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We showed that there is a complete analogue of a representation of the quantum plane
Bq where |q| = 1, with the classical ax+ b group. We showed that the Fourier transform
of the representation of Bq on H = L2(R) has a limit (in the dual corepresentation)
toward the Mellin transform of the unitary representation of the ax + b group, and
furthermore the intertwiners of the tensor products representation has a limit toward
the intertwiners of the Mellin transform of the classical ax + b representation. We also
wrote explicitly the multiplicative unitary defining the quantum ax + b semigroup and
showed that it defines the corepresentation that is dual to the representation of Bq

above, and also correspond precisely to the classical family of unitary representation of
the ax + b group.
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1. Introduction

The ax+ b group is the group of affine transformations on the real line R. Together
with the three-dimensional Heisenberg group they can be viewed as the simplest
examples of non-abelian non-compact Lie group. Various difficulties in studying
higher-dimensional non-compact Lie group are reflected in these simple examples.
For example, in the ax + b group, the unitary irreducible representations are now
infinite dimensional, and the Mellin transform is used to “diagonalize” the represen-
tation. The matrix coefficients in this case are realized as integral transformations,
which can be viewed as the matrix elements with respect to a continuous basis
of the representation space. These matrix elements are expressed in terms of the
gamma function Γ(x). We will see that in the quantum picture, its q-analogue,
the q-gamma function Γq(x), is closely related to the important quantum diloga-
rithm function Gb(x). Furthermore, to deal with non-compactness, there is a need
to introduce the language of multiplier C∗ algebra to define a natural coproduct
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on the algebra of continuous functions vanishing at infinity, and also to construct
the non-compact Haar measure [26]. Motivating from this, in the quantum picture
we must deal with unbounded operators, and the theory of functional calculus for
self-adjoint operators will be the main technical tool.

The quantum plane Bq is the Hopf *-algebra over C with self-adjoint generators
A,B satisfying

AB = q2BA, (1.1)

with the coproduct given by

∆(A) = A⊗A, ∆(B) = B ⊗A+ 1 ⊗B. (1.2)

It is known that this object is self-dual, so that they can be considered both as the
quantum counterpart of C(G), a certain algebra of functions on G, the “ax + b”
group, or U(g), the enveloping algebra of the Lie algebra g of G. Classically for a Lie
group G, U(g) and C(G) are paired by treating U(g) as left invariant differential
operators on G and evaluate the result at the identity. In such a way, representation
of U(g) on a vector space H corresponds to corepresentation of the group algebra
C(G) on H by this pairing. Therefore in order to study the quantum counterpart
of these representations, naturally we would like to study the representation of the
quantum plane Bq, and the corepresentation of its dual object, called Aq in this
paper, under a natural pairing.

Recently in [6], Frenkel and Kim derived the quantum Teichmüller space, pre-
viously constructed by Kashaev [13] and by Fock and Chekhov [2], from tensor
products of a single canonical representation of the modular double of the quan-
tum plane Bq. The representation is realized as positive unbounded self-adjoint
operators acting on H = L2(R), and the main ingredient in their construction of
the quantum Teichmüller space is the decomposition of the tensor product of two
Bq-representations into a direct integral parametrized by a “multiplicity” module
M � L2(R), namely:

H⊗H �M ⊗H. (1.3)

The intertwiner of this decomposition is given by a certain kind of “quantum diloga-
rithm transform” (cf. Proposition 4.2), where the remarkable quantum dilogarithm
function has been introduced by Faddeev and Kashaev [4].

On the other hand, in order to define a corepresentation on the dual object Aq

with positive generators, the space of “continuous functions vanishing at infinity”
for the quantum plane C∞(Aq) based on the functional calculus of self-adjoint oper-
ators is introduced. This coincides with Woronowicz’s construction of the quantum
“ax+b” group [29] using the theory of multiplicative unitaries, however restricted to
the semigroup setting where we consider B > 0, so that we do not run into the dif-
ficulty of the self-adjointness of the coproduct. The multiplicative unitary involved
produces the corepresentation of the quantum plane desired, and the corepresenta-
tion obtained in this way is shown to have certain classical limit toward the unitary
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representation for the classical group. Furthermore, a pairing between the dual
space corresponds precisely to the canonical representation of Bq by unbounded
self-adjoint operators defined in [6] mentioned above.

In the quantum torus setting, where generators of Bq are represented by uni-
tary operators, the representation of Bq on H = L2(R) only becomes algebraically
irreducible when we consider also its modular double Bqeq := Bq ⊗ Beq, so that it
generates a von Neumann algebra of Type I factor, while representation of Bq itself
generates Type II1 factor which is more exotic [3]. Now taking the real structure
into account, the modular double of the quantum plane also naturally arises in this
setting, and what we are considering in this paper should be viewed as restriction
of the representation on H to Bq ⊂ Bqeq, especially useful in studying the classi-
cal limit. On the other hand, in the dual picture, quite interestingly the modular
double elements are also involved in the definition of C∞(Aq) due to the analytic
properties of the Mellin transform, see Remark 6.3.

The quantum dilogarithm function played a prominent role in this quantum
theory. This function and its many variants are being studied [8, 21, 28] and applied
to vast amount of different areas, for example the construction of the “ax + b”
quantum group by Woronowicz et al. [19, 29], the harmonic analysis of the non-
compact quantum group Uq(sl(2,R)) and its modular double [1, 16, 17], the q-
deformed Toda chains [14] and hyperbolic knot invariants [12]. One of the important
properties of this function is its invariance under the duality b↔ b−1 that provides
the basis for the definition of the modular double of Uq(sl(2,R)) first introduced
by Faddeev [3], and also related, for example, to the self-duality of Liouville theory
[16] that has no classical counterpart.

It is an interesting problem to find a classical limit to these quantum theories
described by the quantum dilogarithm function. Due to the duality between b↔ b−1

and the appearance of the term Q = b+ b−1, there is no classical limit by directly
taking b→ 0. In this paper, by utilizing the properties of the quantum dilogarithm
function Gb(x), we showed that under a suitable rescaling of parameters and a
limiting process that takes q → 1 from inside the unit circle in the complex plane,
it is possible to obtain the classical gamma function. More precisely, by taking b

away from the real axis, Theorem 3.11 states that the following limit holds for
b2 = ir → i0+:

lim
r→0+

(2πb)Gb(bx)
(−2πib2)x

= Γ(x), (1.4)

where (−2πib2) > 0, hence the denominator is well-defined. This gives another
proof of a similar limit first observed in [20].

In this way, most properties of this special function reduce to its classical
analogues. For example, the q-binomial theorem (Lemma 3.7) derived in [1]:

(u+ v)it = b

∫
C

dτ

(
t

τ

)
b

ui(t−τ)viτ (1.5)
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is actually the q-analogue of the classical formula

(x+ y)it =
1
2π

∫ ∞

−∞

Γ(−is)Γ(−it+ is)
Γ(−it) xisyit−isds, (1.6)

see Remark 3.9. In particular, the main results of this paper state that the intertwin-
ers of the tensor product decomposition H⊗H � M⊗H of the representation of
Bq given by [6] has a nice classical analogue, namely the intertwiners of the classical
“ax+ b” group representation under suitable transformation (Theorem 5.2):

b2F
⌊
bλ bt

bt1 bt2

⌋
∗
→
⌊
λ t

t1 t2

⌋
classical

, (1.7)

b2F
⌈
bλ bt

bt1 bt2

⌉
∗
→
⌈
λ t

t1 t2

⌉
classical

(1.8)

as b2 = ir → i0+. Furthermore, the corepresentation constructed using the multi-
plicative unitary also has a classical limit toward the unitary representation R+ of
the classical ax+ b group (Theorem 6.13).

The study of the relationship between the quantum plane and the classical
ax + b group is important as it serves as building blocks toward higher quantum
group. First of all, we choose to work with quantum semigroup (representing the
generators by positive operators) since it induces the b↔ b−1 duality for SL+

q (2,R)
as explained in [16], and it also provides an important results on the closure of
tensor product of Uq(sl(2,R)) representations [17]. These observations are essential
to the relationship between quantum Liouville theory and quantum geometry on
Riemann surface [24]. Moreover, it is fundamental in the construction of GL+

q (2,R)
by the Drinfeld’s double construction proposed in [9, 18], an analogue of the classical
Gauss decomposition, which provides an important first step leading to the research
program of harmonic analysis and positive representations of split real quantum
groups in the case |q| = 1 proposed in [5, 10].

The present paper is organized as follows. In Sec. 2, we recall the definitions
and facts about the classical “ax+ b” group and its representations, and derive the
tensor product decomposition of two irreducible representations. In Sec. 3, we recall
some properties of the q-special functions, in particular a version of the quantum
dilogarithm Gb(x) introduced in [17], and derive a special limiting procedure that
enables us to compare it with the classical gamma function. In Sec. 4, we recall the
q-intertwiner for the representation of the quantum plane Bq that is obtained in [6]
to deal with the quantization of Teichmüller space, and we showed in Sec. 5 that this
intertwiner, under suitable modification, has a classical limit toward precisely the
intertwiner of the ax+b group. Finally, in Sec. 6, we introduce on the dual space Aq

the space of continuous functions vanishing at infinity C∞(Aq), and starting from
Woronowicz’s multiplicative unitary of the quantum “ax+ b” semigroup, we derive
explicitly the corepresentation of the dual space Aq. We showed that this corepre-
sentation has a limit toward the classical ax + b group representation, and on the
other hand, it induces the same representation of Bq under a non-degenerate pairing.
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2. Classical ax + b Group

2.1. Representation

First let us recall the theory of representation of the ax + b group. The classical
ax+ b group is by definition, the group of affine transformations on the real line R,
where a > 0 and b ∈ R, and they can be represented by a matrix of the form

g(a, b) =
(
a b

0 1

)
, (2.1)

with multiplication given by

g(a1, b1)g(a2, b2) =
(
a1a2 a1b2 + b1

0 1

)
. (2.2)

We will also consider the representation of the transpose group

g(a, c) =
(
a 0
c 1

)
, (2.3)

where the multiplication is given by

g(a1, c1)g(a2, c2) =
(

a1a2 0
c1a2 + c2 1

)
. (2.4)

This corresponds to the coproduct of the quantum plane Bq introduced later on
(cf. Sec. 4).

Theorem 2.1 (Gelfand [27, Ch.V.1]). Every irreducible unitary representation
of the ax+ b group is equivalent to one of the following (acting on the left):

• R+ := R−i or R− := Ri where Rλ denote the representation of the ax+ b group
on L2(R+,

dx
x ) by

Rλ(g) · f(x) = eλbxf(ax); (2.5)

• Tρ, the representation on C by multiplication by aiρ.

Similarly, the left action of the transpose group is given by the action of the
inverse element

g−1 =
(
a−1 − c

a

0 1

)
, (2.6)

Rλ(gT ) · f(x) = e−λcx/af(a−1x) = Rλ(g−1) · f(x). (2.7)

Let us recall the method of Mellin transform, which gives us an explicit expres-
sion of the matrix coefficients in terms of the gamma function:

Theorem 2.2. Let f(x) be a continuous function on the half line 0 < x < ∞.
Then its Mellin transform is defined by

φ(s) := (Mf)(s) =
∫ ∞

0

xs−1f(x)dx, (2.8)
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whenever the integration is absolutely convergent for a < Re(s) < b. By the Mellin
inversion theorem, f(x) is recovered from φ(s) by

f(x) := (M−1φ)(x) =
1
2π

∫ c+i∞

c−i∞
x−sφ(s)ds, (2.9)

where c ∈ R is any value in between a and b.

Here we also list some analytic properties for the Mellin transform. For further
details see [15].

Proposition 2.3 (Strip of analyticity). If f(x) is a locally integrable function
on (0,∞) such that it has decay property:

f(x) =

{
O(x−a−ε) x→ 0+,

O(x−b+ε) x→ +∞,
(2.10)

for every ε > 0 and some a < b, then the Mellin transform defines an analytic
function (Mf)(s) in the strip

a < Re(s) < b.

(Analytic continuation) Assume f(x) behaves algebraically for x→ 0+, i.e.

f(x) ∼
∞∑

k=0

Akx
ak , (2.11)

where Re(ak) increases monotonically to ∞ as k → ∞. Then the Mellin transform
(Mf)(s) can be analytically continued into Re(s) ≤ a = −Re(a0) as a meromorphic
function with simple poles at the points s = −ak with residue Ak.

A similar analytic property holds for the continuation to the right half plane.
(Growth) Let f(x) be a holomorphic function of the complex variable x in the

sector −α < arg x < β where 0 < α, β ≤ π, and satisfies the growth property (2.10)
uniformly in any sector interior to the above sector.

Then (Mf)(s) has exponential decay in a < Re(s) < b with

(Mf)(s) =

{
O(e−(β−ε)t) t→ +∞,

O(e(α−ε)t) t→ −∞,
(2.12)

for any ε > 0 uniformly in any strip interior to a < Re(s) < b.
(Parseval’s formula) We have∫ ∞

0

f(x)g(x)xz−1dx =
1

2πi

∫ c+i∞

c−i∞
Mf(s)Mg(z − s)ds, (2.13)

where Re(s) = c lies in the common strip for Mf and Mg. In particular the map

f(x) 
→ F (t) := (Mf)(it) =
∫ ∞

0

xitf(x)
dx

x
(2.14)
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gives a unitary transformation between L2(R+,
dx
x ) and L2(R, dx):∫ ∞

0

|f(x)|2 dx
x

=
1
2π

∫ ∞

−∞
|F (t)|2dt. (2.15)

This allows us to study the representation Rλ(g) in the space L2(R) instead, as
Proposition 2.6 below shows. By abuse of notation, we will also denote this unitary
transformation by M.

Throughout the paper, we will restrict to a special class of functions that is
dense in L2(R).

Definition 2.4. Let W denote the finite C-linear combinations of functions of the
form

e−Ax2+BxP (x), (2.16)

where P (x) is a polynomial in x, A ∈ R>0 and B ∈ C.

Proposition 2.5. We have the following properties for W :

(1) Every function f(z) ∈ W is entire analytic in z, and Fy(x) := f(x + iy) is of
rapid decay in x.

(2) The space W is closed under Fourier transform.
(3) W is dense in L2(R).
(4) W is a core for the unbounded operator eαx and eβp on L2(R) where α, β ∈ R

and p = 1
2πi

d
dx [22, Lemma 7.2].

Under the Mellin transform, the representations Rλ can be expressed by the
following integral operator:

Proposition 2.6 ([27]). The action of the ax+b group on W ⊂ L2(R) is given by

Rλ(g) · F (w) =
∫

R+i0

K(w, z; g)F (z)dz, (2.17)

where the integral kernel is given by

K(w, z; g) =
Γ(iw − iz)a−iw

2π

(
−λb
a

)iz−iw

. (2.18)

Similarly, the left action of the transposed group will be given by

Rλ(gT ) · F (w) =
∫

R+i0

K(w, z; g)F (z)dz, (2.19)

where the integral kernel is given by

K(w, z; g) =
Γ(iw − iz)aiw

2π
(λb)iz−iw . (2.20)

Here the branch of the factor is chosen so that |arg(−λb)| < π and the contour
of integration goes above the pole at z = w.
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2.2. Tensor product decomposition

Using the above expressions, we can construct explicit intertwiners for the tensor
product decomposition of the irreducible representation R+, R− and Tρ:

Theorem 2.7. Recall that R± � L2(R+,
dx
x ) and Tρ � C as Hilbert spaces.

(a) We have

ψ : R± ⊗R± � L2

(
R+,

dα

α

)
⊗R±, (2.21)

f(x1, x2) 
→ F (α, x), (2.22)

where the unitary equivalence is given by

F (α, x) := f

(
αx

α+ 1
,

x

α+ 1

)
, (2.23)

f(x1, x2) := F

(
x1

x2
, x1 + x2

)
. (2.24)

(This formula also holds for Rλ ⊗Rλ for all λ ∈ C.)
(b) We have

ψ : R± ⊗R∓ �
(
L2

(
R<1,

dα

α

)
⊗R∓

)
⊕
(
L2

(
R>1,

dα

α

)
⊗R±

)
, (2.25)

f(x1, x2) 
→ F (α, x), (2.26)

where the unitary equivalence is given by

F (α, x) := f

(
αx

|α− 1| ,
x

|α− 1|
)
, (2.27)

f(x1, x2) := F

(
x1

x2
, |x1 − x2|

)
. (2.28)

(c) We have

ψ : R± ⊗ Tρ � R±, (2.29)

f(x) 
→ F (w), (2.30)

where the unitary equivalence is given by

F (w) := f(w − ρ), (2.31)

f(x) := F (x + ρ) (2.32)

in the space of the Mellin transform of R±.
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Proof. Let us prove (a) for the case R+, while the case for R− is similar. First of
all it is obvious that the maps given are inverse of each other. To check that they
are intertwiners, we compare the actions on the two spaces:

R+(g) · F (α, x) = R+(g) · f
(

αx

α+ 1
,

x

α+ 1

)
= e−ibxf

(
αax

α+ 1
,
ax

α+ 1

)

= e−ib(x1+x2)f

(
(x1

x2
a(x1 + x2)
x1
x2

+ 1
,
a(x1 + x2)

x1
x2

+ 1

)
= e−ibx1e−ibx2f(ax1, ax2)

= (R+ ⊗R+)(g) · f(x1, x2).

Finally to check that it is unitary, we compute the norm after transformation:

‖F (α, x)‖2 =
∫∫ ∣∣∣∣f ( αx

α+ 1
,

x

α+ 1

)∣∣∣∣2 dxx dα

α

=
∫∫

|f(αx2, x2)|2 dx2

x2

dα

α

=
∫∫

|f(x1, x2)|2 dx2

x2

dx1

x1

= ‖f(x1, x2)‖2.

For (b) the argument is similar, where we split into the case α < 1 and α > 1:

(R+ ⊗R−)(g) · f(x1, x2) = e−ibx1eibx2f(ax1, ax2)

= e−ibx1eibx2F

(
x1

x2
, a|x1 − x2|

)
= e−ib αx

|α−1| eib x
|α−1|F (α, ax)

=
{
e−ibxF (α, ax) α > 1
eibxF (α, ax) α < 1

as required.
Finally for (c), we apply the Mellin transformed action (2.17) to obtain:

(R+ ⊗ Tρ)(g) · F (w) =
aiρ

2π

∫ ∞

−∞
Γ(iw − iz)a−iw

(
ib

a

)iz−iw

F (z)dz

=
aiρ

2π

∫ ∞

−∞
Γ(iw − iz − iρ)a−iw

(
ib

a

)iz−iw+iρ

F (z + ρ)dz

=
1
2π

∫ ∞

−∞
Γ(ix− iz)a−ix

(
ib

a

)iz−ix

f(z)dz

= R+(g) · f(x).
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We will focus mainly on the case R+ ⊗ R+. Under the Mellin transform of the
function spaces, we can rewrite the intertwiners above in terms of gamma functions
as follows.

Proposition 2.8. Let F (λ, t) ∈ W ⊗ W ⊂ L2(R, dλ) ⊗ R+ and f(t1, t2) ∈ W ⊗
W ⊂ R+ ⊗ R+ where R+ � L2(R, dt) in the Mellin transformed action. Then the
isomorphism

Ψ : R+ ⊗R+ � L2(R, dλ) ⊗R+, (2.33)

f(t1, t2) 
→ F (λ, t) (2.34)

can be expressed as

F (λ, t) = Ψf :=
1
2π

∫
C

Γ(it2 − it+ iλ)Γ(−it2 − iλ)
Γ(−it) f(t− t2, t2)dt2 (2.35)

and its inverse is given by

f(t1, t2) = Ψ−1F :=
1
2π

∫
C′

Γ(−iλ+ it1)Γ(iλ+ it2)
Γ(it1 + it2)

F (λ, t1 + t2)dλ, (2.36)

where C is the contour going along R that goes above the poles of Γ(−it2 − iλ) and
below the poles of Γ(it2 − it+ iλ), and similarly C′ is the contour along R that goes
above the poles of Γ(−iλ+ it1) and below the poles of Γ(iλ+ it2).

Hence formally we can write the above transformations as integral transforma-
tions

F (λ, t) =
∫∫

R2

⌊
λ t

t1 t2

⌋
f(t1, t2)dt1dt2, (2.37)

f(t1, t2) =
∫∫

R2

⌈
λ t

t1 t2

⌉
F (λ, t)dλdt, (2.38)

where the integral kernels are given be⌊
λ t

t1 t2

⌋
=

1
2π
δ(t1 + t2 − t)

Γ(iλ− it1)Γ(−it2 − iλ)
Γ(−it) , (2.39)

⌈
λ t

t1 t2

⌉
=

1
2π
δ(t− t1 − t2)

Γ(−iλ+ it1)Γ(it2 + iλ)
Γ(it)

=
⌊
λ t

t1 t2

⌋
. (2.40)

Proof. To calculate Ψ, it suffices to calculate M◦ ψ ◦M−1, where

M : L2

(
R2

+,
dx1

x1

dx2

x2

)
→ L2(R2, dt1dt2)

is the Mellin transform on both variables, and ψ is the unitary equivalence from
Theorem 2.7. We will write using separation of variables

f(t1, t2) := f1(t1)f2(t2) ∈ W ⊗W.
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First, we have

(M−1f)(x1, x2) =
∫

R+ic2

∫
R+ic1

x−it1
1 x−it2

2 f1(t1)f2(t2)dt1dt2.

Next, applying ψ:

→
∫

R+ic2

∫
R+ic1

(
αx

α+ 1

)−it1 ( x

α+ 1

)−it2

f1(t1)f2(t2)dt1dt2.

Finally, taking the Mellin transform on the (α, x) variables, we arrive at

F (λ, t) := Ψf =
1

(2π)2

∫∫
R2

+

∫
R+ic2

∫
R+ic1

xit−1αiλ−1

(
αx

α+ 1

)−it1 ( x

α+ 1

)−it2

· f1(t1)f2(t2)dt1dt2dxdα

=
1

(2π)2

∫∫
R2

+

∫
R+ic2

xit−1αiλ−1

(
x

α+ 1

)−it2

M−1

· f1
(

αx

α+ 1

)
f2(t2)dt2dxdα. (2.41)

From the Mellin transform properties (Proposition 2.5), M−1f1( αx
α+1 ) is of rapid

decay in x. Hence the integrand is absolutely convergent with respect to x and t2
and we can interchange the order of integration in (2.41) to obtain

F (λ, t) =
1

(2π)2

∫∫
R2

+

∫
R+ic2

∫
R+ic1

xit−1αiλ−1

(
αx

α+ 1

)−it1 ( x

α+ 1

)−it2

· f1(t1)f2(t2)dt1dxdt2dα

=
1

(2π)2

∫
R+

∫
R+ic2

∫
R+

∫
R+ic1

xit−it1−it2−1αiλ−it1−1(α+ 1)it1+it2

· f1(t1)f2(t2)dt1dxdt2dα

=
1
2π

∫ ∞

0

∫
R+ic2

αiλ−it+it2−1(α+ 1)itf1(t− t2)f2(t2)dt2dα

by the Mellin transform property.
Next from the gamma–beta integral [27, V.1.6(7)], we have

Γ(w + u)Γ(−u)
Γ(w)

=
∫ ∞

0

tw+u−1(1 + t)−wdt, (2.42)

where Re(w + u) > 0,Re(u) < 0. Assuming λ ∈ R, we see that the integrand is
absolutely convergent in α when

Re(it2 − it) > 0, Re(it2) < 0.
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Hence for c2 > 0 and Im(t) > c2, we can interchange the order of integration to
obtain

F (λ, t) =
1
2π

∫
R+ic2

∫ ∞

0

αiλ−it+it2−1(α+ 1)itf1(t− t2)f2(t2)dαdt2

=
1
2π

∫
R+ic2

Γ(it2 − it+ iλ)Γ(−it2 − iλ)
Γ(−it) f(t− t2, t2)dt2, (2.43)

which holds for Im(t) > c2 > 0. Finally we can deform the contour of t2 so that
it goes under t2 = t − λ and above t2 = −λ. Then the above expression can be
analytically extended to Im(t) = 0, and we obtain our desired formula.

Similarly, to calculate Ψ−1 = M◦ψ−1◦M−1, we start with the Mellin transform

(M−1F )(α, x) =
∫

R+icλ

∫
R+ict

α−iλx−itFλ(λ)Ft(t)dtdλ,

and transform using ψ−1 from Theorem 2.7 into

→
∫

R+icλ

∫
R+ict

(
x1

x2

)−iλ

(x1 + x2)−itFλ(λ)Ft(t)dtdλ,

and finally taking the Mellin transform on the variables (x1, x2), we have:

f(t1, t2) = Ψ−1F =
1

(2π)2

∫∫
R2

+

∫
R+icλ

∫
R+ict

xit1−1
1 xit2−1

2

(
x1

x2

)−iλ

(x1 + x2)−it

·Fλ(λ)Ft(t)dtdλdx2dx1 (replacing x1 by x1x2:)

=
1

(2π)2

∫∫
R2

+

∫
R+icλ

∫
R+ict

xit1+it2−it−1
2 xit1−iλ−1

1 (x1 + 1)−it

·Fλ(λ)Ft(t)dtdλdx2dx1. (2.44)

By the same arguments, we can interchange the order of integration with respect
to dλ and dx2, and involve the Mellin transform in x2 and t, to obtain

=
1
2π

∫ ∞

0

∫
R+icλ

xit1−iλ−1
1 (x1 + 1)−it−it2Fλ(λ)Ft(t1 + t2)dλdx1.

Finally, assuming τ1 ∈ R, the integrand is absolutely convergent when

Re(−iλ) > 0, Re(−iλ− it2) < 0.

Hence for 0 < cλ < −Im(t2) we can interchange the order of integration, and obtain

f(t1, t2) =
1
2π

∫
R+icλ

Γ(−iλ+ it1)Γ(iλ+ it2)
Γ(it1 + it2)

F (λ, t1 + t2)dλ. (2.45)

Again by shifting the contours for λ so that it goes above λ = −t2 and below
λ = t1, the expression can be analytically extended to Im(t2) = 0, and we obtain
the desired formula.

These expressions will play an important role in the comparison with the
quantum case.

1350031-12

In
t. 

J.
 M

at
h.

 2
01

3.
24

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
SI

N
G

H
U

A
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/2
3/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

April 22, 2013 18:26 WSPC/S0129-167X 133-IJM 1350031

The Classical Limit of Representation Theory of the Quantum Plane

3. q-Special Functions

3.1. Definitions

Throughout this section, we let q = eπib2 where b ∈ R\Q and 0 < b2 < 1, so that
|q| = 1 is not a root of unity.

We will consider the quantum dilogarithm Gb(x) defined in [16, 17] throughout
the paper. The reason is that it admits a nice classical limit toward the gamma
function, as will be shown in the next section, and a lot of classical formula has a
straightforward q-analogue using Gb(x), where the proofs are nearly identical. For
its relationship with other special functions in the literature, see e.g. [11]. Here we
recall its definition.

Let ω := (w1, w2) ∈ C2.

Definition 3.1. The double zeta function is defined as

ζ2(s, z|ω) :=
∑

m1,m2∈Z≥0

(z +m1w1 +m2w2)−s. (3.1)

The double gamma function is defined as

Γ2(z|ω) := exp
(
∂

∂s
ζ2(s, z|ω)|s=0

)
. (3.2)

Let

Γb(x) := Γ2(x|b, b−1), (3.3)

then the quantum dilogarithm is defined as the function:

Sb(x) :=
Γb(x)

Γb(Q− x)
, (3.4)

where Q = b+ b−1. The following form is often useful, and will be used throughout
this paper:

Gb(x) := e
πi
2 x(x−Q)Sb(x). (3.5)

Proposition 3.2. The quantum dilogarithm satisfies the following properties:
Self-duality:

Sb(x) = Sb−1(x), Gb(x) = Gb−1(x). (3.6)

Functional equations:

Sb(x + b±1) = 2 sin(πb±1x)Sb(x), Gb(x + b) = (1 − e2πibx)Gb(x). (3.7)

Reflection property:

Sb(x)Sb(Q− x) = 1, Gb(x)Gb(Q− x) = eπix(x−Q). (3.8)

Complex conjugation:

Gb(x) = eπix̄(Q−x̄)Gb(x̄) =
1

Gb(Q− x̄)
. (3.9)
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Analyticity:
Sb(x) and Gb(x) are meromorphic functions with poles at x = −nb−mb−1 and

zeros at x = Q+ nb+mb−1, for n,m ∈ Z≥0.
Asymptotic properties:

Gb(x) ∼
{
ζ̄b Im(x) → +∞
ζbe

πix(x−Q) Im(x) → −∞,
(3.10)

where

ζb = e
πi
4 + πi

12 (b2+b−2). (3.11)

Residues:

lim
x→0

xGb(x) =
1
2π
, (3.12)

or more generally,

Res
1

Gb(Q+ z)
= − 1

2π

n∏
k=1

(1 − q2k)−1
m∏

l=1

(1 − q̃−2l)−1 (3.13)

at z = nb+mb−1, n,m ∈ Z≥0 and q̃ = e−πib−2
.

Let us introduce another important variant of the quantum dilogarithm
function:

gb(x) :=
ζ̄b

Gb(Q
2 + 1

2πib log x)
. (3.14)

Lemma 3.3. Let u, v be positive self-adjoint operators with uv = q2vu, q = eπib2 .
Then

gb(u)gb(v) = gb(u+ v), (3.15)

gb(v)gb(u) = gb(u)gb(q−1uv)gb(v). (3.16)

Equations (3.15) and (3.16) are often referred to as the quantum exponential and
the quantum pentagon relations, respectively.

We will also use the following useful lemma:

Lemma 3.4 ([23]). For Im(b2) > 0, Gb(x) admits an infinite product description
given by

Gb(x) = ζ̄b

∏∞
n=1(1 − e2πib−1(x−nb−1))∏∞

n=0(1 − e2πib(x+nb))
. (3.17)

Lemma 3.5 ([1]). We have the following Fourier transformation formula:∫
R+i0

dte2πitr e−πit2

Gb(Q+ it)
=

ζ̄b

Gb(Q
2 − ir)

= gb(e2πbr), (3.18)

∫
R+i0

dte2πitr e−πQt

Gb(Q+ it)
= ζbGb

(
Q

2
− ir

)
=

1
gb(e2πbr)

, (3.19)

where the contour goes above the pole at t = 0.
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Using the reflection properties, we also obtain∫
R−i0

dte−2πitre−πQtGb(it) =
ζ̄b

Gb

(
Q
2 − ir

) , (3.20)

∫
R−i0

dte−2πitreπit2Gb(it) = ζbGb

(
Q

2
− ir

)
, (3.21)

where the contour goes below the pole at t = 0.

Lemma 3.6 ([17]). We have the tau–beta theorem:∫
C

dτe−2πτβ Gb(α+ iτ)
Gb(Q+ iτ)

=
Gb(α)Gb(β)
Gb(α+ β)

, (3.22)

where the contour C goes along R and goes above the poles of Gb(Q+ iτ) and below
those of Gb(α+ iτ).

Lemma 3.7 (q-binomial theorem [1]). Let u, v be positive self-adjoint operators
with uv = q2vu. We have:

(u + v)it = b

∫
C

dτ

(
t

τ

)
b

ui(t−τ)viτ , (3.23)

where (
t

τ

)
b

=
e2πib2τ(t−τ)Gb(Q+ ibt)

Gb(Q+ ibt− ibτ)Gb(Q+ ibτ)
=
Gb(−ibτ)Gb(ibτ − ibt)

Gb(−ibt) , (3.24)

and C is the contour along R that goes above the pole at τ = 0 and below the pole
at τ = t.

Similarly, for uv = q−2vu, we have:

(u + v)it = b

∫
C

dτ

(
t

τ

)b

uiτvi(t−τ), (3.25)

where (
t

τ

)b

=
Gb(Q+ ibt)

Gb(Q+ ibt− ibτ)Gb(Q+ ibτ)
, (3.26)

with the same contour C as above.

Remark 3.8. When t approaches −in for positive integer n, by first shifting the
contour along the poles at τ = t + ik for 0 ≤ k ≤ n, the integration vanishes and
n+1 residues are left, which is precisely the terms in the usual q-binomial formula.

Remark 3.9. The q-binomial theorem is actually the q-analogue of the classical
formula [15, (3.3.9)]:

1
2πi

∫ c+i∞

c−i∞
Γ(s)Γ(a− s)x−sds =

Γ(a)
(1 + x)a

, (3.27)
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when 0 < c < Re(a). After a change of variables with x replaced by x/y, a by −it,
s by −is and a suitable shift of contour, we obtain

(x+ y)it =
1
2π

∫ ∞

−∞

Γ(−is)Γ(−it+ is)
Γ(−it) xisyit−isds, (3.28)

where the contour separates the poles of the two gamma functions. We can easily
see that under the limiting process described in the next section, the q-binomial
theorem reduces precisely to this classical formula.

3.2. Limits of the quantum dilogarithm

Recall that the b-hypergeometric function (slightly modified from [17]) is defined by:

Fb(α, β, γ; z) :=
Gb(γ)

Gb(α)Gb(β)

∫
C

(−z)ib−1τeπiτ2Gb(α+ iτ)Gb(β + iτ)Gb(−iτ)
Gb(γ + iτ)

dτ,

(3.29)

where the contour along R separates the poles of Gb(α+ iτ)Gb(β + iτ) from those
of Gb(−iτ)

Gb(γ+iτ) .
In comparison with the classical formula:

2F1(a, b, c; z) =
Γ(c)

Γ(a)Γ(b)
1
2π

∫
C

(−z)is Γ(a+ is)Γ(b+ is)Γ(−is)
Γ(c+ is)

ds, (3.30)

we see therefore that there is a strong analogy between the function Gb(z) and
the gamma function Γ(x). However, we know that there is no direct classical limit
b → 0 because of the factor Q = b + b−1 involved in the definitions. It turns out
that we can still define certain kind of limit of the function Gb(x) that enables one
to compare it with the classical gamma function Γ(x).

Recall that by Lemma 3.4, if Im(b2) > 0, then Gb(x) can be expressed as a ratio
of infinite product:

Gb(x) = ζ̄b

∏∞
n=1(1 − e2πib−1(x−nb−1))∏∞

n=0(1 − e2πib(x+nb))

or after scaling:

Gb(bx) = ζ̄b

∏∞
n=1(1 − e2πixe−2πinb−2))∏∞

n=0(1 − e2πib2(x+n))
. (3.31)

In order to take the limit, we let b2 = ir for real r > 0 (more generally for
Re(r) > 0). With respect to q, this means that we are going “inside the circle”, and
approach q = 1 from the interior of the unit disk.

Let b2 = ir, then we can rewrite the above infinite product as

Gb(bx) = ζ̄b

∏∞
n=1(1 − e2πixe−2πn/r))∏∞

n=0(1 − e−2πr(x+n))
= ζ̄b

(e2πix−2π/r; e−2π/r)∞
(q2x; q2)∞

.

Note that we also have

ζ̄b = e−
πi
4 −πi

12 (b2+b−2) = e−
πi
4 + πr−π/r

12 . (3.32)
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When r → 0+, the term

(e2πix−2π/r; e−2π/r)∞ → 1.

On the other hand, the denominator resembles that of the q-gamma function:

Γq(x) :=
(q2; q2)∞
(q2x; q2)∞

(1 − q2)−x+1, (3.33)

which is known to converge uniformly to Γ(x) as q → 1 for every compact subset
in C [7].

For the ratio ζ̄b

(q2;q2)∞
, we have the following observation:

Lemma 3.10. We have the limit

lim
r→0+

ζ̄b√−i|b|(q2; q2)∞
= lim

r→0+
e−

πi
4

e
πr−π/r

12√−i√r(q2; q2)∞
= 1, (3.34)

where we denote e−
πi
4 by

√−i.

Proof. Let

η(ir) := e−
πr
12 (q2; q2)∞ (3.35)

be the Dedekind eta function. Then from the well-known functional equation:

η(−τ−1) =
√−iτη(τ), (3.36)

substituting τ = ir, we have:

η

(
i

r

)
=

√
rη(ir),

e−
π

12r (e−
2π
r ; e−

2π
r )∞ = e−

πr
12
√
r(q2; q2)∞,

e
πr−π/r

12√
r(q2, q2)∞

= (e−
2π
r ; e−

2π
r )−1

∞

and taking the limit r → 0+, we have

lim
r→0+

(e−
2π
r ; e−

2π
r )∞ = 1

as required.

Finally, combining with the obvious limit:

lim
r→0+

|b|2
1 − q2

= lim
r→0+

r

1 − e−2πr
=

1
2π
, (3.37)

we have the following theorem.

Theorem 3.11. The following limit holds for b2 = ir → i0+:

lim
r→0+

(2πb)Gb(bx)
(−2πib2)x

= Γ(x), (3.38)
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where (−2πib2) = 2πr > 0, hence the denominator is well-defined. By the properties
of the convergence of Γq(x), the limit converges uniformly for every compact subset
in C. This gives another proof of a similar limit first observed in [20].

A similar analysis shows that

lim
r→0

(2πb)Gb(Q+ bx)
(−2πib2)x+1

= (1 − e2πix)Γ(x + 1). (3.39)

Proposition 3.12. The two limits (3.38) and (3.39) are compatible with the
reciprocal relations

Gb(x)Gb(Q− x) = eπix(x−Q),

Γ(x)Γ(1 − x) =
π

sin(πx)
.

Proof. We have

1 = Gb(bx)Gb(Q− bx)e−πibx(bx−Q)

=
(

(2πb)Gb(bx)
(−2πib2)x

)(
(2πb)Gb(Q− bx)
(−2πib2)−x+1

)
(−2πib2)
(2πb)2

e−πibx(bx−Q)

→ Γ(x)Γ(1 − x)(1 − e2πix)
−i
2π
eπix

=
π

sin(πx)
eπix − e−πix

2πi

= 1,

where we used

e−πibx(bx−Q) = e−πix(b2x−b2−1) = e−πixr(x−1)eπix → eπix.

4. q-Intertwiners

We begin with the definition of the quantum plane that is used in [6].

Definition 4.1. The quantum plane Bq for |q| = 1 is generated by two positive
self-adjoint operators X,Y such that

XY = q2Y X

in the sense of [22], i.e.

X isY it = q−2stY itX is, (4.1)

for every s, t ∈ R as relations between unitary operators. The coproduct is given by

∆X = X ⊗X, (4.2)

∆Y = Y ⊗X + 1 ⊗ Y. (4.3)
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In [6], this is realized by X = e−2πbp and Y = e2πbx, where p = 1
2πi

∂
∂x , acting

as unbounded positive self-adjoint operators on H = L2(R), such that

X · f(x) = f(x+ ib), (4.4)

Y · f(x) = e2πbxf(x), (4.5)

which is well-defined for functions in the core W ⊂ L2(R) (cf. Definition 2.4). We
remark that Bq is “dual” to the quantum plane Aq generated by A,B defined in
the Sec. 6, due to the different coproducts.

In the study of tensor products of representations, the operators act by the
coproduct (4.2), (4.3). It was shown in [6] that there is a quantum dilogarithm
transform that gives a unitary equivalence as representations of Bq:

H1 ⊗H2 � M⊗H, (4.6)

where M = L2(R) is the parametrization space (or the multiplicity module), and
carries the trivial representation.

Proposition 4.2. The quantum dilogarithm transform is defined on f, φ ∈ W ⊗
W by

φ(α, x) =
∫

R

∫
R−i0

⌊
α x

x1 x2

⌋
f(x1, x2)dx2dx1, (4.7)

f(x1, x2) =
∫

R−i0

∫
R

⌈
α x

x1 x2

⌉
φ(α, x)dαdx. (4.8)

Here the integration kernel is given by:⌊
α x

x1 x2

⌋
= e2πiα(x−x1)ER(x − x1, x2 − x1), (4.9)

⌈
α x

x1 x2

⌉
= e−2πiα(x−x1)EL(x2 − x1, x− x1), (4.10)

where

ER(z, w) = e2πizwSR(z − w), (4.11)

EL(z, w) = e−2πizwSL(z − w), (4.12)

and

SR(z) = G(z − ia)eiχ+ π
2 (z−ia)2 , (4.13)

SL(z) = G(z − ia)e−iχ−π
2 (z−ia)2 , (4.14)

where χ = π
24 (b2 + b−2). The contour for x2 goes below the pole at x2 = x, and the

contour for x goes below the pole at x = x2.
The integral transforms are unitary, hence they extend to the whole of H1⊗ H2

and M⊗H, respectively.
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Here the function G(z) = G(b, b−1; z) is the Ruijsenaars’s definition of the quan-
tum dilogarithm [21], and is given by

G(z) = exp
(
i

∫ ∞

0

dy

y

(
sin(2yz)

2 sinh(by) sinh(b−1y)
− z

y

))
. (4.15)

The relation between G(z) and Gb(z) is given by (cf. [11])

G(b, b−1, x) = eπix2/2eπiQ2/8Gb

(
Q

2
− ix

)
. (4.16)

Proposition 4.3. In terms of Gb(x), we have:⌊
α x

x1 x2

⌋
= ζ̄be

2πi(x−x1)(x2−x1+α)eπi(x2−x)2eπQ(x−x2)Gb(ix2 − ix)

= ζ̄b
e2πi(x−x1)(x2−x1+α)

Gb(Q+ ix− ix2)
, (4.17)⌈

α x

x1 x2

⌉
= ζbe

−2πi(x−x1)(x2−x1+α)Gb(ix− ix2), (4.18)

where

ζb = e
πi
4 + πi

12 (b2+b−2), ζ̄b = e−
πi
4 −πi

12 (b2+b−2).

5. Classical Limit of q-Intertwiners

In this section, we will compare the quantum dilogarithm transformation defined in
the previous section, and the classical ax+ b group intertwiners studied in Sec. 2.2,
and show that they correspond to each other under the limiting procedures sug-
gested in Sec. 3.2.

5.1. Fourier transform of the q-intertwiners

In order to compare with the classical case, we need to take the Fourier transform
of the actions on both function spaces H1 ⊗ H2 and M ⊗ H. In order to do this
correctly, it turns out that we need to modify the kernel by⌊

α x

x1 x2

⌋
∗

:=
ζ̄be

−πi(x−x1)
2

Gb(Q
2 + iα)

⌊
α x

x1 x2

⌋
, (5.1)

and ⌈
α x

x1 x2

⌉
∗

:= ζbe
πi(x−x1)

2
Gb

(
Q

2
+ iα

)⌊
α x

x1 x2

⌋
. (5.2)

The extra factors depend only on α and (x − x1), hence the integral kernels
are still intertwiners. Note that Gb(Q

2 + iα) is unitary by the complex conjugation
property, so that the intertwiners are still unitary operators.
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Now consider the effects of these intertwining maps on the Fourier transformed
functions:

F : φ(α, x) 
→ φ(λ, t) :=
∫∫

R2
e2πiαxe2πitxφ(α, x)dαdx, (5.3)

F : f(x1, x2) 
→ f(t1, t2) :=
∫∫

R2
e2πit1x1e2πit2x2f(x1, x2)dx1dx2. (5.4)

We will use the same symbols φ, f to denote the Fourier transformed functions.

Theorem 5.1. Under the Fourier transform, the intertwining maps defined in
Proposition 4.2 on f, φ ∈ W ⊗W become:

F(Φ)(f) := φ(λ, t) =
∫

C

Gb(it2 − it+ iλ)Gb(−it2 − iλ)
Gb(−it)

· eπiλ(λ−2t+2t2)f(t− t2, t2)dt2, (5.5)

F(Φ−1)(φ) := f(t1, t2) =
∫

C′

Gb(−iλ+ it1)Gb(iλ+ it2)
Gb(it)

· eπiλ(λ+2t2)e−2πit1t2φ(λ, t1 + t2)dλ, (5.6)

where C is the contour going along R that goes above the poles of Γb(−it2− iλ) and
below the poles of Γb(it2− it+ iλ), and similarly C′ is the contour along R that goes
above the poles of Γb(−iλ+ it1) and below the poles of Γb(iλ+ it2).

Hence formally we can write the above transformations as integral
transformations:

φ(λ, t) =
∫∫

F
⌊
λ t

t1 t2

⌋
∗
f(t1, t2)dt1dt2, (5.7)

f(t1, t2) =
∫∫

F
⌈
λ t

t1 t2

⌉
∗
φ(λ, t)dλdt, (5.8)

where the kernels are expressed as

F
⌊
λ t

t1 t2

⌋
∗

= δ(t1 + t2 − t)
Gb(−it1 + iλ)Gb(−it2 − iλ)

Gb(−it) eπiλ(λ−2t1), (5.9)

F
⌈
λ t

t1 t2

⌉
∗

= δ(t− t1 − t2)
Gb(−iλ+ it1)Gb(it2 + iλ)

Gb(it)
eπiλ(λ+2t2)e−2πit1t2 .

(5.10)

They are still intertwiners with respect to the Fourier transformed quantum plane

X̂ = e2πbx Ŷ = e2πbp (5.11)

with the same coproduct.

1350031-21

In
t. 

J.
 M

at
h.

 2
01

3.
24

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
SI

N
G

H
U

A
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/2
3/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

April 22, 2013 18:26 WSPC/S0129-167X 133-IJM 1350031

I. C.-H. Ip

Proof. The intertwining properties are clear, since Ŷ ⊗ X̂ are commutative with
respect to t1, t2, and Fourier transformation is linear, hence it preserves the action of

∆Ŷ = Ŷ ⊗ X̂ + 1 ⊗ Ŷ .

The delta distribution explains the intertwining property for ∆X̂ = X̂ ⊗ X̂ explic-
itly.

We will calculate the integral transform using the Fourier transform property
(Lemma 3.5) and tau–beta integral (Lemma 3.6) repeatedly. Similar to the classical
case, the Fourier transformed action is given by F ◦Φ◦F−1 where Φ is the quantum
dilogarithm transform defined in Proposition 4.2.

First we take the (inverse) Fourier transform of f(t1, t2):

(F−1f)(x1, x2) =
∫∫

R2
e−2πit1x1e−2πit2x2f(t1, t2)dt2dt1,

applying the quantum dilogarithm transformation Φ:∫
R

∫
R−i0

∫∫
R2

ζ̄2
b e

−πi(x−x1)
2

Gb(Q
2 + iα)

e2πi(x−x1)(x2−x1+α)

Gb(Q+ ix− ix2)

· e−2πit1x1e−2πit2x2f(t1, t2)dt2dt1dx2dx1,

and take the Fourier transform back to the target space L2(R2, dλdt) to obtain

φ(λ, t) =
∫∫

R2

∫
R

∫
R−0

∫∫
R2

ζ̄2
b e

−πi(x−x1)
2

Gb(Q
2 + iα)

e2πi(x−x1)(x2−x1+α)

Gb(Q+ ix− ix2)

· e−2πit1x1e−2πit2x2e2πitxe2πiλαf(t1, t2)dt2dt1dx2dx1dxdα. (5.12)

The integrand is absolutely convergent in t1 and t2 because f(t1, t2) ∈ W⊗ W.
With respect to x2, using the asymptotic properties for Gb, we see that the absolute
value of the integrand has the growth{

e2πIm(t2)x2 x2 → −∞,

e−πQx2e2πIm(t2)x2 x2 → +∞.

Hence it is absolutely convergent for

0 < Im(t2) <
Q

2
,

and we can interchange the order of integration to obtain

φ(λ, t) =
∫

R5

∫
R−i0

ζ̄2
b e

−πi(x−x1)
2

Gb(Q
2 + iα)

e2πi(x−x1)(x2−x1+α)

Gb(Q+ ix− ix2)

· e−2πit1x1e−2πit2x2e2πitxe2πiλαdx2f(t1, t2)dt2dt1dx1dxdα.

Now substitute x2 by x− x2, we obtain

=
∫

R5

∫
R+i0

ζ̄2
b

e−πi(x−x1)
2
e2πi(x−x1)(x−x2−x1+α)

Gb(Q
2 + iα)Gb(Q+ ix2)

· e−2πit1x1e−2πi(x−x2)t2e2πitxe2πiλαf(t1, t2)dt2dt1dx1dx2dxdα.
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The relevant exponential with respect to x2 is

e2πix2(x1+t2−x),

hence using Lemma 3.5, integrating over x2 with r = x1 + t2 − x − iQ/2, the
integrand becomes

= ζ̄b
Gb(ix− it2 − ix1)

Gb(Q
2 + iα)

e−πi(x−x1)
2
e2πi(x−x1)(x−x1+α)e−2πit1x1

· e−2πixt2e2πitxe2πiλαf(t1, t2)

= ζ̄b
Gb(ix− it2 − ix1)

Gb(Q
2 + iα)

eπi(x−x1)
2
e2πi(x−x1)αe−2πit1x1e−2πixt2e2πitxe2πiλαf(t1, t2).

Now the absolute value of this integrand with respect to x1 has asymptotics{
e2πIm(t1)x1 x1 → −∞,

e−πQx1e2π(Im(t1)+ Im(t2))x1 x1 → +∞.

Hence the integral with respect to x1 is absolutely convergent when

Im(t1) > 0, Im(t1 + t2) <
Q

2
.

So we now have

φ(λ, t) =
∫

R5
ζ̄b
Gb(ix− it2 − ix1)

Gb(Q
2 + iα)

eπi(x−x1)
2
e2πi(x−x1)α

· e−2πit1x1e−2πixt2e2πitxe2πiλαf(t1, t2)dx1dt2dt1dxdα.

Substitute x1 by −x1 − t2 + x, we obtain

=
∫

R4

∫
R−iIm(t2)

ζ̄b
Gb(ix1)

Gb(Q
2 + iα)

eπi(x1+t2)2e2πi(x1+t2)αe−2πit1(x−t2−x1)

· e−2πixt2e2πitxe2πiλαf(t1, t2)dx1dt2dt1dxdα.

The relevant exponential with respect to x1 is

e−2πix1(−t1−t2−α)eπix2
1 ,

hence using Lemma 3.5, integrating over x1 (valid since Im(t2) > 0) with r =
−t1 − t2 − α, the integrand becomes:

Gb(Q
2 + it1 + it2 + iα)

Gb(Q
2 + iα)

eπit22e2πit2αe2πit1t2e−2πix(t1+t2−t)e2πiλαf1(t1)f2(t2).

Now we can simplify the integration with respect to t1 and x using the factor
e−2πix(t1+t2−t), which is just a Fourier transform and its inverse, to obtain

φ(λ, t) =
∫∫

R2

Gb(Q
2 + it+ iα)

Gb(Q
2 + iα)

eπit22e2πit2αe2πi(t−t2)t2e2πiλαf(t− t2, t2)dt2dα.
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Now the absolute value of the integrand has asymptotics{
e2πIm(t)α α→ −∞,

e−2πIm(t2)α α→ +∞.

Hence it is absolutely convergent when Im(t) > 0. We do the final interchange of
order of integration and integrate with respect to α:

φ(λ, t) =
∫∫

R2

Gb(Q
2 + it+ iα)

Gb(Q
2 + iα)

eπit22e2πit2αe2πi(t−t2)t2e2πiλαf(t− t2, t2)dαdt2

Shifting the contour of α by α→ α− iQ
2 we get

=
∫

R

∫
R+i0

Gb(Q+ it+ iα)
Gb(Q+ iα)

eπit22e2πit2αeπt2Qe2πi(t−t2)t2e2πiλαeπλQ

· f(t− t2, t2)dαdt2.

The relevant exponential for α is

e−2πα(−it2−iλ),

therefore using the tau–beta integral (Lemma 3.6) again, the integrand becomes:

Gb(Q+ it)Gb(−it2 − iλ)
Gb(Q+ it− it2 − iλ)

eπit22eπt2Qe2πi(t−t2)t2eπλQf(t− t2, t2).

Finally using the reflection property Gb(x)Gb(Q− x) = eπix(x−Q), we obtain

Gb(it2 − it+ iλ)Gb(−it2 − iλ)
Gb(−it) eπiλ(λ−2t+2t2)f(t− t2, t2).

Therefore, we have the expression

φ(λ, t) =
∫

R+ic2

Gb(it2 − it+ iλ)Gb(−it2 − iλ)
Gb(−it) eπiλ(λ−2t+2t2)f(t− t2, t2)dt2,

valid for 0 < c2 <
Q
2 and Im(t) > 0.

By a shift of contour on t2 so that it goes below the pole at t2 = t−λ and above
the poles at t2 = −λ, the expression can be analytically continued to t ∈ R, hence
we can rewrite the expression as

φ(λ, t) =
∫

C

Gb(it2 − it+ iλ)Gb(−it2 − iλ)
Gb(−it)

· eπiλ(λ−2t+2t2)f(t− t2, t2)dt2 ∈ M⊗H
with the desired contour.

Working formally, for the kernel F
⌈

λ t
t1 t2

⌉
∗
, the target space is L2(R2, dλdt) and

the domain space is L2(R2, dt1dt2). Since Fourier transform of complex conjugation
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is the complex conjugation of the inverse Fourier transform, F
⌈

λ t
t1 t2

⌉
∗

is just the

complex conjugation of F
⌊

λ t
t1 t2

⌋
∗
. Hence we have

F
⌈
λ t

t1 t2

⌉
∗

= δ(t1 + t2 − t)
Gb(−iλ+ it1)Gb(it2 + iλ)

Gb(it)
e−πiλ(λ−2t1)

· eπi(−it1+iλ)(Q+it1−iλ)eπi(it2+iλ)(Q−it2−iλ)e−πi(it1+it2)(Q−it1−it2)

= δ(t1 + t2 − t)
Gb(−iλ+ it1)Gb(it2 + iλ)

Gb(it)
eπiλ(λ+2t2)e−2πit1t2 .

Alternatively, we can work through the integrations as in the proof above
using similar techniques of interchanging orders of integration and shifting of
contours.

5.2. Classical limit

We are now ready to compare the quantum intertwiners from Theorem 5.1 with
the classical intertwiners from Proposition 2.8.

Theorem 5.2. Under a suitable rescaling, as b2 → i0+, or more generally, as
q → 1 from inside the unit disk, the quantum intertwining operator has a limit
toward the classical intertwining transformation given by Proposition 2.8.

Proof. The contour of integration is the same for the quantum and the classical
intertwining transform. Therefore it suffices to do the limit formally for the inter-
twiners. First of all we need to rescale the function space H = L2(R) by b on all
the variables (including the parameter λ). More precisely, before taking the limit,
b ∈ R>0 and we apply the unitary transformation

B : L2(R, dx) → L2(R, bdx),
f(x) 
→ f(bx)

(5.13)

on each variable. Hence the kernel under this transformation is now given by

b2F
⌊
bλ bt

bt1 bt2

⌋
∗

= b2δ(b(t1 + t2 − t))
Gb(−ibt1 + ibλ)Gb(−ibt2 − ibλ)

Gb(−ibt) eπib2λ(λ−2t1)

=
bδ(t1 + t2 − t)

2πb
(2πb)Gb(−ibt1 + ibλ)

(−2πib2)−it1+iλ

(2πb)Gb(−ibt2 − ibλ)
(−2πib2)−it2−iλ

· (−2πib2)−it1−it2

(2πb)Gb(−ibt1 − ibt2)
eπib2λ(λ−2t1).

Now treating this integral transformation kernel formally depending on b, we take
the limit using Theorem 3.11 and obtain

→ δ(t1 + t2 − t)
2π

Γ(−it1 + iλ)Γ(−it2 − iλ)
Γ(−it1 − it2)

=
1
2π
δ(t1 + t2 − t)

Γ(−it1 + iλ)Γ(−it2 − iλ)
Γ(−it) ,
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which is precisely the classical intertwiner
⌊

λ t
t1 t2

⌋
classical

.
Similarly, we have

b2F
⌈
bλ bt

bt1 bt2

⌉
∗
→ 1

2π
δ(t1 + t2 − t)

Γ(−iλ+ it1)Γ(it2 + iλ)
Γ(it)

=
⌈
λ t

t1 t2

⌉
classical

.

Therefore, we conclude that the quantum dilogarithm transform between tensor
product representations of the quantum planes, is in a certain sense a quantized
version of the intertwiners of the tensor product representations of the classical
ax+b group. This method of rescaling by the parameter b is essentially the key step
in obtaining information of the classical counterpart from the quantum modular
double, which does not have a direct classical limit due to the dual number Q =
b+ b−1 appearing in the transformations.

6. Corepresentation

In order to compare the classical representation of the ax + b group, and shed
light on what kind of intertwiners the above transforms are, as explained in the
introduction we need to find a corepresentation of the quantum plane Aq generated
by positive self-adjoint elements A,B with AB = q2BA, |q|=1, dual to Bq, with
the same coproduct given by

∆(A) = A⊗A, ∆(B) = B ⊗A+ 1 ⊗B.

The corepresentation should possess a limit that goes to the classical representa-
tion. Since the action of Bq above is a left action, we expect to obtain a right
corepresentation of Aq.

The basic idea is to define a C∗-algebra C∞(Aq) of “functions vanishing at
infinity” of the quantum plane Aq. The technical details are given in [9]. Here we
will briefly recall the motivation and its construction.

6.1. Algebra of continuous functions vanishing at infinity

Before defining C∞(Aq), let’s look at the classical ax + b group again. Denote the
group by G and the positive semigroup by G+ = {(a, b)|a > 0, b > 0}.

Consider the restriction of a rapidly decreasing analytic function f(a, b) of G,
to the semigroup G+. Then the function is continuous at b = 0, hence it has at
most O(1) growth as b→ 0+.

Hence using the Mellin transform, we can write

f(a, b) =
∫ i∞

−i∞

∫ c+i∞

c−i∞
F (s, t)a−sb−tdtds, (6.1)

where c > 0 and

F (s, t) =
1

(2π)2

∫ ∞

0

∫ ∞

0

f(a, b)as−1bt−1dadb (6.2)

1350031-26

In
t. 

J.
 M

at
h.

 2
01

3.
24

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
SI

N
G

H
U

A
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/2
3/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

April 22, 2013 18:26 WSPC/S0129-167X 133-IJM 1350031

The Classical Limit of Representation Theory of the Quantum Plane

is entire analytic with respect to s, and holomorphic on Im(t) > 0. According to
Proposition 2.3, F (s, t) has rapid decay in s, t in the imaginary direction, and can be
analytically continued to Im(t) ≤ 0 such that it is meromorphic with simple poles.
Since the function f(a, b) is analytic at b = 0, the analytic structure of f(a, b) on b
is given by

∑∞
k=0 Akb

k for some constant Ak, hence according to Proposition 2.3,
F (s, t) has possible simple poles at t = −n for n = 0, 1, 2, . . . .

Therefore (changing the integration to the real axis), we conclude the following
proposition.

Proposition 6.1. The continuous functions of G+, continuous at b = 0 and van-
ishing at infinity, is given by

C∞(G)|G+ = sup norm closure of A∞(G+),

where

A∞(G+) := Linear span of
{∫

R

∫
R+i0

f1(s)f2(t)aisbitdsdt

}
(6.3)

for f1(s) entire analytic in s, f2(t) meromorphic in t with possible simple poles
at t ∈ −in, n = 0, 1, 2, . . . , and for fixed v > 0, both the function f1(s + iv) and
f2(t+ iv) is of rapid decay.

Note that this also coincides with

C∞(G)|G+ = sup norm closure of {g(log a)f(b)|g ∈ C∞(R); f ∈ C∞[0,∞)},
where C∞ denote functions vanishing at infinity.

We can also introduce an L2 norm on functions of G+ given by

‖f(a, b)‖2 =
∫

R

∫
R+ 1

2 i

|f1(s)f2(t)|2dtds (6.4)

according to the Parseval’s formula for the Mellin transform.
Due to the appearance of the quantum dilogarithm functionGb(iz) in the expres-

sion of the corepresentation in the next section, following the same line above, we
define C∞(Aq) as follows.

Definition 6.2. The C∞(Aq) space is the (operator) norm closure of A∞(Aq)
where

A∞(Aq) := Linear span of
{∫

R

∫
R+i0

f1(s)f2(t)Aib−1sBib−1tdsdt

}
(6.5)

for f1(s) entire analytic in s, f2(t) meromorphic in t with possible simple poles at

t = −ibn− i
m

b
, n,m = 0, 1, 2, . . .

and for fixed v > 0, the function f1(s+ iv) and f2(t+ iv) is of rapid decay. To define
the norm, we realize Aib−1sf(x) = e2πisf(x) and Bib−1tf(x) = e2πipf(x) = f(x+1)
as unitary operators on L2(R), so that C∞(Aq) is generated by bounded operators.
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Note that in the language of [29], the generators A and B are affiliated with
C∞(Aq). As discussed in [9], we can also introduce an L2-norm given by

‖f(A,B)‖2 =
∫

R

∫
R+ iQ

2

|f1(s)f2(t)|2dtds, (6.6)

where Q = b + b−1. However, we will focus on the C∗-theory in the remaining
sections.

Remark 6.3. The above space A∞(Aq) can be rewritten, according to the Mellin
transform, as

A∞(Aq) := Linear span of {g(logA)f(B)},
where g(x) is entire analytic in x and for every fixed v, g(x+ iv) is of rapid decay
in x; f(y) is a smooth function in y of rapid decay such that it admits a Puiseux
series representation

f(y) ∼
∞∑

n,m=0

αmny
n+m/b2 (6.7)

at y = 0.
Recall that the modular double elements [3] are given by non-integral power

Ã = A
1

b2 B̃ = B
1

b2 .

Together with the fact that g(x) is entire analytic in logA, it suggests that the space
A∞(Aq) actually includes “A∞ functions” on the space of the modular double Aqeq

as well. See [9] for further details.

6.2. Multiplicative unitary

Given a C∗-algebra A considered as a subspace of bounded operators B(H) on H,
we will denote by

M(A) = {B ∈ B(H)|BA ⊂ A,AB ⊂ A}
the multiplier algebra of A viewed as a subset of B(H), and we let K(H) ⊂ B(H)
denotes the compact operators acting on H.

Multiplicative unitaries are fundamental to the theory of quantum groups in
the setting of C∗-algebras and von Neumann algebras. It is one single map that
encodes all structure maps of a quantum group and of its generalized Pontryagin
dual simultaneously [25]. In particular, we can construct out of the multiplicative
unitary a coproduct as well as a corepresentation of the quantum group. Here, we
recall the basic properties of the multiplicative unitary, and the construction of the
multiplicative unitary defined in [29] on the ax+b quantum group A (see also [19]).

Definition 6.4. A unitary element W ∈ A ⊗ A is called a multiplicative unitary
if it satisfies the pentagon equation

W23W12 = W12W13W23. (6.8)
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A multiplicative unitary provides us with the coproduct of the multiplier Hopf
algebra:

∆ : A →M(A⊗A)

given by

∆(c) = W (c⊗ 1)W ∗, c ∈ A. (6.9)

Proposition 6.5. The pentagon equation (6.8) implies the coassociativity of the
coproduct defined by (6.9).

By representing the first copy of A in W as bounded operator on a Hilbert space
H, we obtain a unitary element V ∈M(K(H)⊗A) which represents a (right) corep-
resentation H → H⊗M(A). More precisely, we have the following proposition.

Proposition 6.6. The unitary element V ∈M(K(H) ⊗A) satisfies

(1 ⊗ ∆)V = V12V13 (6.10)

or formally

(1 ⊗ ∆) ◦ Π = (Π ⊗ 1) ◦ Π, (6.11)

where ∆ is given by (6.9) and Π : H → H⊗M(A) is given by

Π(v) := V (v ⊗ 1). (6.12)

We will now focus on the case where A = C∞(Aq) is the quantum plane C∗-
algebra. Using the notations from [29], we have the following.

Proposition 6.7 ([29]). Consider the quantum plane C∞(Aq) generated by posi-
tive self-adjoint elements A,B affiliated with A, with AB = q2BA in the sense of
Definition 6.2, with coproduct defined on the generators

∆(A) = A⊗A, ∆(B) = B ⊗A+ 1 ⊗B. (6.13)

Then the multiplicative unitary W is given by:

W = Vθ(log(B̂ ⊗ sq−1BA−1))∗e
i
�

log bA⊗log A−1 ∈ C∞(Aq) ⊗ C∞(Aq), (6.14)

where q = e−i�, θ = 2π
�
, the admissible pair B̂ := B−1 and Â := qAB−1, and

s ∈ R>0 is a constant. Note that in our case � = 2πb2.
Here the special function Vθ(z) is defined as

Vθ(z) = exp
{

1
2πi

∫ ∞

0

log(1 + a−θ)
da

a+ e−z

}
. (6.15)

Lemma 6.8. Vθ(z) and Gb(z) are related by the following formula:

V1/b2 (z) = ζbGb

(
Q

2
− iz

2πb

)
=

1
gb(ez)

, (6.16)
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and the complex conjugation is given by

V1/b2 (z)∗ =
ζ̄b

Gb(Q
2 − iz

2πb )
= gb(ez), (6.17)

where we recall ζb = e
πi
4 + πi

12 (b2+b−2).

Proof. In order to rewrite Vθ(z) in terms of Gb(z), we pass to Ruijsenaars’s more
general hyperbolic gamma function (4.15). From [21, (A.18)], we have

Vθ(z) = G(2π, 2π/θ; z) exp
(
−iθz2/8π − πi

24

(
θ +

1
θ

))
with θ = 2π

�
= 1

b2 .
Also using

G(a+; a−; z) = G

(
1,
a+

a−
;
z

a−

)
and (4.16):

G(b, b−1, z) = eπiz2/2eπiQ2/8Gb

(
Q

2
− iz

)
we obtain

V1/b2(z) = ζbGb

(
Q

2
− iz

2πb

)
and the complex conjugation

V1/b2(z)∗ =
ζ̄b

Gb(Q
2 − iz

2πb )
.

Remark 6.9. Since we are using the “transpose” of A in [29], our W is related to
that in [29] by

A = a−1, B = −qba−1,

i.e. they are related by the antipode associated to A. Furthermore, the choice of the
multiplicative unitary is different from [9], in which there we used instead the GNS
representations to obtain the canonicalW . In particular,W is not manageable in the
current setting as pointed out in [29], and furthermore the result from Proposition
6.26 below is different from that of [9]. It turns out that this discrepancy leads to a
new functional relation between the quantum dilogarithm function Gb(x) discussed
in the last section of [9].

6.3. Corepresentation of C∞(Aq)

We can now define the coaction of the quantum space C∞(Aq):

Theorem 6.10. For the choice s = 2 sinπb2 ∈ R+, the multiplicative unitary W
defined in (6.14) induces a unitary (right) coaction of the quantum space C∞(Aq)
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on H = L2(R) by

Π : H → H⊗M(C∞(Aq)),

f(t) 
→ F (x) :=
∫

R+i0

f(t)eπQ(t−x) Gb(ix− it)
(2 sinπb2)ib−1(x−t)

(6.18)

·Aib−1xBib−1(t−x)dt,

where f(z) ∈ W , and extends to H by density.

Remark 6.11. The choice of s is made so that we will obtain classical limit from
Gb, as well as the necessary pairing in order to get the representation of Bq in the
next subsection.

Proof. The element W can be reinterpreted as an element

V ∈M(K(H) ⊗ C∞(Aq)) (6.19)

by letting Â, B̂ act on H = L2(R), hence giving rise to a corepresentation of
C∞(Aq). We start with A = e2πbx, B = e2πbp, so that the action is given by

Â = qAB−1 = qe2πbxe−2πbp = e2πb(x−p), (6.20)

B̂ = B−1 = e−2πbp. (6.21)

However, the action is nontrivial in the factor

e
i

2πb2
log bA⊗log A.

Hence, we introduce a change of variables (of order 3) on L2(R) given by Kashaev
[13, 6]:

Ã : f(α) 
→ F (β) =
∫

R

e2πiαβeπiβ2−πi/12f(α)dα (6.22)

such that

Ã−1xÃ = −p,
Ã−1pÃ = x− p.

Then the operator Â and B̂ becomes:

Ã−1ÂÃ = e−2πbx, (6.23)

Ã−1B̂Ã = e2πb(−x+p) = qe−2πbxe2πbp. (6.24)

Hence given a function f(x) ∈ L2(R), we have

e
i

2πb2
log bA⊗log A−1

f(x) = e
i

2πb2
(−2πbx) log A−1

f(x)

= f(x)Aib−1x.

1350031-31

In
t. 

J.
 M

at
h.

 2
01

3.
24

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
SI

N
G

H
U

A
 U

N
IV

E
R

SI
T

Y
 o

n 
09

/2
3/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

April 22, 2013 18:26 WSPC/S0129-167X 133-IJM 1350031

I. C.-H. Ip

Next we deal with the quantum dilogarithm function Vθ(z). From the Fourier
transform formula (Lemma 3.5), we found from (6.17)

V1/b2(z)∗ =
∫

R+i0

eib−1tzeπQtGb(−it)dt. (6.25)

Hence the operator V (6.19) acts as

(Vf )(x) = V1/b2(log(B̂ ⊗ q−1sBA−1))∗ · (f(x)Aib−1x)

=
(∫

R+i0

(B̂ ⊗ (q−1sBA−1))ib−1teπQtGb(−it)dt
)
· (f(x)Aib−1x)

=
(∫

R+i0

(B̂ib−1t ⊗ (q−1sBA−1)ib−1t)eπQtGb(−it)dt
)
· (f(x)Aib−1x).

Now B̂ formally acts as qe−2πbxf(x− ib), and by induction

B̂nf(x) = qn2
e−2πbnxf(x− ibn).

Hence using functional calculus, B̂ib−1t acts (as a unitary operator) by

B̂ib−1t · f(x) = q−b−2t2e−2πitxf(x+ t) = e−πit2−2πitxf(x+ t).

Next (sq−1BA−1)ib−1t can be split using the relation

(BA−1)n = q−n(n−1)BnA−n,

we have

(sq−1BA−1)ib−1t = sib−1tq−ib−1tqb−2t2+ib−1tBib−1tA−ib−1t

= sib−1teπit2Bib−1tA−ib−1t.

Combining, we obtain

(Vf )(x) =
∫

R+i0

e−πit2−2πitxeπQtq−2txGb(−it)sib−1t

· eπit2Bib−1tA−ib−1tAib−1(x+t)f(x+ t)dt

=
∫

R+i0

eπQte−2πitxGb(−it)sib−1tBib−1tf(x+ t)Aib−1xdt

=
∫

R+i0

f(x+ t)eπQtGb(−it)sib−1tAib−1xBib−1tdt

=
∫

R+i0

f(t)eπQ(t−x)Gb(ix− it)sib−1(t−x)Aib−1xBib−1(t−x)dt.

Now by setting

s = 2 sinπb2 = i(q−1 − q) ∈ R>0
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we obtain

=
∫

R+i0

f(t)eπQ(t−x) Gb(ix− it)
(2 sinπb2)ib−1(x−t)

Aib−1xBib−1(t−x)dt

as desired. We see that the integrand is bounded by the asymptotic properties of
Gb(ix).

Starting from the coaction formula, we can also see that it is a corepresentation
by manipulating the functional properties of the special function Gb(x) directly.

Corollary 6.12. The coaction satisfies

(1 ⊗ ∆) ◦ Π = (Π ⊗ 1) ◦ Π

as a map from H to H ⊗ M(C∞(Aq) ⊗ C∞(Aq)), where we recall that ∆ is the
coproduct of Aq given by

∆(A) = A⊗A,

∆(B) = B ⊗A+ 1 ⊗B

and extend to the multiplier Hopf algebra C∞(Aq) by

∆
(∫

R

∫
R+i0

F (s, t)AisBitdsdt

)
:=
∫

R

∫
R+i0

F (s, t)∆(AisBit)dsdt.

Proof. We check the corepresentation axioms formally.
First note that since A,B are positive self-adjoint, the coproduct ∆(A) and

∆(B) is still positive essentially self-adjoint, hence it is well-defined. (We do not
run into the problem of choosing self-adjoint extension as in [29] since our B is
positive.)

For notational convenience, without loss of generality we scale b−1x and b−1z

to x and z, respectively. We need to calculate the coproduct ∆(AixBiz−ix):

∆(AixBiz−ix) = ∆(A)ix∆(B)iz−ix

= (A⊗A)ix(B ⊗A+ 1 ⊗B)iz−ix

= (Aix ⊗Aix)B
∫

R

dτ

(
z − x

τ

)
b

(B ⊗A)iz−ix−iτ (1 ⊗B)iτ

= b

∫
C

dτ
Gb(ibτ − ibz + ibx)Gb(−ibτ)

Gb(ibx− ibz)
(AixBiz−ix−iτ ) ⊗ (Aiz−iτBiτ )

= b

∫
C

dτ
Gb(ibτ + ibx)Gb(−ibz − ibτ)

Gb(ibx− ibz)
(AixB−ix−iτ ) ⊗ (A−iτBiτ+iz),
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where the contour C, as before, goes above the poles at τ = −z and below the poles
at τ = −x. Hence we have

(1 ⊗ ∆) ◦ Πf(x) = b2
∫

R+i0

∫
C

f(z)
Gb(ibx− ibz)eπQb(z−x)

(2 sinπb2)ix−iz

· Gb(ibτ + ibx)Gb(−ibz − ibτ)
Gb(ibx− ibz)

(AixB−ix−iτ ) ⊗ (A−iτBiτ+iz)dτdz

= b2
∫

R+i0

∫
C

f(z)eπQb(z−x)

(2 sinπb2)ix−iz
Gb(ibτ + ibx)Gb(−ibz − ibτ)

· (AixB−ix−iτ ) ⊗ (A−iτBiτ+iz)dτdz

= b2
∫

R−i0

∫
R+i0

f(z)eπQb(z−x)

(2 sinπb2)ix−iz
Gb(ibτ + ibx)Gb(−ibz − ibτ)

· (AixB−ix−iτ ) ⊗ (A−iτBiτ+iz)dzdτ

= b2
∫

R+i0

∫
R+i0

f(z)eπQb(z−x)

(2 sinπb2)ix−iz
Gb(ibx− ibw)Gb(ibw − ibz)

· (AixBiw−ix) ⊗ (AiwBiz−iw)dzdw,

where in the change of order of integration, the contour is such that Im(z) > Im(τ)
and Im(τ) < Im(x) = 0, hence the contour of τ after interchanging is shifted to
R−i0. The decay properties of Gb on τ guarantee the change of order of integration.

Finally, we have

(Π ⊗ 1) ◦ Πf(x) = b2
∫

R+i0

∫
R+i0

f(z)
Gb(ibx− ibw)eπQb(w−x)

(2 sinπb2)ix−iw

· Gb(ibw − ibz)eπQb(z−w)

(2 sinπb2)iw−iz
(AixBiw−ix) ⊗ (AiwBiz−iw)dzdw

= b2
∫

R+i0

∫
R+i0

f(z)eπQb(z−x)

(2 sinπb2)ix−iz
Gb(ibx− ibw)Gb(ibw − ibz)

· (AixBiw−ix) ⊗ (AiwBiz−iw)dzdw

= (1 ⊗ ∆) ◦ Πf(x).

After rewriting the coaction explicitly, the relationship between the quantum
corepresentation and the classical ax+ b group representation becomes clear.

Theorem 6.13. Under the scaling by x → bx in the sense of Theorem 5.2, the
limit of the coaction (6.19) is precisely the representation R+ of the ax+ b group.
Similarly, the coaction corresponding to V ∗ is R−.
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Proof. Under the scaling, the coaction becomes

f(x) 
→
∫

R+i0

Gb(ibx− ibz)eπQb(z−x)

(2 sinπb2)ix−iz
AixBiz−ixf(z)dz.

Using the limit formula (3.38) for Gb(ibx), we have:

=
∫

R+i0

(2πb)Gb(ibx− ibz)eπb2(z−x)eπ(z−x)(e−
πi
2 )ix−iz

(−2i sinπb2)ix−iz
AixBiz−ixf(z)dz

=
1
2π

(
πb2

sinπb2

)ix−iz ∫
R+i0

(2πb)Gb(ibx− ibz)
(−2iπb2)ix−iz

eπb2(z−x)Aix(−iB)iz−ixf(z)dz

→ 1
2π

∫
R+i0

Γ(ix− iz)Aix(−iB)iz−ixf(z)dz

= R+f(x).

Taking the conjugate of the above formula and renaming the variables, we see that
the coaction corresponding to V ∗ is precisely R−.

Proposition 6.14 ([29, (4.19)]). The space C∞(Aq) can be recovered from the
multiplicative unitary V ∈M(K(H) ⊗Aq) by

C∞(Aq) = norm closure of {(ω ⊗ 1)V + (ω′ ⊗ 1)V ∗ |ω, ω′ ∈ B(H)∗}. (6.26)

Recall that V corresponds to the representation R+ and similarly V ∗ corre-
sponds to R− under the classical limit. Therefore in the classical “ax + b” group,
the above translates to the fact that the space of C∞ functions on G+ is spanned
by matrix coefficients

1
2π

Γ(−iz)aiw(−ib)iz,
1
2π

Γ(−iz)aiw(ib)iz (6.27)

corresponding to V and V ∗.
In order to understand this more explicitly, note that for functions on G+ of

the form

F (a, b) := g(log a)f(b),

where g ∈ L2(R), f ∈ L2([0,∞)) are analytic, we can write using Fourier trans-
form as

F (a, b) =
∫

R

∫
R

ĝ(s)aisf̂(x)eibxdxds,

and then using formally the Mellin transform for x > 0:

e±ibx =
∫

R+i0

Γ(−it)(±ibx)itdt, (6.28)
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we see that the function F (a, b) can be rewritten as∫
R

∫
R+i0

ĝ(s)f̃+(t)Γ(−it)eπt
2 aisbitdtds

+
∫

R

∫
R+i0

ĝ(s)f̃−(t)Γ(−it)e−πt
2 aisbitdtds, (6.29)

where

f̃±(t) =
∫ ∞

0

f̂(±x)xitdx

is analytic in 0 < Im(t) < 1 and of rapid decay in this strip.
Therefore Proposition 6.26 can be interpreted as a form of “Peter–Weyl” theo-

rem for the quantum group Aq, which says that the space of C∞ functions on Aq

is spanned continuously by matrix coefficients of its unitary corepresentations.

Remark 6.15. One should compare this result with a similar one obtained in
[9], where a different multiplicative unitary W constructed from certain GNS rep-
resentation is used, so that only the canonical representations appear in the L2-
decomposition.

6.4. Pairing and representation of Bq

Recall that given a non-degenerate Hopf pairing 〈 , 〉, from a corepresentation of a
Hopf algebra A, we can construct a corresponding representation of the dual Hopf
algebra B by

B ⊗H 1⊗Π−−−→ B ⊗ (H⊗A) = (B ⊗A) ⊗H 〈 , 〉⊗Id−−−−−→ H.
Let us now define the pairing between the generators (A,B) of Aq and (X,Y )

of Bq as follow:

Definition 6.16. We define

〈A,X〉 = q−2, 〈A, Y 〉 = 0,

〈B,X〉 = 0, 〈B, Y 〉 = −i.
Then they satisfy the coproduct relations with

〈AnBm, X〉 = 〈A,X〉nδm0 = q−2nδm0,

〈AnBm, Y 〉 = 〈An, 1〉〈Bm, Y 〉 = −iδm1.

From this pairing, we can formally extend the pairing to elements in the subclass
of M(C∞(Aq)). Let D denote the image of W under the corepresentation Π to
H⊗M(C∞(Aq)). Then

D ⊂ BC(R) ⊗ E ⊂ BC(R) ⊗F ,
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where BC(R) are bounded continuous functions on R;

E = Linear span of
{
Ais

∫
R+i0

F (t)Bitdt

}
,

where F (t) is the same as in the definition of A∞(Aq): meromorphic with possible
poles at t = −in− im/b2, and of rapid decay along imaginary direction;

F = Linear span of
{
g(logA)

∫
R+i0

F (t)Bitdt

}
,

where F (t) is as above, and g(s) is a bounded function on R that can be analytically
extended to Ims = −2πib2. Then we define the pairing with X and Y by formally
extracting the zeroth and first power of B, respectively. More precisely, we have the
following definition.

Definition 6.17. We define X,Y as elements in the dual space F∗ by〈
i

2π
g(logA)

∫
R+i0

F (t)Bitdt,X

〉
= g(log q2)(Rest=0F (t)),

〈
i

2π
g(logA)

∫
R+i0

F (t)Bitdt, Y

〉
= −i(Rest=−iF (t)).

Theorem 6.18. The representation of Bq on W given by

Bq : W Π−→ BC(R) ⊗F 1⊗〈−,Bq〉−−−−−−→ BC(R),

induced from the corepresentation (6.19) under the above pairing is precisely

X · f(x) = e2πbxf(x),

Y · f(x) = f(x− ib) = e2πbpf(x),

which is the Fourier transformed action of (4.4) and (4.5) defined in [6].

Note that the image of W is actually preserved in W ⊂ BC(R).

Proof. Applying the pairing, and introducing the scaling of b in dz, we obtain for
any f(x) ∈ W :

〈Πf, 1 ⊗X〉 =
〈∫

R+i0

f(z)
Gb(ix− iz)eπQ(z−x)

(2 sinπb2)ib−1(x−z)
Aib−1xBib−1(z−x)dz,X

〉
changing z to bz + x:

=
〈∫

R+i0

f(bz + x)
bGb(−ibz)eπQbz

(2 sinπb2)−iz
Aib−1xBizdz,X

〉
= (−2πi)f(x)q−2(ib−1x)b(Resz=0Gb(−ibz))

= e2πbxf(x),

since limx→0 xGb(x) = 1
2π , hence Resz=0Gb(−ibz) = 1

−2πib .
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So the action for X is

X · f(x) = e2πbxf(x).

For the action of Y we have

〈Πf, 1 ⊗ Y 〉 =

〈∫
R+i0

f(z)
Gb(ix− iz)eπQ(z−x)

(2 sinπb2)ib−1(x−z)
Aib−1xBib−1(z−x)dz, Y

〉

=

〈∫
R+i0

f(bz + x)
bGb(−ibz)eπz(1+b2)

(2 sinπb2)−iz
Aib−1xBizdz, Y

〉
= (−i)(−2πi)f(x− ib)b(−q−1)i(q−1 − q)(Resz=−iGb(−ibz))
= f(x− ib),

where

Resz=−iGb(−ibz) = lim
z→−i

(z + i)Gb(−ibz)

= lim
z→0

zGb(−ibz − b)

= lim
z→0

z
Gb(−ibz)

1 − e2πib(−ibz−b)

=
1

−2πib
1

1 − e−2πib2

=
1

−2πib
1

1 − q−2
.

So the action for Y is

Y · f(x) = f(x− ib)

or Y = e2πbp.

Remark 6.19. If we choose to work with R−, then under the pairing we will get
instead X = e2πbx and Y = −e2πbp, another representation for Bq by negative
operator Y .
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