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In this paper we show by example that there is no uniform 
estimate for the Lp-Minkowski problem. As a result we obtain 
the nonuniqueness of solutions to the problem.
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1. Introduction

We consider the following Lp-Minkowski problem,

det(∇2H + HI) = fHp−1 on Sn, (1.1)
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where H is the support function of a convex body K = KH in the Euclidean space Rn+1, 
I is the unit matrix, f is a given positive function on the unit sphere Sn, and p is a 
constant. The main result of the paper is

Theorem 1.1. For any p ∈ (−n − 1, 0), there exists a positive function f ∈ C∞(Sn) such 
that equation (1.1) admits two different solutions.

To prove Theorem 1.1, we will construct a smooth, positive function f , which is 
radially symmetric in x1, · · · , xn, and also symmetric in xn+1, such that equation (1.1)
has a solution with small volume. By [7] there is another solution whose volume has a 
positive lower bound depending only on n, infSn f and supSn f . Therefore we have two 
different solutions for equation (1.1).

The Lp-Minkowski problem was introduced by Lutwak [16] and has been studied 
by many authors [4,5,7,11,14,15,17–21]. One of the main questions is the uniqueness of 
solutions. In particular, a solution to (1.1) is also a self-similar solution to the Gauss 
curvature flow, of which the uniqueness has been extensively studied.

Denote q = 1 −p. When f ≡ 1, the uniqueness has been obtained in the case q = n for 
all n [9] and in the case n = 2 and q = 1 [1]. When n = 1, q = 1, and f is symmetric with 
respect to the origin, namely f(θ) = f(θ + π), the uniqueness was obtained in [10,13]. 
When q < −n, the uniqueness can be obtained by the maximum principle [7]. One can 
also find some uniqueness results in the case q < 0 for symmetric f in [16]. In the discrete 
case a uniqueness was established for the L0-Minkowski problem in [20].

On the other hand, it is well known that when q = n +2, all ellipsoids with the volume 
of the unit ball are solutions of (1.1) with f ≡ 1. The uniqueness is more delicate in the 
case q > n + 2, at least when n = 1 [3]. In [7] it was shown that the solution may not be 
unique if q ∈ (1, n +2) and is very close to n +2. In contrast to the uniqueness in [10,13]
for n = 1, q = 1, and symmetric f , a surprising nonuniqueness result was discovered in 
[22] for nonsymmetric f , also in the case n = 1, q = 1.

The uniqueness of solutions for the case 0 < q < n + 2 attracted much attentions 
as it is related to the limit shape of Gauss curvature flows of convex hypersurfaces and 
has received considerable investigations. See [1,2,6,8,9] and the above discussion. The 
uniqueness of solutions has been conjectured for a number of special cases, including in 
particular the case f ≡ 1 and q = 1 [12]. Our theorem above shows that for general 
positive function f , there may be more than one solution to (1.1), for all q ∈ (1, n + 2)
and all dimensions n. It implies that the limit shape of anisotropic curvature flows is 
usually not unique.

We will first prove Theorem 1.1 for the case p ∈ (−n − 1, −1) in Sections 2 and 3, 
and then for the case p ∈ [−1, 0) in Section 4. In Section 2 we construct an fε such that 
equation (1.1) has a solution Hε of small volume. Then in Section 3 we show that there 
is a solution to (1.1) of which the volume has a positive lower bound. In Section 4 we 
extend the example to the case p ∈ [−1, 0).
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2. A solution with small volume

Denote δ = n + 2 − q ∈ (0, n + 1). Let

Mε = diag(1, · · · , 1, ε) =
(
I 0
0 ε

)
(2.1)

be a matrix, where 0 < ε ≤ 1 is a small constant and as before I is the unit n ×n matrix.
Consider the equation

det(∇2h + hI)(x) = |Mεx|−δ, x ∈ Sn. (2.2)

Equation (2.2) is just the classical Minkowski problem. As its right hand side satisfies 
the necessary condition 

∫
Sn xk|Mεx|−δ = 0 for all 1 ≤ k ≤ n + 1, there is a solution, 

which is unique up to translation, to the equation.
Let hε be the unique solution to (2.2) such that the centre of the associated convex 

body Khε
is located at the origin. Note that hε is radially symmetric in x1, · · · , xn and 

symmetric in xn+1. Define

Hε(x) = (detMε)
2

n+q ·
∣∣M−1

ε x
∣∣ · hε

(
M−1

ε x∣∣M−1
ε x

∣∣
)
, (2.3)

then Hε is the support function of a convex body KHε
, and KHε

can be obtained from 
Khε

by making the coordinate transform x → M−1
ε x and then making a dilation x →

(detMε)
2

n+q x.

Lemma 2.1. The function Hε satisfies the equation

det(∇2Hε + HεI) = ĥq
ε

Hq
ε

on Sn, (2.4)

where

ĥε(x) = hε

(
M−1

ε x∣∣M−1
ε x

∣∣
)
. (2.5)

Proof. Let

uε(x) =
∣∣Mε

−1x
∣∣ · hε

(
Mε

−1x∣∣Mε
−1x

∣∣
)
. (2.6)

By the invariance of the quantity hn+2
ε det(∇2hε + hεI) under unimodular affine trans-

formations, see Proposition 7.1 in [7] or formula (2.12) in [15], we have

det(∇2uε + uεI)(x) = det(∇2hε + hεI)
(

M−1
ε x
−1

)
· (detM−1

ε )2
−1 n+2 .
|Mε x| |Mε x|
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Here we note that M−1
ε is not a unimodular transformation. Since hε satisfies equation 

(2.2), we have

det(∇2uε + uεI)(x) = |M−1
ε x|δ · (detM−1

ε )2

|M−1
ε x|n+2

= 1
(detMε)2|M−1

ε x|q
. (2.7)

Therefore by the definition of Hε, (2.3), one gets

det(∇2Hε + HεI)(x) = (detMε)
2n

n+q det(∇2uε + uεI)(x)

= 1
(detMε)

2q
n+q

∣∣M−1
ε x

∣∣q
= ĥq

ε

Hq
ε
. �

To estimate the volume of the convex body KHε
, one needs to study the convex body 

Khε
, or equivalently the support function hε. When δ ∈ (0, n), we have the following 

uniform estimates.

Lemma 2.2. When 2 < q < n + 2, there exists a positive constant C, independent of 
ε ∈ (0, 1], such that

C−1 ≤ hε ≤ C on Sn. (2.8)

Proof. One can easily see that the area of ∂Khε
is uniformly bounded from above. In 

fact, since

|Mεx| ≥
√

1 − x2
n+1 ∀ x ∈ Sn and ε ∈ (0, 1],

and noting that δ = n + 2 − q < n, we have

area(∂Khε
) =

∫
Sn

det(∇2hε + hεI)

=
∫
Sn

|Mεx|−δ

≤
∫
Sn

(1 − x2
n+1)−δ/2

≤ C,
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where C is a positive constant depending on n, δ but independent of ε. By the isoperi-
metric inequality, we obtain

vol(Khε
) ≤ Cn area(∂Khε

)
n+1
n ≤ C. (2.9)

Assume hε attains its maximum at point xε ∈ Sn, namely hε(xε) = maxSn hε. By 
convexity and recalling that hε is symmetric, we have

hε(x) ≥ max hε · 〈xε, x〉 ∀ x ∈ Sn.

Observing that

|Mεx| ≤ 1 ∀ x ∈ Sn and ε ∈ (0, 1],

by equation (2.2), we have

vol(Khε
) = 1

n + 1

∫
Sn

hε det(∇2hε + hεI)

= 1
n + 1

∫
Sn

hε(x)|Mεx|−δ

≥ 1
n + 1

∫
Sn

hε(x)

≥ Cn max hε ·
∫
Sn
ε

〈xε, x〉

= Cn max hε,

where Sn
ε = {x ∈ Sn : 〈xε, x〉 > 0}. Therefore we obtain from (2.9) that

max hε ≤ Cn vol(Khε
) ≤ C. (2.10)

The second inequality of (2.8) is proved.
To prove the first inequality of (2.8), we make use of the concept of minimum ellipsoid 

of a convex body. Let Ehε
be the minimum ellipsoid of Khε

. Then we have

1
n + 1Ehε

⊂ Khε
⊂ Ehε

.

By the symmetry of Khε
, the centre of Ehε

is at the origin. Let R1,ε ≥ · · · ≥ Rn+1,ε be 
the lengths of the semi-axis of Ehε

. Then

R1,ε ≤ (n + 1) max hε,

Rn+1,ε ≤ (n + 1) min hε.
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Hence

vol(Khε
) ≤ vol(Eε)

≤ ωn+1R
n
1,εRn+1,ε

≤ Cn(max hε)n · min hε,

where ωn+1 is the volume of the unit ball in Rn+1. By (2.10) it follows that

1 ≤ Cn(max hε)n−1 · min hε.

The first inequality of (2.8) follows. �
Now let

fε = ĥq
ε. (2.11)

In view of (2.5) and (2.8), there exist two positive constants C1, C2, independent of ε, 
such that

C1 ≤ fε ≤ C2. (2.12)

From (2.4), Hε is a solution to

det(∇2Hε + HεI) = fε
Hq

ε
on Sn. (2.13)

By (2.3), we have the volume estimate

vol(KHε
) = (detMε)

2n+2
n+q · detM−1

ε · vol(Khε
)

= (detMε)
δ

n+q vol(Khε
). (2.14)

Note that detMε = ε. Hence when 0 < δ < n, the volume of KHε
can be as small as we 

want, provided ε is sufficiently small.

Remark. From the transform (2.3) and estimate (2.8), one easily sees that there is no 
uniform upper bound for the solution Hε, when ε > 0 is small.

3. A variational solution

In the paper [7], the variational problem

sup
{

inf J [h(x) − y · x] : vol(Kh) = 1
}

(3.1)

h y∈Kh
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is studied. Here h is the support function of a non-degenerate convex body Kh with 
volume vol(Kh). The functional J [h] is given by

J [h] = 1
q − 1

∫
Sn

f

hq−1 .

For convenience we recall the following existence result in [7].

Lemma 3.1. (See [7].) Let 1 < q < n +2 and f ∈ L∞(Sn) be a positive function satisfying 
(2.12). Then the variational problem (3.1) admits a maximiser H which satisfies, for 
some Lagrange multiplier λ > 0,

det(∇2H + HI) = λf

Hq
on Sn. (3.2)

When f(x) = f(−x), one can consider the problem (3.1) in the restricted class h(x) =
h(−x). One can follow the same arguments as in [7] to show that a maximiser H exists 
and its corresponding convex body is centrally symmetric.

By this lemma, we obtain a solution to equation (1.1). Let

H̃ = λ− 1
n+qH. (3.3)

Then H̃ is a solution to equation

det(∇2H̃ + H̃I) = f

H̃q
on Sn. (3.4)

The volume of the corresponding convex body KH̃ is

vol(KH̃) = λ−n+1
n+q . (3.5)

We need to estimate the Lagrange constant λ. It is given as follows. Multiplying H
to both sides of equation (3.2) and taking integration, we have

1 = vol(KH) = 1
n + 1

∫
Sn

H det(∇2H + HI)

= λ

n + 1

∫
Sn

f

Hq−1

= (q − 1)λ
n + 1 J [H]. (3.6)

The Blaschke–Santalo inequality for centrally symmetric convex bodies is given by

V (h)
∫ 1

hn+1 dS(x) ≤ ω2
n

n + 1 ,

Sn
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where h(x) = h(−x) is the support function of any centrally symmetric convex body 
and ωn is the volume of the unit ball in Rn. Using this inequality, we have

J(H) = 1
q − 1

∫
Sn

f

Hq−1

= sup f

q − 1

( ∫
Sn

1
Hq−1

) q−1
n+1

( ∫
Sn

1
)n+2−q

n+1

≤ Cn sup f

q − 1 .

On the other hand, let h0 be the constant function ω−1/(n+1)
n+1 which is the support 

function of the ball centred at the origin whose volume is equal to 1. From the variational 
characterisation of H, we have

J(H) ≥ H(h0) = C ′
n sup f

q − 1 .

From (3.6), we thus obtain

C−1
n inf

Sn
f ≤ λ−1 ≤ Cn sup

Sn

f.

By (3.5), we see that there is a positive constant Cn depending only on n, such that

C−1
n (inf

Sn
f)

n+1
n+q ≤ vol(KH̃) ≤ Cn(sup

Sn

f)
n+1
n+q . (3.7)

Now we let f = fε be the function in (2.13). Denote the corresponding variational 
solution by H̃ε, which is the support function of a convex body KH̃ε

. By virtue of (2.12)
and (3.7), one has the estimates

C3 ≤ vol(KH̃ε
) ≤ C4,

where C3, C4 are positive constants depending only on n, q, C1 and C2. But recall that 
for the solution Hε given in (2.3), the volume vol(KHε

) → 0 as ε → 0. Hence H̃ε and Hε

are two different solutions. We have therefore obtained the nonuniqueness of solutions 
to (2.13) for small ε > 0, in the case q ∈ (2, n + 2).

Remark. As f is rotationally symmetric with respect to the xn+1-axis, one may consider 
the supremum in (3.1) in the family of rotationally symmetric convex bodies and obtain 
a rotationally symmetric solution. Therefore for equation (2.13) the two solutions we 
obtained are both rotationally symmetric with respect to the xn+1-axis, and so are 
smooth.
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We also remark that the idea of our proof is based on the observation that vol(KHε
)

is small. But when q = 1 and q = n +2, one can prove that for any solution to (1.1), the 
volume of the associated convex body has a positive lower bound. Therefore our con-
struction of more than one solution does not cover the case q = 1. In fact, as mentioned 
in the introduction, when n = 1 and q = 1, the solution is unique when f is symmetric 
[10,13].

4. The case 1 < q ≤ 2

We have proved Theorem 1.1 for the case 2 < q < n + 2. In this section we show that 
the solutions Hε and H̃ε given in (2.3) and (3.3) are different even when 1 < q ≤ 2, 
provided ε are sufficiently small.

Recall that Khε
is radially symmetric in x1, · · · , xn and symmetric in xn+1. We denote 

R1 = R1,ε = hε(1, 0, · · · , 0), Rn+1 = Rn+1,ε = hε(0, · · · , 0, 1). Namely R1 and Rn+1 are 
respectively the values of hε on the equator and at the north pole of the sphere Sn.

Lemma 4.1. There exists a constant C > 0, independent of ε ∈ (0, 1], such that

Rn+1 < CR1. (4.1)

Proof. Denote Sη = {x ∈ Sn : |xn+1| < η} and Sc
η = Sn \ Sη, where η ∈ (0, 1) is a 

constant. Let Γη = {p ∈ ∂Khε
: G(p) ∈ Sη} and Γc

η = ∂Khε
\ Γη, where G is the Gauss 

map of ∂Khε
, namely G(p) is the unit outer normal of ∂Khε

at the point p.
If (4.1) is not true, we have

area(Γ1/2) >> area(Γc
1/2).

On the other hand, by equation (2.2) we have

area(Γ1/2) =
∫

S1/2

det(∇2hε + hεI) =
∫

S1/2

|Mεx|−δ. (4.2)

Note that

sup
Sη

|Mεx|−δ ≤ inf
Sc
η

|Mεx|−δ ∀ η ∈ (0, 1) and ε ∈ (0, 1].

Hence the right hand side of (4.2)

≤ Cn

∫
Sc

1/2

|Mεx|−δ = Cn

∫
Sc

1/2

det(∇2hε + hεI) = Cn area(Γc
1/2). (4.3)

We reach a contradiction. �
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By equation (2.2), we have as ε → 0 that

area(∂Khε
) =

∫
Sn

|Mεx|−δ

=
{

(C + o(1))εq−2 if 1 < q < 2,
(C + o(1))|log ε| if q = 2,

(4.4)

where C is a positive constant independent of ε. On the other hand, by Lemma 4.1 we 
have

C−1Rn
1 ≤ area(∂Khε

) ≤ CR1
n.

From (4.4) it follows that

C−1ε
q−2
n ≤ R1 ≤ Cε

q−2
n if 1 < q < 2,

C−1|log ε|1/n ≤ R1 ≤ C|log ε|1/n if q = 2. (4.5)

Observing that

vol(Khε
) = CRn

1Rn+1,

by (2.14) we obtain

vol(KHε
) = ε

δ
n+q vol(Khε

)

=
{
Cε

(q−1)(n+q−2)
n+q Rn+1 if 1 < q < 2,

Cε
δ

n+q |log ε|Rn+1 if q = 2.
(4.6)

Now consider the solution H̃ε given in (3.3). From (3.7), we have

vol(KH̃ε
) ≥ C(inf

Sn
fε)

n+1
n+q .

Noting that fε = ĥq
ε and that infSn ĥε = infSn hε, we see that

vol(KH̃ε
) ≥ C(inf

Sn
hε)

q(n+1)
n+q

≥ CR
q(n+1)
n+q

n+1 . (4.7)

In order to prove that H̃ε and Hε are two different solutions, we need that,

vol(KH̃ ) > vol(KHε
). (4.8)
ε
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By (4.6) and (4.7), it suffices to have

Rn+1 >

{
Cε

n+q−2
n if 1 < q < 2,

Cε|log ε|n+2
n if q = 2.

(4.9)

So it suffices to give a lower bound for Rn+1 to complete Theorem 1.1. In fact we have 
the following

Lemma 4.2. For 1 < q ≤ 2, we have

Rn+1 ≈
{
ε

(2−q)(n−1)
n if 1 < q < 2,

|log ε| 1−n
n if q = 2.

(4.10)

Here the notation “≈” means the ratio of the two sides has uniform positive upper and 
lower bounds.

Proof. Let uε be as (2.6), Kuε
be the corresponding convex body. From (2.7), we have

area(∂Kuε
) =

∫
Sn

1
ε2|M−1

ε x|q
= (C + o(1))ε−1, ∀ q > 1. (4.11)

Denote

r1 = r1,ε = uε(1, 0, · · · , 0) = R1,

rn+1 = rn+1,ε = uε(0, · · · , 0, 1) = ε−1Rn+1.

Since

area(∂Kuε
) ≈ rn1 + rn−1

1 rn+1,

multiplying both sides by ε, and noting (4.11), we obtain

1 ≈ εRn
1 + Rn−1

1 Rn+1.

On account of (4.5), εRn
1 << 1, which leads to

1 ≈ Rn−1
1 Rn+1. (4.12)

By (4.5) again, we have (4.10). �
Combining (4.9) and (4.10), we obtain (4.8). Therefore the case 1 < q ≤ 2 of Theo-

rem 1.1 is also proved.
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