 The geometric phase

Let us investigate the phase resulting from a parameter change. For simplicity,
consider the case a = b with c = |c| eiξ ; this corresponds to

A =
2

a− |c| cos ξ

(

a2− |c|2 −i|c| sin ξ
−i|c| sin ξ 1

)

.

Then we have κ± = −a ∓ |c| and the coefficients (2.25) are µ± =
√

−a∓ |c| and

ν± = − e−iξ
√

−a∓ |c| so

dfκ±(x) =
{ 1

2(|c| ± a)
fκ±(x) ± x

[

√

−a∓ |c|Θ(x) e(a±|c|)x

+ e−iξ
√

−a∓ |c|Θ(−x) e−(a±|c|)x
]}

d|c|+ i e−iξ
√

−a∓ |c|Θ(−x) e−(a±|c|)x dξ .

As a simple example, consider |c| fixed and let ξ run through [0, 2π) , then we
obtain a non-trivial Berry phase,

∫ 2π

0

i(fκ± , dfκ±) =

∫ 2π

0

dξ (−a∓ |c|)
∫ 0

−∞

e−2(a±|c|)xdx =
1

2

∫ 2π

0

dξ = π ,

independently of |c| .

4 Arrays of generalized point interactions

Consider an equidistant array of GPI’s supported by the lattice L := {nℓ}∞n=−∞

with a spacing ℓ > 0 . Let the boundary conditions at the n-th lattice point be
given by An ; for simplicity, we shall restrict our attention to the case when none
of them is separating, i.e., detAn 6= 4 or Im γn 6= 0 holds for each n .

We denote the corresponding operator by H({An},L) ; it acts as the free Hamil-
tonian outside L , i.e., (H({An},L)f)(x) = −f ′′(x) for nℓ < x < (n+1)ℓ and at
the points x = nℓ the functions of D(H({An},L)) satisfy the boundary conditions
of the form (2.1) with the coefficients given by An .

In particular, if all the An are the same, An = A , we write H({An},L) =:
H(A, ℓ) . This corresponds to a periodic system and one expects it to have a band-
type spectrum.
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Theorem 4.1 The spectrum of H(A, ℓ) with a non-separating A 6= 0 is purely ab-
solutely continuous and of the form σ(H(A, ℓ)) =

⋃∞
m=0 ∆m(A, ℓ) , where ∆m(A, ℓ)

are mutually disjoint closed intervals, the lowest of which may be empty.

(a) If β 6= 0 , the spectral bands ∆m(A, ℓ) are centered roughly at the values

ǫm := π2m2 + (−1)m
2(4 + detA)

βℓ
+ O(m−1) (4.1)

and their widths are asymptotically constant at high energies,

|∆m(A, ℓ)| = 2
√

(4− detA)2+ 16|Im γ|2
|β|ℓ + O(m−1) . (4.2)

It follows that the width |Γm(A, ℓ)| of the m-th gap is growing linearly up to
higher-order terms as m → ∞ .

(b) If β = 0 and Re γ 6= 0 , the widths of both bands and gaps are growing,

|∆m(A, ℓ)| = 4πm

ℓ
arcsin

(

√

(4− |γ|2)2+ 16|Im γ|2
4 + |γ|2

)

(

1 +O(m−1)
)

,

(4.3)

|Γm(A, ℓ)| = 4πm

ℓ
arccos

(

√

(4− |γ|2)2+ 16|Im γ|2
4 + |γ|2

)

(

1 +O(m−1)
)

.

(4.4)

(c) If β = 0 and Re γ = 0 , the m-th gap has π2m2 as one endpoint and its width
is asymptotically constant,

|Γm(A, ℓ)| = 8|α|
(4 + |γ|2)ℓ + O(m−1) . (4.5)

Consequently, the band widths |∆m(A, ℓ)| grow linearly up to higher-order
terms as m → ∞ .

Proof: Following the standard Bloch decomposition we have to find eigenvalues of
the GPI Hamiltonian on L2(−ℓ/2, ℓ/2) with the boundary conditions

f

(

− ℓ

2

)

= eiθf

(

ℓ

2

)

, f ′

(

− ℓ

2

)

= eiθf ′

(

ℓ

2

)

. (4.6)

In combination with (2.1), it requires the determinant
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α
2
+ ik

(

1 + γ
2

)

α
2
− ik

(

1 + γ
2

)

α
2
− ik

(

1− γ
2

)

α
2
+ ik

(

1− γ
2

)

1− γ̄
2
+ ikβ 1− γ̄

2
− ikβ −1 − γ̄

2
+ ikβ −1− γ̄

2
− ikβ

e−ikℓ/2 eikℓ/2 −ei(θ+kℓ/2) −ei(θ−kℓ/2)

e−ikℓ/2 −eikℓ/2 −ei(θ+kℓ/2) ei(θ−kℓ/2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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to be zero, which yields the band condition

Re
(

(4− detA+ iIm γ) eiθ
)

= (4 + detA) cos kℓ +
2

k
(α− βk2) sin kℓ . (4.7)

For β 6= 0 the rhs is asymptotically dominated by growing oscillations coming
from the last term; finding its zeros and expanding around them we prove the
assertion (a). If β = 0 , we can rewrite the band condition as

Re
(

t(∞) eiθ
)

= cos kℓ +
2α

k(4 + |γ|2) sin kℓ , (4.8)

where t(∞) := limk→∞ t(k) is given by (2.31). Suppose first that Re γ 6= 0 (and
γ 6= ±2 because the GPI is non-separating by assumption), then 0 < |t(∞)| < 1 .
The rhs is asymptotically dominated by the first term; this yields (b). Finally, for
Re γ = 0 we can adapt easily the standard Kronig-Penney argument [2, Chap.III.2]
with α replaced by α(4 + |γ|2)−1.

With the stated motivation in mind, we have concentrated on the infinite number
of gaps and their asymptotic behaviour, using a not fully standard band numbering.
We shall not discuss other properties such as the bottom of the spectrum, band
profiles etc.; they can be obtained in the same way as in the particular cases of the
δ and δ′-interactions – cf. [2, Chaps. III.2,3].

The main conclusion of the theorem is that the high-energy behaviour of the
generalized Kronig-Penney model reflects that of the one-center GPI. If there is a
non-vanishing “component” of the δ′-interaction in HA leading to the high-energy
decoupling, the corresponding H(A, ℓ) has the gap-to-band width ratio growing
approximately linearly with the band number.

On the other hand, the case (c) exhibits the δ-type behaviour with widening
bands and asymptotically constant gaps. A new type of behaviour intermediate
between the δ and δ′ extremes corresponds to the case (b): here both gaps and
bands are widening and the ratio of their width is asymptotically constant.
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