Nonuniqueness of solutions to the L_{p}-Minkowski problem ${ }^{\text {* }}$

Huaiyu Jian ${ }^{\mathrm{a}, \mathrm{b}}$, Jian Lu ${ }^{\mathrm{b}, \mathrm{c}, *}$, Xu-Jia Wang ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Department of Mathematics, Tsinghua University, Beijing 100084, China
b Centre for Mathematics and Its Applications, Australian National University, Canberra, ACT 0200, Australia
c Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China

A R T I C L E I N F O

Article history:

Received 8 July 2014
Received in revised form 19 May 2015
Accepted 21 May 2015
Available online 12 June 2015
Communicated by Erwin Lutwak

Keywords:

Monge-Ampère equation
Minkowski problem
Nonuniqueness

A B S T R A C T

In this paper we show by example that there is no uniform estimate for the L_{p}-Minkowski problem. As a result we obtain the nonuniqueness of solutions to the problem.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We consider the following L_{p}-Minkowski problem,

$$
\begin{equation*}
\operatorname{det}\left(\nabla^{2} H+H I\right)=f H^{p-1} \quad \text { on } S^{n} \tag{1.1}
\end{equation*}
$$

[^0]where H is the support function of a convex body $K=K_{H}$ in the Euclidean space \mathbb{R}^{n+1}, I is the unit matrix, f is a given positive function on the unit sphere S^{n}, and p is a constant. The main result of the paper is

Theorem 1.1. For any $p \in(-n-1,0)$, there exists a positive function $f \in C^{\infty}\left(S^{n}\right)$ such that equation (1.1) admits two different solutions.

To prove Theorem 1.1, we will construct a smooth, positive function f, which is radially symmetric in x_{1}, \cdots, x_{n}, and also symmetric in x_{n+1}, such that equation (1.1) has a solution with small volume. By [7] there is another solution whose volume has a positive lower bound depending only on $n, \inf _{S^{n}} f$ and $\sup _{S^{n}} f$. Therefore we have two different solutions for equation (1.1).

The L_{p}-Minkowski problem was introduced by Lutwak [16] and has been studied by many authors $[4,5,7,11,14,15,17-21]$. One of the main questions is the uniqueness of solutions. In particular, a solution to (1.1) is also a self-similar solution to the Gauss curvature flow, of which the uniqueness has been extensively studied.

Denote $q=1-p$. When $f \equiv 1$, the uniqueness has been obtained in the case $q=n$ for all n [9] and in the case $n=2$ and $q=1$ [1]. When $n=1, q=1$, and f is symmetric with respect to the origin, namely $f(\theta)=f(\theta+\pi)$, the uniqueness was obtained in [10,13]. When $q<-n$, the uniqueness can be obtained by the maximum principle [7]. One can also find some uniqueness results in the case $q<0$ for symmetric f in [16]. In the discrete case a uniqueness was established for the L_{0}-Minkowski problem in [20].

On the other hand, it is well known that when $q=n+2$, all ellipsoids with the volume of the unit ball are solutions of (1.1) with $f \equiv 1$. The uniqueness is more delicate in the case $q>n+2$, at least when $n=1[3]$. In [7] it was shown that the solution may not be unique if $q \in(1, n+2)$ and is very close to $n+2$. In contrast to the uniqueness in $[10,13]$ for $n=1, q=1$, and symmetric f, a surprising nonuniqueness result was discovered in [22] for nonsymmetric f, also in the case $n=1, q=1$.

The uniqueness of solutions for the case $0<q<n+2$ attracted much attentions as it is related to the limit shape of Gauss curvature flows of convex hypersurfaces and has received considerable investigations. See $[1,2,6,8,9]$ and the above discussion. The uniqueness of solutions has been conjectured for a number of special cases, including in particular the case $f \equiv 1$ and $q=1$ [12]. Our theorem above shows that for general positive function f, there may be more than one solution to (1.1), for all $q \in(1, n+2)$ and all dimensions n. It implies that the limit shape of anisotropic curvature flows is usually not unique.

We will first prove Theorem 1.1 for the case $p \in(-n-1,-1)$ in Sections 2 and 3, and then for the case $p \in[-1,0)$ in Section 4 . In Section 2 we construct an f_{ε} such that equation (1.1) has a solution H_{ε} of small volume. Then in Section 3 we show that there is a solution to (1.1) of which the volume has a positive lower bound. In Section 4 we extend the example to the case $p \in[-1,0)$.

2. A solution with small volume

Denote $\delta=n+2-q \in(0, n+1)$. Let

$$
M_{\varepsilon}=\operatorname{diag}(1, \cdots, 1, \varepsilon)=\left(\begin{array}{ll}
I & 0 \tag{2.1}\\
0 & \varepsilon
\end{array}\right)
$$

be a matrix, where $0<\varepsilon \leq 1$ is a small constant and as before I is the unit $n \times n$ matrix.
Consider the equation

$$
\begin{equation*}
\operatorname{det}\left(\nabla^{2} h+h I\right)(x)=\left|M_{\varepsilon} x\right|^{-\delta}, \quad x \in S^{n} . \tag{2.2}
\end{equation*}
$$

Equation (2.2) is just the classical Minkowski problem. As its right hand side satisfies the necessary condition $\int_{S^{n}} x_{k}\left|M_{\varepsilon} x\right|^{-\delta}=0$ for all $1 \leq k \leq n+1$, there is a solution, which is unique up to translation, to the equation.

Let h_{ε} be the unique solution to (2.2) such that the centre of the associated convex body $K_{h_{\varepsilon}}$ is located at the origin. Note that h_{ε} is radially symmetric in x_{1}, \cdots, x_{n} and symmetric in x_{n+1}. Define

$$
\begin{equation*}
H_{\varepsilon}(x)=\left(\operatorname{det} M_{\varepsilon}\right)^{\frac{2}{n+q}} \cdot\left|M_{\varepsilon}^{-1} x\right| \cdot h_{\varepsilon}\left(\frac{M_{\varepsilon}^{-1} x}{\left|M_{\varepsilon}^{-1} x\right|}\right) \tag{2.3}
\end{equation*}
$$

then H_{ε} is the support function of a convex body $K_{H_{\varepsilon}}$, and $K_{H_{\varepsilon}}$ can be obtained from $K_{h_{\varepsilon}}$ by making the coordinate transform $x \rightarrow M_{\varepsilon}^{-1} x$ and then making a dilation $x \rightarrow$ $\left(\operatorname{det} M_{\varepsilon}\right)^{\frac{2}{n+q}} x$.

Lemma 2.1. The function H_{ε} satisfies the equation

$$
\begin{equation*}
\operatorname{det}\left(\nabla^{2} H_{\varepsilon}+H_{\varepsilon} I\right)=\frac{\hat{h}_{\varepsilon}^{q}}{H_{\varepsilon}^{q}} \quad \text { on } S^{n} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{h}_{\varepsilon}(x)=h_{\varepsilon}\left(\frac{M_{\varepsilon}^{-1} x}{\left|M_{\varepsilon}^{-1} x\right|}\right) . \tag{2.5}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
u_{\varepsilon}(x)=\left|M_{\varepsilon}^{-1} x\right| \cdot h_{\varepsilon}\left(\frac{M_{\varepsilon}^{-1} x}{\left|M_{\varepsilon}^{-1} x\right|}\right) . \tag{2.6}
\end{equation*}
$$

By the invariance of the quantity $h_{\varepsilon}^{n+2} \operatorname{det}\left(\nabla^{2} h_{\varepsilon}+h_{\varepsilon} I\right)$ under unimodular affine transformations, see Proposition 7.1 in [7] or formula (2.12) in [15], we have

$$
\operatorname{det}\left(\nabla^{2} u_{\varepsilon}+u_{\varepsilon} I\right)(x)=\operatorname{det}\left(\nabla^{2} h_{\varepsilon}+h_{\varepsilon} I\right)\left(\frac{M_{\varepsilon}^{-1} x}{\left|M_{\varepsilon}^{-1} x\right|}\right) \cdot \frac{\left(\operatorname{det} M_{\varepsilon}^{-1}\right)^{2}}{\left|M_{\varepsilon}^{-1} x\right|^{n+2}} .
$$

Here we note that M_{ε}^{-1} is not a unimodular transformation. Since h_{ε} satisfies equation (2.2), we have

$$
\begin{align*}
\operatorname{det}\left(\nabla^{2} u_{\varepsilon}+u_{\varepsilon} I\right)(x) & =\left|M_{\varepsilon}^{-1} x\right|^{\delta} \cdot \frac{\left(\operatorname{det} M_{\varepsilon}^{-1}\right)^{2}}{\left|M_{\varepsilon}^{-1} x\right|^{n+2}} \\
& =\frac{1}{\left(\operatorname{det} M_{\varepsilon}\right)^{2}\left|M_{\varepsilon}^{-1} x\right|^{q}} . \tag{2.7}
\end{align*}
$$

Therefore by the definition of $H_{\varepsilon},(2.3)$, one gets

$$
\begin{aligned}
\operatorname{det}\left(\nabla^{2} H_{\varepsilon}+H_{\varepsilon} I\right)(x) & =\left(\operatorname{det} M_{\varepsilon}\right)^{\frac{2 n}{n+q}} \operatorname{det}\left(\nabla^{2} u_{\varepsilon}+u_{\varepsilon} I\right)(x) \\
& =\frac{1}{\left(\operatorname{det} M_{\varepsilon}\right)^{\frac{2 q}{n+q}}\left|M_{\varepsilon}^{-1} x\right|^{q}} \\
& =\frac{\hat{h}_{\varepsilon}^{q}}{H_{\varepsilon}^{q}} . \quad \square
\end{aligned}
$$

To estimate the volume of the convex body $K_{H_{\varepsilon}}$, one needs to study the convex body $K_{h_{\varepsilon}}$, or equivalently the support function h_{ε}. When $\delta \in(0, n)$, we have the following uniform estimates.

Lemma 2.2. When $2<q<n+2$, there exists a positive constant C, independent of $\varepsilon \in(0,1]$, such that

$$
\begin{equation*}
C^{-1} \leq h_{\varepsilon} \leq C \quad \text { on } S^{n} \tag{2.8}
\end{equation*}
$$

Proof. One can easily see that the area of $\partial K_{h_{\varepsilon}}$ is uniformly bounded from above. In fact, since

$$
\left|M_{\varepsilon} x\right| \geq \sqrt{1-x_{n+1}^{2}} \quad \forall x \in S^{n} \text { and } \varepsilon \in(0,1]
$$

and noting that $\delta=n+2-q<n$, we have

$$
\begin{aligned}
\operatorname{area}\left(\partial K_{h_{\varepsilon}}\right) & =\int_{S^{n}} \operatorname{det}\left(\nabla^{2} h_{\varepsilon}+h_{\varepsilon} I\right) \\
& =\int_{S^{n}}\left|M_{\varepsilon} x\right|^{-\delta} \\
& \leq \int_{S^{n}}\left(1-x_{n+1}^{2}\right)^{-\delta / 2} \\
& \leq C
\end{aligned}
$$

where C is a positive constant depending on n, δ but independent of ε. By the isoperimetric inequality, we obtain

$$
\begin{equation*}
\operatorname{vol}\left(K_{h_{\varepsilon}}\right) \leq C_{n} \operatorname{area}\left(\partial K_{h_{\varepsilon}}\right)^{\frac{n+1}{n}} \leq C \tag{2.9}
\end{equation*}
$$

Assume h_{ε} attains its maximum at point $x_{\varepsilon} \in S^{n}$, namely $h_{\varepsilon}\left(x_{\varepsilon}\right)=\max _{S^{n}} h_{\varepsilon}$. By convexity and recalling that h_{ε} is symmetric, we have

$$
h_{\varepsilon}(x) \geq \max h_{\varepsilon} \cdot\left\langle x_{\varepsilon}, x\right\rangle \quad \forall x \in S^{n}
$$

Observing that

$$
\left|M_{\varepsilon} x\right| \leq 1 \quad \forall x \in S^{n} \text { and } \varepsilon \in(0,1]
$$

by equation (2.2), we have

$$
\begin{aligned}
\operatorname{vol}\left(K_{h_{\varepsilon}}\right) & =\frac{1}{n+1} \int_{S^{n}} h_{\varepsilon} \operatorname{det}\left(\nabla^{2} h_{\varepsilon}+h_{\varepsilon} I\right) \\
& =\frac{1}{n+1} \int_{S^{n}} h_{\varepsilon}(x)\left|M_{\varepsilon} x\right|^{-\delta} \\
& \geq \frac{1}{n+1} \int_{S^{n}} h_{\varepsilon}(x) \\
& \geq C_{n} \max h_{\varepsilon} \cdot \int_{S_{\varepsilon}^{n}}\left\langle x_{\varepsilon}, x\right\rangle \\
& =C_{n} \max h_{\varepsilon}
\end{aligned}
$$

where $S_{\varepsilon}^{n}=\left\{x \in S^{n}:\left\langle x_{\varepsilon}, x\right\rangle>0\right\}$. Therefore we obtain from (2.9) that

$$
\begin{equation*}
\max h_{\varepsilon} \leq C_{n} \operatorname{vol}\left(K_{h_{\varepsilon}}\right) \leq C \tag{2.10}
\end{equation*}
$$

The second inequality of (2.8) is proved.
To prove the first inequality of (2.8), we make use of the concept of minimum ellipsoid of a convex body. Let $E_{h_{\varepsilon}}$ be the minimum ellipsoid of $K_{h_{\varepsilon}}$. Then we have

$$
\frac{1}{n+1} E_{h_{\varepsilon}} \subset K_{h_{\varepsilon}} \subset E_{h_{\varepsilon}}
$$

By the symmetry of $K_{h_{\varepsilon}}$, the centre of $E_{h_{\varepsilon}}$ is at the origin. Let $R_{1, \varepsilon} \geq \cdots \geq R_{n+1, \varepsilon}$ be the lengths of the semi-axis of $E_{h_{\varepsilon}}$. Then

$$
\begin{aligned}
R_{1, \varepsilon} & \leq(n+1) \max h_{\varepsilon} \\
R_{n+1, \varepsilon} & \leq(n+1) \min h_{\varepsilon}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{vol}\left(K_{h_{\varepsilon}}\right) & \leq \operatorname{vol}\left(E_{\varepsilon}\right) \\
& \leq \omega_{n+1} R_{1, \varepsilon}^{n} R_{n+1, \varepsilon} \\
& \leq C_{n}\left(\max h_{\varepsilon}\right)^{n} \cdot \min h_{\varepsilon}
\end{aligned}
$$

where ω_{n+1} is the volume of the unit ball in \mathbb{R}^{n+1}. By (2.10) it follows that

$$
1 \leq C_{n}\left(\max h_{\varepsilon}\right)^{n-1} \cdot \min h_{\varepsilon}
$$

The first inequality of (2.8) follows.
Now let

$$
\begin{equation*}
f_{\varepsilon}=\hat{h}_{\varepsilon}^{q} \tag{2.11}
\end{equation*}
$$

In view of (2.5) and (2.8), there exist two positive constants C_{1}, C_{2}, independent of ε, such that

$$
\begin{equation*}
C_{1} \leq f_{\varepsilon} \leq C_{2} \tag{2.12}
\end{equation*}
$$

From (2.4), H_{ε} is a solution to

$$
\begin{equation*}
\operatorname{det}\left(\nabla^{2} H_{\varepsilon}+H_{\varepsilon} I\right)=\frac{f_{\varepsilon}}{H_{\varepsilon}^{q}} \quad \text { on } S^{n} \tag{2.13}
\end{equation*}
$$

By (2.3), we have the volume estimate

$$
\begin{align*}
\operatorname{vol}\left(K_{H_{\varepsilon}}\right) & =\left(\operatorname{det} M_{\varepsilon}\right)^{\frac{2 n+2}{n+q}} \cdot \operatorname{det} M_{\varepsilon}^{-1} \cdot \operatorname{vol}\left(K_{h_{\varepsilon}}\right) \\
& =\left(\operatorname{det} M_{\varepsilon}\right)^{\frac{\delta}{n+q}} \operatorname{vol}\left(K_{h_{\varepsilon}}\right) \tag{2.14}
\end{align*}
$$

Note that $\operatorname{det} M_{\varepsilon}=\varepsilon$. Hence when $0<\delta<n$, the volume of $K_{H_{\varepsilon}}$ can be as small as we want, provided ε is sufficiently small.

Remark. From the transform (2.3) and estimate (2.8), one easily sees that there is no uniform upper bound for the solution H_{ε}, when $\varepsilon>0$ is small.

3. A variational solution

In the paper [7], the variational problem

$$
\begin{equation*}
\sup _{h}\left\{\inf _{y \in K_{h}} J[h(x)-y \cdot x]: \operatorname{vol}\left(K_{h}\right)=1\right\} \tag{3.1}
\end{equation*}
$$

is studied. Here h is the support function of a non-degenerate convex body K_{h} with $\operatorname{volume} \operatorname{vol}\left(K_{h}\right)$. The functional $J[h]$ is given by

$$
J[h]=\frac{1}{q-1} \int_{S^{n}} \frac{f}{h^{q-1}}
$$

For convenience we recall the following existence result in [7].
Lemma 3.1. (See [7].) Let $1<q<n+2$ and $f \in L^{\infty}\left(S^{n}\right)$ be a positive function satisfying (2.12). Then the variational problem (3.1) admits a maximiser H which satisfies, for some Lagrange multiplier $\lambda>0$,

$$
\begin{equation*}
\operatorname{det}\left(\nabla^{2} H+H I\right)=\frac{\lambda f}{H^{q}} \quad \text { on } S^{n} . \tag{3.2}
\end{equation*}
$$

When $f(x)=f(-x)$, one can consider the problem (3.1) in the restricted class $h(x)=$ $h(-x)$. One can follow the same arguments as in [7] to show that a maximiser H exists and its corresponding convex body is centrally symmetric.

By this lemma, we obtain a solution to equation (1.1). Let

$$
\begin{equation*}
\tilde{H}=\lambda^{-\frac{1}{n+q}} H . \tag{3.3}
\end{equation*}
$$

Then \tilde{H} is a solution to equation

$$
\begin{equation*}
\operatorname{det}\left(\nabla^{2} \tilde{H}+\tilde{H} I\right)=\frac{f}{\tilde{H}^{q}} \quad \text { on } S^{n} \tag{3.4}
\end{equation*}
$$

The volume of the corresponding convex body $K_{\tilde{H}}$ is

$$
\begin{equation*}
\operatorname{vol}\left(K_{\tilde{H}}\right)=\lambda^{-\frac{n+1}{n+q}} \tag{3.5}
\end{equation*}
$$

We need to estimate the Lagrange constant λ. It is given as follows. Multiplying H to both sides of equation (3.2) and taking integration, we have

$$
\begin{align*}
1=\operatorname{vol}\left(K_{H}\right) & =\frac{1}{n+1} \int_{S^{n}} H \operatorname{det}\left(\nabla^{2} H+H I\right) \\
& =\frac{\lambda}{n+1} \int_{S^{n}} \frac{f}{H^{q-1}} \\
& =\frac{(q-1) \lambda}{n+1} J[H] . \tag{3.6}
\end{align*}
$$

The Blaschke-Santalo inequality for centrally symmetric convex bodies is given by

$$
V(h) \int_{S^{n}} \frac{1}{h^{n+1}} d S(x) \leq \frac{\omega_{n}^{2}}{n+1},
$$

where $h(x)=h(-x)$ is the support function of any centrally symmetric convex body and ω_{n} is the volume of the unit ball in \mathbb{R}^{n}. Using this inequality, we have

$$
\begin{aligned}
J(H) & =\frac{1}{q-1} \int_{S^{n}} \frac{f}{H^{q-1}} \\
& =\frac{\sup f}{q-1}\left(\int_{S^{n}} \frac{1}{H^{q-1}}\right)^{\frac{q-1}{n+1}}\left(\int_{S^{n}} 1\right)^{\frac{n+2-q}{n+1}} \\
& \leq \frac{C_{n} \sup f}{q-1} .
\end{aligned}
$$

On the other hand, let h_{0} be the constant function $\omega_{n+1}^{-1 /(n+1)}$ which is the support function of the ball centred at the origin whose volume is equal to 1 . From the variational characterisation of H, we have

$$
J(H) \geq H\left(h_{0}\right)=\frac{C_{n}^{\prime} \sup f}{q-1}
$$

From (3.6), we thus obtain

$$
C_{n}^{-1} \inf _{S^{n}} f \leq \lambda^{-1} \leq C_{n} \sup _{S^{n}} f .
$$

By (3.5), we see that there is a positive constant C_{n} depending only on n, such that

$$
\begin{equation*}
C_{n}^{-1}\left(\inf _{S^{n}} f\right)^{\frac{n+1}{n+q}} \leq \operatorname{vol}\left(K_{\tilde{H}}\right) \leq C_{n}\left(\sup _{S^{n}} f\right)^{\frac{n+1}{n+q}} \tag{3.7}
\end{equation*}
$$

Now we let $f=f_{\varepsilon}$ be the function in (2.13). Denote the corresponding variational solution by \tilde{H}_{ε}, which is the support function of a convex body $K_{\tilde{H}_{\varepsilon}}$. By virtue of (2.12) and (3.7), one has the estimates

$$
C_{3} \leq \operatorname{vol}\left(K_{\tilde{H}_{\varepsilon}}\right) \leq C_{4},
$$

where C_{3}, C_{4} are positive constants depending only on n, q, C_{1} and C_{2}. But recall that for the solution H_{ε} given in (2.3), the volume $\operatorname{vol}\left(K_{H_{\varepsilon}}\right) \rightarrow 0$ as $\varepsilon \rightarrow 0$. Hence \tilde{H}_{ε} and H_{ε} are two different solutions. We have therefore obtained the nonuniqueness of solutions to (2.13) for small $\varepsilon>0$, in the case $q \in(2, n+2)$.

Remark. As f is rotationally symmetric with respect to the x_{n+1}-axis, one may consider the supremum in (3.1) in the family of rotationally symmetric convex bodies and obtain a rotationally symmetric solution. Therefore for equation (2.13) the two solutions we obtained are both rotationally symmetric with respect to the x_{n+1}-axis, and so are smooth.

We also remark that the idea of our proof is based on the observation that $\operatorname{vol}\left(K_{H_{\varepsilon}}\right)$ is small. But when $q=1$ and $q=n+2$, one can prove that for any solution to (1.1), the volume of the associated convex body has a positive lower bound. Therefore our construction of more than one solution does not cover the case $q=1$. In fact, as mentioned in the introduction, when $n=1$ and $q=1$, the solution is unique when f is symmetric [10,13].

4. The case $1<q \leq 2$

We have proved Theorem 1.1 for the case $2<q<n+2$. In this section we show that the solutions H_{ε} and \tilde{H}_{ε} given in (2.3) and (3.3) are different even when $1<q \leq 2$, provided ε are sufficiently small.

Recall that $K_{h_{\varepsilon}}$ is radially symmetric in x_{1}, \cdots, x_{n} and symmetric in x_{n+1}. We denote $R_{1}=R_{1, \varepsilon}=h_{\varepsilon}(1,0, \cdots, 0), R_{n+1}=R_{n+1, \varepsilon}=h_{\varepsilon}(0, \cdots, 0,1)$. Namely R_{1} and R_{n+1} are respectively the values of h_{ε} on the equator and at the north pole of the sphere S^{n}.

Lemma 4.1. There exists a constant $C>0$, independent of $\varepsilon \in(0,1]$, such that

$$
\begin{equation*}
R_{n+1}<C R_{1} \tag{4.1}
\end{equation*}
$$

Proof. Denote $S_{\eta}=\left\{x \in S^{n}:\left|x_{n+1}\right|<\eta\right\}$ and $S_{\eta}^{c}=S^{n} \backslash S_{\eta}$, where $\eta \in(0,1)$ is a constant. Let $\Gamma_{\eta}=\left\{p \in \partial K_{h_{\varepsilon}}: G(p) \in S_{\eta}\right\}$ and $\Gamma_{\eta}^{c}=\partial K_{h_{\varepsilon}} \backslash \Gamma_{\eta}$, where G is the Gauss map of $\partial K_{h_{\varepsilon}}$, namely $G(p)$ is the unit outer normal of $\partial K_{h_{\varepsilon}}$ at the point p.

If (4.1) is not true, we have

$$
\operatorname{area}\left(\Gamma_{1 / 2}\right) \gg \operatorname{area}\left(\Gamma_{1 / 2}^{c}\right)
$$

On the other hand, by equation (2.2) we have

$$
\begin{equation*}
\operatorname{area}\left(\Gamma_{1 / 2}\right)=\int_{S_{1 / 2}} \operatorname{det}\left(\nabla^{2} h_{\varepsilon}+h_{\varepsilon} I\right)=\int_{S_{1 / 2}}\left|M_{\varepsilon} x\right|^{-\delta} \tag{4.2}
\end{equation*}
$$

Note that

$$
\sup _{S_{\eta}}\left|M_{\varepsilon} x\right|^{-\delta} \leq \inf _{S_{\eta}^{c}}\left|M_{\varepsilon} x\right|^{-\delta} \quad \forall \eta \in(0,1) \text { and } \varepsilon \in(0,1] .
$$

Hence the right hand side of (4.2)

$$
\begin{equation*}
\leq C_{n} \int_{S_{1 / 2}^{c}}\left|M_{\varepsilon} x\right|^{-\delta}=C_{n} \int_{S_{1 / 2}^{c}} \operatorname{det}\left(\nabla^{2} h_{\varepsilon}+h_{\varepsilon} I\right)=C_{n} \operatorname{area}\left(\Gamma_{1 / 2}^{c}\right) \tag{4.3}
\end{equation*}
$$

We reach a contradiction.

By equation (2.2), we have as $\varepsilon \rightarrow 0$ that

$$
\begin{align*}
\operatorname{area}\left(\partial K_{h_{\varepsilon}}\right) & =\int_{S^{n}}\left|M_{\varepsilon} x\right|^{-\delta} \\
& = \begin{cases}(C+o(1)) \varepsilon^{q-2} & \text { if } 1<q<2 \\
(C+o(1))|\log \varepsilon| & \text { if } q=2\end{cases} \tag{4.4}
\end{align*}
$$

where C is a positive constant independent of ε. On the other hand, by Lemma 4.1 we have

$$
C^{-1} R_{1}^{n} \leq \operatorname{area}\left(\partial K_{h_{\varepsilon}}\right) \leq C R_{1}^{n}
$$

From (4.4) it follows that

$$
\begin{gather*}
C^{-1} \varepsilon^{\frac{q-2}{n}} \leq R_{1} \leq C \varepsilon^{\frac{q-2}{n}} \quad \text { if } 1<q<2 \\
C^{-1}|\log \varepsilon|^{1 / n} \leq R_{1} \leq C|\log \varepsilon|^{1 / n} \quad \text { if } q=2 \tag{4.5}
\end{gather*}
$$

Observing that

$$
\operatorname{vol}\left(K_{h_{\varepsilon}}\right)=C R_{1}^{n} R_{n+1}
$$

by (2.14) we obtain

$$
\begin{align*}
\operatorname{vol}\left(K_{H_{\varepsilon}}\right) & =\varepsilon^{\frac{\delta}{n+q}} \operatorname{vol}\left(K_{h_{\varepsilon}}\right) \\
& = \begin{cases}C \varepsilon^{\frac{(q-1)(n+q-2)}{n+q}} R_{n+1} & \text { if } 1<q<2, \\
C \varepsilon^{\frac{\delta}{n+q}}|\log \varepsilon| R_{n+1} & \text { if } q=2\end{cases} \tag{4.6}
\end{align*}
$$

Now consider the solution \tilde{H}_{ε} given in (3.3). From (3.7), we have

$$
\operatorname{vol}\left(K_{\tilde{H}_{\varepsilon}}\right) \geq C\left(\inf _{S^{n}} f_{\varepsilon}\right)^{\frac{n+1}{n+q}}
$$

Noting that $f_{\varepsilon}=\hat{h}_{\varepsilon}^{q}$ and that $\inf _{S^{n}} \hat{h}_{\varepsilon}=\inf _{S^{n}} h_{\varepsilon}$, we see that

$$
\begin{align*}
\operatorname{vol}\left(K_{\tilde{H}_{\varepsilon}}\right) & \geq C\left(\inf _{S^{n}} h_{\varepsilon}\right)^{\frac{q(n+1)}{n+q}} \\
& \geq C R_{n+1}^{\frac{q(n+1)}{n+q}} \tag{4.7}
\end{align*}
$$

In order to prove that \tilde{H}_{ε} and H_{ε} are two different solutions, we need that,

$$
\begin{equation*}
\operatorname{vol}\left(K_{\tilde{H}_{\varepsilon}}\right)>\operatorname{vol}\left(K_{H_{\varepsilon}}\right) \tag{4.8}
\end{equation*}
$$

By (4.6) and (4.7), it suffices to have

$$
R_{n+1}> \begin{cases}C \varepsilon^{\frac{n+q-2}{n}} & \text { if } 1<q<2 \tag{4.9}\\ C \varepsilon|\log \varepsilon|^{\frac{n+2}{n}} & \text { if } q=2\end{cases}
$$

So it suffices to give a lower bound for R_{n+1} to complete Theorem 1.1. In fact we have the following

Lemma 4.2. For $1<q \leq 2$, we have

$$
R_{n+1} \approx \begin{cases}\varepsilon^{\frac{(2-q)(n-1)}{n}} & \text { if } 1<q<2 \tag{4.10}\\ |\log \varepsilon|^{\frac{1-n}{n}} & \text { if } q=2\end{cases}
$$

Here the notation " \approx " means the ratio of the two sides has uniform positive upper and lower bounds.

Proof. Let u_{ε} be as (2.6), $K_{u_{\varepsilon}}$ be the corresponding convex body. From (2.7), we have

$$
\begin{equation*}
\operatorname{area}\left(\partial K_{u_{\varepsilon}}\right)=\int_{S^{n}} \frac{1}{\varepsilon^{2}\left|M_{\varepsilon}^{-1} x\right|^{q}}=(C+o(1)) \varepsilon^{-1}, \quad \forall q>1 \tag{4.11}
\end{equation*}
$$

Denote

$$
\begin{aligned}
r_{1}=r_{1, \varepsilon} & =u_{\varepsilon}(1,0, \cdots, 0)=R_{1} \\
r_{n+1}=r_{n+1, \varepsilon} & =u_{\varepsilon}(0, \cdots, 0,1)=\varepsilon^{-1} R_{n+1}
\end{aligned}
$$

Since

$$
\operatorname{area}\left(\partial K_{u_{\varepsilon}}\right) \approx r_{1}^{n}+r_{1}^{n-1} r_{n+1}
$$

multiplying both sides by ε, and noting (4.11), we obtain

$$
1 \approx \varepsilon R_{1}^{n}+R_{1}^{n-1} R_{n+1} .
$$

On account of (4.5), $\varepsilon R_{1}^{n} \ll 1$, which leads to

$$
\begin{equation*}
1 \approx R_{1}^{n-1} R_{n+1} \tag{4.12}
\end{equation*}
$$

By (4.5) again, we have (4.10).
Combining (4.9) and (4.10), we obtain (4.8). Therefore the case $1<q \leq 2$ of Theorem 1.1 is also proved.

References

[1] B. Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999) 151-161.
[2] B. Andrews, Motion of hypersurfaces by Gauss curvature, Pacific J. Math. 195 (2000) 1-34.
[3] B. Andrews, Classification of limiting shapes for isotropic curve flows, J. Amer. Math. Soc. 16 (2003) 443-459.
[4] K. Boroczky, E. Lutwak, D. Yang, G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc. 26 (2012) 831-852.
[5] W.X. Chen, L_{p} Minkowski problem with not necessarily positive data, Adv. Math. 201 (2006) 77-89.
[6] K.S. Chou (K. Tso), Deforming a hypersurface by its Gauss-Kronecker curvature, Comm. Pure Appl. Math. 38 (1985) 867-882.
[7] K.S. Chou, X.J. Wang, The L_{p}-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math. 205 (2006) 33-83.
[8] K.S. Chou, X.-P. Zhu, Anisotropic flows for convex plane curves, Duke Math. J. 97 (1999) 579-619.
[9] B. Chow, Deforming convex hypersurfaces by the nth root of the Gaussian curvature, J. Differential Geom. 23 (1985) 117-138.
[10] C. Dohmen, Y. Giga, Selfsimilar shrinking curves for anisotropic curvature flow equations, Proc. Japan Acad. Ser. A 70 (1994) 252-255.
[11] J.B. Dou, M.J. Zhu, The two dimensional L_{p} Minkowski problem and nonlinear equations with negative exponents, Adv. Math. 230 (2012) 1209-1221.
[12] W. Firey, Shapes of worn stones, Mathematika 21 (1974) 1-11.
[13] M.E. Gage, Evolving plane curves by curvature in relative geometries, Duke Math. J. 72 (1993) 441-466.
[14] H.Y. Jian, J. Lu, Mirror-symmetric solutions to the centeroaffine Minkowski problem, preprint, 2013.
[15] J. Lu, X.-J. Wang, Rotationally symmetric solutions to the Lp-Minkowski problem, J. Differential Equations 254 (2013) 983-1005.
[16] E. Lutwak, The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993) 131-150.
[17] E. Lutwak, V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41 (1995) 227-246.
[18] E. Lutwak, D. Yang, G. Zhang, On the L_{p}-Minkowski problem, Trans. Amer. Math. Soc. 356 (2004) 4359-4370.
[19] E. Lutwak, D. Yang, G. Zhang, Optimal Sobolev norms and the L_{p} Minkowski problem, Int. Math. Res. Not. IMRN 2006 (2006), Art. ID 62987, 21 pp.
[20] A. Stancu, On the number of solutions to the discrete two-dimensional L_{0}-Minkowski problem, Adv. Math. 180 (2003) 290-323.
[21] V. Umanskiy, On solvability of two-dimensional L_{p}-Minkowski problem, Adv. Math. 180 (2003) 176-186.
[22] H. Yagisita, Non-uniqueness of self-similar shrinking curves for an anisotropic curvature flow, Calc. Var. Partial Differential Equations 26 (2006) 49-55.

[^0]: π^{4} The first author was supported by the Natural Science Foundation of China (11131005, 11271118); the second author was supported by the Natural Science Foundation of China (11401527); and the third author was supported by the Australian Research Council (DP120102718 and FL130100118).

 * Corresponding author.

 E-mail addresses: hjian@math.tsinghua.edu.cn (H.Y. Jian), lj-tshu04@163.com (J. Lu), Xu-Jia.Wang@anu.edu.au (X.-J. Wang).
 http://dx.doi.org/10.1016/j.aim.2015.05.010
 0001-8708/® 2015 Elsevier Inc. All rights reserved.

