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We showed that there is a complete analogue of a representation of the quantum plane
By where |q| = 1, with the classical az + b group. We showed that the Fourier transform
of the representation of By on H = L?(R) has a limit (in the dual corepresentation)
toward the Mellin transform of the unitary representation of the ax 4+ b group, and
furthermore the intertwiners of the tensor products representation has a limit toward
the intertwiners of the Mellin transform of the classical ax + b representation. We also
wrote explicitly the multiplicative unitary defining the quantum ax + b semigroup and
showed that it defines the corepresentation that is dual to the representation of B
above, and also correspond precisely to the classical family of unitary representation of
the az + b group.
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1. Introduction

The ax + b group is the group of affine transformations on the real line R. Together
with the three-dimensional Heisenberg group they can be viewed as the simplest
examples of non-abelian non-compact Lie group. Various difficulties in studying
higher-dimensional non-compact Lie group are reflected in these simple examples.
For example, in the az 4+ b group, the unitary irreducible representations are now
infinite dimensional, and the Mellin transform is used to “diagonalize” the represen-
tation. The matrix coefficients in this case are realized as integral transformations,
which can be viewed as the matrix elements with respect to a continuous basis
of the representation space. These matrix elements are expressed in terms of the
gamma function I'(x). We will see that in the quantum picture, its g-analogue,
the g-gamma function I'y(z), is closely related to the important quantum diloga-
rithm function Gy(z). Furthermore, to deal with non-compactness, there is a need
to introduce the language of multiplier C* algebra to define a natural coproduct
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on the algebra of continuous functions vanishing at infinity, and also to construct
the non-compact Haar measure [26]. Motivating from this, in the quantum picture
we must deal with unbounded operators, and the theory of functional calculus for
self-adjoint operators will be the main technical tool.

The quantum plane B, is the Hopf *-algebra over C with self-adjoint generators
A, B satistying

AB = ¢°BA, (1.1)
with the coproduct given by
A(A)=A® A, AB)=B®A+1®B. (1.2)

It is known that this object is self-dual, so that they can be considered both as the
quantum counterpart of C(G), a certain algebra of functions on G, the “ax + b’
group, or U(g), the enveloping algebra of the Lie algebra g of G. Classically for a Lie
group G, U(g) and C(G) are paired by treating U(g) as left invariant differential
operators on GG and evaluate the result at the identity. In such a way, representation
of U(g) on a vector space H corresponds to corepresentation of the group algebra
C(G) on H by this pairing. Therefore in order to study the quantum counterpart
of these representations, naturally we would like to study the representation of the
quantum plane B,, and the corepresentation of its dual object, called 4, in this
paper, under a natural pairing.

Recently in [6], Frenkel and Kim derived the quantum Teichmiiller space, pre-
viously constructed by Kashaev [13] and by Fock and Chekhov [2], from tensor
products of a single canonical representation of the modular double of the quan-
tum plane B,. The representation is realized as positive unbounded self-adjoint
operators acting on H = L?(R), and the main ingredient in their construction of
the quantum Teichmiiller space is the decomposition of the tensor product of two
B,-representations into a direct integral parametrized by a “multiplicity” module
M =~ L?*(R), namely:

HoH~MeH. (1.3)

The intertwiner of this decomposition is given by a certain kind of “quantum diloga-
rithm transform” (cf. Proposition 4.2), where the remarkable quantum dilogarithm
function has been introduced by Faddeev and Kashaev [4].

On the other hand, in order to define a corepresentation on the dual object A,
with positive generators, the space of “continuous functions vanishing at infinity”
for the quantum plane C (A4) based on the functional calculus of self-adjoint oper-
ators is introduced. This coincides with Woronowicz’s construction of the quantum
“ax+b" group [29] using the theory of multiplicative unitaries, however restricted to
the semigroup setting where we consider B > 0, so that we do not run into the dif-
ficulty of the self-adjointness of the coproduct. The multiplicative unitary involved
produces the corepresentation of the quantum plane desired, and the corepresenta-
tion obtained in this way is shown to have certain classical limit toward the unitary
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representation for the classical group. Furthermore, a pairing between the dual
space corresponds precisely to the canonical representation of B, by unbounded
self-adjoint operators defined in [6] mentioned above.

In the quantum torus setting, where generators of B, are represented by uni-
tary operators, the representation of B, on H = L?(R) only becomes algebraically
irreducible when we consider also its modular double B,z := By ® By, so that it
generates a von Neumann algebra of Type I factor, while representation of B, itself
generates Type II; factor which is more exotic [3]. Now taking the real structure
into account, the modular double of the quantum plane also naturally arises in this
setting, and what we are considering in this paper should be viewed as restriction
of the representation on H to B, C By, especially useful in studying the classi-
cal limit. On the other hand, in the dual picture, quite interestingly the modular
double elements are also involved in the definition of Cu(A,) due to the analytic
properties of the Mellin transform, see Remark 6.3.

The quantum dilogarithm function played a prominent role in this quantum
theory. This function and its many variants are being studied [8, 21, 28] and applied
to vast amount of different areas, for example the construction of the “ax + b”
quantum group by Woronowicz et al. [19, 29], the harmonic analysis of the non-
compact quantum group U,(sl(2,R)) and its modular double [1, 16, 17], the ¢-
deformed Toda chains [14] and hyperbolic knot invariants [12]. One of the important
properties of this function is its invariance under the duality b «+» b~! that provides
the basis for the definition of the modular double of U,(sl(2,R)) first introduced
by Faddeev [3], and also related, for example, to the self-duality of Liouville theory
[16] that has no classical counterpart.

It is an interesting problem to find a classical limit to these quantum theories
described by the quantum dilogarithm function. Due to the duality between b «» b1
and the appearance of the term Q = b+ b~!, there is no classical limit by directly
taking b — 0. In this paper, by utilizing the properties of the quantum dilogarithm
function Gp(x), we showed that under a suitable rescaling of parameters and a
limiting process that takes ¢ — 1 from inside the unit circle in the complex plane,
it is possible to obtain the classical gamma function. More precisely, by taking b
away from the real axis, Theorem 3.11 states that the following limit holds for
b2 =ir — i07:

o 27h)Go(b)

r—0t (—27Tib2)$ :F(x)7 (14)

where (—27ib?) > 0, hence the denominator is well-defined. This gives another
proof of a similar limit first observed in [20].

In this way, most properties of this special function reduce to its classical
analogues. For example, the ¢-binomial theorem (Lemma 3.7) derived in [1]:

(u+v)* = b/ dr (t) w Tyt (1.5)
C T b
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is actually the g-analogue of the classical formula

27 L(—it)
see Remark 3.9. In particular, the main results of this paper state that the intertwin-
ers of the tensor product decomposition H ® H ~ M ® H of the representation of
B, given by [6] has a nice classical analogue, namely the intertwiners of the classical
“az + b” group representation under suitable transformation (Theorem 5.2):

(z+y)

— 00

bA bt At
2
4 \\btl thJ % - \‘tl tQJ classical ’ (17)
bA bt At
2
4 ’Vbtl th-‘ % - ’th tz-‘ classical (18)

as b? = ir — i0". Furthermore, the corepresentation constructed using the multi-
plicative unitary also has a classical limit toward the unitary representation R, of
the classical ax + b group (Theorem 6.13).

The study of the relationship between the quantum plane and the classical
ax + b group is important as it serves as building blocks toward higher quantum
group. First of all, we choose to work with quantum semigroup (representing the
generators by positive operators) since it induces the b «» b=! duality for SL(‘I"(2, R)
as explained in [16], and it also provides an important results on the closure of
tensor product of U, (sl(2,R)) representations [17]. These observations are essential
to the relationship between quantum Liouville theory and quantum geometry on
Riemann surface [24]. Moreover, it is fundamental in the construction of GL/ (2, R)
by the Drinfeld’s double construction proposed in [9, 18], an analogue of the classical
Gauss decomposition, which provides an important first step leading to the research
program of harmonic analysis and positive representations of split real quantum
groups in the case |g| = 1 proposed in [5, 10].

The present paper is organized as follows. In Sec. 2, we recall the definitions
and facts about the classical “ax + b” group and its representations, and derive the
tensor product decomposition of two irreducible representations. In Sec. 3, we recall
some properties of the g-special functions, in particular a version of the quantum
dilogarithm Gyp(x) introduced in [17], and derive a special limiting procedure that
enables us to compare it with the classical gamma function. In Sec. 4, we recall the
g-intertwiner for the representation of the quantum plane B, that is obtained in [6]
to deal with the quantization of Teichmiiller space, and we showed in Sec. 5 that this
intertwiner, under suitable modification, has a classical limit toward precisely the
intertwiner of the ax+b group. Finally, in Sec. 6, we introduce on the dual space A,
the space of continuous functions vanishing at infinity C'(A,), and starting from
Woronowicz’s multiplicative unitary of the quantum “ax + b” semigroup, we derive
explicitly the corepresentation of the dual space A,. We showed that this corepre-
sentation has a limit toward the classical ax 4+ b group representation, and on the
other hand, it induces the same representation of B, under a non-degenerate pairing.
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2. Classical ax + b Group
2.1. Representation

First let us recall the theory of representation of the ax + b group. The classical
ax + b group is by definition, the group of affine transformations on the real line R,
where a > 0 and b € R, and they can be represented by a matrix of the form

g9(a,b) = (g i)) : (2.1)

with multiplication given by

b2+
g(ay,b1)glag, by) = <a10a2 ay 21 1>'

We will also consider the representation of the transpose group

glaye) = (“ (1)) , (2.3)

c

where the multiplication is given by

aia 0
glar,cr)g(az, c2) = (cla;j@ 1>. (2.4)

This corresponds to the coproduct of the quantum plane B, introduced later on
(cf. Sec. 4).

Theorem 2.1 (Gelfand [27, Ch.V.1]). Fvery irreducible unitary representation
of the ax + b group is equivalent to one of the following (acting on the left):

e R, :=R_; or R_:= R; where Ry denote the representation of the ax + b group
on L*(Ry, <) by

Ri(9) - f(z) = e f(ax); (2.5)

o T, the representation on C by multiplication by a’®.

Similarly, the left action of the transpose group is given by the action of the

inverse element
—1 c
-1 a -
pu— a 2.
g ( 0 1 ) (2.6)

Ra(g") - f(x) = e/ f(a" w) = Ra(g™") - f(2). (2.7)
Let us recall the method of Mellin transform, which gives us an explicit expres-
sion of the matrix coefficients in terms of the gamma function:

Theorem 2.2. Let f(x) be a continuous function on the half line 0 < = < oo.
Then its Mellin transform is defined by

o) == (MN(s) = [ T (), (2.8)

0
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whenever the integration is absolutely convergent for a < Re(s) < b. By the Mellin
inversion theorem, f(x) is recovered from ¢(s) by

c+ioco
(@) = (M) (x) = = / £ (s)ds, (2.9)

B 27 —100
where ¢ € R is any value in between a and b.

Here we also list some analytic properties for the Mellin transform. For further
details see [15].

Proposition 2.3 (Strip of analyticity). If f(x) is a locally integrable function
on (0,00) such that it has decay property:

flx) = {O(x_H) == 0%, (2.10)

O(z7b¢) 2 — +o0,

for every € > 0 and some a < b, then the Mellin transform defines an analytic
function (M f)(s) in the strip

a < Re(s) < b.

(Analytic continuation) Assume f(z) behaves algebraically for x — 07T, i.e.

fl@) ~ > Apats, (2.11)
k=0
where Re(ay) increases monotonically to oo as k — oo. Then the Mellin transform
(Mf)(s) can be analytically continued into Re(s) < a = —Re(ag) as a meromorphic
Sfunction with simple poles at the points s = —ay, with residue Ay.

A similar analytic property holds for the continuation to the right half plane.

(Growth) Let f(z) be a holomorphic function of the complex variable x in the
sector —a < argx < 8 where 0 < «, 8 < m, and salisfies the growth property (2.10)
uniformly in any sector interior to the above sector.

Then (Mf)(s) has exponential decay in a < Re(s) < b with

(MF)(s) = {O(ewt) e (2.12)
O(el*=9) - —o0, .
for any € > 0 uniformly in any strip interior to a < Re(s) < b.
(Parseval’s formula) We have
o0 1 c+ioco
/0 f(x)g(x)x* tde = i) Mf(s)Mg(z — s)ds, (2.13)

where Re(s) = ¢ lies in the common strip for M f and Mg. In particular the map

fa) = F) = Mpin = [ o) 2.14)

0
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gives a unitary transformation between L?(R, , i—z) and L*(R, dz):

/ooo|f(w)|2d—x—l TR P, (2.15)

T 21 J_ o

This allows us to study the representation Ry(g) in the space L?(R) instead, as
Proposition 2.6 below shows. By abuse of notation, we will also denote this unitary
transformation by M.

Throughout the paper, we will restrict to a special class of functions that is
dense in L?(R).

Definition 2.4. Let W denote the finite C-linear combinations of functions of the
form

e~ AT+ Brp(g), (2.16)

where P(z) is a polynomial in z, A € Rso and B € C.

Proposition 2.5. We have the following properties for W:

(1) Bvery function f(z) € W is entire analytic in z, and Fy(z) := f(x + iy) is of
rapid decay in x.

(2) The space W is closed under Fourier transform.

(3) W is dense in L*(R).

(4) W is a core for the unbounded operator e®® and ¢°? on L?*(R) where a, 3 € R
and p = 5= 22, Lemma 7.2].

Under the Mellin transform, the representations Ry can be expressed by the
following integral operator:

Proposition 2.6 ([27]). The action of the ax+b group on W C L*(R) is given by

Rx(g) - F(w) = R+‘OK(w,Z;g)F(2)dz, (2.17)

where the integral kernel is given by

[(iw —iz)a~™ b\ ET
Klw. 2 0) — (A , 2.1
(w.2:9) e (-2) (2.18)
Similarly, the left action of the transposed group will be given by
R(¢") - F(w) = K(w, 2;9)F(2)dz, (2.19)
R+i0

where the integral kernel is given by
I'(iw —iz)a™
2

Here the branch of the factor is chosen so that |arg(—Ab)| < m and the contour
of integration goes above the pole at z = w.

K(w,z;9) = (Ab)= (2.20)
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2.2. Tensor product decomposition

Using the above expressions, we can construct explicit intertwiners for the tensor
product decomposition of the irreducible representation R, R_ and T):

Theorem 2.7. Recall that Ry ~ L*(R,, df) and T, ~ C as Hilbert spaces.

(a) We have

d
Y: Ry ® Ry ~ L? (R*, ;O‘) ® Ry, (2.21)

flxy,x2) — F(a,x), (2.22)

where the unitary equivalence is given by

F(a, ) ::f( ar 7 ) (2.23)

a+1l’ a+1
T

f({L‘th) = F <x—27x1 + LL‘Q) . (224)

(This formula also holds for Ry ® Ry for all A € C.)

(b) We have
9 da 9 do

'(/J : Ri ® R:F ~ L R<1, E ® R:F ©® L R>17 E ® Rj: 5 (225)
f(‘rlaxQ) = F(O(,J)), (226)

where the unitary equivalence is given by

Flo,z) = f (ﬁ %1') : (2.27)

o =1 |a
flx1,22) = F <ﬂ7 |z — $2|) . (2.28)
€2
(¢c) We have
¢Y: Ry ®T, ~ Ry, (2.29)
f(z) = F(w), (2.30)

where the unitary equivalence is given by

Flw) = f(w— p), (231)
f(z) = F(z+p) (2.32)

in the space of the Mellin transform of R4 .
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Proof. Let us prove (a) for the case R, while the case for R_ is similar. First of
all it is obvious that the maps given are inverse of each other. To check that they
are intertwiners, we compare the actions on the two spaces:

R

e, [ Qar  ax
- f(a—l—l’a—i—l)

e~ib@ita:) ¢ ((;—;a(xl +22) a(wy + 352))

1 ’ 1
xro + 1 o + 1
_ e—ﬁbzle—ibmzf(axl, CLJ)Q)

= (Ry ® Ry)(g) - f(x1,22).

Finally to check that it is unitary, we compute the norm after transformation:

2

x dz do

F( 2 -

1£ (e, @)l //‘f<a+1 a—l—l) T o«
//|f w2, T2) \2dx2 da

=/ |f<x1,x2>\2@dﬂ

T2 I1
= || f (1, 22)|.
For (b) the argument is similar, where we split into the case o < 1 and o > 1:

(Ry @ R_)(g) - fa1,m2) = e~ ®¥1e%2 f(q), axy)

_7,bm1 1bx2F <x_ CL|1‘1 _ 1‘2|)
2

_h_ax ; T
e e P ey F(a,ax)

_ fe " F(a,azr) a>1
e F(a,ar)  a<1

as required.
Finally for (c), we apply the Mellin transformed action (2.17) to obtain:

ip [e§] ) ib iZz—iw
(Re ®T,)(g) - F(w) = ‘;—ﬂ T(iw —iz)a" ™ (%) F(2)dz

ip 00 ) ib 1z—iw+ip

S Tliw —iz —ip)a "™ <Z—> F(z+ p)dz
27 J_ a
00 ) 1) 12 —1T

= 2i Iz —iz)a " (Z—) f(z)dz

T J oo a

= Ri(g) - f(a).
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We will focus mainly on the case R, ® R;. Under the Mellin transform of the
function spaces, we can rewrite the intertwiners above in terms of gamma functions
as follows.

Proposition 2.8. Let F(\,t) e W@ W C L*(R,d\) ® Ry and f(t1,t2) € W®
W C Ry @ Ry where Ry ~ L*(R,dt) in the Mellin transformed action. Then the
isomorphism
U:Ry®R, ~ L*(R,d\) ® Ry, (2.33)
f(t1,t2) = F(A ) (2.34)
can be expressed as
1 [ T(ity — it + i\ (—ity — i))
F\t)=Vf .= — t —to,to)dt 2.
(=vp=g | o Jlt—ta )tz (235)

and its inverse is given by

_ 1 D(—i\ + it1)T (N + ita)
ti,t0) = U 1F = —
UUREY 21 Je C(ity + it2)
where C' is the contour going along R that goes above the poles of T'(—ita —i\) and
below the poles of T'(ita — it +1i)\), and similarly C' is the contour along R that goes
above the poles of I'(—i\ +it1) and below the poles of T'(i\ + itz).
Hence formally we can write the above transformations as integral transforma-
tions

F(\ty +t2)dN, (2.36)

F(At) = // {/\ tJ [ty t2)dtrdls, (2.37)
r2 |01 T2
At
ft1,ta) = F(A t)dAdt, (2.38)
r2 |01 T2
where the integral kernels are given be
At 1 L(iX — it1)T(—ite — iA)
_ 1 N 9.
L‘l th el T (—it) ’ (2:39)
At - 1 F(—i/\+it1)F(it2 +Z/\)
L‘l tJ = 30—t —ta) T'(it)
At
= Ll th . (2.40)
Proof. To calculate ¥, it suffices to calculate M o 1) o M1, where
M: L2 (Ri, @@> — L2(R2, dt1dt»)
1 T2

is the Mellin transform on both variables, and v is the unitary equivalence from
Theorem 2.7. We will write using separation of variables

f(t1,t2) := fi(t1) fa(t2) € W@ W.

1350031-10
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First, we have

(M_lf)(xly 1‘2) = / / xfitlx;itz f (tl)fQ(tQ)dtldtQ.
R+ico JR+icy

Next, applying :

—itq —ity
X
t to)dt1dts.
—>/]Rﬂcz /]RHCI <a+1) <a+1) J1(t1) fa(t2)dtydts

Finally, taking the Mellin transform on the («, x) variables, we arrive at

1 azx —ity T —itg
FOLt) =0 f=—— it—1 ix—1 [ b
( 7 ) f (271')2 //Rﬁ_ /R+i02 /R+icl ! “ a+1 a+1

- f1(t1) f2(t2)dt dtadrda

1 // / it—1 _iA—1 €T e -1
= — x « e M
(2m)? B2 JR+tico a+1

ax
. . 2.41
fl <Oé i 1) fQ(tg)dthdeé ( )
From the Mellin transform properties (Proposition 2.5), M~!fi(2%) is of rapid

decay in z. Hence the integrand is absolutely convergent with rebpect to x and to
and we can interchange the order of integration in (2.41) to obtain

—itq —ito
FOML) = 1 // / / i1 iA—1 ax L
7 2m)? JJr2 Jrvics Jrtic, a+1 a+1

fl(t1 ) fo(to)dtdzdtada

/ / / / 1t it —ito—1 1)\ ity — 1( _|_1)1t1+zt2
271— R+ R+ico R+ R+icq

- f1(t1) f2(ta)dtrdadtada

1 o0 s ]
I / / alA—1t+zt2—1(a + 1)”,]01 (t _ t2)f2 (tg)dtgdoz
T Jo JR+ics

by the Mellin transform property.
Next from the gamma-beta integral [27, V.1.6(7)], we have

F(w—|—u)F(—u) o > wtu—1 —w
e /0 prtt (] 4 )y, (2.42)

where Re(w + u) > 0,Re(u) < 0. Assuming A € R, we see that the integrand is
absolutely convergent in o when

Re(it2 — it) > 0, Re(itg) < 0.

1350031-11
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Hence for ¢o > 0 and Im(t) > c¢2, we can interchange the order of integration to
obtain

1 o ,
F()\, t) = % /]R A / O(MilH»ltzil(Oé + l)ltfl (t — tg)fg(tQ)dOzdtQ
+ica

1 T(ite — it + iNT(—itg — i\)
= — t —to,to)dt 2.43
27 Jrsic, r(—it) ft=toto)dtz, (243)
which holds for Im(¢) > ¢ > 0. Finally we can deform the contour of ¢3 so that
it goes under to = t — A and above t5 = —A. Then the above expression can be

analytically extended to Im(t) = 0, and we obtain our desired formula.
Similarly, to calculate ¥ —' = Moy~ oM™, we start with the Mellin transform

(M™IF)(a,2) = / / a” AT Ey (N Fy(t)dtd\,
R+icy JR+icy

and transform using ¢~! from Theorem 2.7 into

—A\
- / / ( ) (z1 + x2) T E\(\)Fy(t)dtd,
R+icy JRAict €2

and finally taking the Mellin transform on the variables (x1,x2), we have:

—iA
f(tl,tg) — U lF _ // / / zt1 1 ztz 1 _1 (xl —|—l‘2)7it
27T R2 R+icy JR+ic €2

F,\ (N Fy(t)dtdAdxodx,  (replacing a1 by x12s:)

// / / 1t1+zt2 it—1 1t1 — A= 1($1+1)
27T R2 R4icy J R+icy

- Ex(\)F, (t)dtdMdwadar . (2.44)

By the same arguments, we can interchange the order of integration with respect
to d\ and dxs, and involve the Mellin transform in x5 and ¢, to obtain

1 [ L iy
= —/ / 1‘?171)\71(1‘1 + 1)_1t_1t2F)\()\)Ft(t1 + tQ)d/\dJZl.
R4+icy
Finally, assuming 7; € R, the integrand is absolutely convergent when
Re(—i\) > 0, Re(—i\ —itg) <O0.

Hence for 0 < ¢y < —Im(t2) we can interchange the order of integration, and obtain

1 D(—i\ + it1)T (N + it2)
ty,t - : E(\t1 +t2)dA. 2.45
fltit2) = o /]R+zc,\ (it + ita) (At +12) (249)
Again by shifting the contours for A so that it goes above A = —t3 and below
A = t1, the expression can be analytically extended to Im(ty) = 0, and we obtain
the desired formula. O

These expressions will play an important role in the comparison with the
quantum case.
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3. g-Special Functions
3.1. Definitions

Throughout this section, we let ¢ = ™" where b € R\Q and 0 < b2 < 1, so that
lg| = 1 is not a root of unity.

We will consider the quantum dilogarithm Gy (z) defined in [16, 17] throughout
the paper. The reason is that it admits a nice classical limit toward the gamma
function, as will be shown in the next section, and a lot of classical formula has a
straightforward g-analogue using Gj(x), where the proofs are nearly identical. For
its relationship with other special functions in the literature, see e.g. [11]. Here we
recall its definition.

Let w := (w1, ws) € C2

Definition 3.1. The double zeta function is defined as
Ca(s, zlw) = Z (z + miwy + mowy) 7. (3.1)

mi1,ma€L>o

The double gamma function is defined as

0
To(z|w) := exp<$<2(s, zw)s_g) . (3.2)
Let
Ty(x) :=To(x|b,b ), (3.3)
then the quantum dilogarithm is defined as the function:
Ly (x)
Sp(z) i= =———, 34
b(x) o — ) (3.4)

where Q = b+ b~ !. The following form is often useful, and will be used throughout
this paper:
Gy(z) = 7= G, (2). (3.5)
Proposition 3.2. The quantum dilogarithm satisfies the following properties:
Self-duality:
Sb(l‘) = Sb—l(x), Gb(x) = Gb—l (1‘) (3.6)
Functional equations:

Sy(z + bF1) = 2sin(wb2) Sy (), Gz +b) = (1 — 2™*)Gy(z). (3.7
Reflection property:

Sp(2)Sh(Q —x) =1, Gu(x)Gy(Q — z) = e™@(==Q), (3.8)
Complex conjugation:
Gb(x) _ errif(Q—i)Gb(jj) = m (39)
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Analyticity:

Sp(z) and Gy(x) are meromorphic functions with poles at x = —nb—mb~1 and
zeros at ¥ = Q +nb+mb~t, for n,m € Z>g.

Asymptotic properties:

Gy(z) ~ {gzeﬂ'iw(mQ) igg; : i_z, (3.10)
where
= eTHROHT (3.11)
Residues:
ilin 2Gy(z) = %, (3.12)

or more generally,

1 1 ATT o
Resm :_%H(l_q%) IH(l_q 20)-1 (3.13)

—mib 2

at z=nb+mb~t,n,m € Z>o and § = e

Let us introduce another important variant of the quantum dilogarithm
function:

P pp— (3.14)

Gy(% + 27}% log ) ’

Lemma 3.3. Let u,v be positive self-adjoint operators with uwv = q*vu, q¢ = emib”,

Then
gv(u)gs(v) = gp(u +v), (3.15)
96(0)gn(u) = gn(u)gs(q~ uv)gs(v). (3.16)

Equations (3.15) and (3.16) are often referred to as the quantum exponential and
the quantum pentagon relations, respectively.

We will also use the following useful lemma:

Lemma 3.4 ([23]). For Im(b?) > 0, Gy(x) admits an infinite product description

given by
R
Lemma 3.5 ([1]). We have the following Fourier transformation formula:
/Rﬂ»o e GbiQﬂfit) - Gb(%c - i gn(e*™), (3.18)
[t g = oo (3 ) =ty 9

where the contour goes above the pole at t = 0.
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Using the reflection properties, we also obtain

—2mitr  —mwQt . Eb
dte e Gp(it) = 7o .\ (3.20)
R—1i0 Gy (— — zr)

/ dte—Qﬂitreﬂitsz(it) _ Cbi <9 _ ir) , (3.21)
R—i0 2
where the contour goes below the pole at t = 0.

Lemma 3.6 ([17]). We have the tau-beta theorem:

—omrs Gola+iT)  Gy(a)Gy(3)
/dT i ﬂGb (Q+it)  Gpla+p8)’ (3.22)

where the contour C' goes along R and goes above the poles of Gp(Q +i1) and below
those of Gp(a 4 i7).

Lemma 3.7 (¢-binomial theorem [1]). Let u,v be positive self-adjoint operators
with uv = ¢?vu. We have:

(u+v)* = b/ dr (t) w' Ty (3.23)
C T b

£\ eTENGUQ b)) Gy(—ibr)Gy(ib — ibt)
), Gy(Q+ibt —ibT)Gy(Q +ibT) Gy (—ibt) ’
and C' is the contour along R that goes above the pole at T = 0 and below the pole
at T =1.
Similarly, for wv = q~

(u+v)* = b/ dr (j) W'yt (3.25)
c

b

By _ Gy(Q + ibt)
(T)  Gy(Q + ibt — ibT)Gy(Q + ibT)’ (3.26)

with the same contour C' as above.

where

(3.24)
2

vu, we have:

where

Remark 3.8. When t approaches —in for positive integer n, by first shifting the
contour along the poles at 7 =t + ik for 0 < k£ < n, the integration vanishes and
n+ 1 residues are left, which is precisely the terms in the usual g-binomial formula.

Remark 3.9. The g-binomial theorem is actually the g-analogue of the classical
formula [15, (3.3.9)]:
1 c+ico F(a)

— L(s)I'(a— s)z™%ds =

—_— 2
270 o ino (1+z)*’ (3.27)
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when 0 < ¢ < Re(a). After a change of variables with x replaced by x/y, a by —it,
s by —is and a suitable shift of contour, we obtain

it 1 /00 C(=is)T (=it +1i8) ;4 s1—4s
= — '2
(x+y) o I(—it) Ty ds, (3.28)

where the contour separates the poles of the two gamma functions. We can easily

— 00

see that under the limiting process described in the next section, the ¢-binomial
theorem reduces precisely to this classical formula.

3.2. Limits of the quantum dilogarithm
Recall that the b-hypergeometric function (slightly modified from [17]) is defined by:

Gy(7) / i1 2 Gy(a+17)Gy(B + i7)Gp(—iT)
Fy(a,B,7v;:2) i= —— —z) Te™T - dr,
(e £,7:2) Gy () Gy (B) c( ) Gy(y + i)

(3.29)
where the contour along R separates the poles of Giy(a +i7)Gy (8 + iT) from those
of é?b(—lf).

b (y+i7)

In comparison with the classical formula:
I'e) 1 s L(a+is)L'(b+is)I'(—is) d

T(a)T(b) %/J‘” T(c+is) %
we see therefore that there is a strong analogy between the function Gy(z) and
the gamma function I'(z). However, we know that there is no direct classical limit
b — 0 because of the factor Q = b+ b~ ! involved in the definitions. It turns out
that we can still define certain kind of limit of the function Gp(x) that enables one
to compare it with the classical gamma function I'(x).

Recall that by Lemma 3.4, if Im(b?) > 0, then Gj,(x) can be expressed as a ratio
of infinite product:

2Fl(a7bac;z) =

(3.30)

HOO (1 _ eeribfl(r—nb’I))

n=1

HZO:O(I o e27rib(r+nb))

Gy(z) = fb

or after scaling:

T2, (1 — e2mime2minb?))
Gb(bx) = Cb HOO (1 _ e27rib2(a?+n))

n=0

(3.31)

In order to take the limit, we let b> = ir for real » > 0 (more generally for
Re(r) > 0). With respect to ¢, this means that we are going “inside the circle”, and
approach ¢ = 1 from the interior of the unit disk.

Let b = ir, then we can rewrite the above infinite product as

B HOO (1 _ 627rim6727rn/r)) (62771'1—277/7’; 6—277/7’)00

Gy(bx) = (an5t =G
b( Ji) G H;:O:O(l _ 6727rr(w+n)) G (q290; qz)oo
Note that we also have
G = e~ T BOHT) _ g (3.32)
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When » — 07, the term
(€2Tria:727r/r; 67271'/r)0O 1.

On the other hand, the denominator resembles that of the g-gamma function:

_ () ot
Ty(z) := (q%;qz)oo(l q°) , (3.33)
which is known to converge uniformly to I'(x) as ¢ — 1 for every compact subset
in C [7]. .
For the ratio @TZ)OO, we have the following observation:

Tr—m/r

Lemma 3.10. We have the limit
g (3 e

. b . mi
Iim ———— = lme 4 ——— =1, (3.34)
r=0t v/—i[b|(¢%; ¢*)oe 0% V=ivT(@? ¢*)

where we denote e~ % by v/ —i.
Proof. Let
n(ir) = e 2 (¢% ¢*)oo (3.35)
be the Dedekind eta function. Then from the well-known functional equation:
n(=771) = V—irn(7), (3.36)

substituting 7 = ir, we have:

0(2) = ventn),

S|

Tr—m/r
e 1z _2m 2w g
pr— e T ;e ™
Vr(@® ¢*) s ( )e
and taking the limit r — 0%, we have
lim (67277(;67277()00 =1
. r—0t
as required. 0
Finally, combining with the obvious limit:
b|? r 1
lim L = lm ——=— (3.37)

r—0t 1—¢q2 ro0t1—e 27 271
we have the following theorem.
Theorem 3.11. The following limit holds for b* = ir — i0%:

lim (27b) Gy (bx)

Jim S e = I'(z), (3.38)
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where (—2mib?) = 271 > 0, hence the denominator is well-defined. By the properties
of the convergence of I'q(x), the limit converges uniformly for every compact subset
in C. This gives another proof of a similar limit first observed in [20].

A similar analysis shows that

(27D) Gy (Q + bx)
r—0 (—2mih2)r+l

=1 - (z+1). (3.39)
Proposition 3.12. The two limits (3.38) and (3.39) are compatible with the
reciprocal relations
Go(2)Gy(Q — x) = ™7,
[(z)(1—2) = —

sin(mx)’
Proof. We have
1 = Gy(bz)Gy(Q — bx)e~mbzbr=Q)

_ ((Qﬂb)Gb(bl’)> ((Qﬂb)Gb(Q - bl’)) (—QTFibQ)efmbm(bfo)
(—2mib?)® (—2mib?)—=+1 (27b)?

N F(Z‘)F(l _ x)(l _ eQm’m)_Zem’m

2
T eTrim _ e*ﬂ'iaj
sin(mx) 2mi
where we used
. . 2 2 . . .
efwzba:(bwa) — e*Trza:(b z—b"—1) _ efwzwr(mfl)eﬂ'm — eTiT O

4. g-Intertwiners

We begin with the definition of the quantum plane that is used in [6].

Definition 4.1. The quantum plane B, for |g| = 1 is generated by two positive
self-adjoint operators X,Y such that

XY =¢*YX
in the sense of [22], i.e.
X’isyit _ q—25tyitXis (4 1)
for every s,t € R as relations between unitary operators. The coproduct is given by

AX =X ® X, (4.2)
AY =Y X +1QY. (4.3)
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In [6], this is realized by X = e~ 2™ and Y = €?™% where p = 5=-2, acting

2mi 0z’
as unbounded positive self-adjoint operators on H = L?(R), such that
X fla) = fz+ib), (4.4)
Y f(a) = ™ f(a), (4.5)

which is well-defined for functions in the core W C L?(R) (cf. Definition 2.4). We
remark that B, is “dual” to the quantum plane A, generated by A, B defined in
the Sec. 6, due to the different coproducts.

In the study of tensor products of representations, the operators act by the
coproduct (4.2), (4.3). It was shown in [6] that there is a quantum dilogarithm
transform that gives a unitary equivalence as representations of B:

Hi@Hy > MR H, (4.6)

where M = L%(R) is the parametrization space (or the multiplicity module), and
carries the trivial representation.

Proposition 4.2. The quantum dilogarithm transform is defined on f,¢ € W ®
W by

(o, ) = /R/R—io LZ ;ZJ f(@1, z2)dzoduy, (4.7)

f(z1,20) = /R p /R LZ gﬂ o(a, z)dadz. (4.8)

Here the integration kernel is given by:

L?l ;;J = 2@ T)ep(p — 31,29 — 21), (4.9)
J:l ;2—‘ = 6_2”0‘@_“)(%(362 — 1, T —x1), (4.10)

where
Er(z,w) = ¥V Sp (2 — w), (4.11)
Er(z,w) = e G (2 — w), (4.12)

and

Sr(z) = G(z — ia)eiX+%(2_m)2, (4.13)
Sr(z) =G(z — ia)eiiX*%(%m)g, (4.14)
where x = 2”—4(132 +b72). The contour for xo goes below the pole at x5 = x, and the

contour for x goes below the pole at © = x5.
The integral transforms are unitary, hence they extend to the whole of H1 ® Ho
and M ® H, respectively.
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Here the function G(z) = G(b,b™1; 2) is the Ruijsenaars’s definition of the quan-
tum dilogarithm [21], and is given by

o =eo(i [ (st iy ~5)) 49

The relation between G(z) and Gp(z) is given by (cf. [11])

Gb,b ™t z) = ™z 2T By, (% - m) (4.16)
Proposition 4.3. In terms of Gy(x), we have:

\‘; ;J — &)627\%‘(9:79:1)(a:g7a:1+o¢)e7ri(w273v)2eTrQ(avfmz)G«b(Z-‘132 _ ZJ))
1 2

B eQﬂi(r—rl)(Ig—rl—i-a)

- 417
GO+ ir =) (4.17)
LZ ;j = (e i e @) Gy (i — ), (4.18)
where
G = eFTHOHYT) G o FoHETY),

5. Classical Limit of g-Intertwiners

In this section, we will compare the quantum dilogarithm transformation defined in
the previous section, and the classical ax + b group intertwiners studied in Sec. 2.2,
and show that they correspond to each other under the limiting procedures sug-
gested in Sec. 3.2.

5.1. Fourier transform of the g-intertwiners

In order to compare with the classical case, we need to take the Fourier transform
of the actions on both function spaces H; ® Hs and M ® H. In order to do this
correctly, it turns out that we need to modify the kernel by

{a xJ _ G {a xJ (5.1)

T1 T2 Gb(%+ia) T1 T2

and

O T (o) Q. a T
Lﬁl 362—‘*' Cpe Gy (2 —|—za) Lﬂl sz . (5.2)

The extra factors depend only on « and (x — x1), hence the integral kernels
are still intertwiners. Note that Gb(% + i«) is unitary by the complex conjugation
property, so that the intertwiners are still unitary operators.
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Now consider the effects of these intertwining maps on the Fourier transformed
functions:

F:dla,x) — p(A\t) == //]R2 2o 2T oy (o 1) devd, (5.3)

F o f(w1,22) = f(t1,t2) = // e2mitirn o2 mita2 f (0 o) day das. (5.4)
R2

We will use the same symbols ¢, f to denote the Fourier transformed functions.

Theorem 5.1. Under the Fourier transform, the intertwining maps defined in
Proposition 4.2 on f,¢ € W Q@ W become:

SO0 1) / Gp(ite — it + iX)Gp(—ita — M)
G (—it)
TN £ gy to)dEs, (5.5)

F@0) = St = [ SR )

emIAAF2E) o=2mitata g\ 41 4 4y)d, (5.6)

F(@)(f)

where C' is the contour going along R that goes above the poles of I'y(—ita —i\) and
below the poles of Ty (ita — it +1i)), and similarly C' is the contour along R that goes
above the poles of I'y(—i\ + it1) and below the poles of Ty (i) + ita).

Hence formally we can write the above transformations as integral

transformations:
(A1) 2//}_{2 ttzJ f(t1, ta)dtydts, (5.7)

*

b1 t2) = / / F LAI tj o0t (5.8)

where the kernels are expressed as

Gp(—it1 + iN)Gp(—ita — iN) eTNA—2t1)
Gy (—it) ’
)

Gp(—iA +it1) Gy (it2 + iN) TN 2t2) = 2mit b
Gyp(it) '

(5.9)

f\‘/\ tJ :(5(t1+t2—t)
t1 to .

At
F =t —t; —t
Ll tQ-‘ . (t =t —t2)
(5.10)

They are still intertwiners with respect to the Fourier transformed quantum plane
X =¥y = 2 (5.11)

with the same coproduct.
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Proof. The intertwining properties are clear, since Y ® X are commutative with
respect to t1, to, and Fourier transformation is linear, hence it preserves the action of
AY =Y @X+11Y.

The delta distribution explains the intertwining property for AX=X®X explic-

itly.

We will calculate the integral transform using the Fourier transform property
(Lemma 3.5) and tau-beta integral (Lemma 3.6) repeatedly. Similar to the classical
case, the Fourier transformed action is given by Fo®o F~! where ® is the quantum
dilogarithm transform defined in Proposition 4.2.

First we take the (inverse) Fourier transform of f(t1,t2):

(F 1) (@1, 20) = //2 e AT I F (1) o )diadly,
applying the quantum dilogarithmRtransformation d:
42 —mi(z—x1)? e2m(z—z1)(z2—z1+a)
// 10/]1@2 —|—za) Gy(Q + iz — ixz)
. 6727‘—#19016727‘—“29:2]"(151, to)dtadtydzody,
and take the Fourier transform back to the target space L?(R?, d\dt) to obtain

<2 —mi(z—x1)? e2mi(z—z1)(z2—T1400)
o0 =[] L L L5
R2 R—0 R2 —|—za) Gb(Q—sz—zxg)

ceTZmitim _2””2”3262”””362“Mf(t1,tz)dtgdtldarzdarlda:doz (5.12)

The integrand is absolutely convergent in ¢ and ¢ because f(t1,t2) € W W.
With respect to z2, using the asymptotic properties for G, we see that the absolute
value of the integrand has the growth

e27rIm(t2)m2 Ty — —00,
e*ﬂ*sze%rIm(tz)mz 29 — +00.
Hence it is absolutely convergent for
0< Il’n(tg) < 57
and we can interchange the order of integration to obtain

C2 —mi(z— wl) 627rz(m z1)(T2—w1+00)
oL
B Jroio Gy($ +ia) Gu(Q+ iz —ix2)

—27mt1mle—27mt2z2 eQﬂitz627r1)\adx2f(tl7 tz)dthtldl’ldl‘dO&.

Now substitute x5 by = — x5, we obtain

/ / —71'7,((1,‘ z1)? e27r1(z z1)(x—zo—21+00)
R5 JR+i0 (7 +1i0)Gp(Q + 1x2)

. e—27rit1m1 e—27ri(z—z2)t2 €2ﬂitz€2ﬂi>\af(t1, tQ)dthtldl’ldl’le‘dOé.
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The relevant exponential with respect to x5 is

2mixo(x1+ta—x)
e b)

hence using Lemma 3.5, integrating over xo with r = x1 + to — x — iQ/2, the
integrand becomes

- Gpliz — ite — “31)
=G
Gy(§ +ia)
. e~ 2mimts 627Tltz627ri>\af(tla t2)

- Gpliz — ite —ixq)

7ri(azfa:1)2e27ri(asfa:1)(a:fa:1+oz)ef27rit1w1

Wz(xfa:l)Qe27ri(a:fa:1)oz6727rit1 w16727riwt2 e27ritw627rikozf(t17 tg)

=G
Gb( + i)
Now the absolute value of this integrand with respect to x; has asymptotics
eQﬂIm(tl)zl 1 — —00,
e—ﬂQzleQﬂ'(Im(tl)+Im(t2))z1 21 — +00.

Hence the integral with respect to x; is absolutely convergent when

Im(t1) >0, Im(t +t2) < %

So we now have

on1) = RS 6 Gb( +ia)

. e—27r1t1mle—27mmt2 627”tz627”>\af(t1, tQ)dJ?ldthtldl‘dOé.

Gb(lﬂ? — ity — le) ﬂi(m—m1)262ﬂ'i(m—m1)a

Substitute z; by —x1 — t3 + x, we obtain
/ / - Gb(le) ﬂi(m1+t2)2627ri(a71+t2)o¢e—27rit1(z—tg—ml)
R4 JR— 1Im(t2 ( + ZOé)

. e 2mimts p2mity  2mida f(t1, ta)dxrdtedt drda.

The relevant exponential with respect to xy is

2.2
7T’LE1

—27Tif1?1(—t1—t2—04)e
)

e

hence using Lemma 3.5, integrating over x; (valid since Im(t2) > 0) with r =
—t; — t3 — «, the integrand becomes:
Gy($ + ity + its + i)
Gy(% +ia)
Now we can simplify the integration with respect to t; and x using the factor
e~ 2mz(titt2—t) which is just a Fourier transform and its inverse, to obtain

ewit%e27rit2ae27rit1t26727rim(t1 +t2—t) j2mida Fi(t1) fa(ta).

)\ t // + it + ZOé) ewitg e27rit2a627ri(t7t2)t2 e27ri)\af(t — to, tg)dtgda.
R? 9 +ia)
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Now the absolute value of the integrand has asymptotics

{627r1m(t)a a — —o0,

6727r1m(t2)a o — +00.

Hence it is absolutely convergent when Im(¢) > 0. We do the final interchange of
order of integration and integrate with respect to a:

)\ t // + it + ZO() eﬂ'it%eQﬂ'itzaezﬂ'i(tftz)tz e27ri)\af(t — to, tz)dadtg
R? ¢ +ia)

Shifting the contour of o by a — o — z% we get

/ / Gb Q + it + ZOé) eTrltg 2mito Trth 27m(t tg)t2627m)\a TAQ
rrio  Go(Q +ia)
t — tg, tQ)dO/dtQ

The relevant exponential for « is

e—27ra(—1t2—1)\)’

therefore using the tau—beta integral (Lemma 3.6) again, the integrand becomes:

Gp(Q + it)Gp(—ity — i)

Trltgeﬂt2Q€2ﬂi(t—t2)t2eﬂ)\Q bt to).
Gy(Q + it — ity — iN) ft —ta,t2)

Finally using the reflection property Gy (z)Gy(Q — ) = e™*(#=Q) we obtain

Gb (Ztg - Zt + Z)\)Gb(_ltg - Z)\) Wik()\72t+2t2)
t —1t2,t2).
Gb(—lt) € f( 25 2)

Therefore, we have the expression

P\ 1) = / Gulita Z 4 ZA)Gb(_Zt2 — i) AT (4 — 1y, o) dt,
E-ics Gy (—it)

valid for 0 < ¢ < ¥ and Im(¢) > 0.

By a shift of contour on t9 so that it goes below the pole at to =t — X\ and above
the poles at to = —\, the expression can be analytically continued to ¢ € R, hence
we can rewrite the expression as

- Gp(ite — it + iX)Gp(—ity — iN)
0= /c Gy(—it)

CeTAAT2R2) £ gy fo)dty € M@ H

with the desired contour.
Working formally, for the kernel F [t/\l tﬂ , the target space is L?(R?, d\dt) and

the domain space is L?(R?, dt;dt). Since Fourier transform of complex conjugation

1350031-24



Int. J. Math. 2013.24. Downloaded from www.worldscientific.com
by TSINGHUA UNIVERSITY on 09/23/19. Re-use and distribution is strictly not permitted, except for Open Access articles.

The Classical Limit of Representation Theory of the Quantum Plane

is the complex conjugation of the inverse Fourier transform, F LAI ttz—‘ is just the
*

At
ty

. Hence we have
ta
ES

complex conjugation of F [

At Gp(—iX +it1)Gy(ita +iX) __.y A—2t,
F ’7151 tz“ ) = 5(t1 + 12 — t) Gb(it) e ( )
. mi(—it1+iN) (Q-its —iN) pmi(ita +iX) (Q—ita—iX) p—mi(it +it2) (Q—it1 —it2)
Gp(—iA +it1) Gy (it +iN) TIAOF285) —2mita o
Gy(it) ’
Alternatively, we can work through the integrations as in the proof above
using similar techniques of interchanging orders of integration and shifting of

=6(t1 + 1o —t)

contours. O

5.2. Classical limit

We are now ready to compare the quantum intertwiners from Theorem 5.1 with
the classical intertwiners from Proposition 2.8.

Theorem 5.2. Under a suitable rescaling, as b> — i0T, or more generally, as
q — 1 from inside the unit disk, the quantum intertwining operator has a limit
toward the classical intertwining transformation given by Proposition 2.8.

Proof. The contour of integration is the same for the quantum and the classical
intertwining transform. Therefore it suffices to do the limit formally for the inter-
twiners. First of all we need to rescale the function space H = L?*(R) by b on all
the variables (including the parameter ). More precisely, before taking the limit,
b € R-( and we apply the unitary transformation

B : L*(R,dz) — L*(R,bdx),
f@) = f(bx)

on each variable. Hence the kernel under this transformation is now given by

(5.13)

U ) S I 0 Go(=ibty 4 DN Gy(=ibtz = iDA) 2y 20y
V2 F {btl bha) = b25(b(t1 +t2 — 1)) G (ibh) e

_bo(t1 + ta — t) (270) Gy (—ibty + ibA) (2b) Gy (—ibta — ibA)

B 27h (—2mib2) it HiA (—2mib2)—it2—1A

(=2mib®) """ 2t
(27b)Gy(—ibt, — ibts)© '
Now treating this integral transformation kernel formally depending on b, we take
the limit using Theorem 3.11 and obtain
0ty +to — t) T'(—ity + i\ (—ite — iA)
- o T(—it, — ils)

! D(—it; + iNT(—its — i)
= %5(& + 1o — t) F(—it) >
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L . L . At
which is precisely the classical intertwiner [t ; J .
L L "2 classical
Similarly, we have

bA bt
2
vF [btl th-‘ o

1
—(S(tl +to — t)

D(—iX\ +it1)T(ity +9N) P t
27 N

F(Zt) b1 tQ-‘ classical

Therefore, we conclude that the quantum dilogarithm transform between tensor
product representations of the quantum planes, is in a certain sense a quantized
version of the intertwiners of the tensor product representations of the classical
ax+0b group. This method of rescaling by the parameter b is essentially the key step
in obtaining information of the classical counterpart from the quantum modular
double, which does not have a direct classical limit due to the dual number @) =
b+ b~ ! appearing in the transformations.

6. Corepresentation

In order to compare the classical representation of the ax + b group, and shed
light on what kind of intertwiners the above transforms are, as explained in the
introduction we need to find a corepresentation of the quantum plane A, generated
by positive self-adjoint elements A, B with AB = ¢?BA, |q|=1, dual to B,, with
the same coproduct given by

A(A)=A®A, AB)=BoA+11B.

The corepresentation should possess a limit that goes to the classical representa-
tion. Since the action of B, above is a left action, we expect to obtain a right
corepresentation of A,.

The basic idea is to define a C*-algebra C(A,) of “functions vanishing at
infinity” of the quantum plane A,. The technical details are given in [9]. Here we
will briefly recall the motivation and its construction.

6.1. Algebra of continuous functions vanishing at infinity

Before defining Co (Ag), let’s look at the classical ax + b group again. Denote the
group by G and the positive semigroup by G4 = {(a,b)|a > 0,b > 0}.

Consider the restriction of a rapidly decreasing analytic function f(a,b) of G,
to the semigroup G;. Then the function is continuous at b = 0, hence it has at
most O(1) growth as b — 07.

Hence using the Mellin transform, we can write

c+1oo
(a,b) / / Ya~*b~'dtds, (6.1)

s—1pt—1
F(s,t) @ / / f(a,b)a® 0" "dadb (6.2)

where ¢ > 0 and
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is entire analytic with respect to s, and holomorphic on Im(¢) > 0. According to
Proposition 2.3, F(s,t) has rapid decay in s, ¢ in the imaginary direction, and can be
analytically continued to Im(¢) < 0 such that it is meromorphic with simple poles.
Since the function f(a,b) is analytic at b = 0, the analytic structure of f(a,b) on b
is given by > 72 Apb* for some constant Ay, hence according to Proposition 2.3,
F(s,t) has possible simple poles at t = —n for n =0,1,2,....

Therefore (changing the integration to the real axis), we conclude the following
proposition.

Proposition 6.1. The continuous functions of G4, continuous at b =0 and van-
ishing at infinity, is given by

Coo(G)|a, = sup norm closure of A>(G4.),

where

A% (G4) := Linear span of {/ fl(s)fg(t)aisb“dsdt} (6.3)
R

R+i0
for fi(s) entire analytic in s, f2(t) meromorphic in t with possible simple poles
att € —in, n =0,1,2,..., and for firzed v > 0, both the function fi(s + i) and
fa(t + i) is of rapid decay.

Note that this also coincides with
Cx(G)|c, = sup norm closure of {g(loga)f(b)|g € Csx(R); f € Css[0,00)},

where C4 denote functions vanishing at infinity.
We can also introduce an L? norm on functions of G, given by

I@ble= [ [ 15 (64)

according to the Parseval’s formula for the Mellin transform.

Due to the appearance of the quantum dilogarithm function Gy (iz) in the expres-
sion of the corepresentation in the next section, following the same line above, we
define Cc (Ay) as follows.

Definition 6.2. The C(A,) space is the (operator) norm closure of A (A,)
where

A% (Ay) := Linear span of {/ f (3)f2(t)Aib_lsBib_ltdsdt} (6.5)
R

R+140

for f1(s) entire analytic in s, f2(t) meromorphic in ¢ with possible simple poles at

t:—z‘bn—z’%, nom=0,1,2,...

and for fixed v > 0, the function fi(s+iv) and fo(t+iv) is of rapid decay. To define
the norm, we realize A 5 f(z) = €2 f(z) and B tf(z) = e2™P f(z) = f(z+1)
as unitary operators on L?(R), so that Ci(A,) is generated by bounded operators.
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Note that in the language of [29], the generators A and B are affiliated with
Coo(Ay). As discussed in [9], we can also introduce an L?-norm given by

5Bl = [ [ 1) 0P (6.

where Q = b+ b~!. However, we will focus on the C*-theory in the remaining
sections.

Remark 6.3. The above space A®(A,) can be rewritten, according to the Mellin
transform, as

A>°(A,) := Linear span of {g(log A)f(B)},

where g(x) is entire analytic in = and for every fixed v, g(z + iv) is of rapid decay
in z; f(y) is a smooth function in y of rapid decay such that it admits a Puiseux
series representation

i 2
F)~ > amny™ ™" (6.7)
n,m=0
at y =0.
Recall that the modular double elements [3] are given by non-integral power
A= A# B=B,

Together with the fact that g(x) is entire analytic in log A, it suggests that the space
A>(Ay) actually includes “A> functions” on the space of the modular double A,z
as well. See [9] for further details.

6.2. Multiplicative unitary

Given a C*-algebra A considered as a subspace of bounded operators B(H) on H,
we will denote by

M(A) = {B € B(H)|BAC A AB C A}

the multiplier algebra of A viewed as a subset of B(H), and we let KX(H) C B(H)
denotes the compact operators acting on H.

Multiplicative unitaries are fundamental to the theory of quantum groups in
the setting of C'*-algebras and von Neumann algebras. It is one single map that
encodes all structure maps of a quantum group and of its generalized Pontryagin
dual simultaneously [25]. In particular, we can construct out of the multiplicative
unitary a coproduct as well as a corepresentation of the quantum group. Here, we
recall the basic properties of the multiplicative unitary, and the construction of the
multiplicative unitary defined in [29] on the ax +b quantum group A (see also [19]).

Definition 6.4. A unitary element W € A ® A is called a multiplicative unitary
if it satisfies the pentagon equation

WasWig = WiaWi3Was. (6.8)
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A multiplicative unitary provides us with the coproduct of the multiplier Hopf
algebra:
A:A—- MA® A)
given by
Ale) =W )W, ce A (6.9)

Proposition 6.5. The pentagon equation (6.8) implies the coassociativity of the
coproduct defined by (6.9).

By representing the first copy of A in W as bounded operator on a Hilbert space
H, we obtain a unitary element V € M (K(H)®.A) which represents a (right) corep-
resentation H — H ® M (A). More precisely, we have the following proposition.

Proposition 6.6. The unitary element V € M(K(H) @ A) satisfies
(1@ AV =Vi2Vis (6.10)
or formally
(1®A)oll=(T®1)oll, (6.11)
where A is given by (6.9) and I : H — H ® M (A) is given by
II(v) :=V(v®1). (6.12)

We will now focus on the case where A = Co(Ay) is the quantum plane C*-
algebra. Using the notations from [29], we have the following.

Proposition 6.7 ([29]). Consider the quantum plane Cx(A,) generated by posi-
tive self-adjoint elements A, B affiliated with A, with AB = ¢>BA in the sense of
Definition 6.2, with coproduct defined on the generators

A(A)=A® A, AB)=BA+1®B. (6.13)
Then the multiplicative unitary W is given by:

W = Vy(log(B ® sq L BA™Y)) e 08 AR5 A7 ¢ 0 (4 ) @ Coo(A,), (6.14)
where ¢ = e~ 0 = 2%, the admissible pair B := B! and A := gAB™', and
s € Ryq is a constant. Note that in our case h = 2wb>.

Here the special function Vy(2) is defined as

Vg(z):exp{%/ooolog(l—kae) da } (6.15)

iy a-+e*

Lemma 6.8. Vy(z) and Gy(2) are related by the following formula:

Vi (2) = GG (% — %) = gb(lez)’ (6.16)
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and the complex conjugation is given by
Vi (2)" = T ap(€?), (6.17)
2
where we recall ¢, = 3+ i O°+677)

Proof. In order to rewrite Vp(z) in terms of Gy(z), we pass to Ruijsenaars’s more
general hyperbolic gamma function (4.15). From [21, (A.18)], we have

v

Vo(2) = G(2m,27/0; 2) exp(—i922 8- 2 (e n %))

Withezz%r:b%.

Also using

Glay;a_;z) = G(l,a—+; i)

a— a—

and (4.16):
G(b7 b717z) _ eﬂiz2/2eﬂ'iQ2/8Gb (% . ZZ)

we obtain

Vi (2) = GGa (% _ 2’—%)

and the complex conjugation

. b |
T )

Remark 6.9. Since we are using the “transpose” of A in [29], our W is related to
that in [29] by

A=a"t, B=—gba?,

i.e. they are related by the antipode associated to A. Furthermore, the choice of the
multiplicative unitary is different from [9], in which there we used instead the GNS
representations to obtain the canonical W. In particular, W is not manageable in the
current setting as pointed out in [29], and furthermore the result from Proposition
6.26 below is different from that of [9]. It turns out that this discrepancy leads to a
new functional relation between the quantum dilogarithm function Gy (z) discussed
in the last section of [9].

6.3. Corepresentation of Co(Ag)

We can now define the coaction of the quantum space Coo(Ay):

Theorem 6.10. For the choice s = 2sinwb? € R, the multiplicative unitary W
defined in (6.14) induces a unitary (right) coaction of the quantum space Coo(Ag)
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on H=L*R) by
IT:H — H o M(Co(A)),

f(t) = F(z) := F(£)em Q=) Gy(iw —it)

R+i0 (2sinwb2) (@D (6.18)

. Aib_lmBib_l(tfm)dt
where f(z) € W, and extends to H by density.

Remark 6.11. The choice of s is made so that we will obtain classical limit from
Gy, as well as the necessary pairing in order to get the representation of B, in the
next subsection.

Proof. The element W can be reinterpreted as an element
VeMKMH)®Cx(Ay)) (6.19)

by letting g,é act on H = L%*(R), hence giving rise to a corepresentation of
Coo(Ay). We start with A = €272 B = 2™ 50 that the action is given by

A\ — qAB—l _ q€27'rbxe—27rbp — e27'rb($—p)7 (620)
B=DB"'=¢2 (6.21)
However, the action is nontrivial in the factor

e ﬁ log K(X)log A

Hence, we introduce a change of variables (of order 3) on L?(IR) given by Kashaev
(13, 6]:

A fla) — F(B) = / ezmo‘ﬁemﬁk’ri/lzf(a)da (6.22)
R
such that
A" zA = -p,
A_lp;& =T —0D.

Then the operator A and B becomes:

“TAA = 27, (6.23)

_13;& _ e2rrb(—x+p) _ qe—27rb$€27rbp. (624)

>

Hence given a function f(z) € L*(R), we have
eﬁ logA\®logA’1f(x) _ eﬁ(_QﬂbI) logA’lf(x)
= f@)A" ",
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Next we deal with the quantum dilogarithm function Vy(z). From the Fourier

transform formula (Lemma 3.5), we found from (6.17)
Vi (2) = / M TRUG, (it dt.
R+i0

Hence the operator V' (6.19) acts as
(VI)(@) = Vigpe(log(B ® g sBA™)" - (f(x)A")

- (/ (Be (q_lsBA_l))ib_lteﬂQth(—it)dt) (fl@) At
R+1i0

(6.25)

B (/ (B* o <qlsBA1>“"”>e”Qbe<—n>dt) (F() AP =),
R4-i0

Now B formally acts as ge 27 f(z — ib), and by induction
E"f(x) = q"ze_Qﬂbnmf(x —ibn).
Hence using functional calculus, B 't acts (as a unitary operator) by
Eib*lt fz) = q—bfztze—zm‘mf(x 1) = e—ﬂit2—27ritmf(x +1).
Next (s~ !BA~1)®" "t can be split using the relation
(BA™Y)" =g " DBrAT,

we have
_ o quip—1 -1, -1 —2,2 | 51 -1 a1
(sq 1BA 1)1b t_ Slb tq ib tqb t“+41ib thb tA bt

_ gibT Mt mit® pibTlt g—ibT 't
Combining, we obtain
(Vf)(x) _ / efm’tQ727ritme7erq72tme(_it)sib_lt
R+10
_erri;BibltA—ibltAibl(z—i-t)f(x +t)dt

_ / e‘erte—27ritme(_it)sib’ltBib’ltf(x + t)Aib’lmdt
R+140

= Fla+ 0)em @Gy (—it)s™ AV B
R+10

= f(t)e“Q(t—f)Gb(ix _ Z‘t)sib_l(t_aj)Aib—lmBib—l(t_m)dt'

R+i0
Now by setting

1

s=2sinmb® =i(qg! —¢q) € Rsg
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we obtain

_ F(t)erat-n __Goliz — it

ib e pib~ (t—x)
R-+i0 (2sin7b?)b~" (@ =t) A “

as desired. We see that the integrand is bounded by the asymptotic properties of
Gb(l.%') O

Starting from the coaction formula, we can also see that it is a corepresentation
by manipulating the functional properties of the special function Gy(x) directly.

Corollary 6.12. The coaction satisfies
(I®A)oll=TT®1)olI

as a map from H to H @ M(Cx(Aq) ® Cx(Aq)), where we recall that A is the
coproduct of Ay given by

A(A) = A® A,
A(B)=B®A+1®B

and extend to the multiplier Hopf algebra Cso(Ag) by
A (/ F(s, t)AiSB“dsdt> = / F(s,t)A(A* B")dsdt.
R+i0 R+i0

Proof. We check the corepresentation axioms formally.

First note that since A, B are positive self-adjoint, the coproduct A(A) and
A(B) is still positive essentially self-adjoint, hence it is well-defined. (We do not
run into the problem of choosing self-adjoint extension as in [29] since our B is
positive.)

For notational convenience, without loss of generality we scale b=z and b~ 'z
to 2 and z, respectively. We need to calculate the coproduct A(A™ Bi#~);

=(A® A" (B A+1® B)*
_ (ch ® AM)B/ dr <Z ; .’E) (B ® A)izfiwfi-r(l ® B)i-r
R b

(AimBiz—im—i‘r) ® (Aiz—iTBi‘r>

B b/ ir Gy (ibr — ibz + ibx) Gy (—ibT)
Gy (ibx — 1bz)

(AinfiIfiT) ® (Afi-rBi-H»iz)’

B b/ Jr Gy (ibT + ibz)Gy(—ibz — ibT)
Gy (ibx — 1bz)
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where the contour C, as before, goes above the poles at 7 = —z and below the poles
at 7 = —x. Hence we have

p(ibx — ibz)e™R0(=—7)
A) o TIf(z) = b2 ’ ‘
(1@ A)ollf(x) =b /R+10/ 1z (2 sin7h2)ir—iz

Gy (ibT + iba) Gy (—ibz — ibT)
Gy (ibx — 1bz)

(Aia:BfiasfiT) ® (AiiTBdeH‘Z)deZ

erb(z x)
= b2/ / S Gy (ibT + ibx)Gy(—ibz — ibT)
R+1:0

2sm7rb2 ir—iz

. (AirB—im—iT) ® (A—iTBiT+iZ)deZ

TFQb(Z z)
= b? / / Gy (ibT + ibx) Gy (—ibz — ibT)
i0 J R+

o ( 2sm7rb2 w1z

Aer—lfL‘ ’LT) ® (A lTB1T+lZ)dZdT

erb(z x)
= b? / / — Gy (ibx — ibw)Gy (ibw — ibz)
R+i0 JR

Lo ( 2sm b2 )i iz
. (Aerl’LU—’LI) ® (Ainiz—iw)dzdw7

where in the change of order of integration, the contour is such that Im(z) > Im(7)

and Im(7) < Im(z) = 0, hence the contour of 7 after interchanging is shifted to

R —140. The decay properties of G, on 7 guarantee the change of order of integration.
Finally, we have

Gy (ibx — ibw)e™@0(w—2)
Del)ollf(x) = b2/ / f(z ; pp—
( ) (=) R+i0 J R+40 (2) (2sin b2 )i —iw

Gy (ibw — ibz)em™Q0(z—w)
(2sinwb?)iw—iz

7rQb —x)
=0’ bz — ib ibw — ib
/R+z0 /R+z0 3 sin wb2) 7z G (ibx — ibw) Gy (ibw — ibz)
AZIB’L'U) Zm) (A’LWBZZ ’Lw)dzdw
=(1®A)ollf(x). 0

(A7,$B’L’LU—7,$) ® (Ainiz—iw)dZdw

After rewriting the coaction explicitly, the relationship between the quantum
corepresentation and the classical ax + b group representation becomes clear.

Theorem 6.13. Under the scaling by © — bz in the sense of Theorem 5.2, the
limit of the coaction (6.19) is precisely the representation Ry of the ax + b group.
Similarly, the coaction corresponding to V* is R_.
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Proof. Under the scaling, the coaction becomes

Gy (ibx — ibz)e™@0(z—%)
R+i0 (2sinmb?)rr—iz

Using the limit formula (3.38) for G4 (ibx), we have:

A”B”fmf(z)dz

B / (27b) Gy (ibx — ibz)e™ (=2) e (a=w) (o= 5 )iz —iz
~ Jrtio (—2i sinb?)iz—iz

1 2 TT—1z 9 - . 2 . . .
1 ( b ) /]R 0 ( Wb)Gb(be sz) errb (z—gc)Am(_iB)zz—imf(z)dz
+1

= 27 \sinnb? (—2imb?)in—iz
1 . . T . 1Z2—1T
- — I(iz —iz)A"™(—iB) f(z)dz
27 Jr1i0
= R f(x).
Taking the conjugate of the above formula and renaming the variables, we see that
the coaction corresponding to V* is precisely R_. O

Proposition 6.14 ([29, (4.19)]). The space Cso(Aq) can be recovered from the
multiplicative unitary Ve M(K(H) @ Aq) by

Coo(Ay) = norm closure of {(w® 1)V + (v’ @ 1)V* |w,w’" € B(H)*}.  (6.26)

Recall that V' corresponds to the representation Ry and similarly V* corre-
sponds to R_ under the classical limit. Therefore in the classical “ax + b” group,
the above translates to the fact that the space of C functions on G is spanned
by matrix coefficients

L p(Ciz)at(—ib)E, T (—iz)a™ (ib)i* (6.27)
2 2

corresponding to V and V*.
In order to understand this more explicitly, note that for functions on G4 of
the form

F(a,b) := g(loga)f(b),

where g € L*(R), f € L?([0,0)) are analytic, we can write using Fourier trans-

form as
F(a,b) // ”f ZbIdxds,

and then using formally the Mellin transform for x > 0:
eFibT — / [(—it)(dibx) ™ dt, (6.28)
R+1:0
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we see that the function F(a,b) can be rewritten as
/ / G(s) f+ (DT (—it)e a®bitdtds
R JR+i0

G(s) - (T (—it)e™ 7 a’bidtd .
+/]R/]R+i0 g(s)f—(t)T(—it)e” 2 a tds, (6.29)
where
fatt) = | Fea)ataa

is analytic in 0 < Im(¢) < 1 and of rapid decay in this strip.

Therefore Proposition 6.26 can be interpreted as a form of “Peter—Weyl” theo-
rem for the quantum group A,, which says that the space of C's functions on A,
is spanned continuously by matrix coefficients of its unitary corepresentations.

Remark 6.15. One should compare this result with a similar one obtained in
[9], where a different multiplicative unitary W constructed from certain GNS rep-
resentation is used, so that only the canonical representations appear in the L2-
decomposition.

6.4. Pairing and representation of By

Recall that given a non-degenerate Hopf pairing (,), from a corepresentation of a
Hopf algebra A, we can construct a corresponding representation of the dual Hopf
algebra B by

BoH ¥ Bo(HeA) = (BoA)oH 2% x4,

Let us now define the pairing between the generators (A, B) of A, and (X,Y)
of B, as follow:

Definition 6.16. We define
(A,X)=q7% (AY)=0,
(B,X)=0, (B)YY)=—i.
Then they satisfy the coproduct relations with
(A" B™, X) = (A, X)"6m0 = 4~ "dmo,
(A"B™,)Y) = (A", 1)(B"™,Y) = —i0m1.-

From this pairing, we can formally extend the pairing to elements in the subclass
of M(Cux(Ay)). Let D denote the image of W under the corepresentation II to
H @ M(Csx(Ay)). Then

D c BC(R)® € C BC(R) ® F,
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where BC'(R) are bounded continuous functions on R;

& = Linear span of {Ais/ F(t)B“dt},
R

+i0
where F(t) is the same as in the definition of A, (Ay): meromorphic with possible

poles at t = —in —im/b?, and of rapid decay along imaginary direction;

F = Linear span of {g(log A)/ F(t)Bitdt},
R

+i0
where F(t) is as above, and ¢(s) is a bounded function on R that can be analytically
extended to Ims = —2mib%. Then we define the pairing with X and Y by formally
extracting the zeroth and first power of B, respectively. More precisely, we have the
following definition.

Definition 6.17. We define X,Y as elements in the dual space F* by

<%9(log A) F(t)Bdt, X > = g(log ¢*)(Resi—o F (1)),

R+10

<%g(log A) /]R +40F(t)B“dt,Y> = —i(Resi=iF(1)).

Theorem 6.18. The representation of B, on W given by

(

B,:w L Bo®) o F 228, pomy,

induced from the corepresentation (6.19) under the above pairing is precisely
X - flx) =™ f(a),
Y- f(z) = fla —ib) = > f(x),
which is the Fourier transformed action of (4.4) and (4.5) defined in [6].
Note that the image of W is actually preserved in W C BC(R).

Proof. Applying the pairing, and introducing the scaling of b in dz, we obtain for
any f(z) € W:

o Gb(i‘r—iz)eﬂQ(z_$) btz pib (z—x)
e x) = ([ e e A B e

changing z to bz + x:

B bGy(—ibz)e™@b?
- < R4i0 fbz +2) (2sin7b?)—7#

AiblmBide,X>

= (=270) f (2)q~ 2 D)p(Res,_o Gy (—ibz))
=™ f(x),
since lim, 0 xGp(x) = %, hence Res,—oGp(—ibz) = ﬁ
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So the action for X is
X - fz) =e>™ f().
For the action of Y we have

If, 1Y) = Gb(zx—zz) TQ(z—2)
, R—HO 2S1n7rb2)zb T(z—2)

Azb leib (z—z dZ Y>

i wz(1+b%)
Fbs + )bi( .zbz)eQ |
R+10 (2sinwb?) 4=

Aib_leide’ Y>

= (—i)(~2mi) f (& — )b(—q V)ilg™" — g)(Res.—_,Gy(~ib2))
f<x —ib),

where

Res,—_;Gp(—ibz) = lim (z +i)Gp(—ibz)

Z——1

= lirr%) 2Gy(—ibz — b)

= lim z—Gb( ibz)
20" 1 — e2mib(—ibz—b)
1 1
T 2mib1— e 2m?
R
- —27ibl —q2

So the action for Y is
Y f(x) = f(z —ib)

or Y = e27tp, O

Remark 6.19. If we choose to work with R_, then under the pairing we will get

instead X = €*™* and Y = —e?", another representation for B, by negative
operator Y.
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