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In this paper we study the prescribed centroaffine curvature 
problem in the Euclidean space R

n+1. This problem is 
equivalent to solving a Monge–Ampère equation on the unit 
sphere. It corresponds to the critical case of the Blaschke–
Santaló inequality. By approximation from the subcritical 
case, and using an obstruction condition and a blow-up 
analysis, we obtain sufficient conditions for the a priori 
estimates, and the existence of solutions up to a Lagrange 
multiplier.
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1. Introduction

Given a hypersurface M in the Euclidean space Rn+1, the centroaffine curvature κ of 
M at point p is by definition equal to K/dn+2, where K is the Gauss curvature and d is 
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the distance from the origin to the tangent plane of M at p. The centroaffine curvature 
κ was first discovered by Tzitzéica [31] in 1908. It is invariant under transformations in 
SL(n + 1) and is an elementary quantity in the affine differential geometry and in the 
theory of convex bodies [8,13,14,21–23,25,27]. It appears naturally in geometric objects 
such as affine normal and affine spheres, and plays a fundamental role in the study of 
many geometric problems [1–3,9,15,16,19].

In this paper, we consider the following prescribed centroaffine curvature problem. 
Given a positive function f in Rn+1, find proper conditions on f such that there exists a 
closed convex hypersurface M in Rn+1 surrounding the origin, of which the centroaffine 
curvature κ at a point p ∈ M is equal to f(p).

The corresponding prescribed mean curvature and Gauss curvature problems, namely 
the problems with the centroaffine curvature replaced by the mean curvature or the 
Gauss curvature, were raised by Yau [34]. In the case of Gauss curvature, the problem 
was studied in [10,26,30,33].

Let H be the support function of the polar body of M . We show in Section 2 that 
the problem is equivalent to solving the following Monge–Ampère equation,

det(∇2H + HI)(x) = f(x/H)
Hn+2 x ∈ Sn, (1.1)

where ∇2H = (∇ijH) is the covariant derivatives of H with respect to an orthonormal 
frame on the unit sphere Sn, and I is the unit matrix.

Problem (1.1) is closely related to the Lp-Minkowski problem [22],

det(∇2H + HI)(x) = f(x)Hp−1 x ∈ Sn, (1.2)

where f is a positive function on Sn. The Lp-Minkowski problem is an extension of the 
famous Minkowski problem (the case when p = 1), and has been extensively studied 
recently [5,9,11,18,24,32]. In particular a solution to the Lp-Minkowski problem is also 
a self-similar solution to an anisotrophic Gauss curvature flow, of which the asymptotic 
behaviour of solutions has attracted much attentions [4,12].

Equation (1.1), or equation (1.2) in the case p = −n − 1, is referred to as the cen-
troaffine Minkowski problem [9]. The centroaffine Minkowski problem is also of interest 
in the image processing. In image processing, one hopes that the deformation of image 
is invariant when one looks at the picture from different angles. In other words, the 
image processing should be invariant under projective transformations. For this purpose 
an evolution equation was introduced in [2], which becomes a centroaffine Minkowski 
problem if one deals with self-similar solutions.

In this paper we establish the a priori estimates and existence of solutions to equation 
(1.1). As the centroaffine curvature is invariant under projective transformations on Sn, 
all ellipsoids of volume |B1(0)| have constant centroaffine curvature 1, namely they are all 
solutions to (1.1) with f ≡ 1. Therefore conditions are needed for the uniform estimate 
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of H. In fact an obstruction was found in [9] for the existence of solutions, which means 
that for some f there is no solution to equation (1.1).

On the other hand, equation (1.1) corresponds to the critical exponent case of the 
Blaschke–Santaló inequality [9]. Therefore one may employ the variational approach to 
study the problem. As is well known, the critical exponent case is usually very compli-
cated. So we will first prove an existence result in the subcritical case, and then establish 
the a priori estimates and prove the existence of solutions by approximation.

For a support function H, denote the volume of the associated convex body by vol(H), 
namely

vol(H) = 1
n + 1

∫
Sn

H det(∇2H + HI). (1.3)

Then we have

Theorem 1.1. Let f be a bounded and positive function in Rn+1. For any positive con-
stants v > 0 and q ∈ [n + 1, n + 2), there exist a number λ > 0 and a positive support 
function H ∈ C1,γ(Sn) for some γ ∈ (0, 1) with volume vol(H) = v, which solve the 
equation

det(∇2H + HI)(x) = λf(x/H)
Hq

x ∈ Sn. (1.4)

The above theorem deals with the subcritical case q < n + 2. By approximation to 
the critical exponent case q = n + 2, and using a blow-up analysis and the necessary 
condition in [9], we find sufficient conditions for the a priori estimates of solutions.

Theorem 1.2. Let f ∈ C1(Rn+1) be a positive function. Assume that

f(x) = f(∞) + β + o(1)
|x|α as |x| → ∞, (1.5)

for constants α > 0, f(∞) > 0, and β �= 0, and

either f(x) > f(∞) or f(x) < f(∞) ∀x ∈ R
n+1. (1.6)

Let H be a solution to (1.1). Then we have the a priori estimates

C−1 ≤ H ≤ C, (1.7)

where C is a positive constant depending only on n and f .

By Theorems 1.1 and 1.2, and using approximation, we obtain the following existence 
result for equation (1.1).
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Theorem 1.3. Let f ∈ C1(Rn+1) be a positive function. Assume that f satisfies (1.5) with 
β > 0 and

f(x) > f(∞) ∀x ∈ R
n+1. (1.8)

Then for any positive constant v > 0, there exists a number λ and a support function 
H ∈ C2,γ (∀ γ ∈ (0, 1)) with vol(H) = v which solve the equation

det(∇2H + HI)(x) = λf(x/H)
Hn+2 x ∈ Sn. (1.9)

Remark. In Theorem 1.1, it suffices to assume that f is a positive and bounded function. 
In this case, the solution is C1,γ for some γ ∈ (0, 1) [7]. In Theorems 1.2 and 1.3, we use 
condition (2.7) and so f ∈ C1(Rn+1) is needed. The assumption f ∈ C1(Rn+1) implies 
that H ∈ C2,γ(Sn) for all γ ∈ (0, 1).

The prescribed centroaffine curvature problem is related to the Blaschke–Santaló in-
equality

sup
H

inf
ξ∈K

vol(H)
∫
Sn

1
(H − ξ · x)n+1 dσSn ≤ ω2

n

n + 1 , (1.10)

just as the prescribed scalar curvature problem related to the Sobolev inequality. Here 
dσSn denotes the volume element of Sn, and ωn =

∫
Sn dσSn . The prescribed scalar 

curvature equation on the sphere

−ΔSnu + 1
2n(n− 2)u = R(x)up on Sn (1.11)

has been studied by numerous authors (see, e.g. [28]), where p = n+2
n−2 . To prove the a 

priori estimates and the existence of solutions to (1.1), we use the blow-up approach. 
The first step is to prove the existence of a solution Hq to (1.4) in the sub-critical case 
q ∈ [n + 1, n + 2). Even in the sub-critical case, the Monge–Ampère equation (1.2) is 
more complicated than (1.11). It is well known that the solutions to (1.11) are uniformly 
bounded in the sub-critical case 1 < p < n+2

n−2 . But this is not true for equation (1.2). 
There may exist infinitely many solutions to (1.2) which are not uniformly bounded in 
the subcritical case [17].

The second step is to find conditions on f such that Hq is uniformly bounded for 
all q ∈ [n + 1, n + 2). Suppose that supx∈Sn Hq(x) → ∞ as q → n + 2. We normalize 
the associated convex body to get a new support function H̃q, of which the limit H̃∞
satisfies equation (1.1) for a different function f∞. In order that this blow-up argument 
works, it is crucial to have a classification of the limit shape H̃∞.

However, unlike the prescribed scalar curvature equation (1.11), where the limit of 
the blow-up sequence is unique (by a Liouville type theorem), the problem (1.1) is more 
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difficult, because the limit f∞ is a function, not a constant in general. To overcome this 
difficulty, we assume that

lim
|p|→+∞

f(p) = const, (1.12)

so that f∞ is a constant and hence H̃∞ must be a sphere.
Condition (1.12) alone is not sufficient, as there is no uniform estimate even if f ≡ 1. 

To establish the a priori estimates (1.7), we use the necessary condition (2.7) and a 
blow-up analysis, by which we arrive at the condition (1.5), which is a strengthening of 
(1.12). The blow-up argument was also used in [20] for the rotationally symmetric case 
of the Lp-Minkowski problem. In this paper we consider the non-symmetric case and the 
analysis is more delicate, as there are many different cases to deal with. See Lemma 4.1.

This paper is organized as follows. In Section 2, we show that the prescribed cen-
troaffine curvature problem is equivalent to equation (1.1). In Section 3, we prove the 
existence of solutions in the subcritical case, namely Theorem 1.1. In Section 4, we es-
tablish the a priori estimates in Theorem 1.2 by a delicate blow-up analysis. Finally we 
prove Theorem 1.3 in Section 5.

2. The Monge–Ampère equation

Given a bounded, positive function f in Rn+1, the prescribed centroaffine curvature 
problem is to find a convex hypersurface M such that

κ(p) = f(p) ∀ p ∈ M, (2.1)

where κ(p) is the centroaffine curvature of M at p. When M is smooth and strictly 
convex, κ(p) can be expressed as in [9]

κ(p) = 1
Hn+2(x) det(∇2H + HI)(x) ,

where x ∈ Sn is the unit outer normal of M at p and H is the support function of M , 
given by

H(x) = sup{〈x, p〉 | p ∈ M} x ∈ Sn.

Extend H to Rn+1 such that it is homogeneous of degree 1. Denote the gradient of H
in Rn+1 by ∇. It is well known that

p = ∇H(x) = ∇H(x) + H(x)x.

Thus (2.1) can be written as

Hn+2(x) det(∇2H + HI)(x) =
[
f
(
∇H(x)

)]−1
x ∈ Sn. (2.2)
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Let M∗ be the boundary of the polar set of the convex body enclosed by M [27]. Let 
ρ∗ be the radial function of M∗, such that

M∗ = {xρ∗(x) | x ∈ Sn}.

Denote by H∗ the support function of M∗. Then by definition,

ρ∗(x) = 1/H(x),

which implies that

∇H = − ∇ρ∗

(ρ∗)2 .

Hence in terms of ρ∗, equation (2.2) can be rewritten as

det
(
−ρ∗∇2ρ∗ + 2(∇ρ∗)T∇ρ∗ + (ρ∗)2I

)
(ρ∗)4n+2 =

[
f
(−∇ρ∗

(ρ∗)2
)]−1

. (2.3)

On the other hand, let x∗ be the unit outer normal of M∗ at point ρ∗(x)x. We have

x∗ = − ∇ρ∗∣∣∇ρ∗
∣∣ (x),

which implies that

x∗

H∗(x∗) = − ∇ρ∗

(ρ∗)2 (x). (2.4)

It is known that the Gauss curvature of M∗ at this point is given by

K∗ = 1
det (∇2H∗ + H∗I) (x∗) =

det
(
−ρ∗∇2ρ∗ + 2(∇ρ∗)T∇ρ∗ + (ρ∗)2I

)
(ρ∗)2n−2|∇ρ∗|n+2

(x).

Hence equation (2.3) can also be written as

det
(
∇2H∗ + H∗I

)
(x∗) = f

(
−∇ρ∗/(ρ∗)2

)( |∇ρ∗|
(ρ∗)2

)n+2

(x)

= f (x∗/H∗)
(H∗)n+2 (x∗),

where the second equality is due to (2.4). Thus if H is a solution to equation (2.2), then 
the support function of its polar body, H∗, satisfies the following equation

det
(
∇2H∗ + H∗I

)
(x∗) = f (x∗/H∗)

(H∗)n+2 x∗ ∈ Sn,

which is exactly the equation (1.1).
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An important property of equation (1.1) is its invariance under projective transfor-
mations on Sn [9]. That is if H is a solution to (1.1), then HA with A ∈ SL(n + 1) given 
by

HA(x) = |Ax| ·H
(

Ax

|Ax|

)
x ∈ Sn, (2.5)

satisfies the following equation

det(∇2HA + HAI) = f(Ax/HA)
Hn+2

A

x ∈ Sn. (2.6)

In the paper [9] the authors also found a necessary condition for the existence of solutions 
to (1.1). That is, if H is a solution to (1.1), then

∫
Sn

∇ξ[f(x/H)](x)
Hn+1 dσSn = 0 (2.7)

for any projective vector field ξ generated by any square matrix B of order n +1, namely

ξ(x) = Bx− (xTBx)x, x ∈ Sn. (2.8)

In the following we may drop dσSn , when the integral over Sn is under the standard 
metric.

3. Existence of solutions in the subcritical case

In this section we sketch the proof of Theorem 1.1. The proof is similar to that in [9, 
Section 5], where the existence of solutions for the case f = f(x) was obtained. We refer 
the reader to [9] for more details.

For q ∈ [n + 1, n + 2), we denote

F (x, t) =
+∞∫
t

f(x/s)
sq

ds, (3.1)

where x ∈ Sn and t > 0, and

J [H] =
∫
Sn

F (x,H(x)). (3.2)

Consider the maximizing problem

Mv =: sup inf
y∈K

J [H(x) − y · x], (3.3)

H∈Sv H
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where v is a positive constant, and Sv is the set of support functions such that the volume 
of the associated convex body is equal to v.

Observe that

finf

q − 1 · 1
tq−1 ≤ F (x, t) ≤ fsup

q − 1 · 1
tq−1 ∀x ∈ Sn. (3.4)

Given H ∈ Sv, since q ∈ [n + 1, n + 2), one easily sees that J [H(x) − y · x] → ∞
whenever y ∈ KH and y converges to a boundary point of ∂KH . Hence there exists a 
point y = y(H) ∈ KH such that the infimum infy∈KH

J [H(x) − y · x] is attained at y.
We claim that there exist two positive constants C1, C2, depending only on n and f , 

such that

C1

q − 1v
− q−1

n+1 ≤ Mv ≤ C2

q − 1v
− q−1

n+1 . (3.5)

In fact, by the Hölder inequality, we have

J [H(x) − y · x] ≤ fsup

q − 1

∫
Sn

1
(H(x) − y · x)q−1

≤ Cnfsup

q − 1

⎛
⎝∫
Sn

1
(H(x) − y · x)n+1

⎞
⎠

q−1
n+1

.

By the Blaschke–Santaló inequality (1.10), we obtain

inf
y∈KH

J [H(x) − y · x] ≤ Cnfsup

q − 1 · vol(KH)−
q−1
n+1 = C2

q − 1v
− q−1

n+1 ,

which implies the second inequality of (3.5). Letting H ≡ [(n + 1)v/ωn]1/(n+1), we have

Mv ≥ inf
y∈KH

J [H(x) − y · x]

≥ finf

q − 1

∫
Sn

1
Hq−1

≥ Cnfinf

q − 1 v−
q−1
n+1 ,

which is the first inequality of (3.5).

Lemma 3.1. For a given positive constant v > 0, there exists a support function H ∈ Sv

such that Mv = infy∈KH
J [H(x) − y · x].
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Proof. Let {Hj} ⊂ Sv be a maximizing sequence. We show that {Hj} is uniformly 
bounded. Suppose to the contrary that maxx∈Sn Hj(x) → +∞ as j → +∞. Denote the 
minimum ellipsoid of KHj

by Ej . Let zj be the centre of Ej . We have

inf
y∈KHj

J [Hj(x) − y · x] ≤ J [Hj − zj · x]

≤ fsup

q − 1

∫
Sn

1
(Hj(x) − zj · x)q−1 .

By a translation of coordinates, we assume that zj is the origin. Then the support 
function of Ej can be expressed as |Bjx| for some positive definite matrix Bj of order 
n + 1. As Ej is the minimum ellipsoid of KHj

, we have

1
n + 1 |Bjx| ≤ Hj(x) ≤ |Bjx| ∀ x ∈ Sn. (3.6)

It follows that

inf
y∈KHj

J [Hj(x) − y · x] ≤ Cnfsup

∫
Sn

1
|Bjx|q−1 . (3.7)

From (3.6), we see that C−1
n v ≤ detBj ≤ Cnv. By assumption, maxx∈Sn |Bjx| → +∞

as j → +∞. Hence when q < n + 2, one infers that [9]

lim
j→+∞

∫
Sn

1
|Bjx|q−1 = 0,

which together with (3.7) implies that Mv = 0, contradicting with (3.5). Therefore {Hj}
is uniformly bounded.

By Blaschke’s selection theorem, there is a subsequence of {Hj} which converges 
uniformly to a maximizer H of the problem (3.3) and H is uniformly bounded. �
Proof of Theorem 1.1. For any given positive constant v > 0, by Lemma 3.1, there exists 
a support function H ∈ Sv such that Mv = infy∈KH

J [H(x) − y · x]. From the proofs of 
Corollary 5.4 and Lemmas 5.5–5.6 in [9], one sees that the maximizer H is a generalized 
solution to

det(∇2H + HI)(x) = λf(x/H)
Hq

∀x ∈ Sn,

where λ is the Lagrange multiplier.
When q ∈ [n + 1, n + 2), one easily verifies that H is positive. For if inf H = 0, then 

J [H] = ∞, which is in contradiction with (3.5). Hence by [7], H is strictly convex and 
C1,γ smooth, for some γ ∈ (0, 1). This completes the proof of Theorem 1.1. �
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We remark that if furthermore f ∈ C1(Rn+1), then by [6,29], we have H ∈ C2,γ(Sn)
for any γ ∈ (0, 1).

4. A priori estimates in the critical case

In this section we use the necessary condition (2.7) and a blow-up analysis to prove 
the a priori estimates (1.7) in Theorem 1.2.

Let Ak ∈ SL(n + 1) be a sequence of diagonal matrices,

Ak = diag (s1,k, · · · , sn+1,k) , (4.1)

where s1,k ≥ · · · ≥ sn+1,k > 0 and s1,k → +∞ and sn+1,k → 0 as k → +∞. We 
successively define integers l1, l2, · · · as follows:

l1 := max
j

{
j : lim

k
sj,k = +∞

}
,

li := max
j

{
j : lim

k

sj,k
sli−1,k

= +∞
}

for i = 2, 3, · · · .
(4.2)

By choosing a subsequence we may assume all the limits exist or equal infinity. The 
procedure in (4.2) must end in finite steps, say, at step m. Then we have

1 ≤ lm < · · · < · · · < l1 ≤ n < n + 1.

Lemma 4.1. Assume that ϕk, ψk are two sequences of uniformly bounded functions on 
Sn, converging uniformly to functions ϕ, ψ as k → +∞. Assume that ϕ ∈ C1(Sn) and 
ψ is a positive constant. Consider the following integral

Λk :=
∫
Sn

ϕk(x)ζ (ψk(x)Akx) 1
|Akx|α

, (4.3)

where α > 0 is a constant, and ζ ∈ C(Rn+1) is a bounded function satisfying

(a) ζ(y) = O(|y|α) as y → 0,
(b) ζ(y) = ζ∞ + o(1) as y → ∞.

Then as k → +∞, we have the following estimates.

(i) When α > l1,

Λk = 1
s1,k · · · sl1,k

⎛
⎝ψα−l1

∫
Sn−l1

ϕ(0, v)dσSn−l1

∫
u∈Rl1

ζ (u, ψNv)
|(u, ψNv)|α du + o(1)

⎞
⎠ ,

(4.4)

where N = limk→∞ diag (sl1+1,k, · · · , sn,k, 0) (we allow all the limits to be zero).
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(ii) When α = l1,

Λk = C log sl1,k
s1,k · · · sl1,k

⎛
⎝ζ∞

∫
Sn−l1

ϕ(0, v)dσSn−l1 + o(1)

⎞
⎠ . (4.5)

(iii) When li < α < li−1 for i = 2, · · · , m,

Λk = C

s1,k · · · sli,k · sα−li
li−1,k

⎛
⎝ζ∞

∫
Sn−li

ϕ(0, v)
|Nv|α−li

dσSn−li + o(1)

⎞
⎠ , (4.6)

where N = limk→∞ diag
(

sli+1,k
sli−1,k

,
sli+2,k
sli−1,k

, · · · , sli−1−1,k

sli−1,k
,
sli−1,k

sli−1,k
, 0, · · · , 0

)
is a matrix 

of order n + 1 − li.
(iv) When α = li for i = 2, · · · , m,

Λk =
C log(sli,k/sli−1,k)

s1,k · · · sli,k

⎛
⎝ζ∞

∫
Sn−li

ϕ(0, v)dσSn−li + o(1)

⎞
⎠ . (4.7)

(v) When α < lm,

Λk = 1
sαlm,k

⎛
⎝ζ∞

∫
Sn

ϕ(x)
|Ãx|α

dσSn + o(1)

⎞
⎠ , (4.8)

where Ã = limk→∞ diag
(

s1,k
slm,k

,
s2,k
slm,k

, · · · , slm−1,k
slm,k

,
slm,k

slm,k
, 0, · · · , 0

)
is a matrix of 

order n + 1.

In the above, C is a positive constant.

Proof. We prove this lemma case by case.
Case (i): α > l1. For convenience, we denote l := l1, x = (u, v) and

Ak =
(
Mk 0
0 Nk

)
, (4.9)

where

u = (x1, · · · , xl), v = (xl+1, · · · , xn+1), (4.10)

and Mk and Nk are diagonal matrices of order l and n + 1 − l, respectively. Denote
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Sn
∗ = {x = (u, v) ∈ Sn | 1/2 ≤ |u| ≤ 1} . (4.11)

By the coarea formula,

∫
Sn
∗

1
|Mku|α

=
∫

1/2≤|u|≤1

du

ρ(u)

∫
|v|=ρ(u)

1
|Mku|α

dσ

= ωn−l

∫
1/2≤|u|≤1

1
|Mku|α

ρ(u)n−l−1du,

(4.12)

where ρ(u) =
√

1 − |u|2. We have

∫
1/2≤|u|≤1

1
|Mku|α

ρ(u)n−l−1du =
1∫

1
2

ρ(r)n−l−1dr

∫
|u|=r

1
|Mku|α

dσ

=
1∫

1
2

rl−α−1ρ(r)n−l−1dr

∫
|u|=1

1
|Mku|α

dσ

= Cl,α

∫
Sl−1

1
|Mku|α

dσ,

where Cl,α is a positive constant depending only on n, l and α. By [18, Lemma 3.1],

∫
Sl−1

1
|Mku|α

dσ = 1
detMk

∫
Sl−1

∣∣M−1
k u

∣∣α−l
dσ.

Hence from (4.12) we obtain

∫
Sn
∗

1
|Mku|α

= ωn−lCl,α

detMk

∫
Sl−1

∣∣M−1
k u

∣∣α−l
dσ. (4.13)

When α− l > 0, there exist positive constant C̃ depending only on l and α, such that

C̃−1 ∣∣M−1
k u

∣∣α−l ≤
∣∣∣∣ u1

s1,k

∣∣∣∣
α−l

+ · · · +
∣∣∣∣ ul

sl,k

∣∣∣∣
α−l

≤ C̃
∣∣M−1

k u
∣∣α−l

.

Hence by (4.13),
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∫
Sn
∗

1
|Mku|α

= Ck

detMk

(
1

sα−l
1,k

+ · · · + 1
sα−l
l,k

)

= Ck

detMk

(
trM−1

k

)α−l
,

(4.14)

where Ck is a positive constant independent of Mk, and C̃−1 ≤ Ck

ωn−lCl,α
≤ C̃.

Now we compute Λk. By the coarea formula, we have

Ik :=
∫

Sn\Sn
∗

ϕk(x)ζ (ψk(x)Akx) 1
|Akx|α

=
∫

|u|<1/2

du

ρ(u)

∫
|v|=ρ(u)

ϕk(x)ζ (ψk(x)Akx) 1
|Akx|α

dσ.

Let v = ρ(u)ṽ. We have

Ik =
∫

|u|<1/2

ρn−l−1(u)du
∫

|ṽ|=1

ϕk(x)ζ (ψk(x)Akx) 1
|Akx|α

dσ

=
∫

|ṽ|=1

dσ

∫
|u|<1/2

ϕk(x)ζ (ψk(x)Akx) 1
|Akx|α

ρn−l−1(u)du

=:
∫

|ṽ|=1

Φk(ṽ)dσ.

(4.15)

Let u = M−1
k ũ. Then

Φk(ṽ) = 1
detMk

∫
|M−1

k ũ|<1/2

ϕk(x)ζ (ψk(x)(ũ, Nkv))
1

|ũ, Nkv|α
ρn−l−1(u)dũ, (4.16)

where |ũ, Nkv| is an abbreviation of |(ũ, Nkv)|. Therefore

|detMk · Φk(ṽ)| ≤ C

∫
|M−1

k ũ|<1/2

|ζ (ψk(x)(ũ, Nkv))|
1

|ũ, Nkv|α
dũ

≤ C

∫
ũ∈Rl

|ζ (ψk(x)(ũ, Nkv))|
1

|ũ, Nkv|α
dũ,

which is integrable by our assumptions (a), (b) and α > l. Applying the dominated 
convergence theorem to (4.16), we obtain, as k → +∞,
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Φk(ṽ) = 1
detMk

⎛
⎝ ∫

ũ∈Rl

ϕ(0, ṽ)ζ (ψ · (ũ, Nṽ)) 1
|ũ, Nṽ|α dũ + o(1)

⎞
⎠ ,

where N := limk Nk. Inserting the above formula into (4.15), we obtain

Ik = 1
detMk

⎛
⎜⎝ ∫
|ṽ|=1

ϕ(0, ṽ)dσ(ṽ)
∫

ũ∈Rl

ζ (ψ · (ũ, Nṽ)) 1
|ũ, Nṽ|α dũ + o(1)

⎞
⎟⎠ . (4.17)

Note that

|Λk − Ik| ≤ C

∫
Sn
∗

1
|Mku|α

≤ C

detMk

(
trM−1

k

)α−l = o(1)
detMk

.

Hence from (4.17),

Λk = 1
detMk

⎛
⎜⎝ ∫
|ṽ|=1

ϕ(0, ṽ)dσ(ṽ)
∫

ũ∈Rl

ζ (ψ · (ũ, Nṽ))
|ũ, Nṽ|α dũ + o(1)

⎞
⎟⎠

= 1
detMk

⎛
⎜⎝ψα−l

∫
|ṽ|=1

ϕ(0, ṽ)dσ(ṽ)
∫

ũ∈Rl

ζ (ũ, ψNṽ)
|ũ, ψNṽ|α dũ + o(1)

⎞
⎟⎠ .

We obtain (4.4).
Case (ii): α = l1. For convenience, we denote again l := l1, and use the same notations 

in (4.10) and (4.9).
Before computing Λk, we estimate an integral first. Denote

Tk := {x = (u, v) ∈ Sn | |u| < 1/2, |Mku| ≥ sl,k/2} . (4.18)

By the coarea formula, similarly to (4.12), we have

∫
Tk

1
|Mku|α

= ωn−l

∫
|u|<1/2, |Mku|≥sl,k/2

1
|Mku|α

ρ(u)n−l−1du

= Cωn−l

∫
|u|<1/2, |Mku|≥sl,k/2

1
|Mku|α

du

(4.19)

for a constant C ∈ (1/2n, 2). Let

u := sl,k M
−1
k ũ. (4.20)
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Then ∫
Tk

1
|Mku|α

= Cωn−l

detMk · sα−l
l,k

∫
|sl,kM−1

k ũ|<1/2, |ũ|≥1/2

1
|ũ|α dũ. (4.21)

Observing that sl,kM−1
k is a diagonal matrix whose diagonal entries are in ascending 

order and the last one is equal to 1, we have∫
|sl,kM−1

k ũ|<1/2, |ũ|≥1/2

1
|ũ|α dũ ≤

∫
ũ∈Rl−1×(−1/2,1/2), |ũ|≥1/2

1
|ũ|α dũ

< +∞,

where the last inequality holds when α ≥ l. (Although in this case α = l, we deduce the 
following (4.22) and (4.27) for α ≥ l, which will be used in case (iii).) Thus there exists 
a positive constant C depending only on n and l, such that

∫
Tk

1
|Mku|α

≤ C

detMk · sα−l
l,k

. (4.22)

To estimate Λk, without loss of generality, we assume that

sl,k > 2, sl+1,k ≤ 1, ∀ k ≥ 1.

Denote

Fk := {x = (u, v) ∈ Sn | |Mku| ≥ 1} , (4.23)

Gk := {x = (u, v) ∈ Sn | |Mku| < sl,k/2} . (4.24)

Then Fk ∪Gk = Sn, and

|u| < 1/2 ∀x = (u, v) ∈ Gk, (4.25)

Sn\Gk = Sn
∗ ∪ Tk. (4.26)

By (4.14) and (4.22) and since α ≥ l, there exists a positive constant C depending only 
on n, l and α, such that

∫
Sn\Gk

1
|Mku|α

≤ C

detMk · sα−l
l,k

. (4.27)

Observe that

|Akx| ≤
√

2|Mku|, ∀x = (u, v) ∈ Fk. (4.28)
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Similarly to (4.19), we have

|Sn\Fk| = ωn−l

∫
|Mku|<1

ρn−l−1(u)du

= Cωn−l

∫
|Mku|<1

du (4.29)

= C

detMk
.

Since Fk ∪Gk = Sn, we can write Λk as

Λk =

⎛
⎜⎝ ∫
Sn\Fk

+
∫

Fk∩Gk

+
∫

Sn\Gk

⎞
⎟⎠ϕk(x)ζ (ψk(x)Akx) 1

|Akx|α

=: Ik + II k + III k.

(4.30)

Noting that the integrand is bounded by our assumptions (a) and (b), we see from (4.29)
that

|Ik| ≤ C

∫
Sn\Fk

dσSn ≤ C

detMk
.

By (4.27) we also have

|III k| ≤ C

∫
Sn\Gk

1
|Mku|α

≤ C

detMk
.

Therefore (4.30) can be written as

Λk = II k + O(1)
detMk

as k → +∞. (4.31)

To estimate II k, first computing as in (4.19), (4.20) and (4.21), we have

∫
Fk∩Gk

1
|Mku|α

≤
∫

Fk∩Gk

1
|Mku|l

= Cωn−l

detMk

∫ 1
|ũ|l

dũ
1/sl,k≤|ũ|<1/2



842 H. Jian et al. / Journal of Functional Analysis 274 (2018) 826–862
= Cωn−lωl−1

detMk

1/2∫
1/sl,k

1
r
dr (4.32)

= Cωn−lωl−1

detMk
log

(sl,k
2

)

= (C + o(1)) log sl,k
detMk

,

as k → +∞, where C is a positive constant independent of k.
We claim that for any bounded function η ∈ C(Rn+1) satisfying

lim
y→∞

η(y) = 0, (4.33)

and any positive constant λk ≥ 1,
∫

Fk∩Gk

η (ψk(x)λkAkx) 1
|Akx|α

= o(1) log sl,k
detMk

, as k → +∞. (4.34)

In fact, denote

q(r) := sup
|y|≥r

|η(y)| r ∈ [0,+∞).

Then q is bounded and monotonically decreasing. By (4.33) it satisfies limr→+∞ q(r) = 0. 
Observing that

∫
Fk∩Gk

|η (ψk(x)λkAkx)| 1
|Akx|α

≤
∫

Fk∩Gk

q (|ψk(x)λkAkx|)
1

|Akx|α

≤
∫

Fk∩Gk

q

(
ψ

2 |Akx|
)

1
|Akx|α

≤
∫

Fk∩Gk

q (|Mku|)
1

|Mku|α
,

(4.35)

where without loss of generality, we have assumed that ψ ≥ 2. Again computing as in 
(4.19), (4.20) and (4.21), we have

∫
Fk∩Gk

q (|Mku|)
1

|Mku|α
≤

∫
Fk∩Gk

q (|Mku|)
1

|Mku|l

= Cωn−l

detMk

∫
q (|sl,kũ|)

|ũ|l
dũ (4.36)
1/sl,k≤|ũ|<1/2
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= Cωn−lωl−1

detMk

1/2∫
1/sl,k

q (sl,kt)
t

dt

= Cωn−lωl−1

detMk

sl,k/2∫
1

q(r)
r

dr.

Since q(t) → 0 as t → ∞, it is easy to see that

sl,k/2∫
1

q(r)
r

dr = o(1) log sl,k

as k → ∞. Hence (4.36) becomes
∫

Fk∩Gk

q (|Mku|)
1

|Mku|α
= o(1) log sl,k

detMk
,

which together with (4.35) implies (4.34).
We can now compute II k. Write

ζ(y) = ζ∞ + η(y).

Then η satisfies (4.33). By our assumptions,

II k =
∫

Fk∩Gk

(ϕ(x) + o(1)) (ζ∞ + η (ψk(x)Akx)) 1
|Akx|α

= ζ∞

∫
Fk∩Gk

ϕ(x)
|Akx|α

+
∫

Fk∩Gk

ϕ(x)η (ψk(x)Akx)
|Akx|α

+ o(1)
∫

Fk∩Gk

1
|Akx|α

= ζ∞

∫
Fk∩Gk

ϕ(x)
|Akx|α

+ o(1) log sl,k
detMk

,

(4.37)

where (4.32) and (4.34) are used in the last equality. Furthermore, by the coarea formula 
we have

∫
Fk∩Gk

ϕ(x)
|Akx|α

=
∫

1≤|Mku|<sl,k/2

du

ρ(u)

∫
|v|=ρ(u)

ϕ(x)
|Akx|α

dσ

=
∫

ρ(u)n−l−1du

∫
ϕ(u, ρ(u)ṽ)
|Akx|α

dσ.

(4.38)
1≤|Mku|<sl,k/2 |ṽ|=1
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Denote

Φk :=
∫

1≤|Mku|<sl,k/2

ρ(u)n−l−1du

∫
|ṽ|=1

ϕ(0, ṽ)
|Akx|α

dσ

=
∫

|ṽ|=1

ϕ(0, ṽ)dσ
∫

1≤|Mku|<sl,k/2

1
|Akx|α

ρ(u)n−l−1du.

(4.39)

Since ϕ ∈ C1(Sn), we have

|ϕ(u, ρ(u)ṽ) − ϕ(0, ṽ)| ≤ 2 ‖ϕ‖C1(Sn) |u|, ∀ |u| ≤ 1, |ṽ| = 1.

Thus

∣∣∣∣∣∣
∫

Fk∩Gk

ϕ(x)
|Akx|α

− Φk

∣∣∣∣∣∣ ≤ Cϕ

∫
1≤|Mku|<sl,k/2

ρ(u)n−l−1du

∫
|ṽ|=1

|u|
|Akx|α

dσ

≤ 2Cϕ

∫
1≤|Mku|<sl,k/2

du

∫
|ṽ|=1

|u|
|Mku|α

dσ

= 2Cϕωn−l

∫
1≤|Mku|<sl,k/2

|u|
|Mku|α

du,

(4.40)

where (4.25) is used in the second inequality. By the change (4.20), we obtain
∫

1≤|Mku|<sl,k/2

|u|
|Mku|α

du ≤
∫

1≤|Mku|<sl,k/2

|u|
|Mku|l

du

= 1
detMk

∫
1/sl,k≤|ũ|<1/2

|sl,k M−1
k ũ|

|ũ|l
dũ

≤ 1
detMk

∫
|ũ|<1/2

1
|ũ|l−1 dũ

≤ Cl

detMk
.

Hence by (4.40),

∣∣∣∣∣∣
∫

ϕ(x)
|Akx|α

− Φk

∣∣∣∣∣∣ ≤
CϕCl

detMk
. (4.41)
Fk∩Gk
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To estimate Φk, by (4.28), there exists a positive constant Cl,k > 0 such that

∫
1≤|Mku|<sl,k/2

1
|Akx|α

ρ(u)n−l−1du = Cl,k

∫
Fk∩Gk

1
|Mku|α

= (C + o(1)) log sl,k
detMk

,

(4.42)

where the second equality is due to (4.32). Substituting (4.42) into (4.39), we get

Φk =

⎛
⎜⎝C

∫
|ṽ|=1

ϕ(0, ṽ)dσ + o(1)

⎞
⎟⎠ log sl,k

detMk
,

which, together with (4.41), implies that

∫
Fk∩Gk

ϕ(x)
|Akx|α

=

⎛
⎜⎝C

∫
|ṽ|=1

ϕ(0, ṽ)dσ + o(1)

⎞
⎟⎠ log sl,k

detMk
. (4.43)

From (4.37) it then follows that

II k =

⎛
⎜⎝Cζ∞

∫
|ṽ|=1

ϕ(0, ṽ)dσ + o(1)

⎞
⎟⎠ log sl,k

detMk
. (4.44)

By (4.31), we finally obtain

Λk =

⎛
⎜⎝Cζ∞

∫
|ṽ|=1

ϕ(0, ṽ)dσ + o(1)

⎞
⎟⎠ log sl,k

detMk
, (4.45)

as k → +∞, which is just (4.5).
Case (iii): li < α < li−1 for some i = 2, · · · , m. For convenience, we write l := li, 

l̃ := li−1, and use the notation in (4.10) and (4.9) for x and Ak.
As before, we have

Ik :=
∫
Gk

ϕk(x)ζ (ψk(x)Akx) 1
|Akx|α

=
∫

du

ρ(u)

∫
ϕk(x)ζ (ψk(x)Akx) 1

|Akx|α
dσ (4.46)
|Mku|<sl,k/2 |v|=ρ(u)
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=
∫

|Mku|<sl,k/2

ρ(u)n−l−1du

∫
|ṽ|=1

ϕk(x)ζ (ψk(x)Akx) 1
|Akx|α

dσ

=
∫

|ṽ|=1

dσ(ṽ)
∫

|Mku|<sl,k/2

duϕk(x)ζ (ψk(x)Akx) ρ(u)n−l−1

|Akx|α
,

where v = ρ(u)ṽ. Making the change

u := sl̃,k M
−1
k ũ, (4.47)

we have

Ik = 1
detMk · s−l

l̃,k

∫
|ṽ|=1

dσ

∫
2|ũ|<sl,k/sl̃,k

ϕk(x)ζ (ψk(x)Akx) ρ(u)n−l−1

|Akx|α
dũ

= 1
detMk · sα−l

l̃,k

∫
|ṽ|=1

dσ

∫
2|ũ|<sl,k/sl̃,k

ϕk(x)ζ (ψk(x)Akx) ρ(u)n−l−1∣∣∣s−1
l̃,k

Akx
∣∣∣α dũ.

(4.48)

Note that s−1
l̃,k

Akx = (ũ, s−1
l̃,k

Nkρ(u)ṽ). From (4.25) we have ρ(u) > 1/2. By our definitions 
of l and l̃,

s−1
l̃,k

Nk ≥
(
Il̃−l

0

)
,

where Il̃−l is unit matrix of order l̃ − l. We obtain

∣∣∣s−1
l̃,k

Akx
∣∣∣ ≥ 1

2
√
|ũ|2 + |ṽ∗|2,

where ṽ∗ denotes the first l̃ − l entries of ṽ. Hence, from (4.48) we have
∣∣∣detMk · sα−l

l̃,k
Ik

∣∣∣ ≤ C

∫
|ṽ|=1

dσ(ṽ)
∫

2|ũ|<sl,k/sl̃,k

dũ

(|ũ|2 + |ṽ∗|2)α/2

≤ C

∫
|ṽ|=1

dσ(ṽ)
∫

ũ∈Rl

dũ

(|ũ|2 + |ṽ∗|2)α/2

(4.49)
= Cωn−l̃

∫
|ṽ∗|≤1

ρ(ṽ∗)n−l̃−1dṽ∗

∫
ũ∈Rl

dũ

(|ũ|2 + |ṽ∗|2)α/2

< +∞,

where the last inequality is due to the assumption l < α < l̃. Applying the dominated 
convergence theorem to (4.48), we obtain as k → +∞ that
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Ik = 1
detMk · sα−l

l̃,k

⎛
⎜⎝ζ∞

∫
|ṽ|=1

ϕ(0, ṽ)dσ
∫

ũ∈Rl

dũ

|ũ, Nṽ|α + o(1)

⎞
⎟⎠

= 1
detMk · sα−l

l̃,k

⎛
⎜⎝Cl,αζ∞

∫
|ṽ|=1

ϕ(0, ṽ)
|Nṽ|α−l

dσ + o(1)

⎞
⎟⎠ ,

(4.50)

where Cl,α is a positive constant depending only on l and α, and

N := lim
k

s−1
l̃,k

Nk,

which is well defined, and its first l̃ − l diagonal entries are finite but greater than or 
equal to 1, and the other n + 1 − l̃ diagonal entries are 0. By the definition of Ik and 
(4.27), we have

|Λk − Ik| ≤ C

∫
Sn\Gk

1
|Mku|α

≤ C

detMk · sα−l
l,k

= o(1)
detMk · sα−l

l̃,k

.

Hence by (4.50) we obtain

Λk = 1
detMk · sα−l

l̃,k

⎛
⎜⎝Cl,αζ∞

∫
|ṽ|=1

ϕ(0, ṽ)
|Nṽ|α−l

dσ(ṽ) + o(1)

⎞
⎟⎠ ,

which is just (4.6).
Case (iv): α = li for some i = 2, · · · , m. As before, we denote l := li, l̃ := li−1, and 

use the notations in (4.10) and (4.9) for x and Ak.
For convenience we denote A′

k := s−1
l̃,k

Ak = diag
(
s′1,k, · · · , s′n+1,k

)
, and as (4.9), we 

write A′
k =

(
M ′

k 0
0 N ′

k

)
, where M ′

k and N ′
k are diagonal matrices of order l and n +1 − l

respectively. Then

Λk = 1
sα
l̃,k

∫
Sn

ϕk(x)ζ
(
ψk(x)sl̃,kA

′
kx

) 1
|A′

kx|
α =: 1

sα
l̃,k

Λ′
k. (4.51)

Noting α = l, one sees that Λ′
k is in the same form as in Case (ii). Following the argument 

there, we have
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Λ′
k =

⎛
⎜⎝ ∫
Sn\F ′

k

+
∫

F ′
k∩G′

k

+
∫

Sn\G′
k

⎞
⎟⎠ϕk(x)ζ

(
ψk(x)sl̃,kA

′
kx

) 1
|A′

kx|
α

=: I ′k + II ′
k + III ′

k,

(4.52)

where

G′
k :=

{
x = (u, v) ∈ Sn | |M ′

ku| < s′l,k/2
}
,

F ′
k := {x = (u, v) ∈ Sn | |M ′

ku| ≥ 1} .

For I ′k, since the integrand here may fail to be bounded, we need to modify the com-
putations in Case (ii). But for II ′

k and III ′k, one easily sees that the computations in
Case (ii) still work, and one has

II ′
k + III ′

k =

⎛
⎜⎝Cζ∞

∫
|ṽ|=1

ϕ(0, ṽ)dσ(ṽ) + o(1)

⎞
⎟⎠ log s′l,k

detM ′
k

. (4.53)

Noting that M ′
k = s−1

l̃,k
Mk, s′l,k = s−1

l̃,k
sl,k, we thus have

Λk = 1
sα
l̃,k

I ′k +

⎛
⎜⎝Cζ∞

∫
|ṽ|=1

ϕ(0, ṽ)dσ(ṽ) + o(1)

⎞
⎟⎠ log(sl,k/sl̃,k)

detMk
. (4.54)

Denote

Ik := 1
sα
l̃,k

I ′k =
∫

Sn\F ′
k

ϕk(x)ζ (ψk(x)Akx) 1
|Akx|α

, (4.55)

where

Sn\F ′
k =

{
x = (u, v) ∈ Sn | |Mku| < sl̃,k

}
.

From the computations in (4.46), (4.47) and (4.48), we have

Ik = 1
detMk

∫
|ṽ|=1

dσ(ṽ)
∫

|ũ|<1

dũ ϕk(x)ζ (ψk(x)Akx) ρ(u)n−l−1∣∣∣s−1
l̃,k

Akx
∣∣∣α .

As in (4.49) we also have



H. Jian et al. / Journal of Functional Analysis 274 (2018) 826–862 849
|detMk · Ik| ≤ C

∫
|ṽ|=1

dσ(ṽ)
∫

|ũ|<1

dũ

(|ũ|2 + |ṽ∗|2)α/2

= Cωn−l̃

∫
|ṽ∗|≤1

ρ(ṽ∗)n−l̃−1dṽ∗

∫
|ũ|<1

dũ

(|ũ|2 + |ṽ∗|2)α/2

< +∞,

where the last inequality holds because α = l < l̃. Thus we obtain

Ik = O(1)
detMk

. (4.56)

Combining (4.54), (4.55) and (4.56), we have, as k → +∞,

Λk =

⎛
⎜⎝Cζ∞

∫
|ṽ|=1

ϕ(0, ṽ)dσ(ṽ) + o(1)

⎞
⎟⎠ log(sl,k/sl̃,k)

detMk
,

which is just (4.7).
Case (v): α < lm. For convenience, we denote l := lm, and use the notations in (4.10)

and (4.9). We have

sαl,kΛk =
∫
Sn

ϕk(x)ζ (ψk(x)Akx) 1∣∣∣s−1
l,kAkx

∣∣∣α . (4.57)

By our assumptions, we can estimate
∣∣sαl,kΛk

∣∣ ≤ C

∫
Sn

1∣∣∣s−1
l,kMku

∣∣∣α
≤ C

∫
Sn

1
|u|α

= Cωn−l

∫
|u|≤1

1
|u|α ρ(u)n−l−1du

< +∞,

where the last inequality holds because α < l. Applying the dominated convergence 
theorem to (4.57), we obtain

lim
k

sαl,kΛk = ζ∞

∫
Sn

ϕ(x) 1
|Ãx|α

,

where Ã := limk s
−1
l,kAk. Hence (4.8) holds. We have completed the proof. �
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In the rest of the paper, we will use ζ exclusively to denote

ζ(y) := [f(y) − f(∞)] · |y|α ∀ y ∈ R
n+1. (4.58)

Under the assumptions on f in Theorem 1.2, ζ satisfies the conditions in Lemma 4.1, 
and ζ∞ = β. For a matrix B of order n + 1, denote

ϕB(x) := trB − (n + 1)xTBx ∀x ∈ Sn. (4.59)

Lemma 4.2. (1) Let f be as in Theorem 1.2. Let l ∈ {1, 2, · · · , n} be an integer smaller 
than α, and N be a diagonal matrix of order n + 1 − l. If B = diag(1, 0, · · · , 0), the 
integral

∫
Sn−l

ϕB(0, v)dσ
∫

u∈Rl

ζ (u,Nv)
|(u,Nv)|α du

is positive when f > f(∞), and negative when f < f(∞).
(2) For l ∈ {1, 2, · · · , n} and B = diag(1, 0, · · · , 0), we have

∫
Sn−l

ϕB(0, v)dσ(v) > 0.

(3) Let l and l̃ be integers satisfying 1 ≤ l < α < l̃ ≤ n, N be a diagonal matrix of 
order n + 1 − l whose first l̃ − l diagonal entries are positive and the others are equal 
to 0. If B = diag(0, · · · , 0, 1), then

∫
Sn−l

ϕB(0, v)
|Nv|α−l

dσ(v) < 0.

(4) Let l be an integer such that α < l ≤ n, Ã be a diagonal matrix of order n + 1
whose first l diagonal entries are positive and the others are 0. If B = diag(0, · · · , 0, 1), 
then ∫

Sn

ϕB(x)
|Ãx|α

< 0.

Proof. (1) In this case, we have ϕB(x) = 1 − (n +1)x2
1. Hence ϕB(0, v) = 1 for v ∈ Sn−l. 

So we have∫
Sn−l

ϕB(0, v)dσ(v)
∫

u∈Rl

ζ (u,Nv)
|(u,Nv)|α du =

∫
Sn−l

dσ(v)
∫

u∈Rl

[f(u,Nv) − f(∞)]du,

which is positive when f > f(∞), and negative when f < f(∞).
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(2) As in (1), we have ϕB(0, v) = 1 for v ∈ Sn−l. Hence 
∫
Sn−l ϕB(0, v)dσ > 0.

(3) Denote γ = α − l, v = (μ, τ) where μ =
(
μ1, · · · , μl̃−l

)
, τ =

(
τ1, · · · , τn+1−l̃

)
. 

Correspondingly we write the matrix N in the form N =
(
E 0
0 0

)
. Then

ϕB(0, v) = 1 − (n + 1)τ2
n+1−l̃

.

By the coarea formula, we have

∫
Sn−l

ϕB(0, v)
|Nv|α−l

dσ =
∫

Sn−l

1 − (n + 1)τ2
n+1−l̃

|Eμ|γ dσ

=
∫

|μ|≤1

dμ

ρ(μ)

∫
|τ |=ρ(μ)

1 − (n + 1)τ2
n+1−l̃

|Eμ|γ dσ(τ)

=
∫

|μ|≤1

dμ ·
ωn−l̃ ρ(μ)n−l̃−1

|Eμ|γ
(

1 − n + 1
n + 1 − l̃

ρ(μ)2
)

=
1∫

0

ωn−l̃ ρ(r)
n−l̃−1

(
1 − n + 1

n + 1 − l̃
ρ(r)2

)
dr

∫
|μ|=r

dσ(μ)
|Eμ|γ .

But
∫

|μ|=r

dσ(μ)
|Eμ|γ = rl̃−α−1

∫
|μ|=1

dσ(μ)
|Eμ|γ =: rl̃−α−1CE,γ .

Hence

∫
Sn−l

ϕB(0, v)
|Nv|α−l

dσ(v) = CE,γωn−l̃

1∫
0

rl̃−α−1ρ(r)n−l̃−1
(

1 − n + 1
n + 1 − l̃

ρ(r)2
)
dr

= −CE,γωn−l̃ ·
α

4 ·
Γ
(

l̃−α
2

)
Γ
(

n−l̃+1
2

)
Γ
(
n−α+3

2
)

< 0.

(4) Denote x = (μ, τ), where μ = (μ1, · · · , μl) , τ = (τ1, · · · , τn+1−l), and corre-

spondingly write Ã =
(
E 0
0 0

)
. Then

ϕB(x) = 1 − (n + 1)τ2
n+1−l.
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As in (3), we have

∫
Sn

ϕB(x)
|Ãx|α

=
∫
Sn

1 − (n + 1)τ2
n+1−l

|Eμ|α dσ(x)

= −CE,αωn−l ·
α

4 ·
Γ
(
l−α
2

)
Γ
(
n−l+1

2
)

Γ
(
n−α+3

2
)

< 0. �
Now we are in position to prove Theorem 1.2.

Proof of Theorem 1.2. Since f is positive and bounded, by the volume estimate [20, 
Theorem 1.1], we have

C1 inf
Rn+1

f1/2 ≤ vol(H) ≤ C2 sup
Rn+1

f1/2.

Hence it suffices to prove that there is a uniform positive lower bound for solutions to 
(1.1).

Suppose on the contrary that there is a sequence of solutions Hk to (1.1) with 
minx∈Sn Hk(x) → 0+ as k → +∞. Let Mk be the associated convex body. Then there 
exists a unique matrix Ak ∈ SL(n + 1) such that AT

k (Mk) is normalized [29]. Let HAk

be the support function of AT
k (Mk). Then HAk

is given by

HAk
(x) = |Akx| ·Hk

(
Akx

|Akx|

)
x ∈ Sn, (4.60)

and HAk
satisfies equation (2.6). It is known that HAk

≥ c0 for some positive constant 
c0 (Corollary 2.4 in [20]). Hence we have maxx∈Sn |Akx| → +∞, which implies that

|Akx| → +∞ for a.e. x ∈ Sn.

To see this, by a rotation of the coordinates we assume that Ak = diag(a1,k, · · · , an+1,k)
with a1,k ≤ · · · ≤ an+1,k. Then an+1,k → ∞. Hence |Akx| ≥ |an+1,kxn+1| → ∞ for any 
x /∈ {xn+1 = 0} ∩ Sn.

By Blaschke’s selection theorem, we may assume that HAk
converges uniformly to 

some support function H∞ on Sn, which is also normalized. Note that the right hand side 
of equation (2.6) with A replaced by Ak converges (weakly as measure) to f(∞)/Hn+2

∞ . 
By the weak convergence of the Monge–Ampère equation, H∞ is a generalized solution 
to [29]

det(∇2H + HI) = f(∞)
x ∈ Sn.
Hn+2
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Hence H∞ is an elliptic affine sphere [8]. But recall that H∞ is normalized, hence H∞
is a constant. Namely,

H∞ ≡ f(∞)
1

2n+2 .

On the other hand, applying the necessary condition (2.7) to equation (2.6), we have 
that ∫

Sn

∇ξ[f(Akx/HAk
)](x)

Hn+1
Ak

= 0,

which implies by integration by parts that

∫
Sn

f(Akx/HAk
) div

(
1

Hn+1
Ak

ξ

)
= 0.

By the definition of ζ in (4.58), the above equation can be written as

Λk :=
∫
Sn

ζ

(
Akx

HAk

)
Hα

Ak

|Akx|α
div

(
1

Hn+1
Ak

ξ

)
= 0. (4.61)

We now use Lemma 4.1 to estimate the quantity Λk. Denote

ϕk = Hα
Ak

div
( 1
Hn+1

Ak

ξ
)
,

ψk = 1
HAk

.
(4.62)

Recall HAk
converges uniformly to H∞ on Sn, we have

ψk → ψ := 1
H∞

(4.63)

uniformly as k → ∞. Note that

ϕk = Hα−n−1
Ak

div ξ − (n + 1)Hα−n−2
Ak

ξ · ∇HAk
.

Recall that for any sequence of bounded convex functions hk, if it converges to a constant, 
then Dhk → 0 locally uniformly. Hence ∇HAk

→ 0 uniformly on the sphere Sn. It follows 
that

ϕk → ϕ := Hα−n−1
∞ div ξ = Hα−n−1

∞ ϕB (4.64)

uniformly, where ϕB is defined in (4.59), and the last equality is due to the definition of 
ξ in (2.8). Note that (4.61) holds for any matrix B of order n + 1.
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By a rotation of the coordinates, we assume that Ak is diagonal and is given by 
(4.1). Define the integers l1, · · · , lm as in (4.2) accordingly. So the quantity Λk defined 
in (4.61) coincides with that in Lemma 4.1. From the above we see that all assumptions 
in Lemma 4.1 are satisfied. There are five cases in Lemma 4.1. We consider case by case 
in the following.

Case (i): α > l1. By (4.4) in Lemma 4.1,

Λk = C

s1,k · · · · · sl1,k

⎛
⎝ ∫

Sn−l1

ϕB(0, v)dσ(v)
∫

u∈Rl1

ζ (u,Nv)
|(u,Nv)|α du + o(1)

⎞
⎠ , (4.65)

where N is as in (4.4). By Lemma 4.2 (1), Λk �= 0 (for sufficiently large k) if we choose 
B = diag(1, 0, · · · , 0), which is in contradiction with (4.61).

Case (ii): α = l1. By (4.5) in Lemma 4.1,

Λk = log sl1,k
s1,k · · · · · sl1,k

⎛
⎝Cζ∞

∫
Sn−l1

ϕB(0, v)dσ(v) + o(1)

⎞
⎠ . (4.66)

Hence by Lemma 4.2 (2), Λk �= 0 when k is sufficiently large, provided we choose B =
diag(1, 0, · · · , 0), again in contradiction with (4.61).

Case (iii): li < α < li−1 for some i = 2, · · · , m. By (4.6) we have

Λk = 1
s1,k · · · · · sli,k · sα−li

li−1,k

⎛
⎝Cζ∞

∫
Sn−li

ϕB(0, v)
|Nv|α−li

dσ(v) + o(1)

⎞
⎠ , (4.67)

where N is as in (4.6). By Lemma 4.2 (3), Λk �= 0 for large k if we choose B =
diag(0, · · · , 0, 1), again in contradiction with (4.61).

Case (iv): α = li for some i = 2, · · · , m. By (4.7) we have

Λk =
log(sli,k/sli−1,k)
s1,k · · · · · sli,k

⎛
⎝Cζ∞

∫
Sn−li

ϕB(0, v)dσ(v) + o(1)

⎞
⎠ . (4.68)

By Lemma 4.2 (2), Λk �= 0 for large k if we choose B = diag(1, 0, · · · , 0), but Λk = 0 in 
(4.61), a contradiction.

Case (v): α < lm. By (4.8) in Lemma 4.1,

Λk = 1
sαlm,k

⎛
⎝Cζ∞

∫
Sn

ϕB(x)
|Ãx|α

+ o(1)

⎞
⎠ . (4.69)

By Lemma 4.2 (4), Λk �= 0 for large k if we choose B = diag(0, · · · , 0, 1), but Λk = 0 in 
(4.61), a contradiction.

We have reached a contradiction in all possible cases. This completes the proof. �
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5. Existence of solutions in the critical case

In this section we prove Theorem 1.3. Denote δ = n + 2 − q. For any given constant 
v > 0, by Theorem 1.1, there exists a constant λδ (also depending on v) and a support 
function Hδ with vol(Hδ) = v, such that

det(∇2Hδ + HδI)(x) = λδf(x/Hδ)
Hn+2−δ

δ

x ∈ Sn. (5.1)

We want to prove that as δ → 0+, Hδ converges to a solution to (1.9). Note that we 
always use the same notation to denote a sequence and its subsequences.

Lemma 5.1. There exists a positive constant C depending only on n, v and f , independent 
of δ, such that

C−1 ≤ λδ ≤ C. (5.2)

Proof. Multiplying equation (5.1) by Hδ and taking integration, we obtain, by the vol-
ume formula (1.3),

v = λδ

n + 1

∫
Sn

f(x/Hδ)
Hq−1

δ

.

Hence there is a positive constant C independent of δ, such that

C−1
∫
Sn

1
Hq−1

δ

≤ λ−1
δ ≤ C

∫
Sn

1
Hq−1

δ

. (5.3)

Noting that Hδ is a maximizer of (3.3), by (3.5) we have

C−1 ≤ J [Hδ] ≤ C, (5.4)

where C is a positive constant independent of δ. By virtue of (3.4), there is a positive 
constant C depending only on n and f , such that

C−1
∫
Sn

1
Hq−1

δ

≤ J [Hδ] ≤ C

∫
Sn

1
Hq−1

δ

. (5.5)

Now combining (5.3), (5.4) with (5.5), we obtain (5.2). �
Let Aδ ∈ SL(n + 1) be the matrix such that

HAδ
(x) := |Aδx| ·Hδ

(
Aδx

)
x ∈ Sn (5.6)
|Aδx|
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is normalized, see (4.60). Let sδ be the largest eigenvalue of Aδ. If sδ is uniformly 
bounded, so is Hδ. From (5.1), we see that the limit support function H0 := limδ→0 Hδ is 
a solution to equation (1.9) and so Theorem 1.3 is proved. Therefore it suffices to prove 
that sδ is uniformly bounded.

By (2.6), HAδ
satisfies the equation

det(∇2HAδ
+ HAδ

I) = λδf(Aδx/HAδ
)

Hq
Aδ

· 1
|Aδx|δ

x ∈ Sn, (5.7)

or equivalently

det(∇2HAδ
+ HAδ

I) = λδf(Aδx/HAδ
)(Ĥδ)δ

Hn+2
Aδ

x ∈ Sn, (5.8)

where Ĥδ(x) = Hδ

(
Aδx
|Aδx|

)
. To prove that sδ is uniformly bounded, first we prove

Lemma 5.2. There exists a positive constant C depending only on n, v and f , independent 
of δ ∈ (0, 12 ), such that

sδδ ≤ C. (5.9)

Proof. By equation (5.7) and estimate (5.2), we have∫
Sn

Hq
Aδ

det(∇2HAδ
+ HAδ

I) ≤ C

∫
Sn

1
|Aδx|δ

.

By Hölder’s inequality,

v = 1
n + 1

∫
Sn

HAδ
det(∇2HAδ

+ HAδ
I)

≤ 1
n + 1

⎛
⎝∫

Sn

Hq
Aδ

det(∇2HAδ
+ HAδ

I)

⎞
⎠

1
q
⎛
⎝∫

Sn

det(∇2HAδ
+ HAδ

I)

⎞
⎠

q−1
q

≤ C

⎛
⎝∫

Sn

1
|Aδx|δ

⎞
⎠

1
q

area(HAδ
)

q−1
q

≤ C

⎛
⎝∫

Sn

1
|Aδx|δ

⎞
⎠

1
q

v
n

n+1 ·
q−1
q ,

where area(HAδ
) is the surface area of the convex body determined by HAδ

, and the 
last inequality is because that HAδ

is normalized. Thus there is a positive constant C, 
independent of δ, such that
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C ≤
∫
Sn

1
|Aδx|δ

. (5.10)

But by direct computation one easily verifies that

∫
Sn

1
|Aδx|δ

≤ Cn

sδδ
∀ δ ∈ (0, 1/2].

In this way, we have proved (5.9). �
Estimate (5.9) implies that supx∈Sn |Aδx|δ is uniformly bounded. Hence

|Aδx|δ → C1 a.e. x ∈ Sn. (5.11)

By Blaschke’s selection theorem, we can assume that HAδ
converges uniformly on Sn to 

some support function HA0 .

Lemma 5.3. Under the assumptions in Theorem 1.3, sδ is uniformly bounded as δ → 0+.

Proof. Assume to the contrary that sδ → ∞. Then

|Aδx| → +∞ a.e. x ∈ Sn.

Sending δ → 0+, by Lemma 5.1 and the weak convergence of the Monge–Ampère mea-
sure, we obtain from (5.7) the following equation

det(∇2HA0 + HA0I) = λ0f(∞)/C1

Hn+2
A0

on Sn.

Namely HA0 is a generalised solution to the above equation. By the regularity theory 
of the Monge–Ampère equation [29], HA0 is smooth. As HA0 is normalized, we see that 
HA0 is a constant [8], namely

HA0 ≡ (λ0f(∞)/C1)
1

2n+2 . (5.12)

Next we apply the necessary condition (2.7) to equation (5.8), to get

∫
Sn

∇ξ

[
f(Ax/HA)(Ĥδ)δ

]
(x)

Hn+1
A

= 0.

Here and below we omit the subscript δ in Aδ for brevity. Integration by parts gives
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0 =
∫
Sn

∇ξ

[
(f(Ax/HA) − f(∞))(Ĥδ)δ

]
(x)

Hn+1
A

+
∫
Sn

∇ξ

[
f(∞)(Ĥδ)δ

]
(x)

Hn+1
A

= −
∫
Sn

(f(Ax/HA) − f(∞))(Ĥδ)δ div
(

ξ

Hn+1
A

)
+ f(∞)

∫
Sn

∇ξ(Ĥδ)δ(x)
Hn+1

A

(5.13)

=: −Λδ + f(∞)Iδ.

To prove the lemma, we will show that (5.13) does not hold for sufficiently small δ.
There is no loss of generality in assuming that Aδ is diagonal, namely

Aδ = diag (s1,δ, · · · , sn+1,δ)

with s1,δ ≥ · · · ≥ sn+1,δ > 0. Then sδ = s1,δ. Define the integers l1, · · · , lm as in (4.2).
We first compute the quantity Iδ in (5.13). Observing that

∇ξ(Ĥδ)δ = δ(Ĥδ)δ−1∇ξĤδ

= δ(Ĥδ)δ−1∇ξ

(
HA

|Ax|

)

= δ(Ĥδ)δ
(
∇ξHA

HA
− 1

|Ax|2x
TATAξ

)
,

we get

Iδ = δ

∫
Sn

(Ĥδ)δ

Hn+1
A

(
∇ξHA

HA
− 1

|Ax|2x
TATAξ

)
.

Recall that

ξ(x) = Bx− (xTBx)x x ∈ Sn.

The above equation can be expressed as

Iδ = δ

∫
Sn

(Ĥδ)
δ

Hn+1
A

(
∇ξHA

HA
− 1

|Ax|2x
TATABx + xTBx

)
.

Hence as δ → 0+,

Iδ = δ

(
C

trB
n + 1ωn −

∫
Sn

(Ĥδ)
δ

Hn+1
A

· x
TATABx

|Ax|2 + o(1)
)
, (5.14)

where C = 1/
√

C1λ0f(∞) by (5.12).
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Next we compute Λδ. Recall ζ is given by

ζ(y) = [f(y) − f(∞)] · |y|α.

Inserting it into Λδ in (5.13), we have

Λδ =
∫
Sn

ζ

(
Ax

HA

)
Hα

A · (Ĥδ)δ

|Ax|α div
(

ξ

Hn+1
A

)
. (5.15)

By (5.9), (Ĥδ)δ is uniformly bounded. Hence in view of (5.11) and (4.62)–(4.64), we can 
still apply Lemma 4.1 to (5.15). According to Lemma 4.1, there are five possible cases. 
We consider case by case in the following.

Case (i): α > l1. By (4.4) in Lemma 4.1, we have

Λδ = C

s1,δ · · · · · sl1,δ

⎛
⎝ ∫

Sn−l1

ϕB(0, v)dσ(v)
∫

u∈Rl1

ζ (u,Nv)
|(u,Nv)|α du + o(1)

⎞
⎠ .

Let B = diag (1, 0, · · · , 0). By Lemma 4.2 (1) and recalling the assumption (1.8), we see 
that Λδ > 0 for small δ > 0. On the other hand, we can simplify (5.14) as follows.

Iδ = δ

⎛
⎝C

1
n + 1ωn −

∫
Sn

(Ĥδ)
δ

Hn+1
A

·
s2
1,δx

2
1

s2
1,δx

2
1 + · · · + s2

n+1,δx
2
n+1

+ o(1)

⎞
⎠

= Cδ

⎛
⎝ 1
n + 1ωn −

∫
Sn

x2
1

s2
1,δx

2
1/s

2
1,δ + · · · + s2

l1,δ
x2
l1
/s2

1,δ
+ o(1)

⎞
⎠

≤ Cδ

⎛
⎝ 1
n + 1ωn −

∫
Sn

x1
2

x12 + · · · + xn
2 + o(1)

⎞
⎠ (5.16)

= Cδ

(
1

n + 1ωn − 1
n
ωn + o(1)

)

< 0,

for sufficiently small δ > 0. Therefore equality (5.13) can not hold for small δ.
Case (ii): α = l1. By (4.5) in Lemma 4.1,

Λδ = log sl1,δ
s1,δ · · · · · sl1,δ

⎛
⎝Cζ∞

∫
Sn−l1

ϕB(0, v)dσ(v) + o(1)

⎞
⎠ .

Let B = diag (1, 0, · · · , 0). By Lemma 4.2 (2), the integral in Λδ is positive. By the 
assumption β > 0 in Theorem 1.3, and since ζ∞ = β, we see that Λδ > 0 for small 
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δ > 0. In the current case, Iδ is the same as in (5.16). Therefore (5.13) can not hold for 
sufficiently small δ.

Case (iii): li < α < li−1 for some i = 2, · · · , m. By (4.6) in Lemma 4.1 we have

Λδ = 1
s1,δ · · · · · sli,δ · sα−li

li−1,δ

⎛
⎝Cζ∞

∫
Sn−li

ϕB(0, v)
|Nv|α−li

dσ(v) + o(1)

⎞
⎠ .

Now we choose B = diag (0, · · · , 0, 1). By Lemma 4.2 (3), we see that Λδ < 0 for 
sufficiently small δ. On the other hand, with B = diag (0, · · · , 0, 1), from (5.14) it is easy 
to see that

Iδ = δ

⎛
⎝C

1
n + 1ωn −

∫
Sn

(Ĥδ)
δ

Hn+1
A

· sn+1,δ
2xn+1

2

s1,δ2x12 + · · · + sn+1,δ2xn+12 + o(1)

⎞
⎠

= δ

(
C

1
n + 1ωn + o(1)

)
> 0,

(5.17)

for small δ. Therefore equality (5.13) can not hold for small δ > 0.
Case (iv): α = li for some i = 2, · · · , m. Applying Lemma 4.1 to (5.15), we have

Λδ =
log(sli,δ/sli−1,δ)
s1,δ · · · · · sli,δ

⎛
⎝Cζ∞

∫
Sn−li

ϕB(0, v)dσ(v) + o(1)

⎞
⎠ .

Similarly as Case (ii), one sees that (5.13) can not hold for sufficiently small δ.
Case (v): α < lm. Applying Lemma 4.1 to (5.15), we have

Λδ = 1
sαlm,δ

⎛
⎝Cζ∞

∫
Sn

ϕB(x) 1
|Ãx|α

+ o(1)

⎞
⎠ ,

Choose B = diag(0, · · · , 0, 1). By Lemma 4.2 (4), the integral in Λδ is negative. Recall 
ζ∞ = β > 0, we see Λδ < 0 for sufficiently small δ. But Iδ > 0 by (5.17), we see equality 
(5.13) can not hold for sufficiently small δ.

We have now proved that, under the assumptions in Theorem 1.3, the necessary 
condition (5.13) does not hold in all the possible cases. This contradiction implies that 
sδ is uniformly bounded when δ → 0+. �

Once Hδ is uniformly bounded, by convexity it sub-converges to a convex function H0. 
By the weak convergence of the Monge–Ampère equation, H0 is a generalized solution to 
(1.9). The regularity theory for the Monge–Ampère equation implies that H0 ∈ C2,γ(Sn)
for any γ ∈ (0, 1) [29].
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