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The universal R operator for the positive representations of split real quantum groups

is computed, generalizing the formula of compact quantum groups Uq(g) by Kirillov–

Reshetikhin and Levendorskiı̆–Soibelman, and the formula in the case of Uqq̃(sl(2, R)) by

Faddeev, Kashaev, and Bytsko-Teschner. Several new functional relations of the quan-

tum dilogarithm are obtained, generalizing the quantum exponential relations and the

pentagon relations. The quantum Weyl element and Lusztig’s isomorphism in the posi-

tive setting are also studied in detail. Finally, we introduce a C ∗-algebraic version of the

split real quantum group in the language of multiplier Hopf algebras, and consequently

the definition of R is made rigorous as the canonical element of the Drinfeld’s double U

of certain multiplier Hopf algebra Ub. Moreover, a ribbon structure is introduced for an

extension of U.

1 Introduction

In this paper, we construct the universal R operator for the positive representations

of split real quantum groups Uqq̃(gR), generalizing the formula of the R operator in

the case of Uqq̃(sl(2, R)) by Faddeev [7], Kashaev [14], and Bytsko–Teschner [1], as well

as the universal R matrix computed independently by Kirillov–Reshetikhin [16] and
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Positive Representations of Split Real Quantum Groups: The Universal R Operator 241

Levendorskiı̆–Soibelman [19] for compact quantum group Uq(g) associated to simple Lie

algebra g of all type.

The notion of the positive principal series representations, or simply positive

representations, was introduced in [9] as a new research program devoted to the rep-

resentation theory of split real quantum groups Uqq̃(gR). It uses the concept of modular

double for quantum groups [6, 7], and has been studied for Uqq̃(sl(2, R)) by Teschner et al.

[1, 22, 23]. Explicit construction of the positive representations Pλ of Uqq̃(gR) associated

to a simple Lie algebra g has been obtained for the simply laced case in [11] and non-

simply laced case in [12], where the generators of the quantum groups are realized by

positive essentially self-adjoint operators. Furthermore, the so-called transcendental

relations of the (rescaled) generators:

ẽi = e
1

b2
i

i , f̃i = f
1

b2
i

i , K̃i = K
1

b2
i

i (1.1)

give the self-duality between different parts of the modular double, while in the non-

simply laced case, new explicit analytic relations between the quantum group and its

Langland’s dual have been observed [12].

Motivated by the detailed study in the case of Uqq̃(sl(2, R)) by Teschner et al.,

a natural problem is to find the universal R matrix so that it gives a braiding of the

positive representations Pλ of the split real quantum groups Uqq̃(gR). Since positive rep-

resentations are infinite-dimensional, instead of acting by a “matrix”, a natural setting

will be realizing R as a unitary operator acting on Pλ1 ⊗ Pλ2 such that the usual proper-

ties are satisfied:

(1) Braiding relation:

Δ′(X)R := (σ ◦Δ)(X)R= RΔ(X), σ (x⊗ y)= y⊗ x. (1.2)

(2) Quasi-triangularity:

(Δ⊗ id)(R)= R13 R23, (1.3)

(id⊗Δ)(R)= R13 R12. (1.4)

Here the coproduct Δ acts on R in a natural way on the generators, and we have also

used the standard leg notation. These together imply the Yang–Baxter equation

R12 R13 R23 = R23 R13 R12. (1.5)
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242 I. C.-H. Ip

The expression of R in the case of Uqq̃(sl(2, R)) is particularly simple, and is

given by

R= q
H⊗H

4 gb(e⊗ f)q
H⊗H

4 , (1.6)

where

E = i

q − q−1
e, F = i

q − q−1
f, K = qH (1.7)

are the usual generators, and gb(x) is the remarkable quantum dilogarithm function,

central to the study of split real quantum groups. See also [1] for a discussion of the

“universal” aspect of this operator.

On the other hand, the universal R matrix in the compact case is given explicitly

by products of the form

Q
1
2

∏
α

Expq−2((1− q−2)Eα ⊗ Fα)Q
1
2 , (1.8)

where Q= q
∑

(d·A−1)i j Hi⊗Hj with d such that dA is the symmetrized Cartan matrix, and

q corresponds to the short root. Here, Expq(x) is the quantum exponential function,

and Eα are the root vectors of g, given by the Lusztig’s isomorphism Tk on the simple

root vectors, which can be written as certain composition of q-commutators, and play a

crucial role in the theory of Lusztig’s canonical basis [21].

Therefore, a natural proposal will be replacing the expression (1.8) by

Q
1
2

∏
α

gb(eα ⊗ fα)Q
1
2 , (1.9)

thus generalizing both equations. More precisely, by absorbing d into the definition of

qi (cf. Definition 2.1), we have the following Main Theorem:

Main Theorem. Let gR be the split real form of a simple Lie algebra g. Let w0 = si1si2 . . . siN

be a reduced expression of the longest element of the Weyl group. Then the univer-

sal R operator for the positive representations of Uqq̃(gR) acting on Pλ1 ⊗ Pλ2 � L2(RN)⊗
L2(RN) is a unitary operator given by

R=
∏
i j

q
1
2 (A−1)i j Hi⊗Hj

i

N∏
k=1

gb(eαk ⊗ fαk)
∏
i j

q
1
2 (A−1)i j Hi⊗Hj

i , (1.10)

where eαk := Ti1 Ti2 . . . Tik−1eik are given by the Lusztig’s isomorphism in Theorem 4.9,

similarly for fαk. The product is such that the term k= 1 appears on the rightmost

position. �
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Positive Representations of Split Real Quantum Groups: The Universal R Operator 243

In particular, by the properties of the transcendental relations [11, 12] as well as

the self-duality of gb(x), the universal R operator simultaneously serves as an R operator

for the modular double counterpart.

The main difficulty lies in the fact that, in order for the expression (1.10) to be

well-defined, we need both eα and fα to be positive essentially self-adjoint, so that we

can apply functional calculus. Following the approach by Kirillov and Reshetikhin [16]

and Levendorskiĭ and Soibelman [19], the main technical result is that these nonsim-

ple basis can actually be obtained by conjugations on the generators by means of the

quantum Weyl elements wi, which is unitary in the setting of positive representations

(cf. Corollary 4.10).

Theorem 1.1. The operators eαk and fαk corresponding to nonsimple roots are positive

essentially self-adjoint under the positive representations, and satisfy the transcenden-

tal relations. �

Because of the nice properties enjoyed by the rescaled generators ei and fi, we

find it instructive throughout the paper to stick with these variables rather than the

original Ei and Fi as defined in (1.7).

Another difficulty lies in the fact that since the representations are infinite-

dimensional, we can no longer work with formal power series, and the usual Drinfeld’s

double construction trick does not really work anymore. Instead, using hard tech-

nical analysis, we discover explicitly certain (considerably new) functional relations

(cf. Proposition 3.1–3.3) of the quantum dilogarithm function gb(x), and prove directly

the braiding relations and the quasi-triangular relations of the R operator.

In order to compute the quantum Weyl elements, we have to compute the branch-

ing rules for Uqq̃(sl(2, R))⊂ Uqq̃(gR). It turns out that the branching rules are particularly

simple, and remarkably they resemble both the decomposition of the tensor product

representation Pα ⊗ Pβ (cf. [23]) and the Peter–Weyl-type decomposition of L2(SL+q (2, R))

(cf. [10]) with exactly the same Plancherel measure. (cf. Theorem 4.7).

Theorem 1.2. Fix any positive representation Pλ � L2(RN) of Uqq̃(gR). Restricting to a

representation of Uqq̃(sl(2, R))⊂ Uqq̃(gR) corresponding to the simple root αi, we have the

following unitary equivalence:

Pλ � L2(RN−2)⊗
∫

R+
Pγ dμ(γ ), (1.11)
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244 I. C.-H. Ip

where Pγ is the positive representation of Uqq̃(sl(2, R)) with parameter γ ∈R+, and

dμ(γ )= |Sbi (Qi + 2γ )|2 dγ . �

Furthermore, we also encounter the calculation of the ribbon element v, and the

element u which exists for any (regular) quasi-triangular Hopf algebra. Therefore, it is

strongly suggested that there is an underlying algebraic structure enveloping all the

calculations so far. In particular, the expression for the universal R operator suggests

that it is a canonical element of certain algebra with a “continuous basis”, very similar

to the analysis that has been done for the quantum plane in our previous work [10].

Therefore, we proceed to construct the split real quantum group in the C ∗-algebraic

setting, and show that in fact the satisfactory answer lies in the language of a multiplier

Hopf algebra, introduced by van Daele [26]. Consequently, all the calculations made so

far are rigorously defined and simplified by the following (cf. Corollary 6.15):

Theorem 1.3. The universal R operator from the Main Theorem can be considered as

(the projection of) the canonical element of the Drinfeld’s double (cf. [3, 4]) D(Ub) of the

multiplier Hopf algebraic version of the Borel subalgebra Ub. �

Finally, we remark that the ribbon element v calculated are also of certain inter-

est, since the expression involves the number Q= b+ b−1, which implies that there is

no classical limit as b→ 0. Hence, this ribbon element differs from the one usually con-

sidered in compact quantum group, and it is well known that the ribbon structure of

Hopf algebra is needed to construct quantum topological invariant by the Reshetikhin–

Turaev construction [24, 25]. Therefore, this may serve as evidence for the possibility of

constructing new classes of topological invariants.

The paper is organized as follows. Section 2 serves as the technical backbone of

the paper. We fix the notation by recalling the definition of Uq(g) associated to simple Lie

algebra g of general type. Next, we recall the main properties and construction of the

positive representations considered in [9, 11, 12], and write down explicitly a particular

expression for the rank=2 case. Since the paper involves a lot of technical computations,

we review in detail the definition and properties of the quantum dilogarithm function

Gb and its variant gb, which summarizes old and new results from [1, 10, 12] that is

needed in this paper. Finally, we recall the construction of the universal R matrices by

[16, 19] in the compact quantum group case, as well as the universal R operator by [1] in

the case of Uqq̃(sl(2, R)).

In Section 3, we extend the quantum exponential relations and pentagon rela-

tions of gb(x) to more generalized setting involving certain q-commutators. These new
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Positive Representations of Split Real Quantum Groups: The Universal R Operator 245

functional relations are what we needed to prove the properties of the R operator. In

Section 4, we proceed to construct the quantum Weyl elements so that conjugations by

them realize Lusztig’s isomorphism. It involves calculating the ribbon element, and the

branching rules of Uqq̃(sl(2, R))⊂ Uqq̃(gR). In Section 5, we state the main theorem about

the universal R operator, and prove the braiding relations and quasi-triangularity in the

simply laced case, while we only give several remarks on the nonsimply laced case to

avoid getting too technical. Finally, in Section 6, we introduce the notion of a multiplier

Hopf algebra, and by finding certain Hopf pairing, we show that the universal R operator

can actually be regarded as the canonical element of a Drinfeld’s double construction of

the Borel subalgebra as a multiplier Hopf algebra, and we introduce a ribbon structure

in the extension of the split real quantum group.

2 Preliminaries

Throughout the paper, we will fix once and for all q= eπib2
with i=√−1, 0 < b2 < 1 and

b2 ∈R \Q. We also denote by Q= b+ b−1.

2.1 Definition of Uq(g)

In order to fix the convention we use throughout the paper, we recall the definition of

the quantum group Uq(gR), where g is of general type [2]. Let I = {1, 2, . . . , n} denote the

set of nodes of the Dynkin diagram of g where n= rank(g).

Definition 2.1. Let (−,−) be the inner product of the root lattice. Let αi, i ∈ I be the

positive simple roots, and we define

aij = 2(αi, α j)

(αi, αi)
, (2.1)

qi := q
1
2 (αi ,αi) := eπib2

i , (2.2)

where A= (aij) is the Cartan matrix. We will let α1 be the short root in type Bn and the

long root in type Cn, F4 and G2.

We choose

1

2
(αi, αi)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 i is long root or in the simply laced case,

1
2 i is short root in type B, C , F,

1
3 i is short root in type G2,

(2.3)

and (αi, α j)=−1 when i, j are adjacent in the Dynkin diagram.
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246 I. C.-H. Ip

Therefore in the case when g is of type Bn, Cn and F4, if we define bl = b, and

bs = b√
2

we have the following normalization:

qi =
⎧⎨
⎩eπib2

l = q i is long root,

eπib2
s = q

1
2 i is short root.

(2.4)

In the case when g is of type G2, we define bl = b, and bs = b√
3
, and we have the following

normalization:

qi =
⎧⎨
⎩eπib2

l = q i is long root,

eπib2
s = q

1
3 i is short root.

(2.5)

�

Definition 2.2. Let A= (aij) denote the Cartan matrix. Then Uq(g) with q= eπib2
l is the

algebra generated by Ei, Fi and K±1
i , i ∈ I subject to the following relations:

Ki E j = q
aij

i E j Ki, (2.6)

Ki F j = q
−aij

i F j Ki, (2.7)

[Ei, F j]= δi j
Ki − K−1

i

qi − q−1
i

, (2.8)

together with the Serre relations for i �= j:

1−aij∑
k=0

(−1)k [1− aij]qi !

[1− aij − k]qi ![k]qi !
Ek

i E j E
1−aij−k
i = 0, (2.9)

1−aij∑
k=0

(−1)k [1− aij]qi !

[1− aij − k]qi ![k]qi !
F k

i F j F
1−aij−k
i = 0, (2.10)

where [k]q = qk−q−k

q−q−1 . �

To deal with operator representations, we also define Hi so that Ki = qHi
i , and it

will be convenient to adjoin K
1
2

i , such that the Hopf algebra structure of Uq(g) is given by

Δ(Ei)= K
− 1

2
i ⊗ Ei + Ei ⊗ K

1
2

i , (2.11)

Δ(Fi)= K
− 1

2
i ⊗ Fi + Fi ⊗ K

1
2

i , (2.12)
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Δ(Ki)= Ki ⊗ Ki, (2.13)

ε(Ei)= ε(Fi)= 0, ε(Ki)= 1, (2.14)

S(Ei)=−qi Ei, S(Fi)=−q−1
i Fi, S(Ki)= K−1

i . (2.15)

We define Uq(gR) to be the real form of Uq(g) induced by the star structure

E∗i = Ei, F ∗i = Fi, K∗i = Ki. (2.16)

Finally, according to the results of [11, 12], we define the modular double Uqq̃(gR) to be

Uqq̃(gR) := Uq(gR)⊗ Uq̃(gR) g is simply laced, (2.17)

Uqq̃(gR) := Uq(gR)⊗ Uq̃(
LgR) otherwise, (2.18)

where q̃= eπib−2
s , and LgR is the Langland’s dual of gR obtained by interchanging the long

roots and short roots of gR.

2.2 Positive representations of Uqq̃(gR)

In [9, 11, 12], a special class of representations for Uqq̃(gR), called the positive repre-

sentation, is defined. The generators of the quantum groups are realized by positive

essentially self-adjoint operators, and also satisfy the so-called transcendental rela-

tions, relating the quantum group with its modular double counterpart. More precisely,

we have

Theorem 2.3. Let

ei := 2 sin(πb2
i )Ei, fi := 2 sin(πb2

i )Fi. (2.19)

Note that 2 sin(πb2
i )= ( i

qi−q−1
i

)−1 > 0. Then there exists a representation Pλ of Uqq̃(gR)

parametrized by the R+-span of the cone of positive weights λ ∈ P+
R

, or equivalently by

λ ∈Rn
+ where n= rank(g), such that

(1) The generators ei, fi, and Ki are represented by positive essentially self-

adjoint operators acting on L2(Rl(w0)), where l(w0) is the length of the longest

element w0 ∈W of the Weyl group.
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248 I. C.-H. Ip

(2) Define the transcendental generators:

ẽi := e
1

b2
i

i , f̃i := f
1

b2
i

i , K̃i := K
1

b2
i

i . (2.20)

Then

(a) if g is simply laced, the generators ẽi, f̃i, and K̃i are obtained by

replacing b with b−1 in the representations of the generators ei, fi,

and Ki.

(b) If g is of type B, C , F, and G, then the generators Ẽi, F̃i, and K̃i

with

ẽi := 2 sin(πb−2
i )Ẽi, f̃i := 2 sin(πb−2

i )F̃i (2.21)

generate Uq̃(
LgR) defined in the previous section.

(3) The generators ei, fi, Ki and ẽi, f̃i, K̃i commute weakly up to a sign. �

The positive representations are constructed for each reduced expression w0 ∈W

of the longest element of the Weyl group, and representations corresponding to different

reduced expressions are unitary equivalent.

Definition 2.4. Fix a reduced expression of w0 = si1 . . . siN . Let the coordinates of L2(RN)

be denoted by {uk
i } so that i is the corresponding root index, and k denotes the sequence

this root is appearing in w0 from the right. Also denote by {v j}Nj=1 the same set of coordi-

nates counting from the left, v(i, k) the index such that uk
i = vv(i,k), and r(k) the root index

corresponding to vk. �

Example 2.5. The coordinates of L2(R6) for A3 corresponding to w0 = s3s2s1s3s2s3 is

given by

(u3
3, u2

2, u1
1, u2

3, u1
2, u1

3)= (v1, v2, v3, v4, v5, v6). �

Definition 2.6. Denote by

[us + ul ]e(−ps − pl) := eπbs(−us−2ps)+πbl (−ul−2pl ) + eπbs(us−2ps)+πbl (ul−2pl ), (2.22)

where us (resp. ul ) is a linear combination of the variables corresponding to short roots

(resp. long roots). The parameters λi are also considered in both cases. Similarly ps (resp.

pl ) are linear combinations of the pshifting of the short roots (resp. long roots) variables.

This applies to all simple g, with the convention given in Definition 2.1. �
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Theorem 2.7 ([11, 12]). For a fixed reduced expression of w0, the positive representation

Pλ is given by

fi =
n∑

k=1

⎡
⎣− v(i,k)−1∑

j=1

ai,r( j)v j − uk
i − 2λi

⎤
⎦ e(pk

i ), (2.23)

Ki = e−π(
∑l(w0)

k=1 ai,r(k)br(k)vk+2biλi), (2.24)

and by taking w0 =w′si so that the simple reflection for root i appears on the right, the

action of ei is given by

ei = [u1
i ]e(−p1

i ). (2.25)

�

In this paper, it is instructive to recall the explicit expression in the case of ranks

1 and 2. For details of the construction and the other cases please refer to [11, 12].

Proposition 2.8 ([1, 23]). The positive representation Pλ of Uqq̃(sl(2, R)) is given by

e= [u− λ]e(−p)= eπb(−u+λ−2p) + eπb(u−λ−2p),

f= [−u− λ]e(p)= eπb(u+λ+2p) + eπb(−u−λ+2p),

K = e−2πbu.

(Note that it is unitary equivalent to the canonical form (2.23)–(2.25) by u 
→u+ λ.) �

Proposition 2.9 ([11]). The positive representation Pλ of Uqq̃(sl(3, R)) with param-

eters λ= (λ1, λ2), corresponding to the reduced expression w0 = s2s1s2, acting on

f(u, v, w) ∈ L2(R3), is given by

e1 = [v − w]e(−pv)+ [u]e(−pv + pw − pu),

e2 = [w]e(−pw),

f1 = [−v + u− 2λ1]e(pv),

f2 = [−2u+ v − w − 2λ2]e(pw)+ [−u− 2λ2]e(pu),

K1 = e−πb(−u+2v−w+2λ1),

K2 = e−πb(2u−v+2w+2λ2). �
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250 I. C.-H. Ip

Proposition 2.10 ([12]). The positive representation Pλ of Uqq̃(gR) with parameters

λ= (λ1, λ2), where gR is of type B2, corresponding to the reduced expression w0 = s1s2s1s2,

acting on f(t, u, v, w) ∈ L2(R4), is given by

e1 = [t]e(−pt − pu+ pw)+ [u− v]e(−pu− pv + pw)+ [v − w]e(−pv),

e2 = [w]e(−pw),

f1 = [2λ1 − t]e(pt)+ [2λ1 − 2t+ u− v]e(pv),

f2 = [2λ2 + 2t− u]e(pu)+ [2λ2 + 2t− 2u+ 2v − w]e(pw),

K1 = eπbs(2λ1−2t−2v) eπb(u+w),

K2 = eπb(2λ2−2u−2w) eπbs(2t+2v).

In this case (cf. Definition 2.6), us are linear combinations of {t, v}, while ul are linear

combinations of {u, w}. Similarly for ps and pl . �

We will omit the case of type G2 for simplicity.

2.3 Quantum dilogarithm Gb(x) and gb(x)

First introduced by Faddeev [6, 7], (See also [8]), the quantum dilogarithm Gb(x) and its

variants gb(x) play a crucial role in the study of positive representations of split real

quantum groups, and also appear in many other areas of mathematics and physics. In

this subsection, let us recall the definition and some properties of the quantum diloga-

rithm functions [1, 10, 23] that is needed in the calculations in this paper.

Definition 2.11. The quantum dilogarithm function Gb(x) is defined on 0≤Re(z)≤ Q by

Gb(x)= ζ̄b exp
(
−

∫
Ω

eπtz

(eπbt − 1)(eπb−1t − 1)

dt

t

)
, (2.26)

where

ζb= e
πi
2 ( b2+b−2

6 + 1
2 ), (2.27)

and the contour goes along R with a small semicircle going above the pole at t= 0.

This can be extended meromorphically to the whole complex plane with poles at

x=−nb−mb−1 and zeros at x= Q+ nb+mb−1, for n, m ∈Z≥0. �
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The quantum dilogarithm Gb(x) satisfies the following properties:

Proposition 2.12. Self-duality:

Gb(x)=Gb−1(x); (2.28)

Functional equations:

Gb(x+ b±1)= (1− e2πib±1x)Gb(x); (2.29)

Reflection property:

Gb(x)Gb(Q− x)= eπix(x−Q); (2.30)

Complex conjugation:

Gb(x)= 1

Gb(Q− x̄)
, (2.31)

in particular ∣∣∣∣Gb

(
Q

2
+ ix

)∣∣∣∣= 1 for x∈R. (2.32)

Asymptotic properties:

Gb(x)∼
⎧⎨
⎩ζ̄b Im(x)→+∞,

ζbeπix(x−Q) Im(x)→−∞.
(2.33)

�

Lemma 2.13 (q-binomial theorem). For positive self-adjoint variables U, V with

U V = q2VU , we have:

(U + V)ib−1t=
∫

C

(
it

iτ

)
b

U ib−1(t−τ)V ib−1τ dτ, (2.34)

where the q-beta function (or q-binomial coefficient) is given by

(
t

τ

)
b

= Gb(−τ)Gb(τ − t)

Gb(−t)
, (2.35)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2015/1/240/667413 by Tsinghua U
niversity Library user on 20 Septem

ber 2019



252 I. C.-H. Ip

and C is the contour along R that goes above the pole at τ = 0 and below the pole at

τ = t. �

Lemma 2.14 (tau-beta theorem). We have

∫
C

e−2πτβ Gb(α + iτ)

Gb(Q+ iτ)
dτ = Gb(α)Gb(β)

Gb(α + β)
, (2.36)

where the contour C goes along R and goes above the poles of Gb(Q+ iτ) and below

those of Gb(α + iτ). By the asymptotic properties of Gb, the integral converges for

Re(β) > 0, Re(α + β) < Q. �

Generalizing the delta distribution results from [10, Corollary 3.13], we have the

following proposition:

Proposition 2.15. For f(x) entirely analytic and rapidly decreasing (faster than any

exponential) along the real direction, we have

lim
ε→0

∫
R

Gb(ε + ix−mb− nb−1)Gb(Q+mb+ nb−1 − 2ε)

Gb(Q+ ix− ε)
f(x) dx (2.37)

=
∑

kb+lb−1<mb+nb−1

k,l>0

rkl f(−i(kb+ lb−1)), (2.38)

where the constants rkl is the residue of the integrand at −i(kb+ lb−1). �

Finally, we will need the new integral transformation obtained in [10]:

Proposition 2.16. The 3–2 relation is given by

∫
C

Gb(α + iτ)Gb(β − iτ)Gb(γ − iτ) e−2πi(β−iτ)(γ−iτ) dτ =Gb(α + γ )Gb(α + β), (2.39)

where the contour goes along R and separates the poles for iτ and−iτ . By the asymptotic

properties for Gb, the integral converges for Re(α − β − γ ) < Q
2 . �

We will also need another important variant of the quantum dilogarithm.

Definition 2.17. The function gb(x) is defined by

gb(x)= ζ̄b

Gb(
Q
2 + log x

2πib )
, (2.40)

where log takes the principal branch of x. �
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Lemma 2.18 ([1, (3.31), (3.32)]). We have the following Fourier transformation formula:

∫
R+i0

e−πit2

Gb(Q+ it)
Xib−1t dt= gb(X), (2.41)

∫
R+i0

e−π Qt

Gb(Q+ it)
Xib−1t dt= g∗b(X), (2.42)

where X is a positive operator and the contour goes above the pole at t= 0. �

We will need the following properties of gb(x).

Lemma 2.19. By (2.32), |gb(x)| = 1 when x∈R+, hence gb(X) is a unitary operator for any

positive operator X. Furthermore, by (2.28) and Lemma 2.18, we have the self-duality of

gb(x) given by

gb(X)= gb−1(X
1

b2 ). (2.43)

�

Lemma 2.20. If U V = q2VU where U and V are positive self-adjoint operators, then

gb(U )gb(V)= gb(U + V), (2.44)

gb(U )∗Vgb(U )= q−1U V + V, (2.45)

gb(V)Ugb(V)∗ =U + q−1U V. (2.46)

Note that (2.44) and (2.45) together imply the pentagon relation

gb(V)gb(U )= gb(U )gb(q
−1U V)gb(V). (2.47)

�

If U V = q4VU , then we apply the lemma twice and obtain

gb(U )∗Vgb(U )= V + [2]qq2VU + q4VU2, (2.48)

gb(V)Ugb(V)∗ =U + [2]qq−2U V + q−4U V2. (2.49)

where [2]q = q + q−1.
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As a consequence of the above lemma, we also have the following:

Lemma 2.21 ([12, 27]). If U V = q2VU where U and V are positive essentially self-adjoint

operators, then U + V is positive essentially self-adjoint, and

(U + V)
1

b2 =U
1

b2 + V
1

b2 . (2.50)

�

2.4 Universal R matrices for Uq(g)

For q := eh/2, it is known [5, 13] that for the quantum group Uh(g) as a C[[h]]-algebra

completed in the h-adic topology, one can associate certain canonical, invertible element

R in an appropriate completion of (Uh(g))⊗2 such that the braiding relation and quasi-

triangularity (1.2)–(1.4) are satisfied.

For the quantum groups Uh(g) associated to the simple Lie algebra g, an explicit

multiplicative formula has been computed independently in [16, 19], where the central

ingredient involves the quantum Weyl group which induces Lusztig’s isomorphism Ti.

Explicitly, let

[U, V ]q := qU V − q−1VU (2.51)

be the q-commutator.

Definition 2.22 ([16, 20]). Define

Ti(Kj)= Kj K
−aij

i , Ti(Ei)=−Fi K
−1
i , Ti(Fi)=−Ki Ei, (2.52)

Ti(E j)= (−1)aij
1

[−aij]qi !

[[
Ei, . . . [Ei, E j]

q
aij
2

i

]
q

aij+2
2

i

· · ·
]

q
−aij−2

2
i

, (2.53)

Ti(F j)= 1

[−aij]qi !

[[
Fi, . . . [Fi, F j]

q
aij
2

i

]
q

aij+2
2

i

· · ·
]

q
−aij−2

2
i

. (2.54)

�

Note that we have slightly modified the notation and scaling used in [16].

Proposition 2.23 ([20, 21]). The operators Ti satisfy the Weyl group relations:

TiTjTi · · ·︸ ︷︷ ︸
−a′i j+2

= TjTiTj · · ·︸ ︷︷ ︸
−a′i j+2

, (2.55)
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where −a′i j =max{−aij,−aji}. Furthermore, for αi, α j simple roots, and an element

w= si1 · · · sik ∈W such that w(αi)= α j, we have

Ti1 · · · Tik(Xi)= X j (2.56)

for X = E, F, K. �

Definition 2.24 ([18]). Define the (upper) quantum exponential function as

Expq(x)=
∞∑

k=0

zk

�k�q!
, (2.57)

where �k�q = 1−qk

1−q , so that

�k�q2 != [k]q!q
k(k−1)

2 . (2.58)

�

Theorem 2.25 ([16, 19]). Let w0 = si1 · · · siN be a reduced expression of the longest element

of the Weyl group. Then the universal R matrix is given by

R=Q
1
2 R̂(iN |si1 · · · siN−1) · · · R̂(i2|si1)R̂(i1)Q

1
2 , (2.59)

where

Q := q
∑n

i, j=1(d·A−1)i j Hi⊗Hj , (2.60)

d is such that di Aij is the symmetrized Cartan matrix, q= qs, and

R̂(i) :=Expq−2
i

((1− q−2
i )Ei ⊗ Fi), (2.61)

R̂(il |si1 · · · sil−1) := (T−1
i1 ⊗ T−1

i1 ) · · · (T−1
il−1
⊗ T−1

il−1
)R̂(i1). (2.62)

�

In both studies [16, 19], the expression for the R matrix is obtained from the

canonical element of the Drinfeld double of Uh(b+) generated by Ei’s and Hi’s. The

Lusztig’s isomorphism gives the ordered basis of Uh(b+), and there exists a dual pair-

ing between Uh(b+) and Uh(b−) of this basis involving the quantum factorials [k]q!, hence

the expression (2.61).
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2.5 Universal R operator for Uqq̃(sl(2, R))

In the case of Uqq̃(sl(2, R)), an expression of the R operator is computed in [1]. It is given

formally by

R= q
H⊗H

4 gb(e⊗ f)q
H⊗H

4 , (2.63)

where we recall

e := 2 sin(πb2)E, f := 2 sin(πb2)F, K := qH . (2.64)

The operator R acts naturally on Pλ1 ⊗ Pλ2 by means of the positive representation. Note

that the remarkable fact about this expression is the positivity of the argument e⊗ f

inside the quantum dilogarithm gb which makes the expression a well-defined operator.

In fact it is clear that R acts as a unitary operator by Lemma 2.19 of the properties of

gb(x). Furthermore, by the transcendental relations (2.20) and self-duality (2.43) of gb,

the expression (2.63) is invariant under the change of b←→ b−1:

R= R̃ := q̃
H̃⊗H̃

4 gb−1(ẽ⊗ f̃)q̃
H̃⊗H̃

4 . (2.65)

Hence in fact it simultaneously serves as the R operator of the modular double

Uqq̃(sl(2, R)).

The properties as an R operator imply certain functional equations for the quan-

tum dilogarithm gb. While the quasi-triangular relations (1.3)–(1.4) are equivalent to

(2.44), the braiding relation

Δ′(X)R= RΔ(X)

implies the following:

Lemma 2.26. We have

(e⊗ K−1 + 1⊗ e)gb(e⊗ f)= gb(e⊗ f)(e⊗ K + 1⊗ e), (2.66)

and similarly

(f⊗ 1+ K ⊗ f)gb(e⊗ f)= gb(e⊗ f)(f⊗ 1+ K−1 ⊗ f). (2.67)

�
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Proof. By definition

Δ′(e)R= RΔ(e)

⇐⇒ Δ′(e)q
1
4 H⊗H gb(e⊗ f)q

1
4 H⊗H = q

1
4 H⊗H gb(e⊗ f)q

1
4 H⊗HΔ(e)

⇐⇒ (e⊗ K−1 + 1⊗ e)gb(e⊗ f)= gb(e⊗ f)(e⊗ K + 1⊗ e) (2.68)

and similarly for the other statement using Δ(f). �

3 Generalized Pentagon Relations for gb(x)

It turns out that the exponential and pentagon relations (2.44)–(2.47) are not enough

to show the properties of the universal R matrix. In this section, following techniques

from [18], we derive more general functional equations for gb(x) which generalizes the

pentagon relation as well as the quantum exponential relation.

3.1 Simply laced case

Proposition 3.1. Let U and V be positive self-adjoint operators such that c := U V−VU
q−q−1 is

also positive self-adjoint, and Uc= q2cU, Vc= q−2cV . Then

gb(V)Ug∗b(V)=U + c, (3.1)

g∗b(U )Vgb(U )= c+ V, (3.2)

which also implies

gb(V)gb(U )= gb(U )gb(c)gb(V). (3.3)

�

Note that if U V = q2VU , these reduce to the usual pentagon relations

(2.45)–(2.47).

Proof. By induction, we calculate formally

VU =U V − (q − q−1)c,

VnU = Vn−1U V − (q − q−1)Vn−1c
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= Vn−2U V2 − (q − q−1)Vn−2cV + (q − q−1)Vn−1c

= · · ·

=U Vn− (q − q−1)(q2−2n+ q4−2n+ · · · + 1)cVn−1

=U Vn− q(1− q−2n)cVn−1

=U Vn+ q(1− q2n)cq−2nVn−1.

Hence by virtue of functional calculus, we can replace the power by complex powers

ib−1t, and apply the integration formula for gb(x). We obtain

gb(V)U =Ugb(V)+ qc
∫

R+i0
(1− q2ib−1t)q−2ib−1t e−πit2 V ib−1t−1

Gb(Q+ it)
dt

=Ugb(V)+ qc
∫

R+i0
(1− e−2πb(t−ib)) e2πb(t−ib) e−πi(t−ib)2 V ib−1t

Gb(Q+ it+ b)
dt

=Ugb(V)+ qc
∫

R+i0

(1− e−2πb(t−ib)) e2πbtq−2 e−2πbtq

(1− e2πib(Q+it))
e−πit2 V ib−1t

Gb(Q+ it)
dt

= (U + c)gb(V).

Hence

gb(V)Ug∗b(V)=U + c

and

gb(V)gb(U )g∗b(V)= gb(U + c)= gb(U )gb(c).

Similarly, we also have

g∗b(U )Vgb(U )= c+ V. �

3.2 Nonsimply laced case

In the nonsimply laced case, more q-commutators are involved. By applying the same

techniques in the previous subsections repeatedly, we have the following relations.

Proposition 3.2. Let U and V be positive operators and define c and d to be

c := [U, V ]

q − q−1
, d := q−1cV − qVc

q2 − q−2
,
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such that c and d are positive self-adjoint, and the following relations hold:

Uc= q4cU, cd= q4dc, dV = q4Vd.

Then we have

gb(V)Ug∗b(V)=U + c+ d. (3.4)

Similarly, we have

g∗b(U )Vgb(U )=d′ + c+ V, (3.5)

where

d′ := q−1Uc− qcU

q2 − q−2
,

with

Vc= q−4cV, cd ′ = q−4d ′c, d ′U = q−4Ud ′.

Note that when U V = q4VU , these reduce to the relations (2.48)–(2.49). �

Even more generally for the type G2 case, by defining e := q−2dV−q2Vd
q3−q−3 such that e

is positive self-adjoint and

Uc= q6cU, cd= q6dc, de= q6ed, eV = q6Ve,

we have

gb(V)Ug∗b(V)=U + c+ d+ e.

Similar relations also hold for the other q-commutators d′ and e′.

Finally, we have the following useful functional relations generalizing the

q-exponential relation.

Proposition 3.3. Let U, c, d, d′ be as in Proposition 3.2. Let q= eπib2
s and q2 = eπib2

l . Then

we have

gbs(U + c)= gbs(U )gbl (d
′)gbs(c), (3.6)

gbl (U + c+ d)= gbl (U )gbs(c)gbl (d). (3.7)

�
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Using Propositions 3.1 and 3.2, these two relations are related by the transcen-

dental relations in virtue with the approach in [12], where the long roots and short roots

are interchanged, and using the self-duality (2.43) of gb(x).

The functional relations in the case of compact quantum exponential function

using power series can be found in [17], where some of the generalized functional rela-

tions for type G2 case have been computed. We will leave the analogue of these func-

tional relations of gb(x) in the case of type G2 to the interested reader.

4 Quantum Weyl Element and Lusztig’s Isomorphism

The starting point of the present work is the observation of the positivity appearing

in the root vectors ei j corresponding to the nonsimple roots αi + α j. They are given by

composition of certain q-commutators of simple root generators ei and e j, and in turn is

given by the Lusztig’s isomorphism. Therefore to prove positivity, we show that Lusztig’s

isomorphism can actually be implemented by conjugations of certain elements wi, which

is known as the quantum Weyl elements. In the compact case this is done in [16, 19] by

means of semi-simplicity of Uq(sl2)-submodules in Uq(g)-modules. In the current paper,

we show that the wi can actually be implemented as a unitary operator, hence preserv-

ing positivity. The construction requires explicit calculation of the ribbon element u

and v in Section 4.2, as well as the branching rules of Uqq̃(sl(2, R))⊂ Uqq̃(gR) as positive

representations in Section 4.3 since we no longer have obvious semi-simplicity.

4.1 Positivity of ei j

It is well-known that the Lusztig’s isomorphism Ti defined in Definition 2.22 essentially

gives the generators of the canonical basis of Uq(g). In the present case of positive rep-

resentations, we also require the generators to be positive essentially self-adjoint.

In the simply laced case, we observe the following:

Proposition 4.1. Fix a positive representation Pλ. Then

ei j :=
[e j, ei]q 1

2

q − q−1
= q

1
2 e jei − q−

1
2 eie j

q − q−1
(4.1)

is positive essentially self-adjoint, and also satisfies the transcendental relations

ẽi j := e
1

b2

i j =
q̃

1
2 ẽ jẽi − q̃−

1
2 ẽiẽ j

q̃ − q̃−1
. (4.2)

�
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Proof. Without loss of generality, we can choose w0 =w′sjsisj. Then it suffices to look

at the representation in the case of type A2 given by Proposition 2.9. We obtain

ei j = e−πb(v−2w+2pv+2pw) + e−πb(v+2pv+2pw) (4.3)

+ e−πb(u−w+2pu+2pv) + e−πb(−u−w+2pu+2pv), (4.4)

which is evidently positive. Since each term q2 commute with the terms on its right,

by Lemma 2.21, the operator is essentially self-adjoint, and satisfy the transcendental

relation. �

We have similar observations in the nonsimply laced as well. Again it suffices to

consider rank 2 case.

Proposition 4.2. In general, define the operators

ei j = (−1)aij [[ei, . . . [ei, e j]
q

aij
2

i

]
q

aij+2
2

i

. . .]
q
−aij−2

2
i

−aij∏
k=1

(qk
i − q−k

i )−1. (4.5)

Then it is positive essentially self-adjoint, and satisfy the generalized transcendental

relations, where e
1

b2
i

i j is given by the same expression as ei j with all ei replaced by ẽi, qi

replaced by q̃i, and aij replaced by aji. �

Proof. These are calculated directly from the explicit expression of the positive rep-

resentations of type B2, G2 and also the transcendental relations using expressions of

type C2 given in [12]. �

We note that ei j = Ti(e j) up to some constant. Therefore, if we can show that Ti

are given by inner automorphism of some unitary element, then both positivity and

transcendental relations of the remaining generators in higher rank will be immediate.

This is achieved by the use of the quantum Weyl elements described in Section 4.4.

Finally, we define fi j with the exact same formula (4.5) with e replaced by f. Then

using the Weyl element w0 derived in Section 4.4 we see that it also satisfies all the

properties enjoyed by ei j.
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4.2 Calculation of the ribbon element u and v for Uqq̃(sl(2, R))

In this section, we restrict the attention to a fixed positive representation Pλ of

Uqq̃(sl(2, R)). Let the R operator be given by (2.63). Explicitly, it can be written as

R=Q
1
2

(∫
R+i0

e−πit2
eib−1t ⊗ fib−1t

Gb(Q+ it)
dt

)
Q

1
2 , (4.6)

where

Q= q
H⊗H

2 =
∞∑

n=0

(
πib2

2

)n
Hn⊗ Hn

n!
. (4.7)

We will write R informally as R=∑
k αk⊗ βk.

We wish to calculate the element

u=mop ◦ (1⊗ S)R=
∑

k

S(βk)αk, (4.8)

which is crucial in the analysis of quasi-triangular Hopf algebras. Here, we will first

calculate the expression formally using an extension of the antipode S. In Section 6, we

will then define u rigorously as an element in certain multiplier Hopf-* algebra.

From the expression of u, it means we need to calculate the action of fib−1teib−1t,

in other words we need to calculate the action of eib−1t and fib−1t under the positive repre-

sentation Pλ of Uqq̃(sl(2, R)). Furthermore we also need the actual effect of the antipode.

We introduce the expression

S(e)= eπibQe=−qe, S(f)= e−πibQf=−q−1f, S(H)=−H (4.9)

consistent with the usual definition, and define S on the complex powers by

S(eib−1t) := e−π Qteib−1t, S(fib−1t
) := eπ Qtfib−1t

. (4.10)

Again the definition is rigorous once we impose the setting of multiplier Hopf-* algebra

in Section 6.
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Lemma 4.3. The action of eib−1t and fib−1t on f(x) is given by

eib−1t · f(x)= eπi(x−λ)t e
−πit2

2
Gb(

Q
2 + ix− iλ)

Gb(
Q
2 + ix− iλ− it)

f(x− t), (4.11)

fib−1t · f(x)= eπi(x+λ)t e
πit2

2
Gb(

Q
2 + ix+ iλ+ it)

Gb(
Q
2 + ix+ iλ)

f(x+ t). (4.12)

Note that these actions are unitary transformations. �

Proof.

e= e−πbx+πbλ−2πbp+ eπbx−πbλ−2πbp

= g∗b(e
−2πb(x−λ)) eπbx−πbλ−2πbpgb(e

−2πb(x−λ))

= g∗b(e
−2πb(x−λ)) eπi( x2

2 −λx) e−2πbp e−πi( x2

2 −λx)gb(e
−2πb(x−λ)),

eib−1t · f(x)= g∗b(e
−2πb(x−λ)) eπi( x2

2 −λx) e−2πitp e−πi( x2

2 −λx)gb(e
−2πb(x−λ)) · f(x)

= g∗b(e
−2πb(x−λ)) eπi( x2

2 −λx) e−πi( (x−t)2

2 −λ(x−t))gb(e
−2πb(x−λ−t)) f(x− t)

= eπi(x−λ)t e
−πit2

2
gb(e−2πb(x−λ−t))

gb(e−2πb(x−λ))
f(x− t)

= eπi(x−λ)t e
−πit2

2
Gb(

Q
2 + ix− iλ)

Gb(
Q
2 + ix− iλ− it)

f(x− t).

Similarly,

f= e−πbx−πbλ+2πbp+ eπbx+πbλ+2πbp

= gb(e
−2πb(x+λ)) eπbx+πbλ+2πbpg∗b(e

−2πb(x+λ))

= gb(e
−2πb(x+λ)) e−πi( x2

2 +λx) e2πbp eπi( x2

2 +λx)g∗b(e
−2πb(x+λ)),

fib−1t · f(x)= gb(e
−2πb(x+λ)) e−πi( x2

2 +λx) e2πitp eπi( x2

2 +λx)g∗b(e
−2πb(x+λ)) · f(x)

= gb(e
−2πb(x+λ)) e−πi( x2

2 +λx) eπi( (x+t)2

2 +λ(x+t))g∗b(e
−2πb(x+λ+t)) f(x+ t)
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= eπi(x+λ)t e
πit2

2
gb(e−2πb(x+λ))

gb(e−2πb(x+λ+t))
f(x+ t)

= eπi(x+λ)t e
πit2

2
Gb(

Q
2 + ix+ iλ+ it)

Gb(
Q
2 + ix+ iλ)

f(x+ t). �

Hence combining, we have

fib−1teib−1t= eπi(x+λ)t e
πit2

2
Gb(

Q
2 + ix+ iλ+ it)

Gb(
Q
2 + ix+ iλ)

eπi(x+t−λ)t e
−πit2

2
Gb(

Q
2 + ix− iλ+ it)

Gb(
Q
2 + ix− iλ)

f(x)

= eπit(2x+t) Gb(
Q
2 + ix+ iλ+ it)

Gb(
Q
2 + ix+ iλ)

Gb(
Q
2 + ix− iλ+ it)

Gb(
Q
2 + ix− iλ)

f(x).

Theorem 4.4. The element u=∑
S(βk)αk=mop(1⊗ S)R is given by

u= e2πi(λ2+ Q2

4 )K
Q
b . (4.13)

�

Proof. First note that He= eH + 2e implies

Hne= e(H + 2)n

Hneib−1t= eib−1t(H + 2ib−1t)n.

Similarly

Hnfib−1t= fib−1t
(H − 2ib−1t)n.

Note that H commutes with fib−1teib−1t.

Hence using the “continuous basis” (4.6)–(4.7)

(Hn⊗ Hn)(eib−1t ⊗ f ib−1t)(Hm ⊗ Hm)= Hn eib−1tHm ⊗ Hn f ib−1tHm,

mop(1⊗ S)= S(Hnfib−1tHm)Hneib−1tHm

= (−1)m(−1)nHmeπ Qtfib−1tHnHneib−1tHm

= (−1)m(−1)nHmeπ Qtfib−1teib−1t(H + 2ib−1t)2nHm

= eπ Qtfib−1teib−1t(−H2)m(−H2 − 4ib−1tH + 4b−2t2)n.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2015/1/240/667413 by Tsinghua U
niversity Library user on 20 Septem

ber 2019



Positive Representations of Split Real Quantum Groups: The Universal R Operator 265

Hence

mop(1⊗ S)R=
(∫

R+i0

e−πit2+π Qt

Gb(Q+ it)
fib−1teib−1tK−ib−1t eπit2

dt

)
q−

H2

2

=
(∫

R+i0

eπ Qt

Gb(Q+ it)
fib−1teib−1tK−ib−1t dt

)
q−

H2

2 ,

and the action on f(x) is given by (K = e−2πbx= q2ib−1x, so H = 2ib−1x):

u=
∫

R+i0
e−(πib2)(2ib−1x)2/2 · e−2πbx(−ib−1t) eπit(2x+t)

· Gb(
Q
2 + ix+ iλ+ it)

Gb(
Q
2 + ix+ iλ)

Gb(
Q
2 + ix− iλ+ it)

Gb(
Q
2 + ix− iλ)

eπ Qt

Gb(Q+ it)
dt

=
∫

R+i0 e2πi(x+t)2+2π QtGb(
Q
2 + ix+ iλ+ it)Gb(

Q
2 + ix− iλ+ it)Gb(−it) dt

Gb(
Q
2 + ix+ iλ)Gb(

Q
2 + ix− iλ)

= e2πi(λ2+ Q2

4 ) e−2π Qx

·
∫

R+i0 e−2πi( Q
2 +ix+iλ+it)( Q

2 +ix−iλ+it)Gb(
Q
2 + ix+ iλ+ it)Gb(

Q
2 + ix− iλ+ it)Gb(−it) dt

Gb(
Q
2 + ix+ iλ)Gb(

Q
2 + ix− iλ)

= e2πi(λ2+ Q2

4 )K
Q
b ,

where in the last line we used the 3–2 relations from Proposition 2.16. �

Remark 4.5. Letting l =− Q
2 + iλ, one can rewrite this expression as

u= q−2 l
b ( l

b+ Q
b )K

Q
b , (4.14)

and compare with the expression from the compact case [16] on the (2 j + 1)-dimensional

module Vj:

u= q−2 j( j+1)K. (4.15)

�

Now one can check that the following is satisfied: S2(a)=uau−1:

S2(eib−1t)= e−2π Qteib−1t= K
Q
b eib−1tK−

Q
b =ueib−1tu−1,

S2(fib−1t
)= e2π Qtfib−1t= K

Q
b fib−1tK−

Q
b =ufib−1tu−1.
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Definition 4.6. The ribbon element v is defined to be the constant operator acting on Pλ

as multiplication by

v= e2πi(λ2+ Q2

4 ), (4.16)

such that u= vK
Q
b . �

4.3 Branching rules for Uqq̃(sl(2, R))⊂Uqq̃(gR)

In [16, 19], the quantum Weyl element is defined by decomposing Uq(g) into irreducible

Uqi (sl2) submodules corresponding to simple roots αi, which exists because the alge-

bra involved is semisimple. In the current setting of positive representations, which

is infinite-dimensional, it is not at all clear whether the same decomposition is possi-

ble. It turns out that the branching rules are particularly simple, and they remarkably

resemble both the decomposition of the tensor product representation Pα ⊗ Pβ (cf. [23])

and the Peter–Weyl-type decomposition of L2(SL+q (2, R)) (cf. [10]) with exactly the same

Plancherel measure dμ(γ )= |Sb(Q+ 2γ )|2dγ .

Let qi = eπib2
i and Qi = bi + b−1

i .

Theorem 4.7. Fix any positive representation Pλ � L2(RN) of Uqq̃(gR), where N = l(w0).

As a representation of Uqiq̃i (sl(2, R))⊂ Uqq̃(gR) corresponding to the simple root αi,

Pλ � L2(RN−2)⊗
∫

R+
Pγ dμ(γ ) (4.17)

is a unitary equivalence, where Pγ is the positive representation of Uqiq̃i (sl(2, R)) with

parameter γ ∈R+, and the Plancherel measure is given by

dμ(γ )= |Sbi (Qi + 2γ )|2 dγ, (4.18)

where Sb(x)=Gb(x) e
πi
2 x(Q−x). �

Proof. Using the same techniques as in [10], it suffices to diagonalize the Casimir

element.

By taking w0 =w′si so that the simple reflection for root i appears on the right,

the action of ei is the standard action (using the notation from Section 2.2)

ei = [u1
i ]e(−p1

i ),

while the action of fi and Ki are given by (2.23) and (2.24), respectively.
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Note that ei commutes with the terms of fi for k> 1. Then the rescaled Casimir

element ci for this Uqiq̃i (sl(2, R)) representation

ci :=
(

i

qi − q−1
i

)−2

Ci = fiei − (qi Ki + q−1
i K−1

i ) (4.19)

is given by

ci =
n∑

k=1

⎡
⎣− v(i,k)−1∑

j=1

ai,r( j)v j − uk
i − 2λi

⎤
⎦ e(pk

i )[u
1
i ]e(−p1

i )− (qi K + q−1
i K−1)

=
n∑

k=2

⎡
⎣− v(i,k)−1∑

j=1

ai,r( j)v j − uk
i − 2λi

⎤
⎦ [u1

i ]e(pk
i − p1

i )+ 2 cosh

⎛
⎝πb ·

⎛
⎝v(i,1)−1∑

j=1

ai,r( j)v j + 2λi

⎞
⎠
⎞
⎠ .

Here we used the notation (b · −) so that variables corresponding to short (resp. long)

root get multiplied by bs (resp. bl ) (cf. Definition 2.6). Applying the transformation by

multiplication by g∗bi
(2u1

i ), using Lemma 2.20, will eliminate the [u1
i ] factor:

�
n∑

k=2

⎡
⎣− v(i,k)−1∑

j=1

ai,r( j)v j − uk
i − 2λi

⎤
⎦ e(pk

i − p1
i )+ 2 cosh

⎛
⎝πb ·

⎛
⎝v(i,1)−1∑

j=1

ai,r( j)v j + 2λi

⎞
⎠
⎞
⎠ .

Now we know from the explicit expression that the terms from k= 2 to k=n q2
i -

commute successively [11, 12]. Hence there exists transformations by certain gbi , where

the arguments are given by the differences of the factors, that the above operator is

unitary equivalent to just the first term:

� 2 cosh

⎛
⎝πb ·

⎛
⎝v(i,1)−1∑

j=1

ai,r( j)v j + 2λi

⎞
⎠
⎞
⎠+ eπb·(−∑v(i,n)−1

j=1 ai,r( j)v j−un
i−2λi+2pn

i −2p1
i ).

Now we can apply simple unitary transformations to simplify the expression.

(For a review, see [10, Section 6.1].) First, apply the transformation u1
i 
→u1

i − un
i to get

rid of p1
i . Then apply

pn
i 
→ pn

i + λi − 1

2

⎛
⎝v(i,n)−1∑

j=1

ai,r( j)v j − un
i

⎞
⎠ ,
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so that the last term becomes simply e2πbi pn
i . Finally apply

un
i 
→un

i − λi − 1

2

v(i,1)−1∑
j=1,v j �=un

i

ai,r( j)v j,

and we arrive at

ci � e2πbiun
i + e−2πbiun

i + e2πbi pn
i .

We know from [10, 14] that this is unitary equivalent to

ci �
∫

R+
(e2πbiγ + e−2πbiγ ) dμ(γ ),

with the measure given by dμ(γ )= |Sbi (Qi + 2γ )|2 dγ .

Finally, by reversing the transformations above, skipping the variables un
i , we

obtain an explicit expression of the action ei, fi involving only the last variable in

L2(RN−2)⊗
∫

R+
Pγ dμ(γ ). �

4.4 Unitary action of the Weyl element wi

Following the compact case in [16], we adjoin an element w to Uqq̃(sl(2, R)) such that it

satisfies the following:

wew−1 = f, (4.20)

wfw−1 = e, (4.21)

wKw−1 = K−1, (4.22)

with the Hopf algebra structure

Δw= R−1(w ⊗ w), (4.23)

S(w)=wK−
Q
b , (4.24)

ε(w)= 1, (4.25)

so that in addition it satisfies

w2 = v =uK−
Q
b , (4.26)
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which implies

S(w)w=u. (4.27)

On the positive representations considered in Proposition 2.8, we define the

action of w on Pλ = L2(R) as a unitary operator

w · f(x)= eπi(λ2+ Q2

4 ) f(−x), (4.28)

so that all the above properties are satisfied.

Now in the general case, consider the positive representation Pλ of Uqq̃(gR). For

each simple roots αi, using the branching rules of Uqq̃(sl(2, R)) from Theorem 4.7, we

define the action of wi on Pλ as

wi := IdN−2 ⊗
∫

R+
w

γ

i dμ(γ ), (4.29)

where w
γ

i acts as (4.28) on Pγ . It is clear that wi is a unitary operator since the branching

rules of Uqq̃(sl(2, R)) is a unitary equivalence.

Now, we can follow the approach in [KR] and calculate the action of wie jw
−1
i and

wif jw
−1
i , while we also have

wi K jw
−1
i = Kj K

−aij

i . (4.30)

We will do the calculations mainly for ei, while those for fi is similar.

Let

ēi := q
1
2
i K
− 1

2
i ei,

f̄i := q
1
2
i K

1
2

i fi,

so that the R operator can be expressed as

Ri = gb(ēi ⊗ f̄i)q
Hi⊗Hi

2 . (4.31)

Note that ēi and f̄i are still positive essentially self-adjoint and satisfy the transcenden-

tal relations.
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For any Hopf algebra A, one can define the adjoint action of A on itself by

a ◦ b=
∑

i

aibS(ai), (4.32)

where Δ(a)=∑
i ai ⊗ ai. Then the action wi ◦ ē j can be calculated exactly as in [KR],

taking into account the new antipode, and we still obtain

wi ◦ ē j =wiē j K
1
2 aij

i w−1
i . (4.33)

On the other hand, Vij = {(ēi)
n ◦ ē j}−aij

n=0 is an irreducible Uq(sl2)-module with highest

weight −aij. Since wi flips the action of Ei and Fi by definition, the adjoint action maps

the lowest weight vector to highest weight vector. In particular, we have

wi ◦ ē j = cijē
−aij

i ◦ ē j (4.34)

for some constant cij. Note that this equation also holds for the modular double counter-

part ẽ j. Hence the constant cij is uniquely determined by the fact that wie jw
−1
i is positive

and satisfy the transcendental relation. Now, it is easy to calculate that

ē
−aij

i ◦ ē j = (−1)aij ei j K
aij
2

i K
− 1

2
j , (4.35)

where ei j is defined in Propositions 4.1 and 4.2, and

wiē j K
aij
2

i w−1
i =wiq

1
2
j K
− 1

2
j e j K

aij
2

i w−1
i

=wie jw
−1
i q

− 1
2

j K
− 1

2
j .

Hence, combining we have

wie jw
−1
i = c′i jei j K

aij
2

i .

The constant can now be easily determined by positivity to be c′i j = q
− a2

i j
4

i .

Definition 4.8. We define w′i :=wiq
H2

i
4

i and

Ti(a)=w′ia(w′i)
−1. (4.36)

�
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The operators Ti resemble the Lusztig’s isomorphisms [20], while taking positiv-

ity into account. We have

Theorem 4.9. The operators Ti are given on the generators by

Ti(ei)= qifi K
−1
i = q−1

i K−1
i fi, (4.37)

Ti(fi)= q−1
i Kiei = qiei Ki, (4.38)

Ti(e j)= ei j for i, j adjacent, (4.39)

Ti(f j)= fi j for i, j adjacent, (4.40)

Ti(Kj)= Kj K
−aij

i . (4.41)

In particular, Proposition 2.23 is still satisfied. Furthermore, the same relations also

hold for the modular double counterpart ẽi, f̃i, and K̃i. �

Proof. By definition,

Ti(ei)=wiq
H2

i
4

i eiq
− H2

i
4

i w−1
i

=wieiq
(Hi+2)2

4
i q

− H2
i
4

i w−1
i

=wiei Kiqiw
−1
i

= qifi K
−1
i = q−1

i K−1
i fi,

Ti(e j)=wiq
H2

i
4

i e jq
− H2

i
4

i w−1
i

=wieiq
(Hi+aij )

2

4
i q

− H2
i
4

i w−1
i

= q
− a2

i j
4

i ei j K
aij
2

i K
− aij

2
i q

a2
i j
4

i

= ei j,

and similarly for the calculations of f. The action Ti only differs from Lusztig’s isomor-

phism by certain scaling, hence Proposition 2.23 is still satisfied due to positivity that

restricts the scaling.

Finally, since wi depends only on the root system, and independent of the inter-

change bi←→ b−1
i (cf. (4.28)), all the previous arguments work for the tilde variables. �
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Corollary 4.10. Under the positive representations Pλ, the operators Ti1 . . . Tik(X j),

where X = e, f or K, are positive essentially self-adjoint, and satisfy the transcenden-

tal relations. �

5 Universal R Operator

We are now in the position to define the universal R operator in the flavor of Sections 2.4

and 2.5, generalizing the respective formula.

Theorem 5.1. Let gR be the split real form of a simple Lie algebra g. Let w0 = si1si2 . . . siN

be a reduced expression of the longest element of the Weyl group. Then the univer-

sal R operator for the positive representations of Uqq̃(gR) acting on Pλ1 ⊗ Pλ2 � L2(RN)⊗
L2(RN) is given by

R=
∏
i j

q
1
2 (A−1)i j Hi⊗Hj

i

N∏
k=1

gb(eαk ⊗ fαk)
∏
i j

q
1
2 (A−1)i j Hi⊗Hj

i , (5.1)

where eαk = Ti1 Ti2 . . . Tik−1eik, similarly for fαk. The product is such that the term k= 1

appears on the rightmost position. Furthermore, R is a unitary operator. �

Remark 5.2. By Corollary 4.10, the generators eαk ⊗ fαk are positive, hence the expres-

sion is well defined. By Lemma 2.19, it is clear that R is a unitary operator. By commuting

the last factor, R can also be written as

R=
∏
i j

q
1
2 (A−1)i j Hi⊗Hj

i

N∏
k=1

gb(ēαk ⊗ f̄αk), (5.2)

where ēαk = q
− 1

2
ik K

1
2
αkeαk and f̄αk = q

− 1
2

ik K
− 1

2
αk fαk. Note that the symmetrizing factor d of the

Cartan matrix is absorbed in the definition of the qi’s. �

By general theory developed in [16, 19], the R operator can be written in terms

of the root components as follows. By abuse of notation, let w0 =wi1 . . . wiN . Then

R−1(w0 ⊗ w0)=Δ(w0)

=Δ(wi1) . . . Δ(wiN )

= R−1
i1 (wi1 ⊗ wi1) . . . R−1

iN
(wiN ⊗ wiN ),
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or

R= (w0 ⊗ w0)(wiN ⊗ wiN )−1 RiN . . . (wi1 ⊗ wi1)
−1 Ri1 . (5.3)

It turns out, not surprisingly, that it suffices to prove the braiding relations and quasi-

triangularity relations in the case of rank= 2. It is known that the braiding relations

and quasi-triangularity relations imply

(S⊗ S)(R)= R, (5.4)

In rank= 2 case, this means that the expression of R corresponding to the Coxeter rela-

tion (2.55) for the change of words of w0 is the same. Therefore, the definition given in

Theorem 5.1 does not depend on the choice of reduced expression, hence the expression

of R is uniquely defined.

In the next section, we will show that this R operator arises as the canonical

element of certain Drinfeld’s double construction. Hence the braiding relation and the

quasi-triangularity will be automatic from the formal algebraic manipulation. However,

it is still instructive to see explicitly how the functional equations of the quantum dilog-

arithm gb(x) play a role in the calculation of these properties.

5.1 Braiding relations in simply laced case

Consider the case of type A2, and choose w0 = s1s2s1. The universal R operator is given

explicitly by

R=Q
1
2 gb(e2 ⊗ f2)gb(e12 ⊗ f12)gb(e1 ⊗ f1)Q

1
2 , (5.5)

where

Q= q
2
3 H1⊗H1+ 1

3 H1⊗H2+ 1
3 H2⊗H1+ 2

3 H2⊗H2 . (5.6)

We will show that

Δ′(e1)R= RΔ(e1). (5.7)

The other cases are similar.

Δ′(e1)Q
1
2 = (e1 ⊗ K

− 1
2

1 + K
1
2

1 ⊗ e1)Q
1
2

=Q
1
2 (e1 ⊗ K−1

1 + 1⊗ e1).
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Next we have

(e1 ⊗ K−1
1 + 1⊗ e1)gb(e2 ⊗ f2)= gb(e2 ⊗ f2)(e1 ⊗ K−1

1 + e12 ⊗ q
1
2 K−1

1 f2 + 1⊗ e1),

where we used the generalized pentagon relation (3.3) with

[e2 ⊗ f2, e1 ⊗ K−1
1 ]

q − q−1
= e12 ⊗ q

1
2 K−1

1 f2,

and the fact that 1⊗ e1 commute with e2 ⊗ f2. Then we have by (3.3) again

(e1 ⊗ K−1
1 + e12 ⊗ q

1
2 K−1

1 f2 + 1⊗ e1)gb(e12 ⊗ f12)= gb(e12 ⊗ f12)(e1 ⊗ K−1
1 + 1⊗ e1),

where we used e1f!2 = f12e1 + q
1
2 (q − q−1)K−1

1 f2 such that

[1⊗ e1, e12 ⊗ f12]

q − q−1
= e12 ⊗ q

1
2 K−1

1 f2.

Finally, by Lemma 2.26,

(e1 ⊗ K−1
1 + 1⊗ e1)gb(e1 ⊗ f1)= gb(e1 ⊗ f1)(e1 ⊗ K1 + 1⊗ e1)

and

(e1 ⊗ K1 + 1⊗ e1)Q
1
2 =Q

1
2 (e1 ⊗ K

1
2

1 + K
− 1

2
1 ⊗ e1)

=Q
1
2 Δ(e1).

Recall the expression of R given by (5.3). What we have shown is that (by abuse

of notation, write wi :=wi ⊗ wi):

w0w
−1
1 R1w

−1
2 R2w

−1
1 R1Δ(E1)=Δ′(E1)w0w

−1
1 R1w

−1
2 R2w

−1
1 R1,

w0w
−1
2 R2w

−1
1 R1w

−1
2 R2Δ(E1)=Δ′(E1)w0w

−1
2 R2w

−1
1 R1w

−1
2 R2,

or simplifying:

w−1
1 R1w

−1
2 R2Δ(E1)=Δ(q

1
2 E2K

1
2

2 )w−1
1 R1w

−1
2 R2, (5.8)

w−1
1 R1w

−1
2 R2Δ(F1)=Δ(q

1
2 F2K

− 1
2

2 )w−1
1 R1w

−1
2 R2, (5.9)
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and also

w−1
1 R1Δ(E1)=Δ′(F1)w

−1
1 R1. (5.10)

Applying this repeatedly, we can show the braiding relation for all other simply laced

type.

5.2 Quasi-triangularity relations in simply laced case

Again let us work with Uqq̃(sl(3, R)). We will prove the first relation

(Δ⊗ 1)R= R13 R23,

the second one is similar. We have

(Δ⊗ 1)R=Δ(Q
1
2 )(gb(Δe2 ⊗ f2)gb(Δe12 ⊗ f12)gb(Δe1 ⊗ f1)Δ(Q

1
2 )

=Q
1
2
13Q

1
2
23gb(e2 ⊗ K

1
2

2 ⊗ f2 + K
− 1

2
2 ⊗ e2 ⊗ f2)

· gb(e12 ⊗ K
1
2

1 K
1
2

2 ⊗ f12 + K
− 1

2
2 e1 ⊗ K

1
2

1 e2 ⊗ f12 + K
− 1

2
1 K

− 1
2

2 ⊗ e12 ⊗ f12)

· gb(e1 ⊗ K
1
2

1 ⊗ f1 + K
− 1

2
1 ⊗ e1 ⊗ f1)Q

1
2
13Q

1
2
23

=Q
1
2
13Q

1
2
23gb(e2 ⊗ K

1
2

2 ⊗ f2)gb(K
− 1

2
2 ⊗ e2 ⊗ f2)

· gb(e12 ⊗ K
1
2

1 K
1
2

2 ⊗ f12)gb(K
− 1

2
2 e1 ⊗ K

1
2

1 e2 ⊗ f12)gb(K
− 1

2
1 K

− 1
2

2 ⊗ e12 ⊗ f12)

· gb(e1 ⊗ K
1
2

1 ⊗ f1)gb(K
− 1

2
1 ⊗ e1 ⊗ f1)Q

1
2
13Q

1
2
23

=Q
1
2
13Q

1
2
23gb(e2 ⊗ K

1
2

2 ⊗ f2)gb(e12 ⊗ K
1
2

1 K
1
2

2 ⊗ f12)

· gb(K
− 1

2
2 ⊗ e2 ⊗ f2)gb(K

− 1
2

2 e1 ⊗ K
1
2

1 e2 ⊗ f12)gb(e1 ⊗ K
1
2

1 ⊗ f1)

· gb(K
− 1

2
1 K

− 1
2

2 ⊗ e12 ⊗ f12)gb(K
− 1

2
1 ⊗ e1 ⊗ f1)Q

1
2
13Q

1
2
23

=Q
1
2
13Q

1
2
23gb(e2 ⊗ K

1
2

2 ⊗ f2)gb(e12 ⊗ K
1
2

1 K
1
2

2 ⊗ f12)

· gb(e1 ⊗ K
1
2

1 ⊗ f1)gb(K
− 1

2
2 ⊗ e2 ⊗ f2)

· gb(K
− 1

2
1 K

− 1
2

2 ⊗ e12 ⊗ f12)gb(K
− 1

2
1 ⊗ e1 ⊗ f1)Q

1
2
13Q

1
2
23
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=Q
1
2
13gb(e2 ⊗ 1⊗ f2)gb(e12 ⊗ 1⊗ f12)gb(e1 ⊗ 1⊗ f1)Q

1
2
13

· Q
1
2
23gb(1⊗ e2 ⊗ f2)gb(1⊗ e12 ⊗ f12)gb(1⊗ e1 ⊗ f1)Q

1
2
23

= R13 R23.

Where in the fourth line we used

[K
− 1

2
2 ⊗ e2 ⊗ f2, e1 ⊗ K

1
2

1 ⊗ f1]

q − q−1
= K

− 1
2

2 e1 ⊗ K
1
2

1 e2 ⊗ f12.

By the relation R12 =w1 R2w
−1
1 , the above calculation is also equivalent to the

following relation of the quantum dilogarithms:

gb(K
− 1

2
2 e1 ⊗ K

1
2

1 e2 ⊗ f12)

= g∗b(K
− 1

2
2 ⊗ e2 ⊗ f2)gb(e1 ⊗ K

1
2

1 ⊗ f1)gb(K
− 1

2
2 ⊗ e2 ⊗ f2)g

∗
b(e1 ⊗ K

1
2

1 ⊗ f1)

= g∗b(e12 ⊗ K
1
2

1 K
1
2

2 ⊗ f12)gb(K
1
2

2 f2 ⊗ K
− 1

2
2 e2 ⊗ 1)gb(e12 ⊗ K

1
2

1 K
1
2

2 ⊗ f12)

× g∗b(K
1
2

2 f2 ⊗ K
− 1

2
2 e2 ⊗ 1),

or after rewriting, that gb(K
− 1

2
2 ⊗ e2 ⊗ f2)gb(K

1
2

2 f2 ⊗ K
− 1

2
2 e2 ⊗ 1) commute with gb(e12 ⊗

K
1
2

1 K
1
2

2 ⊗ f12)gb(e1 ⊗ K
1
2

1 ⊗ f1). Symbolically, using superscript for the corresponding root,

and the leg notation for the operators, we present this relation informally as

G2
23G

′2
21G12

13G1
13 =G12

13G1
13G2

23G
′2
21, (5.11)

which resembles the so-called “Tetrahedron Equation” [15]. It suffices to apply this rela-

tion, together with (5.3) repeatedly to obtain the quasi-triangular relation in higher rank.

5.3 Remarks on the nonsimply laced case

The relations for the nonsimply laced case can also be done along the same line. What we

have found is that the braiding relations amount to the generalized pentagon relations

of gb given by Proposition 3.2, and the same relations apply to all higher rank case.

On the other hand, the quasi-triangularity is more difficult. For type B2, it is

equivalent to the generalized exponential relation given in Proposition 3.3, which is
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needed to break down the coproduct of e21 and e12. For simplicity, let

e′3 := e121 = e2−11 = q
1
2 e2e1 − q−

1
2 e1e2

q − q−1
, (5.12)

eX := e12 = e′3e1 − e1e′3
q

1
2 − q−

1
2

. (5.13)

(Recall q= eπib2
l = q2 and q

1
2 = eπib2

s = q1.) Then R is given by

R=Q
1
2 gb(e2 ⊗ f2)gb(e′3 ⊗ f′3)gb(eX ⊗ fX)gb(e1 ⊗ f1)Q

1
2 . (5.14)

Proposition 3.3 then implies

gbs(Δ(e′3)⊗ f′3)= gbs(e
′
3 ⊗ K

1
2

3 ⊗ f′3)gbl (eX K
− 1

2
2 ⊗ e2K

1
2
X ⊗ f′3

2
)

· gbs(e1K
− 1

2
2 ⊗ e2K

1
2

1 ⊗ f′3)gbs(K
− 1

2
3 ⊗ e′3 ⊗ f′3),

gbl (Δ(eX)⊗ fX)= gbl (eX ⊗ K
1
2
X ⊗ fX)gbl (e

2
1K
− 1

2
2 ⊗ e2K1 ⊗ fX)

· gbs(e1K
− 1

2
3 ⊗ e′3K

1
2

1 ⊗ fX)gbl (K
− 1

2
X ⊗ eX ⊗ fX),

and together with the generalized pentagon relations the quasi-triangularity can be

proved. Again these can be rephrased as a generalized tetrahedron equation using the

quantum Weyl element. We conjecture that these are all we need to prove the higher rank

case, as well as the case in type G2.

6 Uqq̃(gR) as a Quasi-Triangular Multiplier Hopf Algebra

So far, we have worked on the algebraic calculation quite formally. From the explicit

expression of the R operator in Theorem 5.1, it motivates us to define R as the canon-

ical element of certain Drinfeld’s double construction. The accurate language to use

here turns out to be the so-called multiplier Hopf algebra [26] and its Drinfeld’s double

construction [3], which gives the notion of a quasi-triangular multiplier Hopf algebra

introduced by Zhang [28].

Let us recall the basic definitions. For further details please refer to [26].

Definition 6.1. Let B(H) be the algebra of bounded linear operators on a Hilbert space

H. Then the multiplier algebra M(A) of a C ∗-algebra A⊂B(H) is the C ∗-algebra of
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operators

M(A)= {b∈B(H) : bA⊂A,Ab⊂A}. (6.1)

In particular, A is an ideal of M(A). �

Definition 6.2. A multiplier Hopf *-algebra is a C ∗-algebra A together with the antipode

S, the counit ε, and the coproduct map

Δ :A→M(A⊗A), (6.2)

all of which can be extended to a map from M(A), such that the usual properties of a

Hopf algebra holds on the level of M(A). �

Definition 6.3. A quasi-triangular multiplier Hopf algebra is a multiplier Hopf algebra

A together with an invertible element R∈M(A⊗A) such that

(Δ⊗ id)(R)= R13 R23 ∈M(A⊗A⊗A), (6.3)

(id⊗Δ)(R)= R13 R12 ∈M(A⊗A⊗A), (6.4)

Δ′(a)R= RΔ(a) ∈M(A⊗A) ∀a∈M(A), (6.5)

(ε ⊗ id)(R)= (id⊗ ε)(R)= 1 ∈M(A). (6.6)

�

Furthermore, the element u:=mop(1⊗ S)(R) will be an invertible element in

M(A) such that

S2(a)=uau−1 ∀a∈M(A). (6.7)

Definition 6.4. A ribbon multiplier Hopf algebra is a quasi-triangular multiplier Hopf

algebra A that possesses a central ribbon element v ∈M(A), such that

v2 =uS(u), S(v)= v, ε(v)= 1, (6.8)

Δ(v)= (R21 R12)
−1(v ⊗ v) (6.9)

hold in M(A). �
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6.1 The Borel subalgebra U C∗
qq̃ (bR)

Let us fix a positive representation Pλ of Uqq̃(gR), and fix a reduced expression

w0 = si1 . . . siN of the longest element of the Weyl group. Motivated from the compact case,

as well as the expression of R, it is intuitive to choose a “basis” given by

n∏
i=1

Hmi
i

N∏
k=1

e
ib−1

ik
tk

αk = Hm1
1 . . . Hmn

n e
ib−1

iN
tN

αN . . . e
ib−1

i1
t1

α1 . (6.10)

Here, N = l(w0), n= rank(g), while ti ∈R, and as before

eαk := Ti1 Ti2 . . . Tik−1eik. (6.11)

Following the approach in [10] for the harmonic analysis of the quantum plane,

we give the following definition.

Definition 6.5. We define the C ∗-algebraic version of the Borel subalgebra

Ub := UC ∗
qq̃ (b+

R
)

as the operator norm closure of the linear span of all bounded operators on L2(RN) of

the form

−→
F := F0(H)

N∏
k=1

∫
C

Fk(tk)

Gbik
(Qik + itk)

e
ib−1

ik
tk

αk dtk, (6.12)

where eαk is given by (6.11) and

F0(H) := F0(ib1 H1, . . . , ibnHb) (6.13)

is a smooth compactly supported functions on the positive operators ibkHk, Fk(tk) are

entire analytic functions that have rapid decay along the real direction (i.e., for fixed y0,

Fk(x+ iy0) decays faster than any exponential function in x). Finally, the contour C is

along the real axis which goes above the pole of Gb at tk= 0. �

Since eαk are positive essentially self-adjoint, e
ib−1

ik
t

αk is unitary, and by the decay

properties of Fk, the operator
−→
F is indeed a well-defined bounded operator acting on

L2(RN). Furthermore, since the positive representations are injective, the definition of

this algebra does not depend on the choice of the parameter λ. Finally, by Proposition 6.8

below, the usual complex conjugation gives the star structure of Ub.
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Remark 6.6. Definition 6.5 is compatible with the modular double counterpart. In

other words, we obtain the same algebra when we replace all variables eαk, ibi Hi with

ẽαk, ib−1
i H̃i due to the transcendental relations. Hence Ub can indeed be called the mod-

ular double of the Borel subalgebra. �

Proposition 6.7. The map defined by

Δ(
−→
F )= F0(Δ(H))

N∏
k=1

∫
C

Fk(tk)

Gbik
(Qik + itk)

Δ(eαk)
ib−1

ik
tk dtk (6.14)

is a coproduct Δ :A→M(A⊗A), where Δ(Hi)= Hi ⊗ 1+ 1⊗ Hi. �

Proof. Coassociativity is immediate since the expression is the same as in the usual

case. The factors Gbik
(Qik + itk) are needed in order to define the coproduct in the

sense of a multiplier Hopf algebra. This follows from the use of the q-binomial for-

mula (Lemma 2.13), or in the nonsimply laced case, the generalized exponential rela-

tion (Proposition 3.3), which basically says that Δ(e
ib−1

ik
tk

αk )=Δ(eαk)
ib−1

ik
tk cancels the factors

Gbi (Qik + itk) and introduce two new factors Gbi (Qik + iτ1)Gbi (Qik + iτ2) in the respective

factors for e
ib−1

ik
τ1

αk ⊗ e
ib−1

ik
τ2

αk . For nonsimple roots, the extra integration can be shown to be

holomorphic due to meromorphicity of Gb as well as application of the delta distribution

rules (Proposition 2.15). �

For the term
∏N

k=1 e
ib−1

ik
t

αk to deserve to be called a “basis”, it suffices to show that

we can interchange the order of the generators. Only the rank= 2 cases need to be con-

sidered, and we show this for the simply laced type as follows.

Proposition 6.8. In type A2, we have

eib−1t
2 eib−1s

1

Gb(Q+ it)Gb(Q+ is)
=

∫
C

e2πi(s+t)τ−πist− 5
2 πiτ 2

eib−1(s−τ)
1 eib−1τ

21 eib−1(t−τ)
2

Gb(Q+ is− iτ)Gb(Q+ iτ)Gb(Q+ it− iτ)
dτ, (6.15)

where the contour separate the poles of τ = 0 and τ = s, t.

eib−1t
12

Gb(Q+ it)
=

∫
C

eπ Q(τ−t)+πiτ t− 3
2 πiτ 2

eib−1τ
1 eib−1(t−τ)

21 eib−1τ
2

Gb(Q+ it− iτ)Gb(Q+ iτ)
dτ, (6.16)

where the contour separate the poles of τ = 0 and τ = t. �
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Note that by taking s, t→−ib, one recovers the standard relation

e2e1 = qe1e2 − (q − q−1)q
1
2 e21, (6.17)

e12 = q
1
2 e1e2 − qe21, (6.18)

by means of Proposition 2.15. Also, the factors Gb(Q+ it) implies that the holomorphic-

ity condition for Ub is still satisfied.

Proof. By the generalized pentagon relation (3.3), we have

gb(q
− 1

2 K
1
2

2 e2)gb(q
1
2 K
− 1

2
1 e1)= gb(q

1
2 K
− 1

2
1 e1)gb(K

− 1
2

1 K
1
2

2 e21)gb(q
− 1

2 K
1
2

2 e2).

Now expand the relation using Lemma 2.18, and equate the powers of K1 and K2 we will

obtain (6.15).

Next, using again the generalized pentagon relation again, written as

g∗b(q
1
2 K
− 1

2
2 e2)gb(q

− 1
2 K

1
2

1 e1)gb(q
1
2 K
− 1

2
2 e2)g

∗
b(q
− 1

2 K
1
2

1 e1)= gb(K
− 1

2
2 K

1
2

1 e12),

expanding by Lemma 2.18 and equating again the powers of K1 and K2, and using the

first equation to interchange e1 and e2, the integral can be evaluated explicitly and we

obtain (6.16). �

The interchange relation for type Bn, Cn, and F4 can be obtained along the same

line by combining Propositions 3.2 and 3.3. For the G2 case, one can also obtain the

interchange relation for the generators e1 and e2 using the general form of the pentagon

equation of gb generalizing the one given in [17], however, explicit interchange relations

for the nonsimple root basis have not been computed.

As a corollary, we can now define the antipode.

Definition 6.9. The antipode is defined on the generators by (cf. (4.9))

S(Hi)=−Hi (6.19)

S(e
ib−1

i t
i )= e−π Qitei (6.20)

and extended anti-homomorphically. �

So, for example, we have S(eib−1t
12 )= e−2π Qteib−1t

21 .
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Corollary 6.10. The antipode is a map from Ub to Ub. Furthermore, Ub also possesses

a natural star structure given by complex conjugation, such that the analytic properties

are satisfied. �

Proof. The antipode is well defined by the interchange relation from Proposition 6.8,

while the star structure follows from the complex conjugation properties (2.31) of

Gb(x). �

Finally, we define the counit

ε(
−→
F )= F0(0) ∈C, (6.21)

by setting all Hi to be zero.

Corollary 6.11. The C ∗-algebra Ub is a multiplier Hopf *-algebra in the sense of

Definition 6.2. �

6.2 Hopf pairing and Drinfeld’s double

For two Hopf algebra A,A′, a pairing is called a Hopf pairing if for a∈A, b, c∈A′,

〈a, bc〉 = 〈Δ(a), b⊗ c〉 =
∑
〈ai, b〉〈ai, c〉, (6.22)

〈S(a), b〉 = 〈a, S(b)〉, (6.23)

〈a, 1〉 = ε(a), 〈1, b〉 = ε(b), (6.24)

where Δ(a)=∑
ai ⊗ ai. Moreover, it can be extended naturally to the multiplier algebra

M(A). Let Ub− be the multiplier Hopf algebra generated in the above sense by ibi H ′i and

fαk with the opposite coproduct. Then we define the pairing on the generators (we used

the modified generator, cf. Remark 5.2) as

Proposition 6.12. There exists a Hopf pairing given by

〈(ibi Hi)
n, (ibi H

′
i )

m〉 = δmnn!
i

π
, (6.25)

〈ēib−1
ik

s
αk , f̄

ib−1
ik

t
αk
〉 = δ(s− t)Gbik

(Qik + it) eπit2
, (6.26)
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or more generally, denoting
−→
F ∈Ub,

−→
F ′ ∈Ub−,

〈−→F ,
−→
F ′ 〉 = 〈F0(H), F ′0(H

′)〉
N∏

k=1

∫ Fik(tk)F ′ik(tk) eπit2
k

Gbik
(Qik + itk)

dtk. (6.27)

�

Proof. We will show that the definition is consistent with the Hopf pairing between

simple root generators:

〈ēib−1s, f̄
ib−1t〉 = 〈ēib−1s, f̄

ib−1t1 f̄
ib−1t2〉

= 〈Δ(ēib−1s), f̄
ib−1t1 ⊗ f̄

ib−1t2〉

=
〈∫

C

Gb(−is+ iτ)Gb(−iτ)

Gb(−is)
ēib−1τ ⊗ K ib−1τ ēib−1(s−τ), f̄

ib−1t1 ⊗ f̄
ib−1t2

〉

=
∫

C

Gb(−is+ iτ)Gb(−iτ)

Gb(−is)
δ(τ − t1) eπit2

1 Gb(Q+ it1)δ(s− τ − t2)

× eπit2
2 Gb(Q+ it2) dτ

= Gb(−it2)Gb(−it1)Gb(Q+ it1)Gb(Q+ it2)

Gb(−is)
eπit2

1+πit2
2 δ(s− t1 − t2)

= eπis2
Gb(Q+ is)δ(s− (t1 + t2)).

The other cases are similar. The properties involving antipode are easy to check if we

choose the reverse ordering of the basis of Ub−. The properties of ε are trivial. �

Now we recall the Drinfeld’s double construction in the setting of multiplier

Hopf algebra.

Definition 6.13 ([3]). The Drinfeld’s double D of multiplier Hopf algebra A and its dual

A′ is a Hopf algebra with underlying vector space A⊗A′, comultiplication ΔA ⊗Δ
op
A′ ,

and product given by

(a⊗ x)(b⊗ y)=
∑

ab(2) ⊗ x(2)y〈b(1), S−1
A′ (x(3))〉〈b(3), x(1)〉. (6.28)

�

Then it is known [4] that the Drinfeld’s double D is a quasi-triangular multiplier

Hopf algebra, where R is given by the canonical element, which is the unique element in
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M(D ⊗D) such that

〈R, b⊗ a〉 = 〈a, b〉, a∈A, b∈A′. (6.29)

Definition 6.14. We define

U := UC ∗
qq̃ (gR) :=D(Ub)/(H ′i = (A−1)i j Hj) (6.30)

to be the Drinfeld’s double of the Borel subalgebra Ub modulo the Cartan subalgebra

h⊂Ub−. �

Corollary 6.15. U is a quasi-triangular multiplier Hopf algebra. The canonical element

is given precisely by R as in Theorem 5.1. �

Proof. This follows directly from the explicit expression of R, the integral expression

of gb(x) from (2.41), and the Hopf pairing we are using. �

Finally, we note that R acts as a unitary operator on the positive representations

Pλ1 ⊗ Pλ2 giving the braiding structure.

6.3 The ribbon structure of Ûqq̃(gR)

In Section 4.2, we have computed in the case of Uqq̃(sl(2, R)) the element u=mop(1⊗ S)(R)

to be

u= vK
Q
b ,

which is now clear that it lies in the multiplier algebra M(UC ∗
qq̃ (sl(2, R))) in the sense

defined in the previous subsection. Let us adjoin the unitary operators w1, . . . , wn defined

in (4.29) to the algebra U, and call this Ûqq̃(gR).

Proposition 6.16. Define v =w2
0 where w0 =wi1 . . . wiN with si1 . . . siN a reduced expression

of the longest element. Then v is a ribbon element, making Ûqq̃(gR) a ribbon multiplier

Hopf algebra. �

The properties of v follows directly from the coproduct properties of wi, and the

fact that w2
0 commute with all the generators ei, fi, K, so that v is central. Furthermore,
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the operator u can now be expressed as

u= v

n∏
i=1

K
Qi
bi

i , (6.31)

which is again clear that it lies in the multiplier Hopf algebra M(U).

With the involvement of Q2 in the expression of v (cf. (4.16)), this means that

there are no classical limit as b→ 0, and we believe that this observation opens up a

possibility of finding a new class of quantum topological invariants, where the ribbon

structure plays a crucial role [24, 25].
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