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1 Introduction

The quantum plane A, as a Hopf algebra is generated by self-adjoint elements A, B
satisfying AB = g>B A and the coproduct

A(A)=ARA, AB)=BRA+1QB (1.1)
forqg = e” i with gl = 1. The coproduct reflects the fact that it is the quantum
version of the classical ax + b group, which is the group of affine transformations on
the real line R. Sometimes, known as the quantum ax + b group, it has been studied for
example in [35,46]. The main problem arose from the fact that A and B are realized

as unbounded operators, and that A(B) is in general not self-adjoint. This poses quite
some problems in the well definedness of the algebra on the C*-algebraic level.
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A class of well-behaved “integrable” representations is studied in [10,38] where
instead we impose the condition that both A, B are positive self-adjoint. In this case,
the operators can be realized as the “canonical representation”:

A=e?bs B =e¥br (1.2)

where they act on Hi; := L>(R) as unbounded operators. This simplifies a lot of
functional analytic problems, because now all the operators considered are positive
essentially self-adjoint, with the help of certain transformations that can be carried out
by the quantum dilogarithm function g, (x). On the other hand, with positivity, we can
define using functional calculus a wide class of functions on Aq, and in this way, we
can define the C*-algebra A := C*°(A,) of “functions vanishing at infinity” for A,
which is expressed using an integral transform

f= // £(s, A" B dsdr, (1.3)

where f(s,t) satisfies certain analytic properties. It turns out that this definition
encodes the modular double counterpart as well. By definition, the other half Az,
first introduced by Faddeev [5], is generated by A B satisfying AB = “QB A with
the same coproduct, where g = emib™ , and they are related to the quantum plane by
A = AV B = BYY This b < b~! duality is manifest in the definition of A
and subsequently present in all later calculations involved.

The first main result of this paper is the derivation of the Haar functional on A (cf.
Theorem 4.7). It can be expressed simply by

h (/ f(s,t)A"”“YB"”"dsdt) — £(0,i0) (1.4)

where Q := b+b~!. This comes as a surprise as there is no classical Haar measure on
the ax + b semigroup due to the lack of inverse. With A a C*-algebra equipped with
a left invariant Haar weight, we can carry out the so-called Gelfand—Naimark—Segal
(GNS) construction, which essentially represents .4 naturally on a Hilbert space H
induced by its own multiplication. In this paper, we put A in the context of the theory
of locally compact quantum group in the von Neumann setting [24,25], in which the
modular theory (Tomita-Takesaki’s Theory) for von Neumann algebra is studied, and
the main ingredient, the multiplicative unitary W, can be defined as a unitary operator
onH®H.

The multiplicative unitary W is a unitary operator on the Hilbert space H ® H that
satisfies the pentagon equation

WasWio = Wip Wiz Was. (1.5)
For every quantum group, a multiplicative unitary can be constructed using the coprod-

uct; however, not every multiplicative unitary is related to a quantum group. In
[45], Woronowicz introduced the notion of manageability that describes a class of
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well-behaved multiplicative unitary. The second main result of this paper is that this
multiplicative unitary W obtained for the quantum plane above is in fact manageable
(cf. Theorem 2.21). This is rather striking because in [46], it is mentioned that manage-
ability is the property that distinguishes quantum groups from quantum semigroups;
however, as noted above, we have been restricting ourselves to positive operators. The
main reason is the fact that the GNS construction provides us with a “bigger” Hilbert
space, so that there is more freedom of choice for the operators to satisfy the man-
ageability condition. As a by-product of this discrepancy, it turns out that we obtain
a new transformation rule for the quantum dilogarithm function (cf. Proposition 9.3)
that is not available in the literature.

The motivation for the study of the quantum plane comes from the quantum double
group construction introduced in [30] for compact quantum groups, which is the dual
version of the Drinfeld double construction. In [34], it is shown that the quantum
double construction of the quantum az + b group gives rise to G L4 (2, C) for certain
root of unity ¢. It turns out that this construction can be carried over to locally compact
quantum groups. In order to carry out a similar recipe for the quantum plane for general
g with |g| = 1, it is necessary to define the dual space A in the same setting as A
on the C*-algebraic level. The third main result of the paper is the derivation of the
non-degenerate pairing between .4 and Aonthe C *-algebraic level, which remarkably
involves the quantum dilogarithm function in place of the g-factorial. Following [24],
we can then describe the GNS representation for A acting on the same GNS space 'H
for A, its modular theory, and its multiplicative unitary as before.

After defining the dual space, we can apply the quantum double group construc-
211 212
221 222
the GL;F(Z, R) quantum (semi)group as Hopf algebra, where the generators are
again restricted to positive self-adjoint elements. We note also that the relations for
GL;r (2, R) is a special case for the two parameter deformations GL , 4 (2, C) observed

tion and obtain a new algebra D(A) generated by which is precisely

in [4,37] where p := 1,q := qz. On the other hand, the relations involved unmis-
takably resemble the quantum Minkowski spacetime relations defined in [9], but this
time in the non-compact setting where |g| = 1 and the variables z;; are positive self-
adjoint. Therefore, the quantum plane can be seen as a building block toward this
“split quantum Minkowski spacetime” M. Hence, from the properties of D(A), the
quantum Minkowski spacetime can be easily extended to the C*-algebraic and von
Neumann algebraic level, and hence LZ(GL;; (2, R)) is well defined. Motivated from
the representation theory of classical SLT(2,R), we define the matrix coefficients
Tﬁ&t (z) for the fundamental corepresentation of D(A) (Definition 7.10). For r = A, it
is explicitly given by

dx
X

oo
1 1 —1 0 -1 : 9
Tf,a(z)=—2nb /(XZ11+zzl)b (i) (x 19 4209)P () x b7 S N7,
0

(1.6)

which can be seen to be a generalization of the matrix coefficient in the compact
case [11]. On the other hand, a closed form expression (cf. Corollary 7.14) using the
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b-hypergeometric function Fp is found, which clearly gives a quantum analogue of
the classical formula to the matrix coefficients for SL(2, R).

To complete the description of D(.A) in the von Neumann setting, it is necessary to
compute its multiplicative unitary W,,,. A derivation is obtained from the construction
given in [1,16] for general quantum groups where W, is obtained as a product of 6
W’s of the base quantum group and its dual. Restricting to the present simpler setting
and using the properties of W, we simplify the expression to just 4 W’s. Explicitly,
they are given by

W = W3V Way V3 (1.7)

(cf. Proposition 7.49). This is encouraging since it has been shown in certain context
that the R matrix (satisfying the hexagon or Yang Baxter equation) can be expressed in
4 R’s [26,Ex 7.3.3], or4 W’s [17] from the smaller group using instead the Heisenberg
Double construction.

With the new multiplicative unitary constructed, it is straightforward, despite
tedious, to construct both the left and right regular corepresentations for D(A). Fur-
thermore, Frenkel [8] has constructed a non-degenerate pairing between M, with
U, (gl(2, R)); hence, from the corepresentation, we can derive the fundamental rep-
resentation P;_, from T, the left and right regular representation from W,, of
Uy (gl(2, R)) as well as its modular double on LZ(GL;‘(Z, R)) by the pairing. The
final main result (cf. Theorem 8.15) of this paper is the quantum “Peter Weyl theorem”

S D
LX(GL} (2, R)) ~ / / Prss ® Pa ool Sp(Q + 2i0)Pdads  (1.8)
R R,

as a representation of U,5(gl(2, R)), ® Uygz(gl(2, R))g, which is a generalization of
the statement for U, (sl(2, R)) announced in [31]; however, the details of the proof
are never published. The remarkable fact is that the quantum dilogarithm appears as
the Plancherel measure for L2(GL;‘(2, R)), which comes from the spectral analysis
of the Casimir operators. In short, it states that the operator

C — eanx + e—27rbx + e—27pr (19)
can be diagonalized as multiplication operator
C = e27bh 4 = 27hh (1.10)

acting on the Hilbert space L2(R+, 1S5(Q + 2i1)|2dA), using certain eigenfunction
transform (cf. Theorem 8.10). Furthermore, we note that only the fundamental series
‘P, appears in the decomposition of the regular representation. Called the “self-dual”
principal series representation, they are known [31] to be closed under tensor prod-
uct, which is rather interesting since the same does not hold in the classical group
setting [33].
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As a corollary, we have expressed the multiplicative unitary canonically as a direct
integral of the fundamental representations (cf. Corollary 8.13):

(&)
W,, ://T“/Zdu()\)dt, (1.11)

R R,

which generalizes the canonical definition for the compact quantum group given in
[30]. An interesting problem will be to investigate its classical limit. As we know, the
functions on the full group SL(2, R) contain both the continuous and discrete series
representation; hence, the above results may give an insight into the decomposition
of the functions on the positive semigroup and its decomposition, and distinguish
the principal continuous series as the fundamental component. Furthermore, we also
know that classically SL(2,R) >~ SU(1, 1), but the behaviors change drastically in
the quantum level. Therefore, another interesting problem will be a comparison with
several known harmonic analysis on the quantum SU(1, 1) group in the operator
algebraic setting, where the discrete series and the so-called strange series also play
arole [13,23].

Another aspect of this paper is the study of several properties of the quantum
dilogarithm function G. The quantum dilogarithm function played a prominent role
in this quantum theory. This function and its many variants are being studied [12,21,
36,44] and applied to vast amount of different areas; for example, the construction
of the “ax 4 b” quantum group by Woronowicz et al. [30,46], the harmonic analysis
of the non-compact quantum group U, (sl(2, R)) and its modular double [2,31,32],
the g-deformed Toda chains [22], current algebra and Virasoro algebra on the lattice
[6], and hyperbolic knot invariants [18]. Recently, attempts have also been made to
cluster algebra [7,21] and quantization of the Teichmiiller space [3,10, 19]. One of the
important properties of this function is its invariance under the duality » <> b~ that
helps encoding the details of the modular double in .A and also relates, for example, to
the self-duality of Liouville theory [31]. The classical limit and several relations of G,
are studied in the previous paper [14]. In this paper, we give a proof of the important
relation (cf. Corollary 3.11)

lim

e—>0

/ Gb(Q = G2 , 4. = £(0) (1.12)

Gp(Q +iz—€)

with suitable contour C, which is important to make sense rigorously of certain cal-
culations involving the Haar functional, as well as the non-degenerate pairing needed
to obtain the regular representations. This statement and its variants is often assumed,
for example in [44], but is never proved.

As noted above, there are various version of the quantum dilogarithm. Their rela-
tions and visualization of their graphs are presented in [15]. We choose this particular
definition Gy, g, by Teschner [2] for various reasons. First of all, it gives a closed
form expression for the g-Binomial Theorem (Lemma 3.8), so that it gives precisely
the quantum analogue of the classical Gamma function I'(x), see [14]. Furthermore,
various transformations such as the Tau—Beta Theorem (Lemma 3.9), the “45-relation”
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(Lemma 3.10), and the “69-relation” (Proposition 9.2) can be written in closed form
without any extra constants and exponentials. Finally, the multiplicative unitary con-
structed above can be expressed in closed form by gj in a very simple way. Another
popular version G (a4, a—; z) is given by Ruijsenaars [36] and their relation is given
by (cf. Lemma 3.2)

Gy(2) =G (b, b~ liz — %) Fi-0), (1.13)

We have chosen the pair (a4, a_) to be (b, b~1) which demonstrates the self-duality

of the Liouville theory in the physical literature. We believe similar treatments in our
L. it
paper can be made for a general pair withg = e~ “-.

It is well known that by studying the matrix coefficients of various classical matrix
groups, we recover certain functional relationships between different special functions;
for example, the hypergeometric functions ,, F;,. Various examples can be found, e.g.,
in [43]. In this quantum setting, it is not surprising that all these various calculations
involving the quantum dilogarithm will provide us certain representation theoretic
meaning of their relations by integral transforms. By applying the classical limit for
G obtained in [14] (cf. Theorem 3.5), we recover Barnes’ first and second lemma for
the Gamma function. Furthermore, a relation involving G, that is not commonly used
is observed (cf. Proposition 9.3):

/ Gp(a +i1)Gp(B — iT)Gp(y — iT)e POV 4r = Gy(a + y)Gpla + B).

C
(1.14)

These will be briefly discussed in the last section.

As a side note, the frequent use of the term “modular” in this paper requires some
clarification. The modular double introduced by Faddeev refers in the general case
to the quantum groups related by the transformation of the modular group for the
complex parameter

g =T s G =" (‘c’ Z) € SL(2,7), (1.15)
while the modular theory of Tomita—Takesaki refers in the classical case to the mod-

ularity of the Haar measure; for example, the modular function A that relates the left
translates of the right Haar measure

(g™t A) = Ag)u(A), (1.16)

where g € G and A are a Borel setin G.

The present paper is organized as follows. In Sect. 2, we recall several technical
results and motivations that is needed in later sections, including the Mellin transform,
the GNS construction, and the significance of the multiplicative unitary. We also
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collect several results concerning the calculations involving g-commuting variables.
In Sect. 3, we recall the definition and properties of the quantum dilogarithm function
Gy, and describe its integral transformation formula. In Sect. 4, we define the quantum
plane A in the Hopf algebra and C*-algebraic level, the modular double, and describe
completely its GNS construction and the multiplicative unitary. Section 5 deals with
the dual space A; we derive a non-degenerate pairing and obtain its GNS construction
on the same space as A. In Sect. 6, we develop two useful transformation that shed light
to the action of the multiplicative unitary, as well as the action of the quantum plane on
a Hilbert space. In Sect. 7, we carry out the quantum double group construction, study
its fundamental corepresentation, express explicitly the new multiplicative unitary, and
the corepresentation induced by it. In Sect. 8, we look at the dual picture and obtain
a pairing with U, (gl(2, R)), derive the regular representations, and prove the main
theorem on the decomposition of L2(GL;‘(2, R)) into principal continuous series of
U, (gl(2, R)). Finally, the last section discuss certain integral transformations of G
arising from representation theoretic calculations.

2 Preliminaries

In this section, we recall several technical results that will be needed in the description
of the quantum plane. We will first remind the definitions and properties of the Mellin
transform which serves as a motivation to define the quantum plane algebra in Sect. 4.
Then, we describe the details of weights and multiplier algebra of a C*-algebra, and its
GNS construction and modular theory in the von Neumann setting. Next, we explain
the significance of the multiplicative unitary that is important in the study of locally
compact quantum groups. Finally, we collect several technical results concerning the
calculations involving g-commuting variables.

2.1 Mellin transform

In this subsection, let us recall the Mellin transform of a function and its properties.

Theorem 2.1 Let f(x) be a continuous function on the half line 0 < x < oo. Then,
its Mellin transform is defined by

o
¢ (s) == (M[f)s) = /Xs_lf(X)dx, 2.1
0
whenever the integration is absolutely convergent for a < Re(s) < b. By the Mellin
inversion theorem, f(x) is recovered from ¢ (s) by
| c+ioo
F0) =M 0 = — / X7 (s)ds, (2.2)

c—ioo

where ¢ € R is any values in between a and b.
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We have the following analyticity theorem [29]:

Theorem 2.2 (Strip of analyticity) If f (x) is a locally integrable function on (0, 0o0)
such that it has decay property:

Ox 4 €)x — 0F

fx) = [ O(xbte) x — 400 23)

foreverye > 0and some a < b, then the Mellin transform defines an analytic function

(M) (s) in the strip
a < Re(s) < b.

(Analytic continuation) Assume f (x) behaves algebraically for x — 07, i.e.,
o
F) ~ D7 Apx™, (2.4)
k=0

where Re(ay) increases monotonically to 0o as k —> oo. Then, the Mellin transform
(M f)(s) can be analytically continued into Re(s) < a = —Re(ag) as a meromorphic
function with simple poles at the points s = —ay, with residue Ay.

A similar analytic property holds for the continuation to the right half plane.

(Growth) If f(x) is a holomorphic function of the complex variable x in the sector
—a < argx < fwhere0 < «, B < m, and satisfy the growth property (2.3) uniformly
in any sector interior to the above sector, then (M f)(s) has exponential decay in
a < Re(s) < bwith

0@ B9t — 400

0@ 9" t — —c0 (2.5)

(Mf)s) = [

for any € > 0 uniformly in any strip interior to a < Re(s) < b, where s = o + it.
(Parseval’s Formula)

00 c+ioco

1
/f(X)g(X)xZ_ldx =50 / (M)(s)(Mg)(z — s5)ds, (2.6)
0 c—ioo

where Re(s) = c lies in the common strip for M f and Mg. In particular, we have

T 1 ya 1
/|f(x)|2dx =5 / (M) (5 +it) 12ds. 2.7)
0 —00
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2.2 Weight and multiplier algebra of a C*-algebra
In this subsection, we recall the definition of weights on a C*-algebra and the language
of multiplier algebra. Most of the notions are adopted from [24,40]. Let A be a

C*-algebra and A its positive self-adjoint elements.

Definition 2.3 A weight on a C*-algebra A is a function ¢ : AT — [0, 0c] such
that

¢(x+y) =)+ (y), (2.8)
¢(rx) =r¢(x), (2.9

forx,y e AT, r € Roy.

Definition 2.4 Given a weight ¢ on A, we define

My =tfae AT 1 ¢(a) < o0}, (2.10)
Np =1{a € A: ¢(a*a) < oo}, (2.11)
Mgy = span{y*x : x, y € Ny}. (2.12)

Then, it is known that M;; = Mg N AT and that ¢ extends uniquely to a map
Mgy —> C. A weight is called faithful iff ¢ (a) = 0 = a = 0 forevery a € A*.

Next, we recall a useful notion of a multiplier algebra. Let B(H) be the algebra of
bounded linear operators on a Hilbert space H.

Definition 2.5 If A C B(H) as operators, then the multiplier algebra M (A) of A is
the C*-algebra of operators

M(A)={beB(H):bAC A Ab C A}. (2.13)
In particular, A is an ideal of M (A).
Example 2.6 Important examples include
M(C(H)) = B(H), (2.14)
where KC(H) are compact operators on H, and
M(Co(X)) = Cp(X), (2.15)
where X is a locally compact Hausdorff space, Co(X) is the algebra of C-valued

functions on X vanishing at infinity equipped with the sup-norm, and Cj,(X) is the
C*-algebra of all bounded continuous functions on X.
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Proposition 2.7 Let A and B be C*-algebras. A homomorphism ¢ : A — M(B)
is called non-degenerate if the linear span of ¢ (A)B and of B¢ (A) are both equal to
B. Then, ¢ extends uniquely to a homomorphism M (A) —> M (B). In particular, by
taking B = C, every weight w on A has a unique extension to M (A).

Using the notion of a multiplier algebra, the concept of a multiplier Hopf algebra
is introduced in [41] (see also [40]). In particular, the coproduct A of A will be a
non-degenerate homomorphism A : A — M (A ® A). The coassociativity is well
defined from the proposition above.

Given a multiplier Hopf * algebra A with coproduct A, we can define left and right
invariance of a functional.

Definition 2.8 A linear functional 4 on A is called a left invariant Haar functional if
it satisfies

A ®@m(Ax) = h(x) - 1y (2.16)

where 14 is the unital element in M (A).
Similarly, a right invariant Haar functional satisfies

(h ® 1)(Ax) = h(x) - 1y4)- (2.17)

2.3 GNS representation and Tomita—Takesaki’s theory

Let us recall the main objects in the study of GNS representation of a C*-algebra (see,
e.g., [24]).

Definition 2.9 A GNS representation of a C*-algebra .4 with a weight ¢ is a triple
(H,m, A),

where H is a Hilbert space, A : A —> H is a linear map, and 7 : A — B(H) is a
representation of A on H such that A(N) is dense in H, and

(@A) = Alab) Yae A be N, (2.18)
(Aa), A(b)) = p(b*a) Va,be N, (2.19)

where N'={a € A: ¢(a*a) < oo}.

The Tomita—Takesaki’s Theory [39,40] provides a detailed description of the GNS
construction in the von Neumann algebraic setting:

Definition 2.10 Giving a weight ¢ that determines the Hilbert space structure by the
GNS construction, the operator

T:x — x* (2.20)
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is closable and has a polar decomposition as

D=

T =JV2, 2.21)

where J is called the modular conjugation, and V is called the modular operator.
A very important property of J is the following

Theorem 2.11 (Murray-von Neumann) Let M be the completion of A C B(H) in the
weak operator topology as a von Neumann algebra. Then, considering M C B(H),
we have

JMJ =M, (2.22)
where M’ is the commutant of M.
Definition 2.12 For x € A, the operator
o (x) ;= Vixv (2.23)

is called the modular automorphism group.
We have ¢ (a*b) = ¢ (bo (a*))

On the Hopf * algebra level, we have the following properties:

Proposition 2.13 The antipode S has a polar decomposition
S=1poR, (2.24)

where T_; ;> denotes the analytic generator of (t;);cR, called the scaling group, which
is a group of automorphisms of M, and R, called the unitary antipode, is an anti-
automorphism of M.

We have R* = 1 and S* = 1_;.

Finally, some properties concerning the left and right invariant Haar functional:

Proposition 2.14 The left invariant Haar functional ¢ and right invariant Haar func-
tional r are related by v = ¢ o R.
We have

por,=v ', Yool =1y, (2.25)

where v > 0 is called the scaling constant.
Furthermore, there exists an element § € A such that

o?(8) =v's,

where § € A is called the modular element.
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Proposition 2.15 The map Ag : A —> H defined by
Ag(a) == Ap(as™7), (2.26)

gives the GNS representation of A with the right Haar functional on the same space
‘H, where § is the modular element defined above.

2.4 The multiplicative unitary

Multiplicative unitaries are fundamental to the theory of quantum groups in the setting
of C*-algebras and von Neumann algebras, and to the generalization of Pontryagin
duality. In particular, a multiplicative unitary encodes all the structure maps of a

quantum group and its dual. A very good exposition is given in [40].
First, let us define the leg notation.

Definition 2.16 Let 7 be a Hilbert space and W € B(H ® H) be a bounded operator.

Then, we define W;; € B (H®) by letting W acts on the factors at the position 7, j. In
particular, the operators Wiz, Wa3, Wi3 € B(H ® H ® H) are given by the formulas

T =T®Idy, T3 :=1dg®T, (2.27)
Ti3 := Z12T23 212 = X23T12 %03, (2.28)

where ¥ € B(H ® H) denotes the flip f Q g — ¢ ® f.

Definition 2.17 Let H be a Hilbert space. A unitary operator W € B(H®H) is called
a multiplicative unitary if it satisfies the pentagon equation

Wz Win = Wio W3 Was, (2.29)

where the leg notation is used.

Given a GNS representation (H, r, A) of a locally compact quantum group A, we
can define a unitary operator

W*(A(a) ® AD) = (A ® A)(AB)(a® 1)). (2.30)

It is known that W is a multiplicative unitary [24, Thm 3.16, Thm 3.18], and the
coproduct on A defining it can be recovered from W:

Proposition 2.18 Let x € A— B(H) as operator. Then,
W51 @x)W = Ax) 2.31)

as operators on H ® 'H.
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Proof For x, f, g € A, we have x - A(f) = A(xf); hence,

W1 ®@x) - (A(f) ® A(g) = WH(A(f) ® A(xg))
= (AQA)(AG(f® 1))
= (A MN(AXARf®D)
=AX) - (A M(AR(f®D)
=AW (f ®8).

As a motivation, let us consider an example involving classical group:

Example 2.19 [40, Ex 7.1.4][45] Let G be a locally compact group with right Haar
measure A. Then, the operator

W, y) = flxy.y) (2.32)

is a multiplicative unitary in B(L*(G, 1) ® L*(G, 1)) = B(L*(G x G, A x 1)). The
pentagon equation for W is equivalent to the associativity of the multiplication in G.
Indeed, for f € L2(G XGXG,AXAXL) X LZ(G, A)®3 and x, y, z € G, we have

(WasWia f)(x, y,2) = f(x(¥2), ¥z, 2),
(W12W13W23f)(x7 Yy, Z) = f((x)’)Z» vz, Z)'

An important property of W is that it encodes the information of the dual quantum
group A. By definition, A is the closure of the linear span of

{(w@ HW :w € B(H)"} C B(H), (2.33)
and we actually have
WeMA A, (2.34)

where M stands for the multiplier algebra.

Similarly, the multiplicative unitary for the dual Ais given by W= W3; hence, it
is known from the Pontryagin duality that WeM (A\ ®.A) as well. From the pentagon
equation, we then obtain:

Corollary 2.20 Asanelement W € M(A® .;l\), together with the pentagon equation,
we have

(A® DHW = Wiz Was, (2.35)
(1@ MW = Wi3sWip. (2.36)

Finally, let us define the notion of “manageability” introduced by Woronowicz
[45,46] that describes a class of well-behaved multiplicative unitary. It is shown
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that any manageable multiplicative unitary gives rise to a quantum group on the C*-
algebraic level.

Definition 2.21 A multiplicative unitary W is manageable if there exists a positive
self-adjoint operator Q acting on H and a unitary operator W acting on H ® H such
that ker(Q) = {0},

QQROW =W 0), (2.37)

and
(X @u, Wz ® MHon =E® Qu, WE® Q') (2.38)

forany x,z € H,y € D(Q~ 1), u € D(Q).

Here, H denotes the complex conjugate of H, so that themapx € H —> X € H
is an anti-unitary map. The inner product on H is given by (X, ¥)77 := (¥, x) .

2.5 g-commuting operators

Throughout the paper, we will consider positive operators A, B satisfying AB =
g’BAforq = e””’z, lg| = 1.

We will realize the operators using the canonical pair A = e
=L d
P = gridxe

2mbx B = e¥bP where

Proposition 2.22 Both A, B are positive unbounded operators on L*(R) and they
are essentially self-adjoint. The domain for A is given by

Dp={f(x) € L*(R) : ™ f(x) € L*(R)} (2.39)

and the domain for B is given by the Fourier transform of D a.

Hence, we can apply functional calculus and obtain various functions in A and B.
In particular, for any function defined on x > 0 € R such that | f(x)| = 1, f(A) will
be a unitary operator.

In this paper, we will be using a dense subspace YW C L?(R) introduced in [12,38].

Definition 2.23 The dense subspace W C L?(R) is the linear span of functions of
the form

e =@ B p(xy, (2.40)

where «, B € C with Re(«) > 0, and P (x) is a polynomial in x.

Then, it is known [38] that VV forms a core for both A and B and it is also stable
under Fourier transform. It is obvious that these functions have analytic continua-
tion to the whole complex plane, and they have rapid decay along the real direction.
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All the operators in the remaining sections will first be defined on ¥V and extended by
continuity to all of L2(R) or its natural domain if the operator is unbounded.
We will also use the notion

WRW C L*(R x R, dsdt), (2.41)

where the extra exponent e”*, y € C is allowed.
For convenience, we describe some computations involving A and B, and similarly
for the operators A and B with the opposite commutation relations.

Lemma 2.24 For AB = ¢*BA, AB = q’zﬁﬁ\, both g "BA~" and quf’l
positive self-adjoint operators. By the Baker—Campbell-Hausdorff formula

eanerpr — e2n’b(x+p)e(2nb)2[x,p]/2 — qunb(x+p)’ (242)
we deduce for example
g BA™! = g\ 2rbre—2mbx — 2mb(p—), (2.43)

Hence, we can describe

(q—lBA—l)ib_lf — eﬂi‘L’zBib_ITA—l'b_l‘E — —JTi‘EzA—l‘b_l‘L’Bl'b_]T’ (244)
(qEZ—l)ib7]T — eﬂifzx—ibilfﬁibilf — —JII‘L' Blb ‘L’A —ib~ . (245)

Furthermore, we have commutation relations of the form

log A"!®log A

(B® hewr (BRA™),  (246)
(1® 3)62 b2 log A= ®logA — e hz log A~ ®10gA(A ® E)’ (2.47)

and similar variants.

3 The quantum dilogarithm

We recall the definition of the quantum dilogarithm given in [14] (see also [2]), an
important special function that will be used throughout the paper.

3.1 Definition and properties

Throughout this section, we let g = ™ iv* where b? € R \Qand 0 < b* < 1, so that
lg] = 1. We also denote Q = b + b1
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Let w := (w;, wy) € C2.

Definition 3.1 The Double Zeta function is defined as

O, zlo) = D @+muw +mawy) " 3.1

ml,mzezzo

The Double Gamma function is defined as
0
[2(z|w) == exp afZ(s,da))h:O . (3.2)

Let
Tp(x) := Dax|b, b7 1. (3.3)

The quantum dilogarithm is defined as the function:

) [p(x)
Sp(x) (= ————. (3.4
I'p(Q —x)
The following form is often useful and will be used throughout this paper:
Gp(x) 1= e 26— g (). (3.5)

Let us also relate G, to another well-known expression by Ruijsenaars [36]

Lemma 3.2
=1, 1Y% T 2(z—Q)
Gp(z) =G |b,b iz — ez , (3.6)
where
7d in2
. y S 2yz b4
Glay,a_;z2) = —\ = . - 3.7
(@ a-:2) = exp l/ y (Zsmh(a+y)smh(ay) a+ay) 3.7)
0

with |Im(z)| < (a4++a—)/2 and extends meromorphically to the whole complex plane.
The quantum dilogarithm satisfies the following properties:

Proposition 3.3 Self-duality:
Sp(0) = Sy 1 (), Gp(x) = G (x); (3.8)
Functional equations:

Sy(x4+bEY =2sin(bTx) Sy (x),  Gpx+bEH=(1 — 2PN G (x):  (3.9)
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Reflection property:
Sp(x)Sp(Q —x) =1,  Gp(x)Gp(Q — x) = " *=9); (3.10)

Complex conjugation:

- 1 . 1
S =— G =) 3.11
(x) S0 -5 p(x) G0 — 1) (3.11)
in particular
Sp (%—i—ix)‘: ‘Gb (%—i—ix)’:lforxe]R; (3.12)
Analyticity:
Sp(x) and Gp(x) are meromorphic functions with poles at x = —nb — mb~ and
zeros at x = Q + nb + mb_l,for n,m € Zso;
Asymptotic properties:
N Im(x) — 400
Gb(x) [{beﬂix(x_Q) Im(x) 00’ (3.13)
where
oh = e%i+%(b2+b*2); (3.14)
Residues:
li Gp(x) ! (3.15)
im = — .
x—>0x bix 27‘[’
or more generally,
Res— -1 ﬁ(l —q2k)_lﬁ(1 —g*H! (3.16)
Gr(@+2) 27 I=1

~ )
atz=nb+mb Y, n,me Z>o and q = 7™,

From the asymptotic properties, we have the following useful corollary that is
needed when we deal with interchanging of order of integrations:

Corollary 3.4 Fors,t € C,x € R, the asymptotic behavior of the ratio is given by

(3.17)

Gy (s + ix)
~ N eZﬂxRe(t—s) X — —00°

Gp(t+ix)

N[l x —> +00

By analytic continuation in b, there exists a classical limit for G, (x) given in [14]:
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Theorem 3.5 Forq = e”ibz, by letting b> —> 0T, we have

B Gp(bx)
1m
b—0,/—i|b|(1 — g?)*~!

—T'(x), (3.18)

where /—i = e~ % and —5 < arg(l — g% < Z. The limit converges uniformly for
any compact set in C.

We will also need another important variant of the quantum dilogarithm function:
&
Gy (% + ﬁ log x)

gp(x) == (3.19)

where |gp(x)| = 1 when x € R. ¢ due to (3.12).

Lemma 3.6 Let u, v be self-adjoint operators with uv = q*vu, q = it Then,

gr(u)gp(v) = gp(u + v), (3.20)
g (W) gp() = g () gn(q ™ uv) gy (v). (3.21)

(3.20) and (3.21) are often referred to as the quantum exponential and the quantum
pentagon relations, which follows from the other properties:

g (W) vgp(u) = ¢ 'uv + v, (3.22)
g Wugy(V)* = u+q 'uv. (3.23)

3.2 Integral transformations

Here, we describe several properties of the quantum dilogarithm involving integrations.

Lemma 3.7 [2, (3.31),(3.32)] We have the following Fourier transformation formula:

/ 2mit e i’ & 27b
e dr = =gpe™™"), (3.24)
G + it Q2 _
R+i0 n(@ ) Go (2 lr)
— QT
itr € Q ) 1 % 2mbr
€ —dt = G — —1lr - — e s
/ GoQ +in e ( 2 g (€27) e
R+i0
(3.25)

where the contour goes above the pole att = 0.
Using the reflection properties, we also obtain

/ 2 em 0l G (—if)dt = b (3.26)

2 _ i)
R+i0 Gb(2 lr)
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/ eZnitreniZZGb(_it)dt — {th (% — ir) , (3.27)

R+i0
where again the contour goes above the pole at t = 0.

Lemma 3.8 /2, B.4] q-Binomial Theorem: For positive self-adjoint variables u, v
with uv = g>vu, we have:

1T

(u+ vyt :/(’.t) w0 i g (3.28)
b
C

where the q-beta function (or q-binomial coefficient) is given by

, (3.29)

(t ) _ Gr(=D)Gp(t —1)
T b_ Gp(—1)

and C is the contour along R that goes above the pole at T = 0 and below the pole at
T=1.

Lemma 3.9 /32, Lem 15] We have the Tau—Beta Theorem:

/e_zm,g Gplatit) . Gr(@)Gy(B) (3.30)

GO +in) | Gyatp)

where the contour C goes along R and goes above the poles of G (Q +it) and below
those of Gp(a + it). By the asymptotic properties of Gy, the integral converges for
Re(B) > 0,Re(a + B) < Q.

Lemma 3.10 Rewriting the integral transform in [44] in terms of Gp, we obtain the
4-5 relation given by:

= (3.31)

/dre’zn”’ Gpla +i)Gp(B +iT) __Gr(@)Gp(B)Gh(y)
Gol@a+B+y +it)Gp(Q +it) Gpla+y)Gp(B+y)

C

where the contour C goes along R and goes above the poles of the denominator, and
below the poles of the numerator. By the asymptotic properties of Gy, the integral
converges for Re(y) > 0.

An important corollary of Lemma 3.9 is the following:

Corollary 3.11 Let f(z) € W (cf. Definition 2.23), then we have

[GHQ -G
Jim [ 2GS iz = fo0) (3.32)
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where the contour goes above the poles of the denominator and below the poles of the
numerator. Alternatively, we can shift the poles so that the expression is an integration
over R:

eli_nfo/ G(Q@ =20z +€) 4. = 1(0). (3.33)

Gp(Q +iz—€)
Formally as distribution,
Gy(Q)Gp(ix)
—= "~ =§(x), xeR. 3.34
Gy(Q +ix) 0 639

Proof By Lemma 3.9, we have

€h_r)no/ Gb(Q—ZE)Gb(iZ+E)f(Z)dZ

Gp(Q +iz—¢€)
R

G —2e+i
= lim //6_2’”(’”6) Q26470 1 \udz,
R C

e—0 Gp(Q+it)

where the contour C goes above the pole at T = 0.
Now, by Corollary 3.4, the integrand in t has asymptotics

eZnte T > —00

‘6_2’”6 Gp(0 —2e+it)
Gp(Q+it)

{ 67271 Te o 00

Hence, the integrand is absolutely convergent in both 7 and z. Hence, we can inter-
change the integration order of 7 and z,

. G -2 )
— lim //e—znr(zz-ké)b(Q—e‘-i_”)f(z)dsz
e—0 Gyr(Q +iT)
C R

. e Gp(Q —2e +iT)
E11_1)110 e Go 0T iD) (FH)dr,
C

where F is the Fourier transform. Since f € W, F f € W as well, hence the integrand
is absolutely convergent independent of €. Hence, we can interchange the limit and
finally obtain

. opetizre) Gp(Q —2e +iT)

_ 2rt(iz+e) _ _

= /Ehmoe GO0 (Fx)dr = /(ff)(r)dr = f(0),
R R

where the last line follows from the properties of Fourier transform. O
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Remark 3.12 This is just the analogue of the delta function as a hyperfunction. Since
the integrand is O unless z is close to 0, it suffices to notice that near z = 0, from the
analytic properties for G, we have Gp(z) ~ Gr0=n ~ 27z SO that

lim Gp(Q —2¢)Gp(iz +€)
e—0 Gp(Q+iz—e)
. 2¢
~ lim — -
e—02mi(iz —€)(iz+€)

. 1 ( 1 1 )
= lim — — — -
e—02mwi \z —ie z+Iie
= 46(2).

Intuitively, restricting to x € R, % is always O unless x = 0, in which

case, it is 0co. The properties of G say that it gives the right normalization to be a
delta function.

The other variants which we will also use include:

Corollary 3.13 For f(x) € W, we have

. Gp(e —ix)Gp(e +ix) _
Eh_r)no/ Gy (20) f)dx = f(0), (3.35)
R
. Gple +ix —b)Gp(Q + b — 2¢) _ 2 .
tim [ GO e = g 1) + f(-ib),
(3.36)
or formally
Gi(~ix)Glix) _
o0 = 8(x), (3.37)
Gplix =b)Gp(Q +b) 5 .
GrlO T i) = —q°5(x)+8(x +ib), (3.38)

which follows from the functional properties of G (x) and similar arguments as above.

A particular important case in the study of modular double (see the next section) is
proved in [2, Lem 3] and [44] which can also be obtained from the above arguments:

Corollary 3.14 Let u, v be positive self-adjoint operators satisfying uv = q>vu. By
taking t — —ib~ 1 in Lemma 3.8, we obtain

(4 v)/0 = 1/ 18, (3.39)
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4 The quantum plane

In this section, we will define the main object of the study; in this paper, the
C*-algebra A of “functions vanishing at infinity” on the quantum plane. Its Haar
functional is established, and we obtain the GNS construction of .A on a Hilbert space
H ~ L?(R x R). Finally, we construct the multiplicative unitary W and show that it
is in fact manageable.

Note that in analogy to the classical semigroup with inverses absent, in our context,
we do not have a well-defined antipode S due to positivity. Hence, we may also call
the object informally as a “quantum semigroup.” However, as we see in Definition
4.6, there is instead a well-defined unitary antipode R.

With the existence of the coproduct (Corollary 4.5), a left invariant faithful KMS
Haar functional (Theorems 4.7, 4.9, Corollary 4.15), a right invariant Haar functional
(Proposition 4.16) and the density condition (Theorem 5.8), the C*-algebra A can be
put in the context of “locally compact quantum group” in the sense of [24,25]. This
allows us to apply the theory developed in those papers.

4.1 Motivations from classical ax + b group

Recall that the classical ax + b group is the group G of affine transformations on the
real line R, where @ > 0 and b € R, and they can be represented by a matrix of the
form (we use the transposed version):

a 0
g(a,b) = (b 1), “.1)

where the multiplication is given by

_(aiaz 0
glar, by)glaz, by) = (bla2 by 1) . 4.2)

We can then talk about the space C(G) of functions on G vanishing at infinity, and
a dense subspace of functions Wg of the form

We = {g(loga) f(b) : f,g € W C L*(R)}, (4.3)

where f, g € WV are the rapidly decaying functions defined in Definition 2.23. Then,
Coo(G) is the sup-norm closure of Wg.

In the study of quantum plane, it is necessary to consider the semigroup G, of
positive elements. Restricting f (a, b) € Wg tob > 0, we can use the Mellin transform
and express the functions as

fla,b) = / /F(s,z)a”bi'dsdt. (4.4)

R+i0 R
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Since the function is continuous at b = 0, it has at most O (1) growth as b —> 0.
Hence, from Theorem 2.2, we conclude that F (s, t) is entire analytic with respect to
s, and holomorphic on Im(¢) > 0. Furthermore, it has rapid decay in s, ¢ along the real
direction and can be analytically continued to Im(¢#) < 0. Moreover, since f(a, b) is
analyticatb = 0, the analytic structure of f(a, b) onbis givenby > 2 A «b* for some
constants Ax. Hence, F (s, t) has possible simple poles att = —in,n =0, 1,2, ....

Finally, according to the Parseval’s Formula for Mellin transform, there is an L?
norm on functions of G given by

1
IIf(a,b)||2=//‘F(s,t+§i)
R R

da

a

2
drds (4.5)

induced from the Haar measure
the lack of inverses.

db. However, it is no longer left invariant due to

4.2 The quantum plane algebra and its modular double

Throughout the section, we let g = ™, 7 = e™¥"” where b*> € R\ Q, 0 < b% < 1.
We have |¢| = |¢| = 1.

The quantum plane A, is formally the Hopf algebra generated by positive self-
adjoint operators A, B satisfying

AB = ¢’BA, (4.6)

with coproduct
AA)=AQA, 4.7)
A(B)=B®A+1QB. (4.8)

Hence, it is clear from the previous section that the quantum plane is just the quantum
analogue of the classical ax + b group. Their relationships are studied in detail in
[14]. By the following proposition, the coproducts are positive essentially self-adjoint;
hence, they are well defined.

Proposition 4.1 The operator e*™** + e>™PP is positive and essentially self-adjoint.
In particular, the coproduct A(B) = B ® A + 1 ® B defined in (4.8) is positive and
essentially self-adjoint operator on L*(R) @ L*(R).

Proof Tt follows from (3.23) by applyingu = A, v = ¢~ ' BA~!, and notice that g, (v)
is unitary. Hence, this gives a unitary transformation that sends e>"?* to e272¥ 4 ¢27bp,
In particular, the functional analytic property carries over to the new operator. O

Since we are working with positive operators, this important property allows us to
avoid the analysis of the coproduct of B that is studied extensively in [35,46].

An interesting object in the study of quantum plane is the modular double element
[5,10,22]. Az is formally the Hopf algebra generated by positive self-adjoint elements
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A=AV B=p" (4.9)
such that they satisfy
AB = §*BA. (4.10)

Then, according to the formula above, using Corollary 3.14, we conclude that they
have the same bi-algebra structure:

AA)=A®A, (4.11)
AB)=(B®A+1® BV
=BeMN +1g B
=B®A+1QB. (4.12)
Motivated from the definition given in the previous section for the classical ax + b

group, we define the C*-algebra C(A,) of “functions on the quantum plane vanish-
ing at infinity” as follows.

Definition 4.2 Co.(Ay) is the space of all functions

norm closure

Coo(Ay) = //f(s,z)A“’”SB””‘fdsdt (4.13)

R+i0 R

where f is entire analytic in s, and meromorphic in ¢ with possible simple poles at

t:—ibn—im, nm=0,1,2,...
b
and for fixed v > 0, the functions f(s+iv, t) and f (s, t+iv) are of rapid decay (faster
than any exponential) in both s and ¢. To define the C* norm, we realize AibT's fx) =
¢S f(x) and Bi’fl’f(x) = e?™P f(x) = f(x + 1) as unitary operators on L*(R)
and take the operator norm.
For simplicity, we will denote the space simply by A := Coo(Ay).

Remark 4.3 As in the classical case, by Mellin transform in s, we can consider the
linear span of

¢(log A) / 2Bt

R+i0

instead, where g(x) is entire analytic and of rapid decay in x € R. This form will be
useful later when we deal with the pairing between A and its dual space A. We can
also conclude from the definition that A, A~!, K, K‘l, B and B are all elements of
the multiplier algebra M (A).
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This definition differs from the classical case in certain aspects. First of all, there
isab <— b~ ! duality in this definition. Indeed, it is obvious that we have

Coo(Ay, b) = Coo(Az, b7 1) (4.14)

because AP Bib™'t — Zibs Bibt and the analyticity of f(s, ) has the b <—s b~
duality. Hence, it encodes the information of both .4, and .4;. For example, we see
by Theorem 2.2 that as a function of B, at B = 0, it admits a series representation

FB)~ > amB"" = > 4,,B"B". (4.15)

m,n>0 m,n>0

This choice of poles in the definition is needed in order for the coproduct A(A) to
lie in M (A ® A), the multiplier algebra, because of the appearances of the quantum
dilogarithm G, (—it); hence, it is a “minimal” choice for all the calculations to work.

Proposition 4.4 Let us denote simply by [ = [p. .0 Jp (5, A gt~ qgdy.
Then, the coproduct on Ay can be naturally extended to A by

A(f)= / /f(s, DAY @ AP (B @ A+1® B)Y dsdr
R+HO R
_ / //f(s 0 Gp(—it)Gp(it _it)Aib_lsBib_l(t—r)
’ Gp(—it)
R+i0 R C
Alb I(A-H‘ T)Blb rdfdsdt
Gp(—i(t +1))
R+i0 R R+i0
@AY 50 Bt g dsdr,

or formally

. Gp(=it))Gp(—in)
A(f)(s1, 11,82, 02) = f(s1, 1 + 1) Goith £ 1) 8(s2, 81 +11).

(4.16)

Corollary 4.5 The map A sends A — M(A ® A) where M(A) is the multiplier
algebra for A, and it is coassociative in the sense of multiplier Hopf algebra. Hence,
A is indeed a coproduct on A.

Proof We need to show that A(f)(g ® h) liesin A® A for f, g, h € A. From the for-
mula for A, we see that the poles for f are canceled by G, (—i (¢ + 7)) and two new set
of poles at the specified locations are introduced by the numerator G, (—it)Gp(—it).
Hence, the integrand of the coproduct is a generalized function with the specified
analytic properties. Since Co(Ay) is closed under product, which comes from the
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Mellin transform of certain series representation, the product of A(f) and any ele-
mentg®h e A® Awillliein A ® A.
Coassociativity is then obvious from the construction. O

Finally, let us describe the antipode S and the unitary antipode R. On the Hopf
algebra level, the antipode is given by S(A) = A~!, S(B) = —BA~!. Formally, we
extend it to A by

S //f(s,t)Aib_lSBib_lldsdt

+i0 R

= //f(S,l)(emBA_I)ib_]lA_ib_lsdsdt )

+i0 R
and hence we have

Definition 4.6 We define the antipode to be
S(f) = f(—s —1, 1)e " QeriGst+?) 4.17)
Then, Sz(f)(s, t) = f(s, 1)e~272!: hence, we conclude the scaling group to be
T (AT = AT (BT = e g (4.18)
or more generally
(A=A, 7(B)=e 200 (4.19)
Then, the unitary antipode R = 7;/5S is given by

R(A) = A7, (4.20)
R(B) = —e ™bQpA~1 — e~mib?—mip A=l _ ;=1pa~l, 4.21)

We note that R sends positive operators to positive operators, which differs from the
usual choice (see, e.g., [40, Thm 8.4.33]). Furthermore, when we later realize f (s, t)
as element in H := L%(R?) in the von Neumann picture, the antipode S can be seen
to be an unbounded operator on H due to the factor e =79’ coming from the negative
sign, while R is unitary. Hence, R is better suit in this positive semigroup context.

It is known that as polynomial algebras A, and Az are C*-algebras of Type 11}
[5,22]. However, by expressing A = e>"?*| B = ¢2""7_ the definition of A states that
it is nothing but the algebra of all bounded operators on L?(R) via the Weyl formula
[5]; hence, it is a C*-algebra of Type L. Therefore, A is precisely the modular double
A, ® Ay, and it arises as a natural framework to the study of this subject.



1014 I.C-H.Ip

Finally, we will also see in the GNS construction that a natural L?-norm is given
by (cf. Theorem 4.9)

IIf(s,t)||2=//‘f (s,;+§)
R R

which is an analogue of the classical Parseval’s formula.

2
dsdt, (4.22)

4.3 The Haar functional

Recall from Definition 2.8 that a linear functional on A is called a left invariant Haar
functional if it satisfies

(I ®h)(Ax) =h(x) - Ly, (4.23)
and a right invariant Haar functional if it satisfies
(h ® D(Ax) = h(x) - Lya), (4.24)

where 1,s(4) is the unital element in the multiplier algebra M (A).

Theorem 4.7 There exists a left invariant Haar functional on A, given by

h //f(s,z)A"”"SB"”’”dsdt — £(0,i0). (4.25)

+i0 R

Proof From Proposition 4.4, the coproduct is given by

A //f(s,t)A"”"'SB"”"]’dsdt

+i0 R

B Gp(—iT)Gp(it —it) ;-1 ib=1(t—1)
- / //f(‘”) Go—in B

R+i0 R C
®Aib_] (S+I_T)Bib_lrdfdsdt

:/ / /f(S,l+T —5) Gp(—iT)Gp(is _it)AilflsBibfl(tﬂ)

Gp(is —it —iT)
R R-i0 C

QAP BT T 4 dsds.

In the last step, we push the contour of ¢ back to the real line and the contour of 7 to
be the real line that goes above the pole at T = 0 only. This will force the contour of
s to move below the pole at s = .
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Now, as a function of 7, the integrand is well defined for 0 < Im(z) < Q. Therefore,
to apply the Haar functional, we take the analytic continuation to T =i Q by

T = limiQ —ie.
e—>0

Using Corollary 3.11, we have

Gb(Q - G)Gb(is) Al’bilsBl.bil(*S)ds
Gp(Q +is—e€)

lim / f(s,iQ —s —ie)
e—>0
R—i0

f0,i0Q)

as desired. O
Using exactly the same technique, we can derive the counit for A:

Corollary 4.8 The counit is given by

e(f)= tlimOGh(Q +it) / f(s, t)ds (4.26)
R
and satisfies
1®e)A=1dg=(e®@1A. (4.27)

4.4 The GNS description

The GNS representation enables us to bring the quantum plane into the Hilbert space
level, where the algebra is realized as operators on certain Hilbert space. This Hilbert
space is nothing but the space of “L? functions on the quantum plane,” which gives
the necessary background later to describe the L? functions on GL(J;(Z, R) using the
quantum double construction. This will allow us to state the main theorem (Theorem
8.15) on the decomposition of L2(GL;‘ (2, R)) into the fundamental principal series
representations of U,z (gl(2, R)) with certain Plancherel measure.

Now, equipped with the left invariant Haar functional /2, we can describe completely
the GNS representation of A using / as the weight.

Theorem 4.9 Let H = L*(R x R) be the completion of L*(R) @ W equipped with
the inner product

(f, &) =//g(s,t+%)f(s,t+§) dsdz, (4.28)
R R

and the L? norm

2
dsdr. (4.29)

112 = // ’f(s, +2)
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Then, the GNS map is simply given by

A //f(s,t)A"b"sBib’lfdsdt = f(s.1). (4.30)

+i0 R

In particular, the Haar functional is a faithful weight.
The action 7 is given by the multiplication of A on itself:

w(a)A(D) == A(ab), a,be A (4.31)

First of all, let us note that A is closed under *:

Proposition 4.10 The conjugation map T is given by
T(f) = f(=s, =", (4.32)

where we denote byj(z) = (2.
We observe that f(—s, —t)e>™ 5! still satisfies all the analytic properties required
to be an element of A: it is entire analytic in s, meromorphic in t with possible poles

att = —inb — imb~ 1, etc. see Definition 4.2.
Proof
sk
/ / f(S, I)AibilsBibiltdet — / /f(s, t)B—ib*I?A—[b*IEdEd;
+i0 R R+i0 R
— / /f(E, DB A=Y s gy
R—i0 R
_ / /—f(E, ;)CZHiStA—ih’lsB—ih’ltdsdl‘
R—-i0 R
— / /f(—E, _;)ezn’istAibfl_&‘Bibflldsdt
R+i0 R
— / /?(—S, _t)e271istAib_ISBib_]ldet.
R+i0 R

O
Next, we describe the product in terms of f (s, #):

Proposition 4.11 The product of two elements in A is given by:

C

(f - g)(s, 1) = / / (s =5t —1t)g(s', t)eX™ s =qgar, (4.33)
R
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i.e., a twisted convolution. Here, C is the contour that, with possible poles, goes below
t' =t and above t’ = 0.

Proof
/ /f(s,z)A"b"SB“””dsdr / /g(s’,z’)A"""S’B”’"”ds’dz’
+i0 R +i0 R

- / / / / Fs, 0)g(s', 1)eXT T AT 6430 g D g gy e

R+i0 R R+i0 R

// //f(s—s 1 —1)g(s', )X = ds'dr’ | AT 's gib~' gy,

R+i0 R C
where in the last step, the shift in # will push the contour of ¢’ to go below t' =¢. O

Proof of Theorem 4.9 Using the formula for the Haar functional, and the definition of
the GNS inner product, we have

(f,8) = h(g"f) = h(g(—s, —)e*™" . f(s,1))

/ /g(s/ —s, { t)ezm(sfs’)(tft’)f(s/’ t/)ezms/(tft’)ds/dt/

+i0 R

/ /g(s/ — st — 1) F (s, t)eX g dy

+i0 R

= / /?(S/,t/—iQ)f(s’,t’)ds’dt/

R+i0 R

— 3 //_Q [y 2 ! 34/

_//g(s,t 2)f(s,t+ 2)dsdt
R R

_ Y g /oL 2 ! 1,/

_//g(s,t—i- Z)f(s,t—i— 2)dsdt,
R R

where in the second to last line, we do a shift in the contour of # by % by
holomorphicity. O

Finally, we read off the representation 7 of .A on the functions f (s, ) € H:

Proposition 4.12 The representation w : A — B(H) is given by
m(A) =e P m(B) = ePPe b, (4.34)

where pg = EE’ so that e¥™Ps . f(s) = f(s — ib). Similarly, for p;.
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Proof A actson f(s,1t) by:

A“’”S’//f(s,t)A“’"SB”’"’dsdt=//f(s,r)A"”"(S“’)B”f"dsdt
=// f(s—s', )AL BV dsdy,

Hence, A" f(s,1) = f(s —s',1), or A = e~ 2700s,
Similarly,

Bl‘hill/ // f(s, t)AihilsBihiltdsdt — // f(s, t)ezmSt/AiquBihil(H‘t,)dsdl‘

_ / Fls. 1 —1)e2mist gib™'s pib™1geqy

- - '
Hence, B+ f(s,1) = e*™" f(s,1 — 1), or B = *"b%e27bpr, O

We will take this Hilbert space H as our canonical choice when we introduce right
measure and the dual space.

4.5 Modular maps and the right picture
In this section, we describe the remaining objects defined in Sect. 2.3, as well as the
description of the right invariant picture for the quantum plane.

From now on, let us restrict all operators on the dense subspace WV, and we will
extend any bounded operators on W to the whole space H.

Proposition 4.13 The conjugation map T (cf. (2.20)) is given by
T(f) = f(—s, —)e*™", (4.35)
T* is given by
T*(f) = f(—s, —1)e?51e2™C, (4.36)
Hence, the modular operator V.= T*T is given by
V(f) = f(s, e, (4.37)
and the modular conjugation J = TV_% — V3T is given by
J(f) = f(—s, —1)e*Tis1e™5Q (4.38)

We have J* = J*J = Id.
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Proof 1t suffices to establish the map T*. Since T is anti-linear, from the definition of
the adjoint of anti-linear maps, we have:

(Tf.g)=(f.T"g)

RHS—//T* (E? —Q
2
Q

- (i
f (—E, —T+ %)ez””(’+ #) asar
= //§ (—s, —t — 2) f (_, T+ %)ezm(s% )dsdt
Hence, T*g = g(—s, —1)e?i57e275Q, O
Corollary 4.14 The modular group o;(x) = Vi!xV ™! is given by
0/(A) = b2 A, (4.39)
o:(B) = B. (4.40)
or in other words
or(f) = f(s, e 9. (4.41)
With this expression of the modular group, it is now easy to see the following:
Corollary 4.15 The Haar weight is a KMS weight, in the sense of [24], that is,
hooi=h foreveryt € R, (4.42)
h(a*a) = h(o% (a)aé (@)*) foreverya € A. (4.43)

Proof The first equation is obvious from (4.41). For the second equation, it follows
by combining (4.35), (4.41) and Proposition 4.11. O

Proposition 4.16 The scaling constant v is given by
v=e29 >, (4.44)
the modular element § is given by

§=A""7, (4.45)
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and the right Haar weight is given by

V() = f(=iQ.iQ)e ™2 (4.46)

Proof

h(ty(f)) = h (// 1, z)e—%be’“’"A"b”B”’l’dsdz)

=h ( / / fs, e Q”’A"b‘sB"blfdsdt)

— f(O, iQ)6727TiQI,iQ
= £(0,iQ)e¥ 2",

2
hence v = e 272",

Obviously,
01(8) = ¥ Frg — 2O — 15 (4.47)
Finally, for the right Haar weight, recall that

R(A) = A",
R(B)=q 'BA7",

hence

v (f) = h(R(f))

—h (// £, t)(q_lBA_I)ib_ltA_ib_lsdsdt)

h (// £, t)q—ibltq—iblt(iblt—l)q—2b2t(s+t)A—ib1(s+t)Bibltdet)
h (// £, t)e—ﬂi(ZstHZ)A—ib1(s+t)Bibltdsdt)

h ( / / fl=s—1, t)e”i(zs’+’2)AiblsBibl’dsdt)

(=i Q,i Q)10
(~iQ.iQe ™,

f
f
O

We have an isometry Hr —> H between the Hilbert space associated with the
right and left invariant Haar weights, respectively, given in Proposition 2.15 by

Ar(@) = AL(ad?) = AL (aA~ ). (4.48)
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Explicitly, we can rewrite all the maps in the right picture. We list here for convenience.

Proposition 4.17 We have

AR / /f(s, AL BT qgdy =f(s—§,t) e O (4.49)

+i0 R

with inner product given by

_ _Q 2 _Q g —2m Qt
(f,g>R—//g(s 2,t+ 2)f(s 2,t+ z)e dsdt.

R R

(4.50)
TRf(s, 1) = f(—s, —1)e* e 7 (4.51)
T;;f(s, t) — ?(—S, _t)62ni51+th+2an7niQ2’ (4.52)
VRf(s,1) = f(s, )e?TsQF2m1Q-miQ? (4.53)

— . i 2
JRf(s, 1) = F(—s, —)eX™¥em Ce "~ (4.54)

In particular, we recover the relation [25]

Jr =", (4.55)

4.6 The multiplicative unitary

In this section, we will describe the multiplicative unitary W explicitly. Recall (cf.
(2.30)) that it is defined as a unitary operator on H ® H by

W*(A(a) ® AD) = (A ® A)(AB)(a® 1)). (4.56)

We will use extensively the following variants of Lemma 3.7:

Corollary 4.18 For AB = ¢>BA, AB = q’2§;{\, using Lemma 2.24, we have

Burlz ® X—iirlrgibflr
Gp(Q +it)

o (BRgBA™) = / dr, 457)
R+i0
Bib’er—ib"r ® §ib’]r

Gp(Q +it)

e@ ' BA~ @ B) = /
R+i0

dr, (4.58)

g (B@qgBA ™Y = / BVt @ Bt T A= G, (—it)dr,  (4.59)
R+i0



1022 I.C-H.Ip

gi(@'BAT'®B) = / ATt @ BV G (—itydr.  (4.60)
R+i0

Note that the arguments inside gp are all essentially self-adjoint; hence, the expression

is well defined.

Proposition 4.19 The multiplicative unitary W € B(H ® H) is given by

W = ez ogAT @log A B ® gBA) (4.61)
= ap(q”'BA™ ® B)emmi 0247 @log A (4.62)
W* — o logABlogA g (¢"'BA™' ® B) (4.63)
= gi(B®gBA e Tz g A®log & (4.64)
where

A — e—zn'bps’ B — eanse—anp, (465)

as before, and
A=e¥b B = Gy(—it) o e?™tPi2mbrs o Gy (—ir)~h (4.66)

Remark 4.20 Note that we actually have W € M (A ® B(H)). Moreover, in the next
section, we will see that the hat operators are precisely the dual space elements, hence
indeed W € M(A® ﬁ). Furthermore, the multiplicative unitary will be invariant
under the exchange » —> b~! and A4, — Aj.

Proof First of all, notice that A\ and B are positive operators on the subspace W (with
the measure shifted in ¢ by ) since Gh(g — 1t) is unltary Furthermore, we have
AB = q_2BA. Moreover, both g 'BA™! and qBA are positive operators; hence,
the expressions are well defined.

The formula for W follows from W* by conjugation and using the relations (2.46),
(2.47). For simplicity, we compute W* formally using the definition:

W (f®g =Af®
_ Gp(—it1)Gp(—itr)
= (g(sl,tl + 1) oot 12) 8(s2, 51 +t1)) - fGs1, 1)

Gy(it; —it))Gp(—it)
= (s1—s), 01 +n—1) .
//g ! YGy(—i(h + 1 —1)))

s ol ’
8(s2, 81+ 11 — 1] — s7) f(s], 1)eZ 10Dl dr],
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where C goes below #; = t1. Replacing 5] = s1 411 — 52 — 1], we get

Z/f(S1 +1H -5 — l‘{, t{)g(t{ —H+s,H0+H— t]/)

C
e2mi(si+H—sa—1}) (t1—1}) Gb(it{ —it)Gy(=in) r
Gp(—i(h+n—1) !

Renaming t{ = 1 and do a shift t — 71 — 7, we get

WS(f®g) = / fs1—s247. 1) — T)g(s2 — T, [+ 1) 12T
R+i0
y Gp(—it)Gp(—itp)
Gp(—it —in)

dr,

where the contour of T now goes above T = 0.
On the other hand, using Corollary 4.18, the formula we desired is

i log A®log A *

e2nb? gb(q_lBA_l ®§)(f®g)
—ezn? 08 ABlog A /A—””'TB”””@E"”"fcb<—ir)df (f®2)

+i0

sritsprere Gb(1)Gp(=iT)

_ o 2mips 52
=e 1 S1+7,H1—1)8(s—T,1h+T)e - -
/ f(s1 1—0)8(2—1, 1 +7) Go—it—i1)

+i0
27 (s1=s47) T Gp(=it)Gp(—in)

= —s4T. 1 — -1t
/f(ﬂ $2+7, 11 —1)g(s2 — T, 1+ 1) Gp—it —in)

R+i0
For completeness, let us note that the action of W is given by

Gb(—il‘z)ezni”l
Gp(—it) —it)Gp(Q+iT)

WS &)= / Fls1452, 11 —)g(s2—7, n+T)dr.

R+i0
4.67)

]

In [46], it is commented that manageability of the multiplicative unitary is the
property that distinguish quantum groups from quantum semigroups. However, we
obtain the following:
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Theorem 4.21 W defined above is manageable.

Proof We need to look for the positive operator Q and the unitary W in Definition
2.21. It is known (e.g., see [24,40]) that Q can be expressed in terms of the scaling
constant and the scaling group:

0= PI/Z, PitA(x) _ 1)1/21\(&(61)). (4.68)

From the expressions derived in the previous sections, we obtain

0 f(s,1) = e_”Q([_%)f(s, 0. (4.69)

Note that in fact Q is positive, under the inner product of H (with a shift in ¢
t+ 2.

Then, we see that 0 ® Q commutes with A® 1, 1 ® Aand B ® B. Therefore, from
the formula (4.61), we conclude that Q ® Q commutes with W.

Next, we will express W from definition and show that it is a unitary operator. First
of all, let us note that restricting to holomorphic functions, when a shift in contour is
involved, the inner product actually reads

- // f (s, t+ %) g (5 T+ %)dsdz, (4.70)
R R

see the derivation in the proof of Theorem 4.9.
By definition, we have

(f' ®g. W(f ®man=(F®0 W(F ® 0 )an-

where f := f(z) = f(Z) € H, and the inner product is given by

/?(s, r— %) §(§,i %)dsdt 4.71)
R
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Now, using the action of W given by (4.67), we have

LHS = ////dsldtldSZdth, (Sl,tl"r%) g (sz,tz—i-%) :

Gy (7 —llz) e2mitst

/]R+10 Gy, (7 —llz—lT) Gp (Q+iT)

= // // / dfdsldl‘ldszdtzf/ (S],t1+£) g’ (Sz, l‘2+£) e—2m’rs] .
R+i0 2 2

Gy (f—ztz—zt) Gy (i7)

— i _ i
X G ( ) f (s1+52,t1—r—TQ)g(sz—r,tz—i—r—?Q)
[ 1)
= // // / drdsidrds,dty f (Sl, ll_%) r'd (527 t2+§) e 2mit(si=s2)
+i0

Gp (7—11‘2—1‘[) Gp (i1) i0 i0
X f (Sl—S2,t|+r+7)§(sz—f,t2+r—7)
Gp (7—112)

RHS = // // dsldtldszdtzf (sl, A1 7%) g (sz, Hh+ %) e 7an

(f ®0~ g) (Sl, 1—% Sz,l‘2+.2Q>

f (H+§, H—r+§) 8 (E—r, E+r+§) dr

Comparing, we get

— : _ Gy (intzfir) Gy (i7)
W (f/®Q_1g) (ﬂ,ﬁ—% sz,tz-l—le) = / g7 Qe 2miT(s1752)
) Gp (*—lfz)
R+i0
iQ

x f' (sl—sz,tl-i-r-i-%)?(sg—r, th+t — 7) dr

— i . Gy |5 —in
W (Foos) (-2 marg) = [ eronenors (8-i)
2 2 Gp(4—in—it)Gy(Q +it)

R+i0

— _ i _ i
x f'(s1—52, h+1 — 7Q)g(5—r, tz+r+7Q)dr

so that

W @0 o) s1, 11,2, 12)

i0
B / (%), 2””(”_W)Gb(—m)f( s1—82, 1+7)g(s2—7, 1 +7)dr.
Gp—in—it)Gp(Q+it) 7

R+i0
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Now renaming G = Q_lg, ie. G(s2, ) = e Q=73 )g(sz, 1), we have

i0
g —T,0+1) =Gl — 1,0+ 1) mo(utr )

hence the action of W becomes

- nQr 2mit(sy SZ)Gb(—llz)
W(f®g = / Go(—it —in)Ga(0 +i1) fls1—s2, 01 +1)8(s2 — 7, + T)dt

R+i0

= / F(s1 = 52,11 + 1)g(s2 — T, 1y + T)eXTITEOImsFAT—E)
R+i0
Gp(Q+ith +it)Gp(—iT)
X - dr
Gp(Q +itp)

Hence, we can conclude that

W = e_2ﬂiS2pfl / (B#)ib’lr ® (B?#)ib*ﬁ:(A\#)ibfl‘[Gb(_iT)dT
R+i0

—L_log A~ ®log A # SHH
= e’ 08 ¢ 8y (B" ® ¢gB"A"),
where

Bt by q# _ ()

’

B = Gp(Q +it) " 'e20Wwi=r) 6 GL(Q + it),

are all positive operators with respect to the measure in H ® H, and we used an
analogue of (4.59) with A*B* = q2B#A# Hence, W is a unitary operator. O

Remark 4.22 This is a rather curious and striking result since our quantum plane has
been restricted to B > 0 so that all the operators involved are positive essentially self-
adjoint and nicely defined. In fact, the key difference is that in [46], the multiplicative
unitary W lies in A ® A, while our W lies in 4 ® ,Zl\, and the Hilbert space H ~
L%(R x R) is “twice” larger than the canonical space L%(R) for the action of A only.
For example, we see that the operator At = e270—"F) does not lie in the action
spanned by A itself, which only contains actions on the variable s and the shifting
operator e>"’Pt Therefore, it is worth studying a deeper meaning of manageability of
W in this wider context of quantum semigroups. The difference in the definition of W
mentioned above in fact produces a new transformation formula for G, see Sect. 9
for further detail.
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5 The dual space

We have encountered the dual space elements in the expression for the multiplicative
unitary W. Following the recipe in [24], in order to describe the GNS representation
for the dual space A, which is self-dual for quantum plane, we need to establish a
non-degenerate pairing between A and A R

Firstof all, let us describe its own GNS representation (H, 7, K). After establishing
the pairing, we can then relate them to the canonical space H.

5.1 Definitions

First, let us describe the dual space on the Hopf algebra level.

Definition 5.1 The algebraic dual space Aj ~ A, is generated by self-adjoint oper-
ators X, Y with XY = ¢Y X and the same coproduct.

Following [10], occasionally we will use the notation B, to denote .A;; when we
want to think about the dual space as the quantum algebra counterpart of the quantum
group A,. This correspondence is discussed in [14]. Similarly, we use the notation
B, to denote the modular double B, ® B;.

Definition 5.2 We define .Zl\q = AZO‘U to be the algebra generated by X,Y
with XY = = ¢?YX and the opposite coproduct. Alternatively, by defining A =
x! B = ¢ 'YX!, we define A, to be generated by positive elements A, B
with AB =gq ~2BA and the same coproduct as A and B:
A(Ad) = A® A, (5.1)
AB)=B®A+1®B. (5.2)

Definition 5.3 Similar to the quantum plane, we define A = Co (,74\[,) to be the
closure of the linear span of elements of the form

f= / /f(s,t)ﬁ”’""/?b"'fdsdt, (5.3)

R+i0 R

where f(s, t) has the same analytic properties as those in A.
Since the spaces are self-dual, we immediately have the following

Proposition 5.4 The left and right Haar functionals are given as before:

hL(f) = £(0,iQ), (5.4)

() = f(=iQ.iQ)e ™", (5.5)
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The GNS representation on H associated with 71\L is simply given by

AL //f(s,t)ﬁfb’lfﬁb’lsdsdt — f(s.1), (5.6)

+i0 R

and the inner product is given by (notice the extra exponent):

(ﬁ?) = il\L(?kf) = //fg\(s, t+ %)f(s, t+ %) e?" 25 dsds. 5.7
R R

Following the same method as in the previous section, we also establish the fol-
lowing maps:

Proposition 5.5 The product of two elements is given by
(f-2)s. 1) = / fs =5t — )3, )e 6= q5/dr. (5.8)
The action of A and B is given by:
F(A) = 7 (B) = e 2hP, (5.9)
The antipode is given by
S(F) = f—=s — 1, g7 Q1emir+2mist, (5.10)
The scaling group is given by
T(A)=A T,(B)=¢""%p. (5.11)
The unitary antipode is given by
R(A)=A"" R(B)=qBA, (5.12)
or explicitly by
R(P) = f=s — 1, p)em42mist, (5.13)
The scaling constant is given by
=20 =l (5.14)

Note that by general theory, for the dual space, we have instead S= I’Q\ﬁ /2
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Proposition 5.6 Acting on the space H, we have

7. f AR f( 5, —1)e2Tist, (5.15)
T*: fs.0) > f(—s, t)ezmt e, (5.16)
V:F6.0) > Fis, e 2me, (5.17)
7. f AR f( 5, —1)e2Tis1 TS0 (5.18)

5.2 The non-degenerate pairing

Recall that a Hopf pairing between two Hopf algebras .4 and .4* is a non-degenerate
pairing such that

(a,xy) = (A(a),x ®y), (ab,x)={(a®b, A(x)). (5.19)

fora,b € A, x,y € A*. (In this paper, we will not consider counit and antipode in
the pairing.)

In the current setting, we have the pairing between A, and A7 from the compact
case:

where ¢ is any complex number. R
The pairings between A, Band A = X!, B = ¢~ 'Y X! are given by

(A, A) =q% (B, >=0
0,

(A, B) = (B,B)=cq :=C.

Q

We will choose ¢’ = 1. From this, it is extended to

o~

(B"A", A) = ¢*"80,  (B™A", B) = 81,

and then to

<BmAn, §m’;4\n/> _ q2n/(n+m) [m]qlamm/’
where [m],! := [m]y[m — 1], ...[1], is the g-factorial, and [m], = q::;:lm is the
g-number.

From the analogy between the quantum dilogarithm G, and the I'; function estab-
lished in [14], we prove the following theorem:
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Theorem 5.7 The Hopf pairing between A and A* >~ Acor g given by

<// g(s,t)B””"A”’"Sdsdt,// f(s,t)ﬁiblt;fiblsdsdt>

=///g(s,t)f(s/,t)Gb(Q+it)e—2””’<f+’>ds/dsdt, (5.20)

<// g(s,t)A"b”SB””‘fdsdt,// f(s,t)ﬁibltzzfiblsdsdt>

= / / / g(s, D) F(s', 1)Gp(Q + it)e 27 D =2mist g qedr, (5.21)

or using the Mellin transformed picture (see Remark 4.3):

</ f(t)Bib_]lg(logA)dt,// f(s,t)ﬁib_ltﬁb_lsdsdt>
= / / g(=2mbs) F(s'. 1) F ()G (Q + it)e 1 ds'dt, (5.22)
</g(logA)f(t)Bib_1’dt,// f(s,t)ﬁfb’lfﬁb’lscisdt>
- / / g(=27b(s' + D) F(s', 1) F()Gp(Q +it)e 2™ ds’dr.  (5.23)

Here, the Hopf pairing between two C*-algebra is defined by naturally extending the
pairing in the defining relations (5.19) to a pairing between the multiplier algebras
M(A® A) and M(A* @ A*).

Proof 1t suffices to show that

~ o~

(f.8h) = (A(f). g ®h). (5.24)

The other relations are similar by duality. We will prove the first form (5.21). For
simplicity, we omit all the integrations after the pairing. Every variable is to be
integrated.

LHS=(f(s, 1), / / 2(s—s', t—th(s', e 6= 45'dr'y

=f(S, l‘)zg\(SN—S/, t—t’)iz\(s’, t/)eZni(s”—s’)t’Gb(Q_{_l-t)e—Zﬂis”(s—H)e—Zﬂist
= £ (s, t)’g\(s”—s/, t—t’)ﬁ(s/, t/)Gb(Q+l-t)eZm'(s”—s/)t/e—Znis”(s-‘rt)e—2m’st’
GpHn)GpHt
RHS=(f(s1, 11 +1) 221G EL2)
Gyt —in))
GpH1)Gp(H1) . .
=f(s1,1+0)——————— Gp(Q+in)Gp(Q+itr)d(s2, s1+11)
GpHtH—in)
E(Si 1 )E(Sé, tz)e—Zm‘si (sl—Hl)e—2nisé(sz+tz)e—2nis1t1 e—27ris212

8(s2, s14+11), 8(s1, 11)h(s2, 12))
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—f(sl t1+t2)g(51,tl)h(52, tz)Gb(Q+lt1+lt2)e—27'[lszlze 2misy (t+2)
e—2m(31—Hl)(s]—‘rS2)’

where we used the reflection properties (3.10) of the G;, function:

Gy(—is)Gp(—it)  Gu(Q +is +it)e?™!
Gy(—is —it) — Gp(Q+is)Gp(Q +it)’

(5.25)
Now, shifting t; > 7] — 12, 5] > 5] — s}, we obtain

~ - e
= f(s1. 1)8(s] =85, t1 —02)h(sh, 12) Gp(Q+ity)e > H2Re it g 27 s (11 =02)

~ o~ . . ! o _ .t . .
= f(s1. 1)8(s] —s5. 11 — 0)(sh, ) Gp(Q+it) )™ 17520 2T 1) gm2misit

Hence, we see that the expression is equal onrenaming s| = 5,1 =1,5] = 5", s, =5

andt, =1t O

With the pairing established, we can prove the density condition needed in order for
A to be a locally compact quantum group.

Theorem 5.8 We have

A = span{(w ® A(@)|w € A*, a € A}cosure (5.26)
= span{(1 @ w)A(a)|w € A*, a € Ajlosure, (5.27)

Proof We will prove that (o ® 1)A(a) is dense in 1 ® A, while the other statement is
similar. Let us write

1) =/ Fs, t)§ib71’2ib715dsdt e A*
a= // g(s, t)Aibil‘YBihfltdsdt c A

Using Proposition 4.4, the required pairing is (here, we understood that it is an element
in 1 ® A with coordinates s7, 2, and that all integrations converge absolutely with the
appropriate contours):

Gy(=H11)Gp(H1D)

<g(“’”+t2) Gy it 1))

8(s2, s1+11), f (s, r>>

G G
// Fs', )81, t1+12) éi_(l_:l()tli(;l)t)Z)Gb(Q—l—in)S(Sz,S1+l‘1)

e 27is (st 4 ¢/ dsy diy
-~ Gp(=tp)
=/ F(s' n)glsa—11, 11 +12)

.—e—2nis/szenit12—nt1 st/dtl )
GpH (11 +12))
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Now, if we choose f(s’ Jh) = fl (s’)fz(tl), the integration over s’ is just the Fourier
transform F (s3) of f1(s’), and we get

Gp(—in) e””lz_”tletl.

=/71 (52) f2(t1)g(s2 — 11, 11 +tz)m

Finally, we can choose any nice approximation of identity for fz(tl) —> §(#1); then,
in the limit, we obtain simply

— Fi(s2)g(s2, 1),

which is then obviously all of 1 ® A for different choices of F and g. O
Corollary 5.9 A is a locally compact quantum group in the sense of [24,25].

5.3 The GNS description

Given our multiplicative unitary

log A~'®log A

W = esi? e (B®@gBA™") e M(A® B(H)). (5.28)

the space Ac B(H) is originally defined to be
;1\: (@ DW :w € A*}norm c]osure. (5.29)

In order to find the GNS representation A of Aonthe original space H,, we introduce
the contraction map A [24, (8.2)] which relates A* to the definition of A above using
the multiplicative unitary, and the & map [24, Notation 8.4], which relates A* to the
original GNS representation space H, of A by the Riesz’s theorem for Hilbert spaces.
Then, A is just the composition of the two maps, which is naturally compatible with
the previous GNS construction for A.

Definition 5.10 For w € A*, x € A, we define

A AT — A
M) = (0@ DHW. (5.30)
and
é . A* — HL
w(x*) = (§(), AX))L. (5.31)
Then, the GNS map A is given by
A A—H

AM(@)) = &(o). (5.32)
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Proposition 5.11 A is the identity map from A* to A as elements in B(H).

Proof Using the second form (4.62) for W, and the integral form (4.58) for g, we get

dr | e2n b2

Bib_erfib_'r ® B\ib_lr
W= / ,
Gp(Q+it)
+i0
By the pairing (5.21), we have
Mw) = (/ s, B 1A sdsdr @ 1) (W)
21b sy—ib~t o i
/ fo.n G (Q)+ i) Gp(Q + it)e2mist Bib™' A57 2709 o4y
:/ Fs, )BT A s dgdr

Proposition 5.12 The map & : A* C H — His given by:

E: f(s,t) > F(s,1) ::/f(s/,iQ — )Gy (—it)e2 S =D gy (533)
R

it naturally extends to an invertible map & - H —> H with the inverse given by

FGHE0 =D orisu—) gy,

.34
Gp(Q +it) (5.34)

e F(s,0) > f(s,1) :=/
R

Proof Letw = [[ f(s,)B?" " A" 'sdsds, x = [[ g(s, )Ai> s BI?""dsds. Then

w(x*) = (E(@), A))L
LHS = ///g( s, 2”1.”F(s/’ NGH(0 + l-t)e—27ris’s—2nis’t—2nistds/dsdt

N /// 2(=s, =) F(s', )Gp(Q + it)e 2 s=2mis' 4/ 45 dt

RHS://g(E,?—{— %)S(w) (s,t—i—%)dsdt
=//§(s,t—%)é(w)(s,t—i—%)dsdt

= //E(—s, —1)& (@) (=s, —t + i Q) dsdr.
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Hence,

5@)(s.1) = / F(s'iQ = DGp(Q +i(iQ — 1) s (1C=0gy’

:/F(s’,iQ—t)Gb(—iz)e”’*‘”“*’*fQ>ds’.

We observe that £ can be realized as
§ = Fy0ProGy(Q+ine ™,

where F; is Fourier transform on s, P; (1) := f(iQ —t) and Gp(Q + it)e 27! is
just multiplication by this function. Hence, we have

s—l — Gb(Q +it)—1e2ﬂist ° P[_l 0‘7:_‘-_11
or the formula desired. O

Proposition 5.13 £ is an isometry, & : H— H.

Proof We have
EDE@)L

- 5o (+ D))o (o))

xf(s’, iQ— (r + g)) Gy (—i (z + %)) o2 (4 (1) =10) 4 g g

2

. s M o lQ
=//§ s, —t + g Gp g it e—2nm (s+t+7)
2 2

R R

—~ ] is’ —ig
xfAs' =1+ %) Gp (g - it) 7 () gy s dsar

; - iQ - iQ
(s/, t+ %) e i (S_H_T)ezms (S_Z_T)ds’ds”dsdt
/ Y / _ s, 10 s i0
A7 (i 12) ) )
R

275 (=" +5) 45/ ds” dsdr

§(s, t+ %)f(v t+ %) efZ”"S(*tJr%)ezn’.s(f’*%)dsdt

oo)
—
s
+
N‘@
N—"
)
—~
s

+ %) e27 25 qsds
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_ ~ g = g 27 Qs
_//g(s,t+2)f(s,t+2)e dsdr
R R

= (£, D7

Hence, we conclude that

Corollary 5.14 Aw) == &(w) gives the GNS representation for A on'H as desired.

5.4 The multiplicative unitary and modular maps

Under the transformation &, we can now express all the operators defined earlier on
‘H to H. We have

Proposition 5.15 The action r : A—> His given by

T(A) = e 27bs (5.35)
7(B) = Gp(—it) 0 2™2Pi=P) o G, (—it)~ L. (5.36)

Hence, in particular, W is indeed a genuine element in M (A ® .24\)./\
We also note that by general theory, the multiplicative unitary for A is given by

W=3XW*E, (5.37)
where X is the permutation operator on the tensor product. The coproduct induces by

W is precisely the one we defined earlier that A and B transformed as how A and B
do.

Proposition 5.16 The modular maps act on 'H by:

T(f)=F(s+t—iQ, —te ™ mir (5.38)
TH(f) = f(s +1, —t)e " Qe mir’ (5.39)
V(f) = f(s+iQ,1) (5.40)
In=r (s +1- % —t) e QeI (5.41)

From these actions, we can verify all the well-known properties between these maps
on H (see [25] Prop 2.1, 2.11,2.12):

Proposition 5.17 Forx € A,y € A, we have the properties:

TAR(x) = A(R(X)"), (5.42)
VIA() = Ar(Tip(x)). (5.43)
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T*A(x) = AS~ )™, (5.44)
JJ =47, (5.45)
R(x) = Jx*7, (5.46)
R(y) = Jy*J. (5.47)

Furthermore, if we define on H the operator G ([24] Prop 3.22):
GA((hg ® DA (y ® 1)) = A((hr ® DAY (x ® 1)) (5.48)

and its polar decomposition G = I N'/?, then we have T*=G,J =IandV = N~

6 Transformation to new Hilbert spaces

To prepare for the construction of the quantum double, we found it useful to introduce
a transformation of the Hilbert space H as well as ﬁ, so that the action of A and A
acts as the canonical Weyl algebra. Furthermore, this transformation will bring the
inner product to the canonical form for L%(R).

6.1 Unitary transformations

In this section, we list the transformations that will be used. They are all unitary
transformations on L?(R x R) equipped with the standard Lebesgue measure. For an
operator P, its action under any transformation 7 is given by

Pr—>ToPoT . (6.1)

Proposition 6.1 The following lists the transformations and their effects on the mul-
tiplication and differential operators s and py.

f(s,t) —>
f(=s,t): 8 — —s, ps —> —ps, (6.2)
f(s,—t):t — —t, pr —> —ps, (6.3)
f(t,s):s «<—1t, ps<— p;, (6.4)
fl, e pg— pyFt, pr—> pFs, (65)
s, t)ej”m2 D ps —> ps FS, (6.6)
f(s. e p— piF1, 6.7)
f(sxt,t):s —sxt, p:—> prF Ps, (6.8)
f(s,t£s):t —txs, ps—> psF Pr» (6.9)
Ff) =/f(r)e—2”"”dr [X—> —px. px— X, (6.10)

FNp =/f(r)e2m'”dr CX —> Py, pr —> —x, (6.11)
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where F is the Fourier transform with
F?=-Id.

All the transformations above preserve the dense subspace WQW (cf. (2.41)).

6.2 The representation space

We introduce the transformations such that .4 acts on H canonically, and AactsonH
canonically. We will use capital letter to denote the transformed function. All the new
Hilbert spaces are L%(R x R).

Definition 6.2 We define 7 : H —> Hyep by
. _ £ 2rias
T:fs,)—> | fla,t—s+ > e da, (6.12)
R

1RG0 /F (oe, +a— %) e 2 4y, (6.13)
R

or simply 7 = (¢ |—>t—s)o.7-"_ o(t — -+ ’Q)
Similarly, we define T:H— Hrep by

T:f(s.0) > / f(a, t—s+ %) e 2Tl gm0y (6.14)
TV Fs,0) / F(a, f+o— %) e2mis@ 4 qgy, (6.15)

orsimply?:(;._);_s)o}jgo(t,_) t+§)oe—2m’”.

Proposition 6.3 Under the transformations, both the spaces Hiep and Hiep carry the
usual inner product with respect to the standard Lebesgue measure:

(F(s,t),G(s,t))://G(s,t)F(s,t)dsdt. (6.16)

Proposition 6.4 Under the transformations, the action of A on Hyep is given by
A=¢e"s B =e?trs (6.17)
and the action of Aon ’ﬁrep is given by

A=e s B=e¥mhrs, (6.18)
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Proof Let us demonstrate the use of transformation rule for say, the operator B. The
rest is similar. Recall that B acts on H as e27?5e =271t Hence, under the transforma-
tion, it becomes

e27‘[hSe—27Thpt '_)”_)H_% eZﬂh‘ve—Zﬂhp,
'_)]—‘s_l eZthpSe—anp,
s e2nbp_;_
O
As a corollary, we have
Corollary 6.5 As a representation of A, we have
H =~ Hin ® L*(R), (6.19)

where Hir is the canonical irreducible representation (1.2) of A on L*(R).
Let us also note that

Proposition 6.6 The product of two elements in A induces a twisted product on H by
F-G=T(T Y(F) - 7T7G) = / F(s, 1)G(t, t)dr. (6.20)
R

We can do the same analysis to the dual space:

Proposition 6.7 Under the transformations, the action of Aon Hiep is given by

—1
A =e2mbstr) B — G, (% +is — it) 0 X bits) 5 G, (% +is — it) ,

(6.21)

and the action of A on ﬁrep is given by

—1
A = e?mbstr) g = G, (% —is+ it) 0 &2 Pi=5) 5 G, (% —is+ it) .

6.22)

Remark 6.8 Note that the action of A on H is obtained by the & transformation.
Moreover, recall that Gb(% + is) is unitary; hence, the action above is still positive.

Finally, we will need to describe the action of the modular conjugation J and 7 that
are crucial in the construction of the multiplicative unitary for the quantum double.
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Proposition 6.9 The action of J and J on Hrep is given by
J:F(s,t) — F(t,5), (6.23)
T F(s, 1) > F(—s, —t)eis—mit*)i/8 (6.24)
where v = e=279°, L
Similarly, the action of J on Hiep is also given by
T:F(s,1) — F(t,5), (6.25)
while the action of J on ﬁrep is given by
T F(s. 1) > F(—s, —1)e™ir—mis (6.26)
Proposition 6.10 The action of AdJ on A is given by:
J(x)J = Ro(x™), (6.27)
where Ry is an anti-homomorphism given by
Ri(A) = A,, R.(B)=B,, (6.28)
where
A, =¥ B, =e2br, (6.29)
The action ofAd.Ton Ais given by:
T()T = Re(y™), (6.30)
where R, is an anti-homomorphism given by
R.(A) = Ay, Ru(B) = Bi, (6.31)
where
Ay =e 2"t B, = e br, (6.32)

Corollary 6.11 J o Ao J _commutes with A as operators on Hrep, and similarly
T o Ao T commutes with A as operators on Hrep, which verifies Theorem 2.11.
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6.3 The corepresentation space

Recall that W satisfies the pentagon equation and the coaction axiom (2.35). In a more
familiar form, we see that W = Wy, := XWX € M(A ® A) satisfies

(1@ AW = W, Wi,. (6.33)

Hence, if we treat W’ as an element in M (B(H) ® A) instead, we obtain the left regular
corepresentation

M:H— HQMA
f—= WUeD (6.34)

which satisfies
(1IQ@A)oll=(TIQ®1)oIl. (6.35)

This corepresentation picture is useful when we study the corepresentation of the
quantum double. Therefore, we introduce the transformatlon from H to Heorep SO that
A acts canonically. Similarly, by considering W, we also describe the transformation
so that A acts canonically on .

Definition 6.12 We define the transformation 7, : H —> Hcorep by

. —1
’Z'Co:f(s,t)r—>f(—s,s—t—f—%)Gb(%—is—}-it) , (6.36)

Vs, f (—s, —t—s+ %) Gp(—it). (6.37)
Similarly, we define the transformation l/fco : ﬁ — ﬁcomp by

'j:cg : f(s, e f (—s, s—1+ 2) Gy (% +is— it) eZnix(sftJr%),
(6.38)

g) eZﬂiSle(Q + it)_l- (639)

1:f(s,t)r—>f(—s,—t—s+ >

Proposition 6.13 Under the transformation 1;,, the action of A on Heorep is given
by

A=e s B = e2mhbps (6.40)
Under the transformation ’?CO, the action of A on ﬁcorep is given by

A= B =e¥hrs, 6.41)
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Furthermore, the L* measure on Heorep and Heorep becomes the standard Lebesgue
measure.

Proof 1Tt suffices to see that the transformations can be written as
iQ o1
Teo = (1 —5)o (s, —t)o(t»—>t+7)oGh(—zt) ,  (6.42)
Too=(tr>1t—s5)o(—s,—1)o0 (t >+ %) 0 Gp(Q + in)e 21 (6.43)

followed by applying the transformation rules. O

This choice allows us to reproduce the representation from the pairing between A
and A given by the corepresentation associated with the multiplicative unitary.

Proposition 6.14 The left regular corepresentation associated with W' on A is given
by

f(s t) — f(S +71, t) Bib_l'L’Aib_l
’ Gp(Q+it)
R+i0

sdr. (6.44)

Remark 6.15 Note that the left regular corepresentation is related to the left “funda-
mental” representation

/f(s)x ~845) g5 s (/f(s)(xA+B) (- ‘22+"‘)ds) 573, (6.45)
i.e.

Gy (—it) Gy (— —ls)

Gy (2—ZT—1S)

(Q+is+ir) L
/f(s+r) BPT T A sqr (6.46)
Gy(0 +i1)G) (Q +zs)

fs) — /f(s + 1) Aibf‘sf%Bibferz%dr

by multiplication by Gb(% +is)~!. Here, § = A*% is the modular element.

Proposition 6.16 Under the pairing (1 ® Ay, W' (f ® 1)), the left regular represen-
tation of the quantum plane algebra B, = AZ is given by the canonical action

X =&,y =Xt (6.47)
Similarly, we can define the action of its modular double counterpart

X —e2nbls  y e2nb_1(ps+s)’ (6.48)
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so that it extends to a representation of the modular double B,gz. Under a unitary
ST . )
transform by multiplication by e™"*

action of Byg.

on Heorep, the action becomes the canonical

Proof It follows directly from Proposition 5.11 since 2 is the identity map; hence, the
elements of A are sent to the corresponding actions. Now, the formula follows from
the definition X = A=, Y = ¢BA™". O

Similarly, the corepresentation associated with W' is given by
f(s) — / f(s+10)Gp(—it) B T AP s qr. (6.49)

For completeness, by composing 7, with 7!, we obtain the transformation S :
Hrep —> Heorep

Proposition 6.17 The transformation S : Hyep —> Heorep is given by

—1
S:f(s,t)— /f(a —s,a—1)Gyp (% —is +it) 2rie=9s gy
R
(6.50)
ST fGs 0 /f(a —s,a —1)Gp (% +is— it) e —27i@=9)5 40y
R
(6.51)

__Similarly, we define the corresponding transformation for A using S: ﬁrep —
Heorep by

S: (s, 1)~ /f(a —s,a—1)Gy (% +is — it) e 2@ =)5qy (6.52)
R

1
S fs.t) > /f(a —s,a — )Gy (% —is +it) 2 @54y (6.53)
R
7 The quantum double construction
7.1 Definitions
In this section, we will describe the quantum double group construction given by

[30] (see also [34]) associated with the quantum plane and show that the object we
obtain is exactly the quantum “semigroup” GL{']“(2, R), also called the split quantum
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Minkowski spacetime, which is a generalization of the compact Minkowski spacetime
introduced in [8,9].

Definition 7.1 We define the split quantum Minkowski Spacetime M;(R) as the
Hopf *-algebra generated by positive self-adjoint operators z;;, i, j € {1, 2} such that
the following relations hold:

[z11,z12] =0,

[z21, 222] = 0,

[z11, 222] = [z12, 221
211221 = 6]2Z21111,
212222 = ¢ 212,
212221 = ¢ 221212,

and the coproduct is given by

A(zi) = 211 ® 211 + 212 ® 221, (7.1)
Az12) = 211 ® z12 + 212 @ 222, (7.2)
A(z21) = 221 ® 211 + 222 ® 221, (7.3)
A(z22) = 221 ® z12 + 222 ® 2. (7.4)

It can also be realized as GL;(Z, R) in matrix form:

211 2

(%) &

so that the coproduct is simply given by
s((G )= m)enm) oo

The quantum determinant N is the positive self-adjoint operator defined by
N = zi1222 — 212221 = 222211 — 221212, (1.7
and we have

Nzii =zuN, Nziz=q *z2N, Nzai =q*21N, Nzp =znN. (1.8)

Proposition 7.2 There is a projection map P : GL;F(Z, R) — S L;“ (2, R) given by

21 212 a b\ (N712z, g 2PNz,
(Z21 Zzz)H (c d)'_ (511/2]\]—1/2221 N=1/275, ) (7.9)
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where a, b, ¢, d satisfies the usual relations for SLy(2, R):

ab =gba, ac=gqca, ad=qda, bd=qdb, cd=gqdc,
bc =cb, ad—qbc=da—q 'chb=1. (7.10)

Proposition 7.3 There is a Gauss decomposition for GL;' (2, R) given by

zn oz _ (A 0\ (1 B _(A AB a.11)
221 z2)  \ B 1 0 A)J \B BB+A)’ ’
where A, B, A B are positive operators so that {A, B} commutes with {A B} with

AB = quA and AB = q’zBA Furthermore, we have N = AA.

Now, we will describe the quantum double group construction and show that the
result is precisely GL;' (2, R) together with the above Gauss decomposition.

Definition 7.4 The quantum double group D(A) is the Hopf algebra where as an
algebra D(A) >~ A ® A*P = A ® A with the usual tensor product algebra structure
and with coproduct given by

Ap(x®%) = (1®om @ 1)(Ax) ® AR)), (7.12)

where o is the permutation of the tensor product, and m : M(A® A\) — M(AQ® A\)
is called the matching, defined by

mxx)=Wxx)W*, (7.13)

with W e M(A® .Z) the multiplicative unitary defined in (4.61).

Hence, a general element in D(A) can be written as
/// F(s1,11)8 (50, 1) AT st gibT BB 0 RibT 2 g0 4 dsadsy  (7.14)

or simply f(s1, t1)g(s2, t2). For simplicity, we write A := A® 1, A:=1 ® A and so
on, and we will use this notation in the remaining of the paper.

Proposition 7.5 [30, Thm 4.1] A,, is coassociative, so it indeed defines a coproduct
on D(A).

Proposition 7.6 [30, Thm 4.2] The Haar functional h on D(A) defined by

o~

h=h; ®hg (7.15)
is both left and right invariant:
hR1DA,x®X) =h(xRx)(1®1), (7.16)

(1®1MNALKx®X) =h(x®X)(1Q1). (7.17)
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In particular, the GNS representation of D(A) is given by Ay := A ® AronH® H.

Proof Although the theorem in [30] applies only to compact quantum groups, the
calculations using the graphical method there can be adapted in this setting without
any changes, since it only depends on the invariances for Ap, hg and the relations
between the matching m and the coproducts of .4 and A O

Remark 7.7 The Haar functional on a general element f (s, #1)g(s2, ) € H® H is
thus given by

h(f®g) = f(0,iQ)g(—iQ,iQ)e ™2 (7.18)

If we parametrize the element instead as

f®g:= // // f(Sl,ll)g(Sz,fz)Aib_lslBib_l”Xib_lszYib_ltzdsldlldszdlz,
(7.19)

where X = Al Yy = qu\_l, then it takes a more symmetric form

h(f®g = f(0.i0)g0,iQ), (7.20)

which means it only depends on the element BY. According to the Gauss decompo-
sition, this is precisely

B(qEX_l) = qBﬁAA_lA\_l = qZ21112N_1, (7.21)

which corresponds under the projection to § L;r (2, R) the hyperbolic element ¢ := bc
that is crucial in the study of the SU,(2) and SU, (1, 1) case in [27,28].

Theorem 7.8 By the Gauss decomposition, the Hopf algebra GL{';(Z, R) can be nat-
urally put into the C*-algebraic setting, so that it is identified with the quantum double
D(A). Furthermore, the coproduct on D(A) induces the same coproduct on the gen-
erators zjj.

Proof By the Gauss decomposition, there is a one-to-one correspondence between the
generators. Explicitly, the inverse is given by

A=z,
B = 731,
E:lezl_ll,
A= Nzl

We have to show that the coproduct is the same. The following calculations are very
similar to the one given in [34]. O



1046 LC-H.Ip

Lemma 7.9 We have the following commutation relationships between W and D(A):

WAQHW* =A®1+BQ® B,
WARQAW* =AQ A,
W(A®BW*=1Q B,
W(B®1HW*=B® A,
W*1®AW=19A+B®B.

Proof These follow from the summation properties (3.22),(3.23) for g, as well as the
commutation relations (2.46),(2.47) for the exponentials. O

Now, we proceed to the calculation of the coproduct on the generators:

A(zin) =AA® 1)
=AQom(A®R1)®1
—(ARDNR®MARN+(ARB BRI
=211 ®z11 + 212 ® 221,

A(z12) = A(A® B)
=AQom(AQ1)Q@B+AQom(A® B)® A
—AR1®AQRB+AQBRBRB+AQRBR®1®A
—(A®N®AQB) +(AQRB)®(BRB+1® A)
=211 ®z12 + 212 ® 222,

A(z21) = AB®1)
=BRomAQ1)R@1+1Q@om(B®1)®1
=BRIQA®R1I+BRBRB®I+1QARB®1
=BONQUARN+BRB+10A)®(BRI)
=221 ®z11 + 222 ® 221,

A(z») = A(BRQ B+1® A)
=BRom(A1)®@B+1®@om(B1)®B+BRQom(A®B)® A

+1Qom(B®B+1® A)® A.

Since W*(1®@ A)W = 1® A + B ® B, we have
om(BRB+1QA)=A®]1.
Hence,
Azn)=BR1QAQB+BRBRBRB+1QAQB®B
+BRBR®IQA+1IQARI®A

—BINQUARB) +(BRB+1®A)®BRB+11A)
=221 ® z12 + 222 ® 222.
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Finally, let us also derive the coproduct for the determinant N:

A(N) = A(A® A)
—AQom(A® A)® A
—AQAQRARA
=NQ®N.

7.2 The matrix coefficients and the fundamental corepresentation
Recall that for SL* (2, R) € SL(2, R) the positive semigroup, the class of principal

series representation can be expressed by considering the actions on homogeneous
monomials (see, e.g., [43]):

XTI s (ax 4 cy) T (bx 4 dy) :Z/t;ltu(g)xl_ivywvd”’ (7.22)
R

whereu € R, [ € — % +iR, so that the representation is unitary. In terms of coordinates,
the representation acts on L>(R) by

g f(w) / 1, (8) f (V)dv. (7.23)
R

In [8], it is noted that for commuting variables x, y,
[xz11 + yz21, X212 + y222] =0 (7.24)

by the commutation relations. Hence, the following fundamental corepresentation for
D(A) = GL} (2, R) is well defined:

Definition 7.10 The fundamental corepresentation of GL;; (2, R) on L2(R) is defined
by

T 16 o [ 10 @da, (7.25)
R
where T}, (z) is formally defined by

—1 . 17, 0o —1 . —1 ;
(zn+yz)” TV 2ty HIND = /Téa(z)xb (e ) g

R
(7.26)

with [ := —% +il,a, e Rand N = z11200 — 212221 = AA.
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More generally, we can introduce arbitrary character of the determinant and will
consider the corepresentation T*! defined by

i1 =1,
TH () = NP ORI (NP D2, (7.27)

Qo . . .
Remark 7.11 The term N2 is to make the corepresentation unitary. As seen from

. . 1. .
below, it is coming from the modular element § 2 in the fundamental corepresentation
(6.45) of the quantum plane. The factor chosen for N in 7% is for later convenience
when we obtain the fundamental representation.

Remark 7.12 Using the Mellin transform, we can also write Téa (z) as

(o 0]
1 1 “Vnia) b=l gaisy dX 2
Tl () =— (rz11+z21)" O (xzyp4209)0 HODEH) ) N3
’ 2nh X
0
(7.28)

This can be seen as the generalization of the matrix coefficients in the compact case,
see, e.g., [11].

Proposition 7.13 The matrix coefficient is given explicitly by

I+ia l+ll’ i
At _ i (t=1) (s+o21) . Q(s4T) |
Ts‘,ot (2)= / (i:— i )b(is i-[)be €

R+i0
XAib‘] (z—s)Bib-‘(s+r)§ib—‘ (ot+r)A\ib_l(t—r)dr (7.29)

/ Gpit—ia)Gy (%Jrir—i)\) Gy(—it—is)G), (%+is—i,\)
o Gy ($—ia—ir) Gy ($-it-in)
% eni(zf)u)(ﬁu—ﬂr)enQ(err)Aib*I (t—s) Bilfl (s47) ’B\ib’l (aﬂ)gz‘b*‘ (CoF

(7.30)

where | = —£ + i)\ and YY) = GEAGE=D o, q-binomial coefficient (cf.
z b

B Gp(—a)
Lemma 3.8).
Hence, under some changes of variables, the corepresentation

fs) > / T} (2) f (@)da
R
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is given by
Gp(—ia) Gp(§ —is+ir+it)Gp(Z —is —ik+ir)
f(s) — / / fG+a—1) - 0 0
Gp(Q+i1) Gp(5 —is +iMGp(5 —is —ik —ia +iT)
R+i0 R+i0
mk(r a) —2mits 7r1t(r+a)Atb Y- s)sz ]r OtAlb Vi4s— Z)dozdr (731)

Proof We can make use of the Gauss decomposition (Proposition 7.3) and obtain

T}, (2) = / 1t (AT 2 (A)dr, (7.32)

where the matrix coefficients correspond to the fundamental representation of the
quantum plane (6.45):

: /f(s)xbfl(’—”)yb*‘(lﬂs)ds
e (/ fls)(xA + yB)b_l(l—is)yb_l(l+is)ds) A%

_ /f(s)(l—is) B+ib~ —s—a) pib~la g § bV (~is—ia)

(l+lv+ta)dads

/f( )( ) nQ(a—s)Aizfl(x—a)Bibfl(a—s)xbfl(l—ia)

xyb i) 4o ds.

Hence, renaming s <— «, we see that the matrix coefficient is given by

(A) ( —ia ) T O—) 4ib™ Gs) gib~ (s—) (7.33)
b

is—ia

A similar analysis using
o /f(s)xb_](l—is)yb‘l(l-H's)ds'_> (/ f(s)xb-l(z—is)(x§+yg)b-1(z+4s)ds) A%
shows that 7', (A) is given by

;?,a(.;l\) = ( :§s++l (zla )b Eilfl (oz—s)Xib*l(S+)L)' (7.34)
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Hence, using (7.32) with the contour of t separating the poles of G, (- £i1), we obtain

T* (1) = [ +ia I=it ) 20G—0) gib~ G—5) gib~' 5—0) Gib~ @—1)
5 —it+ia ), \is—it J,

R—-i0

x AP 04D g

_ I+ia [+iT ) w0+ 4ib™ G=s) pib™ 5+0) Gib™ @+0)
it tia f, \is+it J,

R+i0
x AT =D g,
Finally, for 7} (z), by commuting A and A of NIPTH=/2 — (AR)IBTE=0/2

the corresponding sides, we pick up the factor e~ +e+27) and obtain the desired
formula. O

Corollary 7.14 The matrix coefficient Tfa (z) can also be expressed in closed form
as

A b (mis) b (His) b (e (2L
X Fy(d—is,~ —ia, <21, YN %, (7.35)
where | = —% +ii, ¢ = qBﬁA\_l is the hyperbolic element defined in (7.21),

Fy(a, B,y;2) =

Gy /(_ yibe it Go@FIT)Gp(BHIT)GpHT) |
Gy (@)Gy(B) Gp(y+it)

(7.36)

is the b-hypergeometric function (slightly modified from [32]), which is the quantum
analogue of the classical ,F(a, b, c; 7). Hence, (7.35) is exactly the quantum ana-
logue of the classical formula for SL™ (2, R) given in [43, VII. 4.1(4)], where the
hyperbolic element is { = sinh?6:

1 o TH—m)T 1
7l = L prmpum g LEZmTCm) L,
27i '20) sinh? 0

(7.37)

where A, B, B are the corresponding variables in the Gauss decomposition for
SLT(R).

7.3 The multiplicative unitary

Given two locally compact quantum groups (M1, A1) and (M3, A»), with a matching
m: M| ® My — M| ® M, the multiplicative unitary for the double crossed product
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is first constructed in [1]. The quantum double group construction is a special case
given by (M1, A1) = (A, A%) and (M2, Ay) = (A, Z), while the matching m is
given by m(x) = W(x)W* as before [16]. Let us restrict to the quantum plane case
and describe the main ingredients needed.

Proposition 7.15 The multiplicative unitary operator is defined by
W, = W= W13Z;4W24Z34 S B(H@ﬁ@?’l@ﬁ), (7.38)
where Z € B(H ® 7/{) is given by

Z=WhJi @ L)W (Ji @ hh)=WIJQITNHWH I JI),

(7.39)
and W = SW*E = W3,
The coproduct is given by
Aw=01@om@)(AY ® Ay =(®om®1)(A® A), (7.40)
where m(z) = ZzZ*, and
Ap(z) =W (1 @2)W (7.41)
for z € D(A).
The matching m satisfies
(AP @ Hm = mym3(A”? @ 1), (7.42)
(1® Aym = mizmip(1® A). (7.43)

First of all, we note the difference in the definition of the matching m. In fact, they
are the same.

Proposition 7.16 We actually have
m(x) = ZxZ* = WxW* (7.44)

forx e A® A In particular, from the pentagon equation of W and W = W3, the
matching satisfies the property (7.42) and (7.43).

Proof Recall the conjugation properties from (5.46), (5.47):

TRNHNWITRJ) =W, (7.45)
JNWUIRT) =W (7.46)
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Using also (5.45), we have

WIIQTNWHITIR I =viAWUI DT NWHIT QNI T
= VPAWI @ DHWI R T).

Hence, using the definition (7.39) of Z, expanding ZxZ* = WxW*, we have
W@ DWI ® Nx(J @ DW*(J @ NHW* = WxW*,
or
RNWUI®Dx=x(J @ NHWJ ® ),

thatis, (J ® f)W(J ® f) commutes with every x € A®AC B(H ®ﬁ) as operators.
However, since W € A ® A, from Corollary 6.11, it is clear that

J®DWI ®T) = g;(gB.A;" ® Besm 8 Eloeds

commutes with every x € A ® A. O

For completeness, let us also reprove the coproduct formula.

Proof Recall

W = W13Z;4WZZZ34,
Ax) =W"1Qx)W,
Aly) = WA @)W =W (1 ® y)Ws.

Hence,

W (1 @ 2)W = Z3,War ZsaW5(1 @ 2)W13Z5,Wir Z3a
= Z3 Wi Z34(A Q@ 1)(2)134 Z3, W5 Z34
= ZWa (@ m)((A ® 1)(2))13aWir Z34
=Z5((® @A) @m)(A®1)(2)1324Z34
= Z3,(moum3 (1 ® 1 ® A)(A ® 1)(2)) 134234
= Z34,(Zoamn (1 @ 1 ® A)A® 0(2)Z54) 1324 Z34
= Z5Zumn( ®1® M)A ® 0)(2) 254 Z34
= (em)p®1® A)(A®1)(2)
= Ap(2).

[}

Itis proved in [1] for general matching m that W,,, := W is a multiplicative unitary.
Here, we present a direct proof using the fact that m is given by the multiplicative
unitary W.
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Theorem 7.17 W is a multiplicative unitary, that is, it satisfies

W3456Wi234 = Wi23aWi256W3as6.

Proof 1Tt suffices to check that
Waase Z3y Waa Z3aWisse = 23425 WaaWas Z34 Zs6
and
W3us6 WisWiyse = Was Wiz W35 = WisWis.

The second equation follows directly from the definition and the pentagon equation
for W.

Letus write Z = VV’ where V € B(H® H) and V' = (J ® J)V(J ® J) are the
copy of W based on different spaces. Note that V, V’ commute. Also, V' commutes
with entries in A ® A C B(H® 7/'2).

From the pentagon equation for W, but with its legs sitting on different spaces, we
have the relations (cf. Corollary 2.20):

VasWia = WiaVisVas € BH® H ® H), (7.47)
VisWas = Wa3VisVia € BH® H @ H). (7.48)

Using also (7.45) and (7.46), we derive the relations

ViWis = (Js ® Jo) Vse(Js @ Jo) (T3 ® J5)W3s (T3 ® Js)
= (138 J5 ® Jo) VssW3s(J3 ® J5 ® Jg)
= (J3® J5s ® Jo) W35 Va6 Vs6(J3 ® J5 ® Jo)
= Wis(J3 ® Jo)V36(J3 ® Jo)(Js ® Jo) Vss(J5 @ o)
= Wi5(J3® Jo) Va6 (T3 ® Jo) Vg
Wis(J3®J6) Vas(13® Jg)

= (J4®Jo) Was(Ja® J6) (J3® Jo) V36 (T3 ® J)

= (130410 J6) WasVas (3@ J4® o)

= (3074 ® Jo) Vi WaeViy(J3 ® J4 ® J)

= (3®76) Vas(J3® J6) (Ja® J6) Wae (Ja® J6) (T3 @ Ja) Viy (T3 @ Ja)

= (J3® Jo) V36(J3 ® Jo) Wis Vaa.

Hence,
Wias6 Ziy Waa Z3a Wiys = Was Zi Wag Zs6 2y Waa Z3a ZEs Wik Zss Wis
= (W35 V3g Vs Was V3 Vi) Waa (Vaa Vi, Wi Vo Vi Wis).

Now, the right hand bracket is

V34 Vi Wi Va6 Vg Wis = Vaa Wiis Ve Vig Wis Vi
= V36 Wi Va6 Vs Vss W3s Vi
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= Vi Wis Vas Vss Wis (T3 ® Jo) Vas (3 ® Jo) VigViy
= Vi WisWisVss (13 ® Jo) Vag(J3 ® Jo) Vg Vi

= V3 W35 WZ@(@ ® fé) V36(-75 ® ]\6)256‘/3/4

= Vs Wis(J3 ® Jo) Vao(J3 ® Jo) Wi Vas Zse Vi

= Vs Wis(J3 ® Jo) Vao(J3 ® Jo) Wiy Zs6 Z3a.

Combining, we see that the left most 3 terms will pass through W4 and cancel with
the left hand inverses. Hence, we obtain

W3456 234 Wos Z34W3yse = Z34Z56 WasWoaWis Zs6 Z34
= 23, Z5sWou W6 Zs56Z34
as desired. O

Note that W is actually a composition of 6 dilogarithm functions. We can simplify
the expression to just 4 g,’s by applying the pentagon equation.

Proposition 7.18 We can rewrite W as

W = W3 Vi Way V35, (7.49)
where
Vii=UJNHVUIRJ)
_ eﬁlog&@logﬁ‘g;(i ® B)
_ ooy logA,@log A / BT @ BT Gy (—it)dr
R+i0
Proof

W = W132§4W24Z34
= Wi Vi, Vi W Vag Vi
= Wi Vi Waa V3 Vi,
= Wi3Vii Waa ViV
= Wi3(2® 3 ® I Vi W3 Vaa(o ® J3 ® T3) Vi
= Wi3(2 ® J3) Vao (o ® J3) Was V.

The formula for V" follows from the action of AdJ given in Proposition 5.17 on H
and Proposition 6.10 on H. O

Since W is a unitary operator on H ® HQH®H, for completeness, let us describe
its action.

Proposition 7.19 The action of W on Hyep ® Hiep is given by

i -1 A o~
W = e2ni? log A ®logAgb(B ®qBA_l),
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W:F®G> / F(si+1,0)G(s2 —s1 — 1,02 = 51)
R+i0
eZm'T(Sz—Sl—T)Gh(% +iso —ifp)

Gp(4 +isy —itr —it)Gp(Q +iT)

(7.50)

W*:  FQG—~ / F(si +1,1)G(s2 + 51,0 + 51+ 1)
R+i0
127Gy ($ +isz — itz) Gy(—iT)

dr. (7.51)
Gy (4 +is2 —in —it)

The action of WonH® ﬁrep is given by

W = eﬁlOgA@OgAg;;(g@q_lBA_l),

W : F®G / F(si +7,11)G(s2 — 51 — T, 1y — s1)e 7T EHs1752)
R+i0
Gp(& —isy+in+ iDGy(—iT)
Gp(2 —isr+in)

, (7.52)

W3 F®G / F(s1+7,0)G(s2 + 51,0 +51+7)
R+i0
e 2t G (L — sy +ity +iT)
2 dr.

T . - (7.53)
Gp(5F —is2 +ir)Gp(Q +iT)
The action of V on Hyep ® ﬁrep is given by
e2nisz(s1+r)
V:F®Gr—>/Fs +1,11)G(sy + 1, 1) ———drt, 7.54
(s1 )G (s2 Z)Gb(Q+lT) (7.54)

V¥ F®G > /F(s1 + 7, 1)G (52 + T, 0)e TINRTIG (—it)dr,  (7.55)
and the action of V" on Hyep @ ﬁrep is given by

V' F®G — / F(s1, 11 — 1)G(s2 + T, 12)e?™192e™7 G, (Zit)dx,

R+i0
(7.56)
2nir(s27t|)672ni11szenir2
V’™*.F Gr—>/F 1 —1)G(sp +1,¢t dr.
® (51,01 —1)G(s2+ 7, 12) Go(0 +i7)
R+i0

(7.57)
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Hence, the action of W and W* is the compositions of the corresponding operators.

Proof The actions follow directly from the closed form expression (Proposition 4.19)
for W, using Corollary 4.18 for the integral representations for gj, as well as the action
described in Sect. 6.2. O

7.4 The left regular corepresentation

With the construction of the multiplicative unitary W, we can talk about the corep-

resentation induced by it. By the unitary transformations given in Sect. 6.3, we can

choose the Hilbert space to be Heorep ®ﬁcorep so that the action can be nicely described.
Recall that the left regular corepresentation is given by

g W(fegelel), (7.58)

where f ® g € Hcorep}\@ 7/'Zcorep and W' = Wiao € B(Hcorep & 7/'Zcorep) ®A® -’Z(
Here, we realize A ® A as operators in the 3rd and 4th components.

Theorem 7.20 The left regular corepresentation is given by

fG1,t)g(s2, )= / //f(S1—d+T,tl—G)g(S2+a,tz)

R+i0 R C
Gp(—io)Gy(—ia+io)G) (%+is1 —it1+it) Gy (%+is1 —isz—io—i-ir)

Gp(Q+i7)G)y (%+is1—it1 —ia—l—io—i—ir) Gy (%+is1—is2—ia+iz)

o (11— — ; bl bl ~p=ly ~pl e
eZﬂm(tl S| r)CZntserth slBtb T ® Blb C{Atb (t1+s2—s1 r)deOld‘L',

where the contour C of o goes above o = 0 and below o = «.
Proof Since we have used a permutation, now W’ reads
W = Wigpn = Wi V], Waa Vi, (7.59)

On the space Heorep ® ﬁcorep, the coaction of the components of W is given by:

2Tis|T - .
Wi : t b)) +1,t ) ———— AT s pibT Ty
31 f(s1,11)8(s2, 1) /f(Sl T,11)g(s2 Z)Gb(Q—l—ir) T
R0
Waz 2 f(s1,11)g(s52, 12) > / f(s1,1)g(s52 + 0, ) Gp(—ic) B0 A9,
R+i0

The actions for V and V" are harder to describe since they involve formally Aib~'p,
Therefore, we use S (cf. Proposition 6.17) to sent the first component back to Hyep
and obtain their actions.
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SviisTlifeg
.y / BT @ BT A TG Civydr o3z g ABlog A
+io

/f(a —spa—1)g(s2,12)Gp (% —in + isl) e 2mi(a=ss1 4y
R

_s. / /f(ot — 51— T, —11)g(s2. )Gy (% —it; +isy + i‘[) Gp(—it) -
R+i0 R
o 2mi@—s1—0) 1+ Fib~ T 271 44y

Gy (§ +in —isi +it) Gp(=iv)
:/ / /f(a—ﬂ+81—f,a—ﬁ+t1)g(S2,t2) 0 : :
R R¥i0 R Gp (7 Tin _’sl)

o2 (a—B+s1 1) (B—s1+1) 2mi (B—s1)s1 Eib‘] r;gb—l (ﬁ—sl)dadfdﬂ

shiftingae — o+ B+ 1,8 B +51:

Gp(L +it) —isy +iT)Gp(—iT)
:/ / /f(sl—{—ot,tl—}—oe—l—f)g(sz,tz) 2 o C 1 : .
R R¥i0 R p(3 +if = ist)

e—2ni(aﬂ+ar+s1z)gib*'rﬂb*ﬁdadtdﬁ

and finally for V"
SV, sl feg

L log X*®log Al

1 ~p—1 2
> S | ezmi? BV T @ BV TeMT Gy (—it)de

R+i0

/f(cx — 51,0 —11)8(s2, )Gy (% —it; + isl) e 2mil@—s1s1 gy
R

=S / /f(a —s1a —t; +1)g(s2, )Gy (% — it +1is] +i‘[)
R+i0 R
e—2m’(o¢—s1)s1en’irsz(_if)X—ib_ltl Bib ' dudr

Gy (% Tir —is) + ir) Gp(—it)
=/ / /f(a—ﬂ+51,a—/3+t1+f)g(sz,t2) 0 :
R RLi0 R Gp (7+1t1—151)

e—2ni(a—,3+s1)(ﬂ—sl)enirzezm(ﬂ—sl)slezmr(n—ﬁ) §i1f1r@‘h*1 (tl—ﬂ)dadrdﬁ

shiftnga — o+ B, 11 — B :

~ Gp(L +it] —isy +it)Gp(—iT)
= / / /f(sl-l—a,tl-l—a—i—t)g(sz,tz) 2(; o
R R¥i0 R b(3 Fitt —is)

o—2miall fs1)62niﬁ(ot+r)eni1:2’B\ib’lr;‘ﬁb’lﬂdadtdﬁ.
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Combining, we have

f®sg

B>y / / /dadtdﬁf(sl +o, o+ 1)g(s2,n)-
R Rtie; R
Gy (% +ity —is; + ir) Gp(—iT)

Gy (§+in —is1)

=w / / / /dadrdﬂdaf(s1 ta,f1+a+1)8(s2+0, 1) -
Rtic, R Rtie; R
Gp($ +ity —is1 +iT)Gy(=iT)Gp(—i0)

Go(§ +it —is) )

2misat Bib~! (o 47) qib~! (B+52)

efZJ'ri(otﬁ+ar+s1 7) Zg‘ib’l T A‘ib’lﬁ

—2mi(af+at+siT)

The integral for 8 and o is independent; hence, we can interchange them. Fur-
thermore, from the decay properties for f ® g and the asymptotic properties for
Gp(—it)Gp(—io), the integral for «, T, and o is absolutely convergent; hence, we
can interchange the order so that do goes to the inner most layer.

>y / / / / / / / do dadrdfda’dr'dp!

R R+ie] R R+ie; R R+tie,
f(s1 +a+4a,H+a+ad +1:+1')g(s2+a,t2)
Gy (% it —is it + iz/) Gp(—it)Gp(~io)

Gb( +zt1—1s1+lr)
Gyp (% +it; —isy + it/) Gp(—it))

Gb(% + ity —isy)

- _ . _ PyYrowi / -2 -l
e2mszre 2ria’(f Sl)e2ﬂl/3 (a'+7 )emt 62””3 (o+71)

e—27ti(a/5+ozr+(s1+a’)t)

§ib—1 (U+r+r’)A\ib_] (B+B'+52)
shiftinga > o —a/, B> BB, 117"
= / / // / / / dodadrdBda’dt’dB’ f(s; +a, 1] +a +T)
R R+ie. R R R+ie;—ie, R R+ies

Gy ($ +in —isi +it) Gyiv' = i1)Gy(=i0)Gp(—iT)

gls2+o0, 1)
Gy (% +ity — iS])

eZniﬁ/(a+a+r)e2nia/(ﬁ+s1 -1 )62ni(a+sl —s))(t'—1)=2miaf+mit? Ezb Lo+1) A\ib_] (B+s2) )
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The integral over dBda’ is just Fourier transforms; hence, we can integrate over o’
toget B =1t — 818

= / / / / / dodadtrdt’dg’ f(s1 +a,t; +a +T)

R R+iel R+ie;—ie, R R+ies
Gy (% it — st + it) Gp(it' — i1)Gy(—ic)Gp(—it')
Gyp (% +it) — isl)

e2niﬁ/(a+a+z)ezm(a+sl —s)(t' =) =2mia(t; —s))+mit? ’Eib" (o+r)A\ib_l (11+s2-s1)

glsa+o, 1)

Next, from the decay properties for G (it" — it)Gp(—it’), this is integrable over t’.
By shifting T — © —o — o, we see also that the integrations over o, 7, « are absolutely
convergent, and furthermore, integrations over «, o do not depend on 8’. Hence, we
can interchange the order for drdz’ and then doda to get

/ / / / / dr’drdp’doda.

R R+ie; R R+ie;—ie, R+ie,

Using the reflection properties, we bring G, (—it’) to the denominator. Notice that the
contour goes above T/ = 0 and below t’ = t; hence, we can integrate over T’ using
Lemma 3.9 to get

= / / / / drdg'dodaf(s1 +a,t1 +a +1)g(s2 + 0, 1)

R R+ie; R Rtie;—ie,
Gy (% it — s+ ir) Gy(~i0)Gy(—iT)G) (% sy — isl)
Gy ($+in —is)) Gy (% —ia—it+is—is)

ezmﬂ’(a+o+r)e—2m(a+sl —sz)r—2ﬂia(t1—s1)§ih’l (a+r);4‘ib’1 (t1+s2—51)

= / / / / drdB'dodaf(s; —a,t; —a +1)g(s2 + 0, 1)

R R+ie; R Rtie;—ie]
Gy (% +is] — itl) Gp(—io)Gp(—it)Gy (% +isy —isp) —ia+ ir)
Gp (% +is; — it — i‘L’) Gyp (% +is; —is) — i(x)

Q2ip (0 +T—0) 2mi(11—s51)(T—) ’gib‘] (J+1)A‘ib" (t1+s2=s1)

where we used the reflection properties again and flipping o — —«a. Now, we can
integrate T and B’ by Fourier transform to get T = o — 0. However, this should be
interpreted as a function of o over R, and then analytic continued to R+i¢,, so that the
contour for o will be pushed under the pole for 0 = « in G (—it) > Gp(ioc —ix).
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We get
- / / dodaf (51 — i — 0)g(s2 + 0. 12)

Gy (§ +is1 — i) Gp(=i0)Gylio — iw)Gy (§ +isy — s — o)

Gy (% +isi —in —ia+ic) Gy ($ +isi —is; —ia)

Q2mi(n—s1)o Eib’lag\ib’l(t1+s2—s1)'
Finally, we apply W3; to get

=W / //dadadrf(sl—a—i—r,tl—a)g(sz—}—o,tg)

R+ie; R C

Gy (—io)Gy(—ic + )Gy (% sy —if + ir) Gy (% Fis)—isy —io + ir)

Gy(0 +i1)Gy (% s —if —ia+io + ir) G (% tis—isy—io+ ir)
eZﬂiﬂ(n7S|7r)62nis1rAib’lsl Bib’lr ® B‘ib’lag‘ib’l(nJrszfsl7‘()'
O

We can further simplify the expression by the following unitary transformations,
which will also be used in the right picture:

Szl—>Sz—t1,

S1I—>Sl+

2’
=+ 22
or equivalently
f<X>g+—>f(S1+sz2 Szz—fl)g(tl-l-%z,tz), (7.60)

so that the expression becomes:

/ //dodocdrf(sl —a+71,1 —0)g(s, n)

R+ie; R
Gp(—io)Gp(—ia +io)Gyp (Q +isy —if + zr) Gyp ( +isy+ity —io + l‘L')

Gb(Q+lT)Gb( +is; —ihh —ix+io +t7:) Gp (Q +is1+in —lOl+l‘L')

ezniﬂ(t]7‘T]7t)e2nis|reni52TAib7 (x1+’7) Bib’ T Blb OtAlb (7731 r) (7.61)
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7.5 The right regular corepresentation

In analogy to the left regular action, there is a notion of a right regular action. First,
we consider the quantum plane.

Proposition 7.21 Given W that defines the left regular corepresentation,
Wg:=(T®@NDW5T &) eBH) A (7.62)
is also a multiplicative unitary and satisfies
(1@ A)Wg = Wg 12Wg 13, (7.63)

i.e., it defines a corepresentation, called the right regular corepresentation.

Using the realization of Ad 7, we see that Wg is given by

Wi = ez S8, (5 @ B)
)
i L L —TIT
_ emlogA*®logA / Bib Iz ® Blb ]Te—.dl’, (7.64)
Gp(Q+it)
R+i0
where on the space Hcorep, We have J= 7(t, s) so that
Ay =e 2"t B, = e b, (7.65)
Therefore, we see that the corepresentation is acting on the 7-coordinate by:
fs.1) / Flot 0 gl (7.66)
s, 1) > S, —T)———— T, .
Gyr(Q +iT)
R+i0
in which under the pairing, we have:
X, =e by, =2 (7.67)
X, —e 27ty — 2, (7.68)

In other words, under the transform ¢ — —t, we conclude together with Proposition
6.16 that

Proposition 7.22 We have the equivalence
L2(~A) >~ Hirr @ Hire (7.69)
as representation of Bz 1 ® Byg r =~ Byg ® Byg, where Hiy = L2(R) is the

canonical representation of B,z on L%(R). Hence, this is an analogue to the classical
“Peter—Weyl” theorem on “functions on the quantum plane.”
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Now, let us look at the case for D(.A). To define the right regular corepresentation,
we need the corresponding multiplicative unitary Wg. It is known that Wg, is given by

Wr=U® DHWapU* ®1), (7.70)
where
U=Tdn=0UTRTNZec AR A. (7.71)

We simplify the expression and express Wg in terms of 4 g,,’s as before.
Proposition 7.23 Wr, is given by (cf. (7.49))

Wi = V32WR,13V3”2>|<WR,247 (7.72)
where V'* = (T @ DHV*(T @ J).

Proof From ([25] Prop 2.15), we have:

W = Wi,

Wg=(T®DHW5(T®J1)
=U@NURNWu(J @ NI ®J)
=JI®DWu(JT® D),

Wr=U®@NHWU S J)
=URNITRNWITRHJRJ)
= (JTQDW*JI®1).

Hence, we obtain (the indices indicate the legs in which the operators are acting):

Wr = (W12 1) Z1) W31 Z Wan Z12(Z s (1 J1 J2 )
= (11fl7212)212W312T2VT/42(71]1J272)
= (1112 D) Vi Vi, Wa Vi Vi Waa (J1 1 J2 )
= (W11 D) (1 T3) V35 (1 J3) Via Wit Vi Waa (J1 1 J2.12)
= (J1JA1f2J2)(f2JA3)V3*2(f2JA3)W31V32W42(ﬁ]1 D)
= (111 1D2) (RT3 V35 (D J3) W31 Vao (41 J1 2. T2) Wi 24
= (L1112 (1 T3) V35 (1 J3) (1) Wr 13 V3o (J2 Do) Wi 24
= (fzfz)(fzfz)vfz(fz@)WR,w Va2 () Wr 24
= (JzJAS)Vg*z(fzJAS)WR,13V32(72J2)WR,24
= V32(2 J3) (2 J3)Wr 13 V32 (D2 o) Wr 4
= V32WR,13(12f2)V32(72J2)WR,24
= Voo Wg,13(2d2) (2 J3) V35 (2 J3) (1o o) W 24
= VaWr13(12J3) Vi (12 J3) Wi 4.
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Now, we can realize the action on Heorep ® Heorep as in previous section:

Proposition 7.24 The action of the components of Wg is given by

Mooy = ¢z OERO0ER e 5 o B
Sfs1,11)8(s2, 12) r—>/f(s1, 18G5 by — )= 2MTEHTIR G iy FibT T g gy

i log A« ®log A

Wg13 = e’ gr(Bx ® B)
efz'rit2 T
s1,11)g(s2, 1) — s1, 1 —1)8(s2, ) ——— A7 B Tdr,
fs1,11)8(s2, 12) /f(1 1—1)g(s2 2)Gb(Q~|—ir)
L logX’ltglogA’1

¢ (@BA~' @ B)
f(Sl,t1)g(S2,t2)'—>/ / /f(Sl,tl)g(Sz+a,tz+a+r)

R R+i0 R

eZni(a,B+ozt+,3t+s2r)Gb (% +isy — itz)

V32 = e 2mb2

APTB it g drdB,
Gy (% Yisy—ify — ir) Gy(Q +iT)

” i _1og A,.Rlog A
Vg = e BTN, (B, @ B)

f(81,t1)g(S2,t2)f—>/ / /g(S2+a,t2+ot+f)

R R+i0 R
eZnia(lz—Sz—ﬁ)e—ﬂiszb (% +isy) — ilz)

AT BRIV T 4o drdg.
Gyp (% +isy) —ith — it) Gp(OQ +iT)

Theorem 7.25 The right regular corepresentation is given by
fs1,11)8(s2, 12) = / //dUdOlde(Sly n—o)gsa+onh+t—a

R+ie; R C
e O(—a+1)+2ri(—osr+at—an+ot)

Go(~i0)Gy ($ +is2 = i) Gylio —i)Gy(§ — io + it — it2)

Gy (% +is2 —itr+io —it) Go(Q +i)Gy (§ — it +in —in2)
Al (2—t1=52) gib~' T Gib~ '« 2=ib™ (240 4y drdo
where the contour C of o goes above o = 0 and below o = 7.

We have to follow the transformations given in the left regular picture. So we
apply the transformations after Theorem 7.20 and an extra one that does not affect the
previous action:



1064 LC-H.Ip

§2 = 8§72 — 11,

52
S1 = 851 +Ev

s 1+ 2
1 =1 A
2

52

and obtain

fRgr> / //dadadrf(sl,tl—G)g(527f2+7_“)

R+ie; R C
eﬂQ(—a+r)+2ﬂi(at1+ar—at2+at2)e—nia‘v2

Gy(—ic)Gy (% — i — itz) Gylioc —it)Gy (% —io it — itz)
Gy (% ity — it +io — it) Gy(0 +ia)G) (% —ittin — m)

At~ (2=F) gib™le gibT e Zib™ (-2—-1=3) 4o drdo. (7.73)

8 Regular representation

To obtain a representation of U, (sl(2, R)) on the space LZ(GL;F(Z, R)), we need
to describe the non-degenerate pairing between them. Then, we apply the pairing to
the corepresentations constructed above and obtain the desired representations for

U, (12, R)).

8.1 Pairing with U, (gl(2, R))

Let us first recall the following definition of U, (gl(2, R)) serving as a dual space for
M, = GL;’ (2, R) that is observed by Frenkel [8]:

Definition 8.1 Asa Hopf *-algebra, U, (gl(2, R)) is generated by positive self-adjoint
operators E, F, K, K such that

KE = gEK,
KF =¢ 'FK,
K? - K™
EF —FE=—————
q9—q
A(K) =K ®K,

A(Kp) = Ko ® Ko,
AE)=Ky,'K™'® E+ E ® KoK,
A(F)=KoK'® F+ F® K; 'K,

and Ko commutes strongly with E, F, K.
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In particular, we see that by setting Ko = 1, we obtain the usual definition of
U, (sl(2, R). Now, we can similarly bring U, (gl(2, R)) into C*-algebraic level by
introducing continuous parameters. It is the algebra

/// / fro,r s, DKL o geibr pibTls b godrdrgdr b, (811)

R R+i0 R+i0

where f(ro,r, s, t) has simple poles at s, = —inb — imb~Y, n,m € Z>¢ and has
similar decays as A along the real direction in the variables rg, 7, s, t. This is to ensure
that the coproduct lies in the multiplier algebra as argued before. The C*-norm can be
introduced once we obtain its representation as certain unitary operators on L (R x R)
under the pairing. By abuse of notation, we still denote it by U, (gl(2, R)), and a similar
version with Ko omitted by U, (s1(2, R)).

Let us ignore the *-structure and consider only the polynomial algebra. Then, there
exists a non-degenerate pairing defined on the generators:

Proposition 8.2 The pairing between E, F, K, Ko and the z-variable z;j,i = 1,2 is
given by

—1

(E, z21) = (F,zi2) =c¢ 7,
(K,z11) =¢q 1/2, (K,z) = q'/%,
(Ko.z11) =¢ ‘/2, (Ko, z22) = q*‘/z,

(E,N) = (F,N)=

(K,N) = (Ko, N) = ¢ 1,

and zero otherwise, where ¢ € C is any constant. The pairing is then extended to any
monomial by the coproduct and induction.

Corollary 8.3 The pairing between E, F, K, Ko and the D(A) generators is given
by
(K, A) =

1
(Ko, A) =q 2, (Ko, A)=q 2,
(E,B)=c, (F,B)=c!,

|
= =

and zero otherwise, where ¢ € C is any constant. The pairing is then extended to any
monomial by the coproduct and induction.

By induction, we obtain

Proposition 8.4 The pairing between any monomials is given by

I L m' _n' L 2—n? 1(m—n—L)/24+mL-+(n—m)L'—2
<K Ean’Z“thn]ZrlzzN >=Cm n q(m n—L)/24+mL+(n—m) "m[n]q![m]q!ann’smm”

(8.2)
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or

<K1Em F". AL Bm/En’A\L’> — sz7n2ql(m+L’fL)/2+mL+nL/7nm [n]q![m]qmnn’Smm’-

(8.3)

Remark 8.5 Restricting to U, (s[(2, R)), the pairing is essentially the same as the one
given in [27], with the role of E and F interchanged. Hence, this provides a more
elegant formula for the pairing of a general monomial.

Hence, as in Sect. 5.2, we introduce G}, for the expression in the general pairing
with elements represented by integrations. It turns out that we need to replace [n],! by

Gp(Q +it)
[N
[n],! (1 g2y s (8.4)
so that the commutation relation [E, F] = 1;2__;:2 is satisfied. Here, we take 1 — ¢°

as a complex number with —7% < arg(1 — q%) < 7.

Therefore, the general pairing is given by

(f(ro,r,s,1), g(s1, t1)h(s2, 12))
— // f(ro,r, 11, 12)g(s1, t1)h(s2, tz)e—ﬂi(r(tl+S2—S1)/2—ro(S2+s1)/2+t1S1+12S2—t1t2)

Ch*2(122_;12) Gp(Q +in)Gp(Q +itp)
(1- qZ)ib*I(tH—tz)

dsidspdrydrrdrodr, (8.5)
where we denoted by
(ro, r,s,t) := (r,s, t)Kib_erKib_lrEib_lsFib_ltdsdtdrodr,
0

and

g(s1, t)h(s2, 1)
= ////g(sl,tl)h(sz,tz)Aib_lS‘Bib_l’]§ib_ltzxib_lszdﬂdSzdtldlz-

Finally, in order to obtain a positive representation in later sections, it turns out we
.. . Q2
need to choose the pairing constant to be ¢ = —ig!/? = —g .

8.2 The principal series representation

By taking the pairing above with the fundamental corepresentation defined in Sect. 7.2,
we obtain:
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Theorem 8.6 The fundamental corepresentation T corresponds to the representa-
tion Py, ;, called the principal series representation, given on L*(R, ds) by:

KO — eﬂbl

K = e—nbs

E = [22 Y. A)] e 2mbps,
b b p

Q i 2 bpy
F=|—+- A Ps
[2b+b(s—|— )Le ;

n —n
q"—

where [n], = q,qq—l . The operators are all positive essentially self-adjoint.

Proof Recall that we choose ¢ = —ig!/? in the pairing. Recall also that we have to

multiply the expressions by % From the expression (7.31), we obtain

_q 1 oa+T

for Ko and K that T = a = 0. The factor becomes limon(—ia)Gb(Q +iaw) =1
o—>

and the rest becomes

Ko: f(s) > f(s)- (g~ V)b =) (g=1/2yib™ t4s)
=" f(5),

K f(s) > f(s)- (g~ V/2)ib~ =) (41/2)ib™ (t+s)
= e ().

For E, we have T = —ib, @ = 0 so that the factor limOGh(—ia)Gb(Q +ia) =1as
o—>

well, and we obtain

_iql/zf(s + ib) Gb(% —is+ir+ b) enkb72nbs+nbt

-1
E: f(s) > (g )
1—q? Gp(4 —is+in)
iqg~!/? (L —is-ti b
— q_qil (1 _627[! (7—1S+lk))eﬂ ()L—S)f(s_l_lb)
i
— q_q_l (ql/zerd)(s*)h)+q71/267Nb(s7)L))f(S+l.b)
[Q " A)} (s +ib)
= — — =5 — S l .
2b b .

Finally, for F, we have « = —ib, T = 0, the factor lim ‘bi(—ia)Gb(Q +ia) =

oO—>—1
—qz, and we obtain

. —1/2 2 ; G(Q—'—'k)
ig V2 (=g f(s —ib) A efnkb+nbt_(qib’l(t+s))

F:f@)—
1—q? Gb(%—is—i,\—b)
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. 1)2 : i
_ iq /7] (1 B e2mb(gtsl)»b)) e—nb(k+s)f(s —ib)
q — q

q 1( —1/2 eTh(s+1) +q1/2 —nb(a+A))f(S —ib)

Since —— =
a—q

mm

(s +)»)] f(s —ib).

q
m > (0, we immediately see that the operators are positive. We
note that the expression for E can be rewritten as
E= 1 (embl—i=p) | gmbOms—po)y 8.6)
1 s .
q9—49

where the summand ¢2-commutes. Hence, using Proposition 4.1, it is unitary equiv-
alent to ¢™?¢=*~Ps) which in turn is equivalent to e~ "?s+*) by multiplication by

e~ 5" Hence, it is essentially self-adjoint. Similar analysis applies to F'; hence, all
operators are positive essentially self-adjoint. O

Remark 8.7 We note that by restricting to Uy (s[(2, R)), this is precisely (the Fourier
transform of) the continuous series representation P, obtained in [2] given by

Ké;, = e*”b"ak,

iy = g——@—w Sisiv
2b q

0

F6
sO0k = [2b

+ - (k+S)] Sk—ib
q

under the correspondences s <— k, A <—> s.

8.3 Casimir operator
Next, we will study the action induced from the pairing with the multiplicative unitary

W. It turns out that the technical difficulty comes from the analysis of the following
positive operator:

C= eZﬂbx + e—2ﬂhx + e—2nbp’ (8.7)

which is studied in detail in [20] in a different context. This expression comes from
the Casimir operator defined by

gK?>+q7 K2 -2
(g—q71?

C=FE+ (8.8)
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More precisely, under the pairing given in the next section, the Casimir operator is

given by

. 2
c= ( : 1) (@ e T eI 49,
q-q"

Proposition 8.8 For . ¢ R,
®;.(52) 1= Sp(—ix + iA)Sp(—ix — i)

is an eigenfunction for the operator C with eigenvalue e*™* 4 ¢=270%,

Proof We need to solve
CD; (x) = (¥* 4 720", (x).
We consider

C — (e¥P* 4 e 2Py = C — 2 cos(2mib))

= 2cos(2mibx) — 2cos(2mwib)) + e2"bPs

From the angle sum formula, we have

2cos(2mibx) — 2cos(2mibA)
= —4sin(wib(x — L)) sin(wib(x + 1)),

and from the functional equation (3.9)
Sp(x 4+ b) = 2sin(wbx)Sp(x),
we immediately see that

e2TbP . Sy (—ix + in)Sp(—ix — i)
= Sp(—ix + ik + b)Sp(—ix — ih + b)

=4sin(wib(—x 4+ 1)) sin(wib(—x — X)) Sp(—ix +iL)Sp(—ix —i})

= 4sin(mib(x — 1)) sin(wib(x 4+ 1))Sp(—ix 4+ i1)Sp(—ix —i}).

(8.9)

(8.10)

(8.11)

Hence, @, (x) = Sp(—ix +iA)Sp(—ix — iA) satisfies the above eigenvalue equation.

O
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Therefore, we introduce the following transformation

Definition 8.9 We define the integral transformation

o L2RY, du(h) — L*(R)

F() > f():= lim / ®; (x +ie)e T FO)dp(R) (8.12)
0

where dj(1) = |Sp(Q + 2i2)[2da.

Theorem 8.10 &~ ! is a unitary transformation that intertwines ¢*"?* + e=2"%* and
C.

Proof We compute the inner product for f, g € W where W is the dense subspace

WF = {f(x) € Coo(®RT) : F(y) := f(e") € W}

Note that
_ 1
Dy (x) = - - - —.
Sp(Q —ix —iA)Sp(Q —ix +i))
We have
(@ 'f. o7 "g)
o /]O/OO Sp(e —ix —iX)Sp(€ — ix + ir)e 47xe
= Sp(O —€—ix —if)Sp(0 —e —ix +if)
R 0 O
S)g(B)du(h)du(B)dx

B Gy(Q —€e+ix —if)Gy(Q — € + ix + if)

e—>0

oo o0 . .
i /// Gp(e +ix — iN)Gp(e + ix + in)e™ iV —TiB? e =21x(0—4e)
= lm
R 0 O

FgB)Ydpn()du(B)dx

which means the contour for x separates the poles of the numerator and denominator.
Now, by Corollary 3.4, the integrand has asymptotics in x

Gple +ix —iN)Gp(e +ix + iA)e”iAz_”iﬁze_Z”x(Q_‘k)
Gr(Q —e+ix —if)Gp(Q —e+ix+if)

B e—2ﬂx(Q—4e)x > 00
T e X — —00’

Hence, the integral is absolutely convergent in x, A, B and we can interchange the
order of integration to bring integration over x inside.
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Shifting x — x + B, and using the 4-5 relation (Lemma 3.10), we obtain

e—>0

. 707 Gy(Q — 46)Gp(2e +if — iNGy(2e + i +i2)
N /) Gp(Q — 26+ i —ir)Gp(Q —2e +if +i))

emiM mif? o= 2mOBH8TBE £ (3 ) (B) |, (0 + 2iM)[%1SH(Q + 2iB)2dAdB.

Note that the integration for 8 separates the poles of the numerator and denominator
as well, and also since X, 8 > 0, the case B = —A can be ignored; hence, we obtain
8(A — B) using Lemma 3.11:

9]
B / Gp(2in)e "2

_ o
Go(0 - 2iny | PEMISH(Q + 2007 dA

= / FOIgR)ISH2iM)21Sp(Q + 2in)[*da
0

o0

= / FO)gR)ISH(Q + 2in)[*da.

0

This shows that the map is an isometry. The converse showing the eigenfunctions
are also complete is more difficult and can be found in [20]. The technique involves
writing the measure

1S5(Q + 2i1)|*> = 4sinh(rbA) sinh (b~ 1)

as linear combinations of 4 exponentials and calculate the integral directly using hints
from hyperfunctions.

From the proof, we therefore deduce the inverse map of the unitary transformation
to be the complex conjugate

®: L*(R) — LR, du()))

B f @)
f) = FQ) = / Sp(0 —ix —iMSp(Q — ix +ir)
R—-i0

’

where the contour goes below the poles.
Since @, (x) are the eigenfunctions satisfying C®, (x) = (e2Thh =271y @, (x),
formally the integral transformation with @, (x) as kernel will intertwine the action.
O

8.4 Left regular representation

Now, we apply the pairing to the left corepresentation (7.61).
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Theorem 8.11 The representation of U, (gl(2, R)) is equivalent to

[$2)
/ / P s2|Sp(Q +2i0)Pdrdsy ® LA(R, dia),
R R+

where the representation space P, 5,2 = Lz(R, dsy) is defined in Theorem 8.6.

Gp(Q+ia)Gp(Q+it)
(l_qZ)ib’l(aJrf)
the pairing. Also, since the resulting expression is analytic in «, T on the lower half
plane, by taking «, t to 0, —ib, we mean the analytic continuation from R to the

corresponding point, while respecting the contour of o.
The pairing of K¢ and K is then given by 7 = 0, @ = 0. The factor

Proof Recall that we have to multiply the expression by under

Gp(—io)Gp(—ia +io)
Gp(Q +it)

Gp(Q+ia)Gp(Q +iT)

becomes § (o) which means we also set & = 0. Hence, we obtain

_zb
Ko« f(s1,1)8(s2,12) = f(s1.11)8(s2, 12)e” 22, (8.13)
K - f(s1,10)g(s2. 1) = f(s1.11)g(s2, )™ 1. (8.14)
The pairing of E is given by t = —ib and o = 0, so that again 0 = 0 and is given

by

2 bs| +nbsze—nhs1 — ”Tbsz
1—¢q2
ﬂbS1+ﬂTbS2

= _iql/zf(sl —ib,11)g(s2, lz)ﬁ,

—ig"? f(s1 — ib, 11)g(s2, 1)

E - f(s1.t1)g(s2, 12)

or simply

i b
E — e%szeﬂb51+2ﬂbp51 . (815)

q9—49
Finally, the pairing of F is given by t = 0, « = —ib. By Corollary 3.11, we have

Gt ’G“:(GQbi ;‘:f “9) G0 + i) Gy (Q + i)
_ efm':ﬂana Gplioc —b)Gp(Q + b)
Gp(Q+io)
= —¢%8(0) — ¢*8(c +ib),
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so that we obtain

F - f(s1,t1)g(s2, 1)
P .
==iq'4/2]if%;§e”bx“_f§” (ez”b“““)f(s14—ib,t14—ib)g(sz,n)
Gp (% +is; — il‘]) Gyp (% +is1 + il‘])

Gb(%—l-isl—itl—b)Gb(%—l—iS]—l—it]—b)

+f(s1+ib,11)g(s2, 12)

Using % = (1 — e¥ib(x=b)y e expand the expression:

_ iql/ze—%bsz
q-q"
+(1 +q—le—2nb(s1—t1))(1 + q—le2ﬂb(—sl—t1))62nhs1e—271bpsl)

F (e—ﬂb(sl—zﬂ)e—Zﬂb(Ptl +Ps1)

b,
ie" 2% b2 b(2ps, +3s
— l(e*ﬂ @psy=s1) 4 o= 7b2ps;+3s51)
q9—q
+(627Tb11 +e—2nbt1 _i_e—Zyrb(p,1 —tl))e—nb(Zp”—&-sl))

C 2
so that under multiplication by e~"*"i which changes p;, +> p;, + 1, we get

. _mb
ol zl(e_rrb(Zpsl—S])+e—nb(2ps1+3_&‘1) 4+ Ce ™2y (8.16)
q9—9

where C depending only on 71 is the operator defined in the previous section. Therefore,
under the unitary transformation @ defined previously, the representation is equivalent
to

b
Ko=e2"%,
K = enbn
i Zhg, s +27b
— ezAZeﬂ s1+2m psl’
-1
q9—d9
ie= %%
F = — (e—nb(Zpsl —s1) + e—7'rh(2ps1 +3s1) 4 (62ﬂbk 4 e_2”b)‘)e_”b(2pfl+sl))7
q9—d9

where the measure du (X)) is now |[Sp(Q + 2iA) |2dk.

Motivated from the expression of the corepresentation, we multiply the space
by Gb(% + is; — iA)~!, and in effect changes the action of e*™Ps1 to (1 +
ge~2rbsiH2mbiye27bPs; The action of E and F then becomes:
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E— ) (eI +2Tbpsy . o= Tbs1+2TbA+2Tbpy,
—1 B
9—49
F— 1 e—%”sz (e”bsl—Z”bPu + e—nbsl—ank—Zﬂbpsl)
—1 °
9-—49

Now, we make the following changes of variables (unitary transformations):

O8] k> —81 1 Ps; > —PDsy»

: A S1

Tis|A

oe™*1 5 pr —
—Tigisy . 52 S1

oe” 2712 Ps; = Ps; — Zs Ps, = Psy; — —

*Psy > Psp —

In other words, the transformation:

F(s1, 1080 12) > f (=51, 11)g(h, )e T 5122=52),

Then, the representation (denoted by P, ;,) becomes:

Ko = eﬂTb‘Yz,
K = e*ﬂbﬂ
E_ i 1 (enb(—Zpsl—sl+A) +enb(—2psl +51—A))
q9—9
_ i l(ql/zenb(sl—k) 1 g~ V2emmbls1=R))e—2mbpy,
q9—q9
— g —_ —(s —2) e 27bps,
2b 1 q b
F= ‘]_’T(enbaml—sl—x) 4 eTh@py s+
_ . (q_l/Zenb(s1+k) —|—q1/2e_”b(‘”+)‘))e2”bpsl
g —_g-1
q—
= [% —(s1 + k)} CHEL

q

m}

Remark 8.12 We note that there is a freedom of choice in multiplication by Gy, in the
above action. In fact, this precisely says that

Pot = P_y: (8.17)
Gb( +ik—ix)

o

fx) — f(x) (8.18)

P | I

—ik—ix)

as observed in [32].
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Since the pairing is non-degenerate, we obtain the following important realization
of the multiplicative unitary W:

Corollary 8.13 As a corepresentation on L*>(R), W is equivalent to

D
W=//T“/2du(x)dr, (8.19)
R R,

where du (L) = |S,(Q + 2i1)|*dA.

This is a generalization of Podles-Woronowicz’s definition [30] of a multiplicative
unitary for a compact group

w=>"u, (8.20)

aeG

where G is the set of all (finite dimensional) irreducible unitary representation of G,
and

u Vo> Vo ® G

is the irreducible corepresentation on some finite dimensional vector space V,. In
particular, this defines the multiplicative unitary in a coordinate-free canonical way.

Furthermore, by applying the transformations that were done in the proof of The-
orem 8.11 to the expression (7.61), and comparing the result with the expression of
T!/2 given in (7.31), we recover the “6-9 relation” of G, that is first observed by
Volkov [44]. See Sect. 9 for further details.

8.5 Right regular representation

Similarly, by applying the pairing to the right regular corepresentation, we obtain

Theorem 8.14 The right regular corepresentation is equivalent to

@
L2(R, ds1)®//PA,_szple(Q+2ik)|2dkds2.
R R+

Proof We apply the pairing to (7.73) and get

.Y2
Ky = efﬂbT,
K = eﬂ’b[z
/2N 2N a7 Qb
E— (—ig /=)( 612)6 52 -mbty (enb(211+212)e271b(—p,1+pt2)
l—¢q
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Gp (% —it — itz) Gyp (% +in — itz)

eZprtz
Gb(%—ih —itz—b)Gb (%+it1 —itz—b)

+

— b Hsemhn (enb<—2p,1+2n+2pt2+rz>

Cq—q!

4 g\ 2(1 4 g2y +q—le2nb(—t1+t2))62nbp,2)
_ 16%%2 (en'b(Zp,Z—tz) 1 &b 2Py +30)

q—q

n (e2nbt1 12wt 4 o mh(=2py +211)) enb(2p,2+t2)) ’

B ig—1/2emi0b
= 1_q2

i
= —16

q9—4

e ’TTbsz—i-nbtz e—2nbt2 —mbsy e—27r bp,2

— 52— b(0242p1,)

Again by shifting p;, — p; + t1 as in the left representation, the action of E
becomes
E— l__le%*’sz (eTP@Pn=12) 4 ThCPy+30) | Cemb@pn—12)).
q—q
Hence, under the unitary transformation ®, E becomes
E— 1 - e”Tbsz (enb(Zp,Z—tz) + enb(Zp,2+3t2) + (eanA + e—2nbk)enh(2p,2—t2)).
q9—49

Finally, the remaining transformation used in the left regular representation does
not change these actions. In exactly the same way if we apply:

—1
multiplication by Gy, (% + il — itz) ,

Otz [d _t2 N t2 (rd —t2, ptZ [=d —ptz,

i %) A
oe ™A s i — = P P — =
2 2
_mig 5] 52
oe” 292 Ps, > Ps, + e Pn > pn + T

that does not change the left representation either, it becomes:

3'2
KO — e_an
_ e—nbtz

3

E_ i - (q%enb(zz—;\) + q—%e—nb(tz—k))e—anp,z
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= [g - —(tz - A)] e 2hrn,
q

2b
Fo i - (q_%enb(zzﬂ) + q%e—nb(zzﬂ))eznhp,2

q9—4

0 i 27 b,
=|—=+-E@+xr Pry
[21; TRt e
q
which is precisely the representation denoted by P, _y, 2. O

Combining Theorem 8.11 and 8.14, and note that all the transformations used are
unitary, we conclude the main theorem:

Theorem 8.15 As a representation of U, (gl(2, R))L ® Uy (gl(2, R))g,

d &
L*(GL} (2. R)) ://PM®7>A,_S|Sb(Q+2m)|2dxds (8.21)
R R+

and the equivalence is unitary.

In particular, we proved Ponsot-Teschner’s claim in [31] for liq (s1(2, R)) by setting
s = 0 which corresponds to the determinant element N = AA, as well as the action
of the central element K.

8.6 The modular double

It is known that the representation space P, ; is actually a nontrivial representation
for the modular double U, (gl(2, R)) ® Uz (gl(2, R)). In this section, we describe its
action using the same multiplicative unitary W,,,.

The modular double counterpart Uz (gl(2, R)) is defined in the same way with ¢
replaced by q throughout In particular, we can define the pairing between E, F, K, Ko
with A, B, A, B as before. Recall that A = A/ b and similarly for the other quan-
tum plane variables. Hence, by the b <— b~ duality of W,,, we can pair it with
Uz (gl(2, R)) and obtain:

Proposition 8.16 The left regular action of Uz(gl(2, R)) on L*(G LJ(Z, R)) is given
by replacing b with b=, i.e.,

~1/2 b~ (s1—2) +5—1/26—:119*1(sl—x))e—znbflpxl,

F= _ i - (Z]'—l/Zenb_'(x1+A) +51/26—711;—1(51+A))eznb—‘psl_
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We note that E and F are positive operators only when #—H <b? < ﬁ forn € N,

and they are not necessarily essentially self-adjoint on the natural domain VW [36].
To obtain essential self-adjointness, we have to apply Proposition 4.1 and define the
operators on the respective transformed domain gp - V.

Ignoring the factors, we note from Theorem 8.11 that the summand of E and
F are g-commuting; hence, we immediately obtain using Corollary 3.14 (see also
[2, Cor 1]).

Proposition 8.17 As positive self-adjoint operators, we have

2sin(rh2)E = 2sin(wb?)E)/Y,
2sin(rb ) F = (2sin(xb?) F)/?’.

Similar analysis works as well for the right regular representation; hence, Theorem
8.15 is actually an equivalence as a representation of the modular double

Ugg (812, R)) 1 @ Uygg(gl(2, R)) g,

where U,z (gl(2, R)) := U, (gl(2, R)) ® Uz(gl(2, R)) denotes the modular double.

9 Representation theoretic meaning for certain integral transforms

In this section, we state without proof certain integral transformations of G, that arise
in the calculations of certain representation relations.

Proposition 9.1 The pentagon equation Woz Wiy = W1 W13 Was is equivalent to the
4-5 relation (Lemma 3.10)

©.1)

Gp(@)Gr(B)Gp(y) =/dre*2’”” Gpla +it)Gp(B +iT)
Gp(a +y)Gp(B+¥) ] Gpl@+B+y+it)Gp(Q +it)’

By a change of variables and using the reflection formula, it can be rewritten as
Gp(a +y)Gp(B + y)Gp(a)Gp(B)
Gpla+B+vy)

= /dre*h"(ﬂ*if)(a*"f)c;b(a +it)Gp(B+iT)Gp(y —it)Gp(—iT).
C

9.2)
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Scaling all the variables by b and taking the limit b — 0 by applying Theorem 3.5,
we recover precisely Barnes’ first lemma:

I +CF)(1;(Z:Z :L)l;)(a)r(b) - %/F(a +iD)T (b +i0)(c — it)[(—it)dr
C

9.3)

in the special case for d = 0.

Next, as noted in Sect. 8.4, by comparing W, = [ i/ 2drdu (1) as corepre-
sentation, we obtain the following relation that is first observed by Volkov [44]:

Proposition 9.2 The 6-9 relation for Gp(x) can be written as

/6_27”(5_”) Gpla+it)Gp(B+it)Gp(y +it)Gp(6 — ir)Gb(—it)dT

Gpla+B+y+d+it)
C

_ Gp(@)Gy(B)Gr(¥)Gp(a + 8)Gp(B + 8)Gp(y + )
 Gpla+B+8)Gha+y +8)Gr(B+y +8)

, 9.4)

where the contour goes along R and separates the increasing and decreasing sequence
of poles. By the asymptotic properties of Gy, the integral converges for any choice of
parameters.

Again by scaling all the variables by b and applying Theorem 3.5, we recover
Barnes’ second lemma:

/ [(@+i0l(b+inl e +inld —iDl(=it)
Tatbtctdtin) !

c
_F@r®relra+dro+dric+d) ©9.5)
C Ta+b+dTa+c+d)T(b+c+d)’ '
which in turn is a generalization of Pfaff-Saalschiitz’s sum
Z m+m+1+k—j) _(m+m+Dn+m+k)l(n+1+k)!
= (m— DI — Dk — PDn+ Pl m!lk!(n +m)!(n 4+ Dl(n + k)!
9.6)

Finally, in [46], an alternative description of the multiplicative unitary lying instead
in A ® A is defined to be (slightly modified to fit our definition):

i -1 -1
V =gy (B~ @g T BATerm PHOAT DB ©.7)
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so that
Vix @ DHV* = A(x). (9.8)
On comparing
W(ARx)W=Ax)=VEx®HV* 9.9)

as operators on H ® H, we obtain a new relation involving G (x), which is essentially
the same as the relation in [42, Theorem 5.6.7] in the case n = 1:

Proposition 9.3 The 3-2 relation is given by

/ Gp(a+it)Gp(B—itT)Gp(y —it)e M FID0T)dr = G (a+y)Gpla+p),

C
(9.10)

where the contour goes along R and separates the poles for it and —it. By the

asymptotic properties for Gy, the integral converges for Re(a — f —y) < %
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