
A Some Notions from Functional
Analysis

In this appendix we put together some notions from Functional Analysis. For proofs we
refer to standard textbooks on Functional Analysis, e.g.,

• J. B. Conway: A Course in Functional Analysis. Springer 1990.

• M. Reed, B. Simon: Functional Analysis. Academic Press 1980.

• Rudin: Functional Analysis, 1973.

• D. Werner: Funktionalanalysis. 4., überarb. Aufl., Springer 2002.

A.1 A short reminder on topological and metric spaces

A topological space is a set S in which a collection τ of subsets (called open sets) has
been specified, with the following properties:

(O1) S and ∅ are open,

(O2) the intersection of any two open sets is open,

(O3) the union of every collection of open sets is open.

Such a collection τ is called a topology on S.

For a subset A of a topological space S, we recall the following notions. A is closed
if and only if its complement in S is open. The closure A of A is the intersection of
all closed sets that contain A. The interior A◦ of A is the union of all open sets that
are subsets of A. A neighborhood of A is any open set that contains A. The set A is
compact if every open covering of A has a finite subcovering. If σ is the collection of all
intersections A ∩ U , with U ∈ τ , then σ is a topology on A; we call this the topology
that A inherits from S.

A sequence (xn) in a topological space S converges to a point x ∈ S (or limn→∞ xn = x)
if every neighborhood of x contains all but finitely many of the points xn. Observe that
x in general is not unique. A subset D a topological space S is called dense in S if every
x ∈ S is limit of elements in D.

A function f : S → S̃ between topological spaces (S, τ) and (S̃, τ̃) is called continuous
if for each open subset B ⊆ S̃ the set f−1(B) = {x ∈ S : f(x) ∈ B} is open in S. In
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particular, if f : S → S̃ is continuous and x ∈ S, convergence of (xn) to x in S implies
convergence of (f(xn)) to f(x) in S̃. The converse statement is not true in general.

(S, τ) is a Hausdorff space, and τ is a Hausdorff topology, if distinct points of S have
disjoint neighborhoods.

Now we come to the definition of a metric space.

A metric space is a set M , endowed with a real-valued function d on M × M which
satisfies

(D1) d(x, y) ∈ [0,∞) for all x, y ∈ M ,

(D2) d(x, y) = 0 if and only if x = y,

(D3) d(x, y) = d(y, x) for all x, y ∈ M ,

(D4) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ M .

In any metric space X, the open ball with center at x and radius r is the set

B(x, r) = {y ∈ X : d(x, y) < r}.

By declaring a subset of a metric space to be open if and only if it is a (possibly empty)
union of open balls, a topology is obtained. If not stated otherwise the topology on a
metric space will always be the one just described.

It is not hard to show that a sequence (xn) in a metric space (M,d) converges to x ∈ M
if and only if d(xn, x) → 0 as n →∞. A sequence in (xn) in (M,d) is called a Cauchy
sequence if for each ε > 0 there is N ∈ N such that n, m ≥ N implies d(xn, xm) < ε. It
is easy to see that any convergent sequence in a metric space is a Cauchy sequence. The
converse is not always true. Therefore we define: A metric space in which all Cauchy
sequences converge is called complete.

Let (M,d), (M̃, d̃) be metric spaces. Then one can prove that a function f from M to
M̃ is continuous if and only if for all x ∈ M , convergence of (xn) to x with respect to d
implies convergence of (f(xn)) to f(x) with respect to d̃.

A.2 Normed spaces and continuous linear operators

A complex vector space X is said to be a normed space if to every x ∈ X there is
associated a real number ‖x‖, called the norm of x, in such a way that

(N1) ‖x‖ ∈ [0,∞) for all x ∈ X,

(N2) ‖x‖ = 0 ⇔ x = 0,

(N3) ‖λx‖ = |λ|‖x‖ for all x ∈ X and λ ∈ C, and

(N4) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

The word “norm” is also used to denote the function that maps x to ‖x‖.
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Every normed space may be regarded as a metric space, in which the distance d(x, y)
between x and y is ‖x− y‖. A Banach space is a normed space which is complete with
respect to the metric defined by its norm.

A mapping T : X → Y between two normed spaces X and Y is called a linear operator
if

T (λx + µy) = λT (x) + µT (y)

for all x, y ∈ X and all λ, µ ∈ C. It is called bounded if there exists C ≥ 0 such that

‖Tx‖Y ≤ C‖x‖X for all x ∈ X.

Continuous operators on normed spaces are especially nice operators as the next theorem
shows:

A.2.1 Theorem Let T be a linear operator between two normed spaces. The following
are equivalent:

(i) T is continuous. (ii) T is continuous at 0. (iii) T is bounded.

For normed spaces X, Y we consider

L(X, Y ) := {T : X → Y : T is linear and bounded}. (A.1)

With respect to the algebraic operations

(S + T )x = Sx + Tx, (λT )x = λ(Tx),

L(X, Y ) is a vector space. Endowed with the operator norm

‖T‖X→Y = sup
‖x‖X≤1

‖Tx‖Y , (A.2)

L(X, Y ) becomes a normed space. If Y is complete, then L(X, Y ) is complete also.

The following theorem is about extending continuous linear operators from a dense
subspace to the whole space.

A.2.2 Theorem If D is a dense linear subspace of the normed space X, if Y is a Banach
space and T ∈ L(D,Y ), then there exists a unique T̃ ∈ L(X, Y ) with T̃|D = T . In
addition, ‖T̃‖ = ‖T‖.

Finally we quote the three main classical theorems on bounded linear operators:

A.2.3 Uniform Boundedness Principle Let X be a Banach space, Y be normed space,
I some index set, and Ti ∈ L(X, Y ) for i ∈ I. If

sup
i∈I

‖Tix‖ < ∞ for all x ∈ X,
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then
sup
i∈I

‖Ti‖ < ∞.

A.2.4 Open Mapping Theorem Let X, Y be Banach spaces and T ∈ L(X, Y ) be
surjective. Then T is open, i.e., T maps open sets to open sets.

A.2.5 Closed Graph Theorem Suppose X, Y are Banach spaces and T : X → Y is
a linear operator satisfying the following: whenever (xk, Txk) → (x, y) in X × Y , then
y = Tx. Then T is bounded.

A.3 Continuous linear functionals, the dual space, and the
adjoint operator

The space X ′ = L(X, C) is called dual space of X. Its elements are called continuous
linear functionals. The dual space of a normed space, endowed with the norm

‖x′‖X′ = sup
‖x‖X≤1

|x′(x)| (A.3)

is always a Banach space.

The following important theorem guarantees that the dual space of X is rich enough.

A.3.1 Hahn-Banach Theorem Let X be a normed space and U a linear subspace
of X. For each continuous linear functional u′ ∈ U ′ there exists a continuous linear
functional x′ ∈ X ′ such that

x′|U = u′, ‖x′‖ = ‖u′‖.

In other words: Each continuous linear functional can be extended with same norm.

Let X, Y be normed spaces and T ∈ L(X, Y ). The adjoint operator T ′ : Y ′ → X ′ is
defined by

(T ′y′)x = y′(Tx). (A.4)

The mapping T 7→ T ′ is linear and isometric, i.e., ‖T‖ = ‖T ′‖. In general it is not
surjective. Moreover, (ST )′ = T ′S′ for T ∈ L(X, Y ), S ∈ L(Y, Z).

A.4 Hilbert Spaces

Let X be a complex vector space. A mapping 〈·, ·〉 : X×X → K is called scalar product,
if for all x, y, z ∈ X and all α ∈ C

(S1) 〈x, x〉 ≥ 0,
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(S2) 〈x, x〉 = 0 if and only if x = 0,

(S3) 〈x, y〉 = 〈y, x〉,
(S4) 〈αx, y〉 = α〈x, y〉,
(S5) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.

It is straightforward to show that (S3) and (S4) imply

(S4’) 〈x, αy〉 = α〈x, y〉
and (S3) and (S5) imply

(S5’) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉.

A.4.1 Exercise Let X be a complex vector space with scalar product and let x, y ∈ X.
If 〈x, z〉 = 〈y, z〉 for all z ∈ X, then x = y.

A.4.2 Cauchy-Schwarz inequality If X is a complex vector space with scalar product,
then

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉

for all x, y ∈ X. Equality holds if and only if x, y are linearly independent.

For x ∈ X, we set
‖x‖ := 〈x, x〉1/2. (A.5)

Then x 7→ ‖x‖ defines a norm on X and the Cauchy-Schwarz inquality reads

|〈x, y〉| ≤ ‖x‖‖y‖.

The norm (A.5) induces a metric on X. If X is complete with respect to this metric,
then X is called a Hilbert space.

A.4.3 Exercise Let X be a complex vector space with scalar product and x, y ∈ X.
Then for all x, y ∈ X

(a) Polarization: 〈x, y〉 = 1
4(‖x + y‖2 − ‖x− y‖2 + i‖x + iy‖2 − i‖x− iy‖2),

(b) Parallelogram identity: ‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖x‖2.

If X is a normed space with norm ‖·‖ satisfying the parallelogram identity, then one
can show that ‖ · ‖ is induced by a scalar product.

A.4.4 Exercise Let X be a complex vector space with scalar product. Then for all x ∈ X

‖x‖ = sup
‖y‖≤1

|〈x, y〉|.

We come to the notion of orthogonality. Let X be a complex vector space with scalar
product. To vectors x, y ∈ X are called orthogonal, in symbols x ⊥ y, if 〈x, y〉 = 0. The
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set
A⊥ = {x ∈ X : x ⊥ a ∀a ∈ A}

is called orthogonal complement of A ⊆ X.

With these definitions, one can prove the following simple facts.

(a) Pythagoras’ theorem: x ⊥ y ⇒ ‖x‖2 + ‖y‖2 = ‖x + y‖2.

(b) A⊥ is a closed subspace of X, {0}⊥ = H, and H⊥ = {0}.
(c) A ⊆ B implies B⊥ ⊆ A⊥.

(d) A ⊆ (A⊥)⊥, A⊥ = A
⊥, A⊥ = (spanA)⊥.

Given a point x in a Hilbert space X and a closed subspace Y of X, we can always find
a unique point in Y such that the distance of x to that point is minimal. In fact, the
following two theorems holds.

A.4.5 Best Approximation Theorem Let X be a Hilbert space and K some non-
void, closed, and convex subset of X. Then for each x ∈ X there exists a unique best
approximation in K, i.e. there exists a unique y ∈ K with

‖x− y‖ = inf{‖x− k‖ : k ∈ K} =: d(x, K).

A.4.6 Projection Theorem Let X be a Hilbert space and Y a closed subspace of X.
Then each x ∈ X can be written in a unique way as x = y + z with y ∈ Y and z ∈ Y ⊥.
y is called the orthogonal projection of x on Y and is denoted by PY x.

A.4.7 Corollary Let X be a Hilbert space and Y a closed subspace of X. Then (Y ⊥)⊥ =
Y .

If X is a vector space with scalar product, then for each x ∈ X the expression

φx(y) = 〈y, x〉

defined a continuous linear functional with norm ‖φx‖ = ‖x‖, because |φx(y)| = |〈y, x〉| ≤
‖y‖‖x‖ for all y ∈ H and φx(x) = ‖x‖2. The next theorem shows that this procedure
gives us all continuous linear functionals on a Hilbert space.

A.4.8 Riesz representation theorem Let X be a Hilbert space. Then for each conti-
nuous linear functional φ on X there exists a unique x = xφ ∈ X with φ(y) = 〈y, xφ〉
for all y ∈ X. The mapping φ 7→ xφ is conjugate linear, isometric (i.e. ‖φ‖ = ‖xφ‖) and
bijectiv.

Let X, Y be Hilbert spaces and T ∈ B(X, Y ). The Hilbert space adjoint T ∗ : Y → X
of T is defined by

〈x, T ∗y〉X = 〈Tx, y〉Y ∀x ∈ X ∀y ∈ Y.

One can show that T ∗ is well defined, linear, and bounded. Moreover ‖T ∗‖ = ‖T‖.
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Let X, Y be Hilbert spaces and U : X → Y a linear operator. Then U is called isometrie,
if ‖Ux‖Y = ‖x‖X for all x ∈ X. It is clear that this implies continuity of U . Moreover, it
is not hard to see that U is an isometry if and only if 〈Ux, Uy〉 = 〈x, y〉 for all x, y ∈ X.
Finally, a surjective isometry is also called a unitary operator. In this case, U∗ = U−1.
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B Measure Theory and Lebesgue
Integration

In this appendix we collect some results from measure theory and integration, which we
will need in this lecture. For proofs we refer to textbooks and lecture notes, e.g.,

• N. Henze: Skriptum zur Vorlesung Stochastik II.

• J. Elstrodt: Maß- und Integrationstheorie. 3., erweiterte Aufl., Springer 2002.

• F. Jones: Lebesgue integration on Euclidean space, Jones and Bartlett Publishers
1993.

As motivation we recall the idea of the Riemann integral. It is named after B. Riemann
(1826-1866). We consider a bounded function f : [a, b] → [0,∞). For each partition Z
of [a, b] into finitely many subintervals Ik we write down the lower and upper sums

UR(f, Z) =
∑

k

λ(Ik) inf
x∈Ik

f(x), OR(f, Z) =
∑

k

λ(Ik) sup
x∈Ik

f(x).

Here λ(Ik) denotes the length of the interval Ik. If supZ UR(f, Z) = infZ OR(f, Z),
then f is called Riemann integrable and the Riemann integral

∫ b
a f(x)dx is defined by

supZ UR(f, Z).

The construction of the Riemann integral is simple and concrete. It has (at least) one
crucial drawback: the criteria for interchanging limits and integration are not satisfactory
at all. Therefore we use the more general Lebesgue integral, named after its inventor H.
Lebesgue (1875-1941).

The main idea of the Lebesgue integral is to divide the range of the function f in
subintervals. Let n ∈ N and Jn,k = [ k

n , k+1
n ) for k = 0, 1, 2, . . . . Now we study the

preimage of the intervals Jn,k under f , i.e., the sets En,k = f−1(Jn,k) = {x ∈ [a, b] :
k
n ≤ f(x) < k+1

n }. If we can measure the „length“ of Ek,n, then we can write down the
Lebesgue lower and upper sums

UL(f, n) =
∞∑

k=0

λ(En,k)
k

n
, OL(f, n) =

∞∑
k=0

λ(En,k)
k + 1

n
.

Since in general the sets Ek,n can be complicated, it is not clear a priori how one can
measure the length of such sets. Therefore we study the notion of measurability of sets
first.
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B.1 Measurability

As motivation for the notion of measurability we consider the set R of real numbers.
Our goal is to assign a „length“ to as many subsets of R as possible. If A is such a
„measuable“ subset of R, then we denote the length of A by λ(A). We will ask the
following properties from our notion of length:

1. For an interval [a, b] with b ≥ a it is easy to define its length: we simply set
λ([a, b]) = b− a. (In particular, a single point {a} has length 0.)

2. If A,B are two disjoint subsets of R with known length then λ(A ∪B) should be
equal to λ(A)+λ(B). Or more general: If A1, A2, . . . are countably many pairwise
disjoint subsets of R with known length, then λ(

⋃∞
j=1 Aj) =

∑∞
j=1 λ(Aj). If this

is the case we say the length is σ-additive. (In particular, each countable subset
of R has length 0.)

3. If A ⊆ B, then λ(B \A) = λ(B)− λ(A).

4. The length of a set does not change if we translate the set (translation invariance).

One can show that it is impossible to assign a length to each subset of R such that 1. to
4. are satisfied. Hence we will restrict ourselves to a subset of the power set of R, named
the Borel σ-algebra after E. Borel (1871-1956).

Measurable Sets

First we introduce the notion of a σ-algebra over some non-void set Ω.

B.1.1 Definition Let Ω be a non-void set and A a subset of the power set P(Ω) of Ω
with

(1) ∅ ∈ A,
(2) A ∈ A ⇒ Ω \A ∈ A,
(3) A1, A2, · · · ∈ A ⇒

⋃
j∈N Aj ∈ A.

Then A is calledσ-algebra over Ω. Each set in A is called A-measurable.

The simplest examples of σ-algebras over a set Ω are {∅,Ω} and P(Ω). Hence for each
set Ω there is at least one σ-algebra. Moreover the intersection of σ-algebras over Ω is
also a σ-algebra over Ω (proof?). As important example we consider the Borel σ-algebra
B over R. This σ-algebra is defined as the intersection of all σ-algebras, that contain all
finite real intervals. Sometimes B is also called the σ-algebra of Borel sets.

B.1.2 Exercise Let Ω be a non-void set and A ⊆ P(Ω) a σ-Algebra. Then:
(a) Ω ∈ A, (b) A,B ∈ A ⇒ A \B ∈ A, (c) A1, A2, · · · ∈ A ⇒

⋂
j∈N Aj ∈ A.
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B.1.3 Exercise Let Ω1, Ω2 be non-void sets and f : Ω1 → Ω2 a function.
(a) If A2 is a σ-algebra over Ω2, then f−1(A2) = {f−1(A) : A ∈ A2} is a σ-algebra over
Ω1.
(b) If A1 is σ-algebra over Ω1, then {B ∈ P(Ω2) : f−1(B) ∈ A1} is a σ-algebra over Ω2.

Now we procede toward the definition of measure.

B.1.4 Definition Let A be σ-algebra over a set Ω and µ : A → [0,∞] with
(1) µ(∅) = 0,
(2) µ is σ-additive, d.h. A1, A2, · · · ∈ A are disjoint ⇒ µ(

⋃
j∈N Aj) =

∑
j∈N µ(Aj).

Then µ is called measure on A and (Ω,A, µ) is called measure space.

B.1.5 Example (a) Let Ω be a set and µ : P(Ω) → [0,∞] be defined by

µ(A) =

{
|A|, falls A finite,
∞, else.

Then (Ω,P(Ω), µ) is a measure space. µ is called counting measure on Ω.
(b) Let A be a σ-algebra over a set Ω and x ∈ Ω. Let δx : A → {0, 1} be given by

δx(A) =

{
1, x ∈ A,

0, x /∈ A.

Then (Ω,A, δx) is a measure space. δx is called Dirac measure.
(c) Let B be the Borel σ-algebra over R. Then there is a unique measure β : B → [0,∞]
with the additional properties

(3) β((a, b)) = β([a, b]) = b− a, provided a < b,
(4) β is translation invariant, i.e., for all x ∈ R and all A ∈ B we have β(x + A) =

β(A).
β is called Lebesgue-Borel measure on R. Hence the Lebesgue-Borel measure satisfies
all four properties of a notion of length mentioned in the introduction. For the (rather
long) proof of existence and uniqueness of β we refer to the literature.

Let (Ω,A, µ) be a measure space. A set N ∈ A is called µ-nullset, if µ(N) = 0. If there
is a µ-nullset N , such that some statement holds for all ω ∈ Ω \N then we say that this
statement hold for µ-almost all ω ∈ Ω, or simply almost everywhere (a.e.).

B.1.6 Exercise (a) The union of countably many µ-nullsets is a µ-nullset.
(b) If A ⊆ R is countable, then A is a β-nullset.

One might guess that each subset of a µ-nullset also has measure zero. But in general
such a subset even is not an element σ-algebra associated to the measure. An example
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for this phenomenon is the Borel σ-algebra B. Therefore we introduce the notion of a
complete measure space: A measure space (Ω,A, µ) is called complete, if each subset
of µ-nullset is an element of A. (This definition has nothing to do with the notion of a
complete metric space!)

B.1.7 Theorem and Definition Let (Ω,A, µ) be a measure space and N = {N ⊆ A :
A ∈ A, µ(A) = 0} the set of all subsets of µ-nullsets. We define Ã := {A ∪ N : A ∈
A, N ∈ N} and µ̃ : A → [0,∞] where µ̃(A ∪N) = µ(A) für A ∈ A, N ∈ N . Then Ã is
a σ-algebra over Ω, µ̃ is well defined and (Ω, Ã, µ̃) is a complete measure space, called
completion of (Ω,A, µ).

The completion of the Borel’ σ-algebra over R is called the σ-algebra of Lebesgue sets
over R and is denoted by mit L. One can show that L is a proper subset of P(R). The
associated measure β̃ is called Lebesgue measure and is denoted by λ.

Measureable functions

Now we come to the important notion of measurable functions.

B.1.8 Definition Let Ω be a set and let A be a σ-algebra over Ω.
(a) A function f : Ω → [−∞,∞] is called A-measurable, if f−1([a, b)) ∈ A for −∞ ≤
a < b ≤ ∞.
(b) A function f : Ω → C is called A-measurable, if Re f and Im f are A-measurable.

Instead of B-measurable (L-measurable) we say Borel measurable (Lebesgue measura-
ble). If f : R → [−∞,∞] or. f : R → C is Borel measurable, then f is Lebesgue
measurable, since B is a subset of L. If f : R → C is continuous, then f is Borel
measurable and hence Lebesgue measurable.

B.1.9 Proposition Let Ω be a set and A a σ-algebra over Ω.
(a) If f, g : Ω → [−∞,∞] are A-measurable and if α ∈ C, then αf , f + g, f · g, |f |,
max{f, g}, min{f, g} are A-measurable.
(b) If fn : Ω → [−∞,∞] is A-measurable, then supn∈N fn, infn∈N fn, lim supn→∞ fn,
lim infn→∞ fn are A-measurable. In particular, limn→∞ fn is A-measurable, if the limit
exists pointwise in [−∞,∞].

B.1.10 Definition Let A be a σ-algebra over the setΩ.
(a) The function

χA(x) =

{
1, x ∈ A

0, x ∈ Ω \A

is called indicator function of the set A ⊆ Ω.
(b) A function of the form φ =

∑n
k=1 αkχAk

with αk ∈ C and Ak ∈ A is called A-step
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function.

B.1.11 Proposition Let A be a σ-algebra over a set Ω. Then:
(a) A-step funcions are A-measurable.
(b) If f : Ω → [−∞,∞] or f : Ω → C is A-measurable, dann there is a sequence (φn) of
A-step functions with f(x) = limn→∞ φn(x) for all x ∈ Ω.
(c) If f : Ω → [0,∞] is A-measurable, then (φn) from (b) can be chosen such that
0 ≤ φ1 ≤ φ2 ≤ . . . .
(d) If f : Ω → C is A-measurable and bounded, then (φn) from (b) can be chosen such
that φn → f uniformly in Ω.

Idea of the proof: (c) Construction of φn: Decompose [0, n) in intervals Ik,n of length
1
n , set Ek,n := {x ∈ Ω : k

n ≤ f(x) < k+1
n } and φn =

∑n2−1
k=0

k
nχEk,n

.
(b) If f : Ω → [−∞,∞], apply (c) to f+ = max{f, 0} and f− = max{−f, 0}.
If f : Ω → C, consider Re f and Im f .

B.2 The µ-integral

This section contains the main definitions and theorems concerning the µ-integral. Proofs
can be found in the literature.

Integrability

Let (Ω,A, µ) be a measure space. First we define the µ-integral for non-negative step
functions: If f =

∑n
k=1 αkχEk

is A-step function with αk ≥ 0 for all k, then we define∫
Ω

fdµ :=
n∑

k=1

αkµ(Ek) ∈ [0,∞].

This definition is independent of the choice of the particular form of f .

Next we consider a A-measurable function f : Ω → [0,∞]. By Proposition B.1.11 there
is a sequence (φn) of step functions with 0 ≤ φ1 ≤ φ2 ≤ . . . and f = limn→∞ φn. The
sequence (

∫
Ω φndµ)n∈N of non-negative real numbers is increasing. Hence it has a limit

in [0,∞]. We define ∫
Ω

fdµ := lim
n→∞

∫
Ω

φndµ.

This definition is independent of the choice of the sequence (φn). For the proof of this
non-trivial statement we refer to the literature.

Now we define the notion of µ-integrability.
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B.2.1 Definition Let (Ω,A, µ) be a measure space.
(a) A function f : Ω → [0,∞] is called µ-integrable, if f is A-measurable and

∫
Ω fdµ <

∞.
(b) A function f : Ω → R is called µ-integrable, if f+ = max{f, 0} and f− = max{−f, 0}
are µ-integrable. In this case∫

Ω
fdµ :=

∫
Ω

f+dµ−
∫

Ω
f−dµ.

(c) A function f : Ω → C is called µ-integrable, if Re f and Im f are µ-integrable. In
this case ∫

Ω
fdµ :=

∫
Ω

Re fdµ + i

∫
Ω

Im fdµ.

We say that a function f defined of R is Lebesgue integrable, if f is integrable with
respect to the Lebesgue measure λ.

B.2.2 Proposition Let (Ω,A, µ) be a measure space and f : Ω → C a function. Then
the following are equivalent:
(1) f is µ-integrable.
(2) f is A-measurable and |f | is µ-integrable.
(3) f is A-measurable and there is a µ-integrable g : Ω → [0,∞) with |f | ≤ g.

B.2.3 Proposition Let (Ω,A, µ) be a measure space.
(a) If f, g : Ω → C are µ-integrable and α ∈ C, then αf , f + g are µ-integrable and∫

Ω
αfdµ = α

∫
Ω

fdµ,

∫
Ω

f + gdµ =
∫

Ω
fdµ +

∫
Ω

gdµ.

(b) If f, g; Ω → R are µ-integrable and f ≤ g, then∫
Ω

fdµ ≤
∫

Ω
gdµ.

(c) If f : Ω → C is µ-integrable, then∣∣∣∣∫
Ω

fdµ

∣∣∣∣ ≤ ∫
Ω
|f |dµ.

(d) Let f : Ω → [0,∞] be A-measurable. Then
∫
Ω fdµ = 0 if and only if f(x) = 0 for

µ-almost every x ∈ Ω.

B.2.4 The space L1(Ω, µ): Let (Ω,A, µ) be a measure space and

L1(Ω, µ) := {f | f : Ω → C µ-integrable}.

Then L1(Ω, µ) is a complex vector space (by Proposition B.2.3 (a)). The space

N (Ω, µ) := {f | f : Ω → C is A-measurable and f(x) = 0 for µ-almost all x ∈ Ω}
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is a subspace of L1(Ω, µ). Hence

f ∼ g :⇔ f − g ∈ N (Ω, µ) ⇔ f(x) = g(x) for µ-almost all x ∈ Ω

defines a equivalence relation on L1(Ω, µ). For f, g ∈ L1(Ω, µ) with f ∼ g we have by
B.2.3 (d) that ∫

Ω
|f |dµ =

∫
Ω
|g|dµ.

Hence the following definition makes sense:

L1(Ω, µ) := L1(Ω, µ)/N (Ω, µ), ‖[f ]‖1 := ‖[f ]‖L1(Ω,µ) :=
∫

Ω
|f |dµ.

Instead of [f ] we write f , i.e., we identify functions if they are equal µ-almost everywhere.

The mapping f 7→ ‖f‖1 is a Norm on L1(Ω, µ), i.e. for all f, g ∈ L1(Ω, µ) and α ∈ C
(N1) ‖f‖1 ≥ 0.
(N2) ‖f‖1 = 0 if and only if f = 0 (µ-almost everywhere).
(N3) ‖αf‖1 = |α|‖f‖1.
(N4) ‖f + g‖1 ≤ ‖f‖1 + ‖g‖1 (triangle inequality).

B.2.5 Substitution Let b ∈ R and a ∈ R \ {0}. If f : R → C is Lebesgue integrable,
then f(· − b) and f(a·) are Lebesgue integrable and∫

R
f(· − b)dλ =

∫
R

fdλ and
∫

R
f(a·)dλ =

1
|a|

∫
R

fdλ.

B.2.6 Riemann integral and Lebesgue integral (a) If f : [a, b] → C is Riemann
integrable, then f̃ : R → C, defined by f̃ = f on [a, b] and f̃ = 0 otherwise, is Lebesgue
integrable and ∫ b

a
f(x)dx =

∫
R

f̃dλ.

(This statement does not hold for improper Riemann integrals!) If f ∈ L1(R), we also
write

∫
R f(x)dx for

∫
R fdλ.

(b) Let f the Dirichlet function

f(x) =

{
1, x ∈ Q,

0, x ∈ R \Q.

Then f : R → R is Lebesgue integrable and
∫

R fdλ = 0. Indeed, f is a L-step function
and λ(Q) = 0, since Q is countable. But f |[0,1] is not Riemann integrable.
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Theorems on convergence

This section contains important theorems on interchanging limits and integration.

B.2.7 Fatou’s Lemma Let (Ω,A, µ) be a measure space. If fn : Ω → [0,∞] are
A-measurable, then ∫

Ω
lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫
Ω

fndµ.

B.2.8 Theorem on monotone convergence (Beppo Levi) Let (Ω,A, µ) be a measure
space. If fn : Ω → [0,∞] are A-measurable with 0 ≤ f1 ≤ f2 ≤ . . . and f(x) :=
limn→∞ f(x) ∈ [0,∞], then f is A-measurable and

lim
n→∞

∫
Ω

fndµ =
∫

Ω
fdµ.

B.2.9 Theorem on dominated convergence (Lebesgue) Let (Ω,A, µ) be a measure
space. If fn, f : Ω → C are A-measurable and f(x) = limn→∞ fn(x) for µ-almost all
x ∈ M . If the functions fn are µ-integrable and if there is a µ-integrable g : Ω → [0,∞)
with |fn(x)| ≤ g(x) for all n ∈ N and µ-almost all x ∈ Ω, then f is µ-integrable and

lim
n→∞

∫
Ω

fndµ =
∫

Ω
fdµ.

As an application we consider measures with densities.

B.2.10 Measures with densities Let (Ω,A, µ) be a measure space and ρ : Ω → [0,∞]
a A-measurable function. Then

ν(A) =
∫

A
ρdµ =

∫
Ω

ρ · χA dµ, A ∈ A,

defines a measure on A. Here the σ-additivity follows from the Theorem on monotone
convergence B.2.8. Using the same theorem B.2.8 one can show that for a A-measurable
function f : Ω → C the following holds: If f · ρ is µ-integrable, then f is ν-integrable
and ∫

Ω
fdν =

∫
Ω

f · ρ dµ.

Product measure and Fubini’s Theorem

We want to define a measure on the product of two measure spaces with the property
that the measure of the product of two sets is the product of the measures of the sets.
First we define the notion of a σ-finite measure space.

B.2.11 Definition A measure space (Ω,A, µ) is called σ-finite, it there is a sequence
(Ek) ⊆ A with µ(Ek) < ∞ and

⋃∞
k=1 Ek = Ω.
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The measure space (R,L, λ) is σ-finite, since R =
⋃

k∈N[−k, k].

For the rest of this section, (Ω1,A1, µ1), (Ω2,A2, µ2) are always σ-finite measure spaces.

B.2.12 Theorem and Definition LetA1⊗A2 be the σ-algebra auf Ω1×Ω2 generated by
the sets A1×A2, A1 ∈ A1, A2 ∈ A2. Then there is a unique measure µ : A1⊗A2 → [0,∞]
with µ(A1 ×A2) = µ(A1)µ(A2). µ1⊗ µ2 := µ is called product measure of µ1 and µ2.

The completion of (R2,L⊗L, λ⊗λ) we denote by (R2,L2, λ2). Repeating this procedure,
we define (RN ,LN , λN ) in the obvious way. A function f : RN → C is called Lebesgue-
measurable or Lebesgue-integrable, if f is LN -measurable or λN -integrable, respectively.

Tonelli’s Theorem and Fubini’s Theorem deal with interchanging the order of integrati-
on.

B.2.13 Tonelli’s Theorem Let f : Ω1 × Ω2 → [0,∞] be µ1⊗ µ2-measurable. Then
the function x 7→ f(x, y) is µ1-measurable for almost all y ∈ Ω2. Moreover, y 7→∫
Ω1

f(x, y)dµ1(x) is µ2-measurable and∫
Ω1×Ω2

f d(µ1⊗ µ2) =
∫

Ω2

(∫
Ω1

f(x, y)dµ1(x)
)

dµ2(y).

B.2.14 Fubini’s Theorem Let f : Ω1×Ω2 → C be µ1⊗µ2-integrable. Then the function
x 7→ f(x, y) is µ1-integrable for almost all y ∈ Ω2. Moreover, y 7→

∫
Ω1

f(x, y)dµ1(x) is
µ2-integrable and∫

Ω1×Ω2

f d(µ1⊗ µ2) =
∫

Ω2

(∫
Ω1

f(x, y)dµ1(x)
)

dµ2(y).
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C The Lebesgue spaces Lp(Ω, µ)

This appendix contains the basic facts about the Lebesgue spaces Lp(Ω, µ) where 1 ≤
p ≤ ∞. For more details and the proofs see the references given at the beginning of
Appendix A and B, in particular

• F. Jones: Lebesgue integration on Euclidean space, Jones and Bartlett Publishers
1993.

• D. Werner: Funktionalanalysis. 4., überarb. Aufl., Springer 2002.

Let (Ω,A, µ) be a σ-finite measure space. For p ∈ [1,∞), Lp(Ω, µ) will denote the set of
all complex-valued µ-measurable functions on Ω such that |f |p is µ-integrable. L∞(Ω, µ)
will be the set of all complex-valued µ-measurable functions f on Ω such that for some
B > 0, the set {x : |f(x)| > B} has µ-measure zero. Two functions in Lp(Ω, µ) will be
considered equal if they are equal µ-almost everywhere. The notation Lp(RN ) will be
reserved for the space Lp(RN , λN ). The space Lp(Z) equipped with counting measure
will be denoted by `p(Z) or simply `p.

For p ∈ [1,∞), we define

‖f‖Lp(Ω,µ) =
(∫

Ω
|f(x)|pdµ(x)

) 1
p

, f ∈ Lp(Ω, µ), (C.1)

and for p = ∞ by

‖f‖L∞(Ω,µ) = inf
{
B > 0 : µ

(
{x : |f(x)| > B}

)
= 0

}
, f ∈ L∞(Ω, µ). (C.2)

It is well-known that Minkowski’s (or the triangle) inequality

‖f + g‖Lp(Ω,µ) ≤ ‖f‖Lp(Ω,µ) + ‖g‖Lp(Ω,µ) (C.3)

holds for all f, g in Lp(Ω, µ), whenever 1 ≤ p ≤ ∞. Since in addition ‖f‖Lp(Ω,µ) = 0
implies that f = 0 (µ-a.e.), the Lp spaces are normed linear spaces for 1 ≤ p ≤ ∞.
(Recall that we agreed to identify functions that are equal µ-almost everywhere.) For all
1 ≤ p ≤ ∞, it can be shown that every Cauchy sequence in Lp(Ω, µ) is convergent, and
hence the spaces Lp(Ω, µ) are complete. Therefore, the Lp spaces are Banach spaces.
For any p ∈ (1,∞) we will use the notation p′ = p

p−1 . Moreover 1′ = ∞ and ∞′ = 1
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so that p′′ = p for all p ∈ [1,∞]. Hölder’s inequality says that for all p ∈ [1,∞] and all
measurable functions f, g on (Ω, µ) we have

‖fg‖L1(Ω,µ) ≤ ‖f‖Lp(Ω,µ)‖g‖Lp′ (Ω,µ). (C.4)

It is a well-known fact that the dual (Lp)∗ of Lp is isometric to Lp′ for all 1 ≤ p < ∞.
Furthermore, the Lp norm of a function can be obtained via duality when 1 ≤ p ≤ ∞
as follows:

‖f‖Lp(Ωµ) = sup
‖g‖p′=1

∣∣∣∣∫
Ω

fgdµ

∣∣∣∣. (C.5)

Continuous functions with compact support in RN are dense in Lp(RN ), if 1 ≤ p < ∞.
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