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We found an explicit construction of a representation of the positive quantum 
group GL+

q (N, R) and its modular double GL+
qq̃(N, R) by positive essentially self-

adjoint operators. Generalizing Lusztig’s parametrization, we found a Gauss type 
decomposition for the totally positive quantum group GL+

q (N, R) parametrized by 
the standard decomposition of the longest element w0 ∈ W = SN−1. Under this 
parametrization, we found explicitly the relations between the standard quantum 
variables, the relations between the quantum cluster variables, and realizing them 
using non-compact generators of the q-tori uv = q2vu by positive essentially self-
adjoint operators. The modular double arises naturally from the transcendental 
relations, and an L2(GL+

qq̃(N, R)) space in the von Neumann setting can also be 
defined.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The goal of the present work is to give an explicit construction of a representation of the positive 
Hopf algebra of quantized function GL+

q (N, R) and its modular double GL+
qq̃(N, R) by positive essentially 

self-adjoint operators acting on a certain Hilbert space H. This is done by finding a quantum analogue of 
the Gauss–Lusztig decomposition for GLq(N). By an abuse of notation, throughout the paper we will call 
GL+

q (N, R) a “positive quantum group”.
The Gauss–Lusztig decomposition of the positive quantum group provides the foundation of the con-

struction of positive representations Pλ of split real quantum groups Uq(gR) [11,14,15], which are a certain
continuous analogue of the standard finite dimensional representations of the Drinfeld–Jimbo type quantum 
groups Uq(g). Such decomposition also gives the preliminaries required for the generalization of the har-
monic analysis of the quantum plane and its quantum double studied in [13] to higher rank. The L2 setting 
described in the last section motivates the use of multiplier Hopf algebra from the theory of C∗-algebra in 
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the context of Drinfeld–Jimbo type quantum group [16,17], which provides a new link between the quantized 
algebra of functions Gq(R) and its quantum enveloping algebra Uq(gR) in the functional analytic setting.

Moreover, the harmonic analysis in this sense for the positive quantum group SL+
q (2, R) is closely re-

lated to quantum Liouville theory, a certain non-compact quantum integrable system [3,25] of interest to 
mathematical physicists. Its generalization to higher rank will be a very interesting connection to the so-
called quantum Toda field theory [8,31]. Such connection should be some sort of a continuous version of the 
Kazhdan–Lusztig equivalence of categories [18,19], which is yet to be established mathematically. Finally 
the combinatorics of the quantum tori generators developed in this paper also provides new insights to 
the quantum mutations appearing in the theory of quantum cluster algebras as well as (higher) quantum 
Teichmüller theory [9,10].

1.1. Lusztig’s total positivity

Let G be a semi-simple group of simply-laced type, T its R-split maximal torus of rank r, and U± its 
maximal unipotent subgroup with dimU+ = m. The Gauss decomposition of the max cell of G is given by

G = U−TU+. (1.1)

In type Ar (N = r + 1), this amounts to the decomposition into lower triangular, diagonal and upper 
triangular matrices.

On the other hand, given a totally positive matrix G>0, where all entries of the matrix and its minors 
(i.e. determinants of submatrices) are strictly positive, it can be decomposed as

G>0 = U−
>0T>0U

+
>0, (1.2)

where all the entries and the minors of U± and T are strictly positive if they are not identically zero. Lusztig 
in [21] discovered a remarkable parametrization of G>0 using a decomposition of the maximal Weyl group 
element w0 ∈ W . Let w0 = si1 . . . sim be a reduced expression for w0, then there is an isomorphism between 
Rm

>0 −→ U+
>0 given by

(a1, a2, . . . , am) �→ xi1(a1)xi2(a2) . . . xim(am), (1.3)

where xik(ak) = IN + akEik,ik+1 and Ei,j is the matrix with 1 at the entry (i, j) and 0 otherwise. A similar
result also holds for U−

>0. With this isomorphism Lusztig went on to generalize the notion of total positivity 
to Lie groups of arbitrary type.

Furthermore, in [1], Berenstein et al. studied this decomposition for type Ar, in the context now known 
as cluster algebra. They showed various relations and parametrizations using the cluster variables, in this 
case corresponding to the different minors. Corresponding to the standard decomposition of w0 is the 
parametrization using initial minors, which are the determinants of those square sub-matrices that start 
from either the top row or the leftmost column.

Using this parametrization, we found in [11] a family of positive principal series representations of the 
modular double Uqq̃(sl(N, R)), where the notion of the modular double was first introduced by Faddeev [6,7]
for N = 2. These positive representations generalize the self-dual representations of Uqq̃(sl(2, R)) studied 
for example in [3,13,25], and later further generalized to all other simply-laced and non-simply-laced types 
in [14,15].



5652 I.C.H. Ip / Journal of Pure and Applied Algebra 219 (2015) 5650–5672
1.2. Gauss decomposition

On the other hand, in order to study the positive quantum group GL+
q (2, R) in the C∗-algebraic and von 

Neumann setting, in [13,26] a quantum version of the Gauss decomposition for GLq(2) is studied, where 
roughly speaking any matrices are decomposed into product of the form(

z11 z12
z21 z22

)
=

(
u1 0
v1 1

)(
1 u2
0 v2

)
, (1.4)

where {ui, vi} with uivi = q2viui are mutually commuting Weyl pair that generates the algebra C[Tq] of 
q-tori.

Things become more interesting in the split real case, where we specialize the quantum parameter to 
|q| = 1, with b2 ∈ R \Q, 0 < b < 1 and define

q := eπib
2
, q̃ := eπib

−2
. (1.5)

Then there exists a canonical representation of the Weyl pair as positive essentially self-adjoint operators 
acting on L2(R)

u = e2πbx, v = e2πbp, (1.6)

and the above decomposition gives a realization of the positive quantum group GL+
q (2, R) where all entries 

and the quantum determinant are represented by positive essentially self-adjoint operators acting on L2(R2). 
Moreover, by replacing b −→ b−1 we obtain the representations for the modular double GL+

qq̃(2, R).
It is further shown in [13] that the Gauss decomposition of GL+

q (2, R) above is equivalent to the Drinfeld–
Woronowicz’s quantum double construction [24] over the quantum ax + b group, and its harmonic analysis 
is studied in detail. A new Haar functional is discovered, and an L2-space of “functions” over GL+

qq̃(2, R)
is defined using this Haar functional. With these set up, we proved that L2(GL+

qq̃(2, R)) decomposes into 
direct integral of the positive principal series representations Pλ,s:

L2(GL+
qq̃(2,R)) �

⊕∫
R

⊕∫
R+

Pλ,s ⊗ Pλ,−sdμ(λ)dλds (1.7)

as the left and right regular representations of the modular double Uqq̃(gl(2, R)), where the measure dμ(λ)
is given by the quantum dilogarithm function. This is a close quantum analogue of the Peter–Weyl theorem 
in the case of compact Lie group, which comes as a surprise since the result does not involve any kind of 
discrete series representation as in the classical SL(2, R) case.

1.3. Gauss–Lusztig decomposition

Combining the approaches above, our aim in this paper is to find the Gauss decomposition of the positive 
quantum group of higher rank, GL+

q (N, R), in terms of Lusztig’s unipotent parameters ai defined above. 
These parameters are no longer commuting positive real numbers, and the goal of this paper is to discover 
their quantum relations with each other, such that the decomposition recovers the quantum group GLq(N), 
and furthermore in the split real case the generators are represented by positive essentially self-adjoint 
operators.

Let us call two variables quasi-commuting if they commute up to a power of q2. In this paper we prove 
the following theorem:
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Theorem 1.1 (Gauss–Lusztig decomposition). The generators of the positive quantum group GL+
q (N, R) can 

be represented by N2 operators

{bm,n, Uk, am,n}

with 1 ≤ n ≤ m ≤ N − 1, 1 ≤ k ≤ N , where each variable is positive self-adjoint operator that commutes or 
q2-commutes with each other, so that

(1) The variables {Uk, am,n} generate the upper triangular quantum Borel subgroup T>0U
+
>0,

(2) The variables {bm,n, Uk} generate the lower triangular quantum Borel subgroup U−
>0T>0,

(3) The variables am,n commute with bm,n.

Furthermore, the Gauss–Lusztig decomposition for the other parts of the modular double GLq̃(N, R) can be 
obtained by replacing all variables {bm,n, Uk, am,n} by their tilde version

x �→ x̃ := x
1
b2 . (1.8)

As a corollary, we obtain the following results of GL+
q (N, R) after specialization to the split real case:

Theorem 1.2.

(1) There is an embedding of GL+
q (N, R) into the algebra of �N2

2 	 q-tori generated by {ui, vi} satisfying 
uivi = q2viui, which are realized by

ui = e2πbxi , vi = e2πbpi . (1.9)

(2) The quantum cluster variables xij, defined by the quantized initial minors, can be represented as products 
of the variables {bm,n, Uk, am,n}, and hence they quasi-commute with each other.

From the main theorem, we can extend the positive quantum group GL+
qq̃(N, R) into the C∗-algebraic 

setting by giving an operator norm to each element which is represented by integrals of continuous complex 
powers of the generators, completely analogous to the N = 2 case. We can also give an L2 completion 
and define the Hilbert space L2(GL+

qq̃(N, R)). Then it is natural to conjecture its decomposition under the 
regular representation of the modular double Uqq̃(sl(N, R)) into the direct integral of positive principal series 
representations constructed in [11], in analogy to the decompositions of L2(GL+

qq̃(2, R)) given in (1.7).

1.4. Remarks

The Gauss decomposition for a general quantum group is definitely not new [5,30]. However the usual 
notion in the context of GLq(N) is just decomposing the quantum group into a product of lower and upper 
triangular matrices, and the quantum Plücker relations between the coordinates are studied. Though this 
approach is a natural consideration, the relations involved are quite ad hoc, and furthermore it has no way 
to be generalized to the positive setting, its representation being rather unclear. Therefore we name our 
decomposition the Gauss–Lusztig decomposition to distinguish it from the standard approach, where we 
decompose our quantum group into products of elementary matrices bearing a quantum variable, so that 
the positivity and their representations are manifest.

Finally we also remark that in [2,10], the notion of quantum cluster algebra is studied, where quasi-
commuting cluster variables are considered, and the q-commuting relations are compatible with the algebraic 
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framework. However its relation to the parametrization of GLq(N) is not very explicit, and its representa-
tion by the canonical q-tori {e2πbx, e2πbp} is not shown. In this paper, starting from the very definition of a 
quantum group, we found using new combinatorics method that these cluster variables, quasi-commuting 
in some complicated powers of q2, are actually decomposed into simpler variables {bm,n, Uk, am,n} that 
commute only up to a factor of q2, and explicit formula is given for the case GLq(N). The q-commutations 
we found explicitly are closely related to the Poisson structure of the cluster X -variety considered in [9]. We 
note that in this paper we only use a single choice of cluster variables given by the initial minors. A more 
thorough understanding of the theory of quantum cluster algebra in the context of quantum groups should 
be possible by also considering explicitly the quantum mutations to other clusters, corresponding to different 
parametrization of the maximal element w0 explained in Theorem 5.8 (see also Remark 5.9).

The paper is organized as follows. In Section 2 we describe in detail the Gauss decomposition for GLq(2)
studied in [13]. In Section 3 we describe the Lusztig parametrization of the totally positive matrix in 
GL+(N, R), and the description of the cluster variables defined in [1]. Then we introduce the definition of 
GLq(N) in Section 4, and using certain combinatorics methods, we find in Section 5 the quantum relations 
between the variables of the Gauss–Lusztig decomposition. In Section 6 we construct the representation of 
these quantum variables using N2−2 quantum tori, and also present an example demonstrating the minimal 
representation using only �N2

2 	 tori. Finally using the quantum tori realization, in Section 7 we define the 
positive quantum group GL+

q (N, R), and describe its relation to the modular double, and in Section 8 a 
possible construction of an L2(GL+

qq̃(N, R)) space.

2. Gauss decomposition for GLq(2)

The quantum group GLq(2) is one of the simplest matrix quantum group. Its representation theory and 
general properties as a Hopf algebra can be found for example in [4,22,29]. In this paper we will use a rescaled 
version of GLq(2). This version is considered e.g. in [12,13], and has the advantage of acting naturally on the 
standard L2(R) space, due to the rescaled quantum determinant (2.6) which resembles the classical formula 
without any q factors. This also simplifies some computations involved in later sections.

Definition 2.1. We define Mq(2) to be the bi-algebra over C[q, q−1] generated by z11, z12, z21 and z22 subjected 
to the following commutation relations:

z11z12 = z12z11, (2.1)

z21z22 = z22z21, (2.2)

z11z21 = q2z21z11, (2.3)

z12z22 = q2z22z12, (2.4)

z12z21 = q2z21z12, (2.5)

detq := z11z22 − z12z21 = z22z11 − z21z12, (2.6)

with co-product Δ given by

Δ(zij) =
∑
k=1,2

zik ⊗ zkj , (2.7)

and co-unit ε given by

ε(zij) = δij . (2.8)
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Definition 2.2. We define the Hopf algebra

GLq(2) := Mq(2)[det−1
q ] (2.9)

by adjoining the inverse element det−1
q .

Remark 2.3. The antipode γ of the Hopf algebra GLq(2) is defined through the inverse element det−1
q . 

However we will not use the antipode in this paper.

Remark 2.4. It is often convenient to write the generators as a matrix

Z :=
(
z11 z12
z21 z22

)
,

then the co-product can be rewritten as standard matrix multiplication:

Δ
(
z11 z12
z21 z22

)
=

(
z11 z12
z21 z22

)
⊗
(
z11 z12
z21 z22

)
. (2.10)

In the papers [13,26], the Gauss decomposition of GLq(2) is studied. The generators zij can be decomposed 
uniquely into

Z =
(
z11 z12
z21 z22

)
=

(
u1 0
v1 1

)(
1 u2
0 v2

)
, (2.11)

where the Weyl pairs {ui, vi}i=1,2 are non-commutative variables satisfying

uivi = q2viui, (2.12)

[ui, vj ] = [ui, uj ] = [vi, vj ] = 0 for i 
= j. (2.13)

Definition 2.5. We define C[Tq] to be the algebra of quantum torus:

C[Tq] := C[q, q−1]〈u, v, u−1, v−1〉/(uv = q2vu) (2.14)

consisting of Laurent polynomials in the variables u and v.

Then in particular, we have an embedding of the algebra GLq(2) into the algebra of quantum tori:

GLq(2) −→ C[Tq]⊗2, (2.15)

where the elements of GLq(2) can be expressed as Laurent polynomials.
In order to generalize this construction to the higher rank, it turns out that it is better to rewrite the 

decomposition (2.11) in the form:

Z =
(

1 0
v1 1

)(
u1 0
0 1

)(
1 0
0 v2

)(
1 u2
0 1

)
=

(
u1 0
v1u1 1

)(
1 u2
0 v2

)
(2.16)

where the entries of each of the two matrices still satisfy the quantum relations (2.1)–(2.6) of Mq(2). Finally 
we note that the quantum determinant detq quasi-commutes with all other variables. It is this property 
that motivates us to study the Gauss decomposition for GLq(N) not using the standard coordinates, but 
using the “cluster variables” which we will introduce in the next section.
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3. Parametrization of GL+(N, RRR)

In classical group theory, the totally positive part GL+(N, R) is the semi-subgroup of GL(N, R) so that 
all the entries are positive, and all the minors, including the determinant, are also positive. There are in 
general two equivalent ways to realize the totally positive semi-group. In [21], a parametrization using the 
Gauss decomposition is found:

G = U−
>0T>0U

+
>0, (3.1)

where T>0 is the diagonal matrix with positive entries ui, the positive unipotent semi-subgroup U+
>0 (and 

similarly for U−
>0) is decomposed as

U+
>0 =

m∏
k=1

eakEik =
m∏

k=1

(IN + akEik,ik+1), (3.2)

where Ei,i+1 is the matrix with 1 at the position (i, i + 1) and 0 otherwise, and the ik’s correspond to the 
decomposition of the longest element w0 of the Weyl group W = SN−1:

w0 = si1si2 . . . sim . (3.3)

Using the standard decomposition for w0:

w0 = sN−1sN−2 . . . s2s1sN−1sN−2 . . . s2sN−1sN−2 . . . s3 . . . sN−1, (3.4)

where sk = (k, k + 1) are the 2-transpositions, U+
>0 can be expressed in the form:⎛⎜⎜⎜⎜⎜⎜⎝

1 a1,1 0 0 0
0 1 a2,1 0 0

0 0 1
. . . 0

0 0 0
. . . aN−1,1

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 a2,2 0 0

0 0 1
. . . 0

0 0 0
. . . aN−1,2

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ · · ·

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1

. . . 0
0 0 0

. . . aN−1,N−1
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ .

(3.5)

The labeling is defined as follows: am,n is the entry at the m-th row and appears the n-th time from the 
left. Similarly, U−

>0 is given by the transpose of U+
>0, i.e.⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0

. . . . . . 0
0 0 0 bN−1,1 1

⎞⎟⎟⎟⎟⎟⎠ · · ·

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 b2,1 1 0 0

0 0
. . . . . . 0

0 0 0 bN−1,N−2 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0

b1,1 1 0 0 0
0 b2,2 1 0 0

0 0
. . . . . . 0

0 0 0 bN−1,N−1 1

⎞⎟⎟⎟⎟⎟⎠ .

(3.6)

Under this parametrization, Berenstein et al. [1] studied the parametrization by the so-called cluster 
variables, in this case corresponds to the initial minors of the matrix. These are the determinants of the 
square submatrices which start from either the top row or the leftmost column. More precisely, a matrix 
g ∈ GL(N, R) is totally positive if and only if all its initial minors (including the determinant of the matrix 
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itself) are strictly positive. Furthermore, the initial minor can be expressed uniquely as a product of the 
parameters aij , bij and ui, hence giving a 1–1 correspondence between the parametrizations.

In the study of the quantum Gauss decomposition, it turns out that it is just enough to look at T>0U
+
>0. 

Let us first consider U+
>0.

Definition 3.1. Denote by xij , 1 ≤ i < j ≤ N , the initial minor with the lower right corner at the entry 
(i, j), which uniquely determines the submatrix. Following [1], we will also call xij the cluster variables.

Then there is an explicit relation between xij and aij :

Proposition 3.2. (See [1].) We have

ai,N−j = xj,i+1xj−1,i−1

xj,ixj−1,i
, (3.7)

xi,i+j =
i∏

m=1

j∏
n=1

am+n−1,n. (3.8)

Here we denote xi,i = xi,0 = x0,j = 1.

The above relations can be expressed schematically by the diagram shown in Fig. 1, where the cluster 
variable xi,i+j is expressed as the product of the amn variables inside the box:

Fig. 1. The cluster xi,i+j for i = 2, j = 4.

As in the N = 2 case, we split the diagonal subgroup T>0 into two halves:

T>0 = T−
>0T

+
>0 :=

⎛⎜⎜⎜⎜⎜⎝
u1 0 0 0 0
0 u2 0 0 0

0 0
. . . 0 0

0 0 0 uN−1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 v1 0 0 0
0 0 v2 0 0

0 0 0
. . . 0

0 0 0 0 vN−1

⎞⎟⎟⎟⎟⎟⎠ , (3.9)

and just consider the v variables for the decomposition of the upper triangular part. Then the formulas in 
T+
>0U

+
>0 for ai,j stay the same, while those for xi,j are modified as follows:

xi,i+j =
(

i∏
m=1

j∏
n=1

am+n−1,n

)
i−1∏
k=1

vk. (3.10)

4. Definition of GLq(N)

The quantum group GLq(N) is defined by the following relations involving the rank 1 case.
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Definition 4.1. We define Mq(N) to be the bi-algebra over C[q, q−1] generated by {zij}Ni,j=1, such that for 
every 1 ≤ i < i′ ≤ N , 1 ≤ j < j′ ≤ N , the submatrix(

zij zij′

zi′j zi′j′

)
(4.1)

is a copy of Mq(2), i.e. the corresponding generators satisfy the relations (2.1)–(2.6).

The quantum determinant is again defined using the classical formula (with no q involved):

Definition 4.2. We define the quantum determinant as

detq =
∑

σ∈SN

(−1)σz1,σ(1) . . . zN,σ(N), (4.2)

where SN is the permutation group of N elements.

Then it follows from (2.6) and an induction argument that detq does not depend on the order of the row 
index, provided that all the monomials have the same order of row index.

Definition 4.3. We define GLq(N) to be the Hopf algebra

GLq(N) := Mq(N)[det−1
q ]. (4.3)

The Hopf algebra structure is given by the same classical formula

Δ(zij) =
N∑

k=1

zik ⊗ zkj , (4.4)

ε(zij) = δij . (4.5)

The antipode γ can be defined involving det−1
q , but again we will not use it in the present paper.

As in the case of GLq(2), we can conveniently write the generators as a matrix

Z :=
(
zij

)N
i,j=1. (4.6)

Let us call a matrix X of non-commutative entries a “GLq(N)-matrix” if the matrix entries of X satisfy 
the defining relations of Mq(N) in Definition 4.1, and the determinant detq(X) of X is not identically zero. 
In particular some of the entries are allowed to be constants.

Then from the co-associativity of the co-product Δ,

Δ(Z) = Z ⊗ Z, (4.7)

we have the following property:

Proposition 4.4. If X and Y are GLq(N)-matrices such that the matrix entries of X commute with those 
of Y , then the matrix product

G = XY (4.8)
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is again a GLq(N)-matrix, where the determinant is non-zero and given by

detq(XY ) = detq(X)detq(Y ). (4.9)

Hence in order to find a Gauss decomposition

Z = XY (4.10)

for GLq(N) where X is lower triangular and Y is upper triangular, it suffices to find the corresponding 
matrix that satisfies the quantum relations (that any matrix can be expressed in this form is proved, for 
example, in [5]). We will do this by employing the construction using the parametrizations of the totally 
positive matrices GL+(N, R).

5. Gauss–Lusztig decomposition of GLq(N)

Let T+ and U+ be given by the same matrices as in (3.5) and (3.9), but instead with formal non-
commuting variables vm, amn for 1 ≤ n ≤ m ≤ N − 1.

Definition 5.1. We define the variables xij, 1 ≤ i < j ≤ N to be the quantum determinant of the initial 
submatrices (with the same parametrization given in Section 3) of the matrix product Z = T+U+ using 
the determinant formula (4.2). We will call xij the quantum cluster variables.

Then we can state our main results:

Theorem 5.2. The product Z = T+U+ is a GLq(N)-matrix if and only if we have the following 
q-commutation relations between the variables given by:

• amnvm = q2vmamn for all n,
• amnamn′ = q2amn′amn for n > n′,
• amnam−1,n′ = q2am−1,n′amn for n ≤ n′,
• commute otherwise.

Furthermore the variables xij can be written as

xi,i+j =
(

i∏
m=1

j∏
n=1

am+n−1,n

)
i−1∏
k=1

vk (5.1)

= (a11a22a33 . . .)(a21a32a43 . . .) . . . (. . . ai+j−1,j)(v1v2 . . . vi−1) (5.2)

in this particular order. Finally for every GLq(N)-matrix, the commutation relations between the variables 
xij are given by

xi,i+jxk,k+l = q2P (i,j;k,l)xl,k+lxj,i+j , (5.3)

where for j ≤ l,

P (i, j; k, l) = #{m,n|l + 2 ≤ m + n ≤ k + l + 1, 1 ≤ m ≤ i, 1 ≤ n ≤ j}

− #{m,n|1 ≤ m + n ≤ i, 1 ≤ m ≤ k, 1 ≤ n ≤ l} (5.4)
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and

P (k, l; i, j) = −P (i, j; k, l). (5.5)

Corollary 5.3. Let U− and T− be defined by (3.6) and (3.9) so that bmn and um commute with amn and vm. 
Then {bmn, u−1

m } satisfies exactly the same relations as {amn, vm}. Let T = T−T+ be the diagonal matrix 
with entries Tk = ukvk−1 for 1 ≤ k ≤ N , where we denote by v0 = uN = 1. Then the product

Z = U−TU+ (5.6)

gives the Gauss–Lusztig decomposition of GLq(N). More precisely, this means that the generators {zij} and 
det−1

q of the Hopf algebra GLq(N) can be expressed in terms of N2 variables {amn, bmn, um, vm} (and their 
inverses) that commute up to a factor of q2.

The q-commutation relations for amn (and also bmn) can be represented neatly by a diagram:

(5.7)

where u −→ v means uv = q2vu, and double arrows means it q2-commutes with everything in that direction. 
In other words, the arrows consist of all the possible left directions, and all the north-east directions going 
up one level. Furthermore, note that the commutation relations for amn, vm, um and bmn′ are just copies 
of the Gauss decomposition (2.16) for GLq(2).

Remark 5.4. It was pointed out by A. Goncharov that if we make a change of variables by taking ratios of 
the generators:

a′m,n =
{

am,1 n = 1,
qam,na

−1
m,n−1 n > 1

(5.8)

(the q factor is used to preserve positivity, cf. Section 7), then the commutation relations among the a′m,n

variables take a more symmetric form, represented by the diagram
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(5.9)

This choice of generators is closely related to the Poisson structure of the cluster X -varieties, studied for 
example in [9].

We will use several lemmas to prove the theorem.

Lemma 5.5. Assume the q-commutation relations in Theorem 5.2 for amn and vm hold. Then (5.1) holds.

Proof. We use the fact that, by induction, each entry zij of the upper triangular matrix has a closed form 
expression given by

zi,i+j = vi−1
∑

1≤t1<t2<...<tj≤i+j−1
(ai,t1ai+1,t2 . . . ai+j−1,tj )

:=
∑
t

Si,t. (5.10)

We also have zi,i = 1 and zi,i−j = 0.
Hence the quantized initial minor xi,j is given by sums of products of the form

Sj,t = S1,t1S2,t2 . . . Sj,tj . (5.11)

Now using the q-commutation relations, which say that amn commutes with am′n′ when both m > m′

and n > n′, we can arrange the order on each monomial Sj,t so that it has a “maximal” ordering: If the 
product amnam′n′ appears in the ordering, then either m′ = m + 1 and n′ > n, or m′ < m. Furthermore, if 
the last term in Sk,t is am,n, then the term am+1,n′ for n′ > n will not appear in Sk+1,t, so that nothing can 
commute to the front, while we can push all the vm to the back since vm commutes with am′n for m < m′.

This ordering is unique in the sense that for every monomial where the order in which ap,∗ appears for 
each fixed p is the same, the corresponding maximal ordering is the same. Hence the classical calculation 
works and all the terms will cancel, except the one with minimal lexicographical ordering. This term is 
precisely

S1,tminS2,tmin . . . Si,tmin ,

where

Sk,tmin = vk−1ak,1ak+1,2 . . . ak+j−1,j .

Again each vk−1 in each Sk commutes with all the a’s, so we can move them towards the back, and hence 
giving the expression (5.1). �
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Lemma 5.6. Assume the q-commutation relations for amn and vm hold. Then (5.3) holds.

Proof. Using the expression given by Lemma 5.5, we can study how xij and xkl commute. We do this by 
counting how many q-commutations it takes for a fixed am,n appearing in xi,i+j to travel through each 
variable am′,n′ in xk,k+l.

First, notice that am,n appears in xk,k+l only if 1 ≤ n ≤ l and 0 ≤ m − n ≤ k − 1. Now fix m, n and 
consider amn. It q2-commutes with am′n′ in xk,k+l when:

• q2: am,n′ with n′ < n, hence also 1 ≤ n′ ≤ l and 0 ≤ m − n′ ≤ k − 1. We can rewrite this as

A1 = #{n′|max(m + 1 − k, 1) ≤ n′ ≤ min(l, n− 1,m)},

• q−2: am,n′ with n′ > n, hence also 1 ≤ n′ ≤ l and 0 ≤ m − n′ ≤ k − 1 which reduces to

A2 = #{n′|max(m + 1 − k, n + 1) ≤ n′ ≤ min(l,m)},

• q2: am−1,n′ with n′ ≥ n, hence

A3 = #{n′|max(m− k, n) ≤ n′ ≤ min(l,m− 1)},

• q−2: am+1,n′ with n′ ≤ n, hence

A4 = #{η′|max(m− l + 2, 1) ≤ n′ ≤ min(l, n,m + 1)}.

Hence the amount of q2 powers picked up is just the signed sum of the count above. By a case by case study, 
these expressions can be simplified:

A3 −A2 =
{

1 m + n ≥ l + 2, n + m ≤ k + l + 1, n ≤ l

0 otherwise,

A1 −A4 =

⎧⎪⎨⎪⎩
1 n ≥ l + 1, k + 1 ≤ m + n ≤ k + l

−1 m + n ≤ k, 1 ≤ n ≤ l

0 otherwise.

Hence, the total amount of power picked up after summing all m, n is given by

#{l + 2 ≤ m + n ≤ k + l + 1, n ≤ l} + #{k + 1 ≤ m + n ≤ l + k, l + 1 ≤ n}
− #{m + n ≤ k, 1 ≤ n ≤ l},

subject to 1 ≤ m ≤ i, 1 ≤ n ≤ j.
Let us assume j ≤ l. Then n ≤ j ≤ l, and the expression can be simplified to

#{l + 2 ≤ m + n ≤ k + l + 1} − #{m + n ≤ k},

subject to 1 ≤ m ≤ i, 1 ≤ n ≤ j. This takes care of amn.
We still need to calculate those for vm. Since there is only one vm appearing in xk,k+l for each 1 ≤ m ≤ k, 

we just need to count how many amn’s with index m ≤ k+ 1 are there. Hence using the renamed am+n−1,n
the condition is



I.C.H. Ip / Journal of Pure and Applied Algebra 219 (2015) 5650–5672 5663
#{m,n|m + n ≤ k, 1 ≤ m ≤ i, 1 ≤ n ≤ j},

and this is the amount of q2 picked up, hence canceled with the last term in the previous calculation.
Similarly considering the other direction, the amount of q−2 picked up is

#{m,n|m + n ≤ i, 1 ≤ m ≤ k, 1 ≤ n ≤ l}.

Hence we arrive at our formula. �
Lemma 5.7. We have

P (i, j; k, l) = P (i, j − 1, k, l − 1). (5.12)

Proof. This is done by simple counting. Assume j ≤ l. Let us compare the difference between the corre-
sponding terms of the P function. We have for the second term:

#{m,n|1 ≤ m + n ≤ i, 1 ≤ m ≤ k, 1 ≤ n ≤ l}
− #{m,n|m + n ≤ i, 1 ≤ m ≤ k, 1 ≤ n ≤ l − 1}

= #{m,n|1 ≤ m + l ≤ i, 1 ≤ m ≤ k},

while for the first term we have

#{m,n|l + 2 ≤ m + n ≤ k + l + 1, 1 ≤ m ≤ i, 1 ≤ n ≤ j}
− #{m,n|l + 1 ≤ m + n ≤ k + l, 1 ≤ m ≤ i, 1 ≤ n ≤ j − 1}

= #{m,n|l + 2 ≤ m + n ≤ k + l + 1, 1 ≤ m ≤ i, 1 ≤ n ≤ j}
− #{m,n|l + 2 ≤ m + n ≤ k + l + 1, 1 ≤ m ≤ i, 2 ≤ n ≤ j}

= #{m|l + 2 ≤ m + 1 ≤ k + l + 1, 1 ≤ m ≤ i}
= #{m|l + 2 ≤ m + l + 1 ≤ k + l + 1, 1 ≤ m + l ≤ i}
= #{m|1 ≤ m ≤ k, 1 ≤ m + l ≤ i}.

Hence the amounts cancel. �
Proof of Theorem 5.2. We will prove the theorem by induction. When N = 2 the decomposition is just(

1 0
0 v1

)(
1 a11
0 1

)
with a11v1 = q2v1a11. Hence this case holds trivially.

Assume everything hold for dim = N − 1.
For dim = N , first we notice that aN−1,N−1 commutes with aii for i < N − 1 by looking at the entry 

z1,i+1 = a11a22 . . . aii, which commutes with each other by the GLq(2) relations.
Next we notice that the cluster variables for a general GLq(N)-matrix depend only on the variables 

appearing in T+U+, since we assumed that the lower triangular matrix U−T− commutes with T+U+. 
Hence the relations between xi,i+j which hold for T+U+ will also hold for GLq(N).

Now for a general cluster variable xk,N in the new rank, we know from Lemma 5.5 that aN−1,N−k is the 
only new term appearing. Hence the commutation relations between aN−1,N−k and ai+j−1,j is equivalent to 
the commutation relations between xk,N and xi,i+j by induction on new terms. Now consider the (N − 1)×
(N − 1) submatrix corresponding to xN−1,N . This by definition satisfies the GLq(N − 1) relations, and in 
particular the commutation relation between xk,N and xi,i+j should be the same as the relation between 
xk,N−1 and xi,i+j−1. However, this is precisely the statement proved in Lemma 5.7. �
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The above relations can be generalized to arbitrary reduced expression for w0 as follows. Let (a, b, c) and 
(a′, b′, c′) be positive q-commuting variables such that

b

a c

and
a′ c′

b′
(5.13)

where again u −→ v means uv = q2vu.
Then as in (3.2), the products

x2(a)x1(b)x2(c) = x1(a′)x2(b′)x1(c′)

form a copy of U+ of the Gauss decomposition of GLq(3) corresponding to the reduced expressions

w0 = s2s1s2 = s1s2s1,

where

a′ = (a + c)−1cb = bc(a + c)−1,

b′ = a + c,

c′ = (a + c)−1ab = ba(a + c)−1,

and this map

φ : (a, b, c) �→ (a′, b′, c′) (5.14)

is an involution between (a, b, c) ←→ (a′, b′, c′). In particular, we see that by applying this transformation 
to any three consecutive variables amn corresponding to the sub-word of the form sisjsi with i adjacent 
to j, all the arrows in the diagram (5.13) are preserved. Applying this transformation, we can deduce all 
quantum Lusztig’s variables for arbitrary reduced expression for w0. Hence we can restate the commutation 
relations in Theorem 5.2 as follows:

Theorem 5.8. Let ain,m be the coordinates of U+ corresponding to the reduced expression of w0 = si1 . . . sin . 
Then the product T+U+ is a GLq(N)-matrix if and only if for any |i − j| = 1, the coordinates 
{vi, vj , ai,m, aj,n, ai,k} form a copy of GLq(3), where {ai,m, aj,n, ai,k} appear in this exact order in the 
parametrization of U+. In other words, we have

(5.15)

Remark 5.9. The above transformation of the amn coordinates between different reduced expression of the 
longest Weyl element w0 can be rewritten in terms of the variables xi,j using (5.1). This becomes the 
quantized cluster mutations, or under the limit q −→ 1, the cluster mutations for the parametrization of 
totally positive matrices, which is historically the first examples and the main motivation for the introduction 
of the theory of cluster algebra [1].



I.C.H. Ip / Journal of Pure and Applied Algebra 219 (2015) 5650–5672 5665
6. Embedding into the algebra of quantum tori

In order to deal with positivity for the split real case in the next section, we would like to find an 
embedding of the algebra Mq(N) (resp. GLq(N)) into copies of the algebra of quantum tori C[Tq], so that 
its elements are expressed in terms of polynomials (resp. Laurent polynomials) in the quantum tori variables. 
Hence due to the Gauss–Lusztig decomposition established in the previous section, the remaining task is to 
find an explicit realization of the generators amn, vm using several copies of the Weyl pair {u, v} satisfying 
uv = q2vu.

Theorem 6.1. There is an embedding of algebra

T+U+ −→ C[Tq]⊗
N2+N−4

2

given by

vm �→ vm (6.1)

amn �→ um

(
m−1∏
k=n

vm−1,k

)(
n−1∏
l=1

vm,l

)
um,n, (6.2)

where T+U+ is now realized as the algebra generated by {amn, vm} satisfying the relations from Theorem 5.2, 
and C[Tq]⊗

N2+N−4
2 is generated by the Weyl pairs {um, vm} and {umn, vmn} for 1 ≤ n ≤ m ≤ N − 1, where 

we have omitted the last set of generators {uN−1,N−1, vN−1,N−1}. (We define uN−1,N−1 := 1 in the formula.)
Similarly, for U−T− generated by {bmn, um}, we have the embedding

U−T− −→ C[Tq]⊗
N2+N−4

2

given by

um �→ u′
m (6.3)

bmn �→ v′m

(
m−1∏
k=n

v′m−1,k

)(
n−1∏
l=1

v′m,l

)
u′
m,n, (6.4)

where the generators {u′, v′} (with same indexing above) commute with {u, v} used above.
Together, this gives an embedding of the algebra GLq(N) � U−T− ⊗ T+U+:

GLq(N) −→ C[Tq]⊗N2+N−4. (6.5)

Proof. The proof is straightforward to check, since for the u variables only um and umn appear in amn. 
Hence we just need to count, at most once, how many vmn appears in another variables. �
Remark 6.2. This embedding resembles the Drinfeld double construction, which reads

D(Uq(b)) = Uq(g) ⊗ Uq(h). (6.6)

With our assignment for U−T−⊗T+U+, we can actually combine the diagonal variables (hence “modding” 
out h) as follows:
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Vi = u′
ivi−1 1 ≤ i ≤ N, (6.7)

Ui = ui−1 = v′i
−1 (6.8)

(where v0 = u′
N = 1) which gives an embedding of GLq(N) using only (N2 − 2) copies of q-tori (with 

inverses adjoined).

This is just one example of realizing the quantum variables where we can actually write down explicit 
expressions. In fact the minimal amount needed can be substantially smaller:

Theorem 6.3. The minimal amount of q-tori needed to realize T+U+ is given by �N2

4 	 and the full group 

GLq(N) can be embedded into C[Tq]⊗�N2
2 	.

Proof. Consider the symplectic form on the variables {amn, um} defined by

〈x, y〉 =

⎧⎪⎨⎪⎩
1 xy = q2yx

0 xy = yx

−1 xy = q−2yx.

(6.9)

Then the minimal amount of q-tori needed to realize such relations can be found by finding the signature 
of this form. The skew-symmetric matrix of size N

2+N−2
2 encoding this form is actually quite simple. If we 

index the variables by

a11, v1, a21, a22, v2, a31, . . . ,

the upper triangular part of the matrix is given by m + 1 consecutive 1’s to the right starting at the first 
off diagonal entry corresponding to am∗, truncated at the boundary, and zero otherwise. The full matrix is 
then obtained by anti-symmetrizing it, and we can find its kernel by elementary operations. �

In principle, it is possible to find the decomposition into the q-tori by diagonalizing the skew-symmetric 

matrix, corresponding to the symplectic form, into blocks 
(

0 1
−1 0

)
and read out the transformation.

Example 6.4. As an example, we illustrate the cases up to N = 6, giving the embedding of T+U+ into 
�N2

4 	 = 9 copies of the algebra of q-tori generated by {Ui, Vi} without any powers or inverses (for N < 6
we ignore the extra tori):

a11 = U1
u1 = V1

a21 = V1U2
a22 = qV2U2U3
u2 = V2

a31 = V2U3U4
a32 = V3U4U5
a33 = qV4U4U5
u3 = V4

a41 = V4U5U6V7V8
a42 = qV5U5U6V7
a43 = U3V5U6
a44 = qV6U6
u4 = V6

a51 = V6U9
a52 = qV6U8V9U9
a53 = V6U7V7V9U9
a54 = U5V6V7U8V8V9U9
a55 = qV8V9U9
u5 = V9.

The extra q factors are introduced for positivity, as explained in the next section.



I.C.H. Ip / Journal of Pure and Applied Algebra 219 (2015) 5650–5672 5667
Conjecture. It is possible to decompose each amn into a product of single Ui and Vi with the minimal amount 
of copies. This means that we have an embedding of Mq(N) into the polynomial algebra generated by the 
minimal amount of Ui and Vi, where the matrix entries zij are expressed only in terms of polynomials of 
Ui and Vi with coefficients of the form +qn.

7. Positivity and the modular double

In this section, we turn our attention to the functional analytic aspects of the representation theory. We 
fix our quantum parameter q to be complex number q = eπib

2 with 0 < b2 < 1, b2 ∈ R \Q so that |q| = 1 is 
not a root of unity. In this section we introduce the notion of the positive quantum semi-group GL+

q (N, R)
and Faddeev’s notion of the modular double. The basic idea is to represent the generators zij in terms of 
positive essentially self-adjoint operators acting on a certain Hilbert space. Note that these operators are 
necessarily unbounded.

First we introduce the definition of an integrable representation of the canonical commutation relation 
defined in [23]:

Definition 7.1. Let X, Y be positive essentially self-adjoint operators acting on a Hilbert space H. The 
q-commutation relation “uv = q2vu” is defined to be

uisvit = q−2stvituis (7.1)

for any s, t ∈ R as relations of bounded operators, where uis and vit are unitary operators on H by the use 
of functional calculus.

A canonical irreducible integrable representation of uv = q2vu is given by

u = e2πbx, v = e2πbp, (7.2)

where p = 1
2π

∂
∂x acting as unbounded operators on L2(R).

Remark 7.2. The unbounded operators u and v naturally act on a dense subset W ⊂ L2(R) called the “core” 
which defines the domain of essential self-adjointness:

W := {e−αx2+βxP (x)|α ∈ R>0, β ∈ C, P (x) = polynomial in x} ⊂ L2(R). (7.3)

On the other hand, the idea of the modular double of the Weyl pair {u, v} is introduced by Faddeev 
in [6]. It is suggested there that for positive self-adjoint operators u, v as in (7.2), one has to consider also 
the operators given by

ũ := u
1
b2 , ṽ := v

1
b2 (7.4)

so that

ũṽ = q̃2ṽũ, q̃ = eπib
−2
, (7.5)

and {u, v} commute with {ũ, ̃v} in the weak sense (the spectrum do not commute), so that the operators 
generated by {u, v, ̃u, ̃v} acting on L2(R) is algebraically irreducible. This idea is subsequently extended to 
the modular double of quantum groups [7].

The key technical tool in the above contexts is given by the following lemma introduced by Volkov [28], 
and the self-adjointness is analyzed in [27], see also [3,13]:
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Lemma 7.3. If u and v are positive essentially self-adjoint operators such that uv = q2vu for q = eπib
2 in 

the sense above, then u + v is also positive essentially self-adjoint, and we have

(u + v)
1
b2 = u

1
b2 + v

1
b2 , (7.6)

where the transcendental powers u
1
b2 etc. are defined by means of functional calculus of positive self-adjoint 

operators.
Hence by induction, if we have uiuj = q2ujui for every i < j, then the sum

z =
∑
i

ui

is positive essentially self-adjoint, and we have

z
1
b2 =

∑
i

u
1
b2
i . (7.7)

Therefore using the Gauss–Lusztig decomposition of GLq(N) defined in Theorem 5.2, we can define

Definition 7.4. GL+
q (N, R) is the operator algebra generated by positive self-adjoint operators {amn, um,

vm, bmn} so that the q-commutation relations are satisfied in the sense of Definition 7.1 above. These 

operators are acting by the Weyl pair u = e2πbx, v = e2πbp on the Hilbert space H = L2(R�N2
2 	) using 

Theorem 6.3.

Using Lemma 7.3, the notion of GL+
q (N, R) as the q-analogue of the classical totally positive semi-group 

is justified:

Corollary 7.5. Under the Gauss–Lusztig decomposition, the generators zij, as well as the initial minors xij

and the quantum determinant detq are represented by positive essentially self-adjoint operators.

Proof. The only issue concerns the essential self-adjointness of zij . From the expression (5.10), we note that

Si,tSi,t′ = q2Si,t′Si,t,

whenever Si,t′ appears later than Si,t in the sum. Hence using Lemma 7.3, we conclude that each zi,i+j is 
positive and essentially self-adjoint. �

Let q̃ = eπib
−2 and define GL+

q̃ (N, R) to be the algebra generated by the positive self-adjoint operators 
{ãmn, ũm, ṽm, b̃mn} where X̃ := X

1
b2 . Then the last statement of Lemma 7.3 establishes the transcendental 

relations between the two parts of the modular double

GL+
qq̃(N,R) := GL+

q (N,R) ⊗ GL+
q̃ (N,R). (7.8)

Theorem 7.6. The generators z̃ij represented by the Gauss–Lusztig decomposition are related to zij by

z̃ij = z
1
b2
ij , (7.9)

which are well-defined as positive essentially self-adjoint operators. Furthermore the co-product is preserved:

(Δzij)
1
b2 = Δz̃ij , (7.10)

and zij commutes (weakly) with z̃ij.
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Proof. Equation (7.9) follows immediately from the proof of Corollary 7.5. The co-product is preserved 
because

Δ(zij) =
∑
k

zik ⊗ zkj , (7.11)

and

(zik ⊗ zkj)(zik′ ⊗ zk′j) = q2(zik′ ⊗ zk′j)(zik ⊗ zkj)

whenever k < k′, hence we can apply Lemma 7.3 and induction to obtain

Δ(zij)
1
b2 =

∑
k

z
1
b2
ik ⊗ z

1
b2
kj = Δ(z̃ij).

Since {u, v} commute weakly with {ũ, ̃v}, the last statement follows by the Gauss–Lusztig decomposi-
tion. �
8. GL+

qq̃(N, RRR) in the L2 setting

In the final section we generalize the approach from [13] to higher rank, where the L2-space for GL+
qq̃(2, R)

is introduced. The L2-norm comes from the classical counterpart of the Haar measure.
In classical Lie group theory for GL(2, R), under the decomposition given by (2.16), the left invariant 

measure called the Haar measure restricted onto the totally positive part GL+(2, R) is given by

dg = du1

u1
dv1

dv2

v2
du2. (8.1)

Following [13], we redefine the variables via Mellin transform which maps functions on half line L2(R>0) to 
functions on the real line L2(R) with certain measures. When L2(R>0) has dx as the measure, the Mellin 
transform gives

‖f(x)‖2
dx =

∥∥∥∥∥∥
∫

R+i0

f(s)xisds

∥∥∥∥∥∥
2

=
∫
R

|f(s + i

2)|2ds. (8.2)

Similarly, when the measure of L2(R>0) is given by dyy , the Mellin transformed measure remains unchanged:

‖f(y)‖2
dy
y

=

∥∥∥∥∥∥
∫
R

f(s)yisds

∥∥∥∥∥∥
2

=
∫
R

|f(s)|2ds. (8.3)

It is shown in [13] that in the quantum setting, using a certain GNS representation of GL+
qq̃(2, R) in the 

C∗-algebraic setting, there exists a Haar weight which induces an L2-norm on entire functions with 4 classical
coordinates f(u1, v1, u2, v2), where the right hand side of (8.2) is replaced by

∫
R

∣∣∣∣f(s + iQ

2 )
∣∣∣∣2 ds (8.4)

with Q = b + b−1, while the right hand side of (8.3) remains unchanged.
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For higher rank, we notice that the Haar measure for the usual totally positive parametrization

U−
>0(bij)T>0(ui)U+

>0(aij) (8.5)

is given by

N∏
k=1

duk

uk

∏
1≤j≤i≤N−1

(aijbij)N−1−idaijdbij . (8.6)

This is obtained by calculating the Jacobian of the change of variables (5.10) with coordinates of the usual 
Gauss decomposition, and using the fact that the Haar measure induces a multiplicative measure on the 
diagonal matrices, and the standard L2 measure on the upper/lower triangular unipotent matrices.

Now let us introduce a change of variables for our cluster variables:

Xij :=

⎧⎪⎨⎪⎩
xiix

−1
i−1,i−1 i = j

xijx
−1
ii i < j

xijx
−1
jj i > j,

(8.7)

i.e. we use only ui from the diagonal matrices, and the cluster variables of the upper/lower triangular 
unipotent matrices in terms of products of a’s or b’s only. Then we have

Proposition 8.1. The (classical) Haar measure on GL+(N, R) is given by:

⎛⎝N−1∏
i,j=1

dXij

Xij

⎞⎠(
N−1∏
k=1

dXN,kdXk,N

)
dXNN

XNN
. (8.8)

Hence following the idea in the case of GL+
qq̃(2, R) we can define C∞(GL+

qq̃(N, R)) and L2(GL+
qq̃(N, R))

as follows:

Definition 8.2. The C∗-algebra C∞(GL+
qq̃(N, R)) is the norm closure of operators of the form:

F :=
∫

RN2

f(s11, . . . , sNN )
N∏

m,n=1
(Xmn)ib

−1smn

N∏
m,n=1

dsmn, (8.9)

where f(s11, . . . , sNN ) are smooth analytic rapidly decreasing functions in each variable sij ∈ R, each 
Xib−1smn

mn is realized as a unitary operator defined by the formula in Theorem 6.3, and the C∗-norm is 
defined as the operator norm. Furthermore, the C∗-algebra corresponding to difference choices of realization 
of Xmn are isomorphic.

Remark 8.3. It will be interesting to put C∞(GL+
qq̃(N, R)) in the context of locally compact quantum group, 

for example in the sense of [20]. Although it is known in the case when N = 2 [13], in general it is not clear 
how the co-product Δ defined on zij translates to the generators Xmn, hence the main difficulty will be to 
show the density conditions involving Δ.

For the sake of harmonic analysis, we can also define an L2-space where it does not depend on the choice 
of embedding of GL+

q (N, R) at all.
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Definition 8.4. We define L2(GL+
qq̃(N, R)) � L2(RN2) by giving an L2-norm for the (rapidly decreasing 

entire) functions F :

‖F‖2 :=
∫

RN2

∣∣∣∣f(sij + (δi,N − δj,N )2 iQ2 )
∣∣∣∣2 N∏

i,j=1
dsij , (8.10)

and taking the L2-completion.

A natural class of representations for split real quantum groups Uqq̃(gR) for arbitrary type simple Lie 
algebra g, called the positive principal series representations, generalizing the sl(2, R) case is introduced in 
[11] and constructed in [14,15]. It is conjectured in [25] and shown in [13] that the left and right regular 
representations of Uqq̃(gl(2, R)) acting on L2(GL+

qq̃(2, R)) naturally decompose as a direct integral of tensor 
product of the positive representations Pλ,s:

L2(GL+
qq̃(2,R)) �

⊕∫
R

⊕∫
R+

Pλ,s ⊗ Pλ,−sdμ(λ)ds (8.11)

where μ(λ) is expressed in terms of the quantum dilogarithm. Hence analogous to the harmonic analysis of 
L2(GL+

qq̃(2, R)), it is natural to ask the following question:

Conjecture. Do the left and right regular representations of Uqq̃(gl(N, R)) on the L2(GL+
qq̃(N, R)) space de-

compose as a direct integral of tensor product of the positive principal series representations of Uqq̃(gl(N, R))?
Furthermore, can analogous statements be defined for Uqq̃(gR) for arbitrary type simple Lie algebra g?
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