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Abstract

In this paper the centroaffine Minkowski problem, a critical case of the Lp-Minkowski problem in the 
n + 1 dimensional Euclidean space, is studied. By its variational structure and the method of blow-up 
analyses, we obtain two sufficient conditions for the existence of solutions, for a generalized rotationally 
symmetric case of the problem.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

Given a convex body X in the Euclidean space Rn+1 containing the origin, the centroaffine 
curvature of ∂X at point p is by definition equal to K/dn+2, where K is the Gauss curvature and 
d is the distance from the origin to the tangent hyperplane of ∂X at p. The centroaffine curva-
ture is invariant under unimodular linear transforms in Rn+1 and has received much attention in 
geometry [46,48]. The centroaffine Minkowski problem [14] is to find sufficient and necessary 
conditions for a given positive function f̃ , such that f̃ is the centroaffine curvature of a convex 
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body containing the origin in Rn+1. In the smooth case, the centroaffine Minkowski problem is 
equivalent to solving the following Monge–Ampère type equation

det(∇2H + HI) = f

Hn+2 on Sn, (1.1)

where f is the given positive function (in fact f = 1/f̃ ), H is the support function of a bounded 
convex body X in Rn+1, I is the unit matrix, ∇2H = (∇ijH) is the Hessian matrix of covariant 
derivatives of H with respect to an orthonormal frame on Sn. When f is a constant, this equation 
describes affine hyperspheres of elliptic type, and all its solutions are ellipsoids centered at the 
origin [10].

Equation (1.1) is a special case of the Lp-Minkowski problem introduced by Lutwak [40]. 
The Lp-Minkowski problem is an important generalization of the classical Minkowski problem, 
and is a basic problem in the Lp-Brunn–Minkowski theory in modern convex geometry. It has 
attracted great attention over the last two decades, see for example [5–7,13,14,18,22,24,26–29,
36,37,41–43,51,52,55,59,61–65] and references therein. Solutions to the Lp-Minkowski problem 
can be also used to prove various inequalities, e.g. [16,22,42,60]. For more related work, one can 
see e.g. [11,17,19–21,38,39,44,47,50,53,57,58]. In the smooth case, the Lp-Minkowski problem 
is equivalent to the following Monge–Ampère type equation

det(∇2H + HI) = f Hp−1 on Sn.

So Eq. (1.1) is the special case of this equation with p = −n − 1.
Equation (1.1) also arises in anisotropic Gauss curvature flows and describes their self-similar 

solutions [4,8,15,25,56]. Besides, its parabolic form can be used for image processing [2]. Eq. 
(1.1) can be reduced to a singular Monge–Ampère equation in the half Euclidean space Rn+1+ , 
the regularity of which was strongly studied in [30,31].

Equation (1.1) corresponds to the critical case of the famous Blaschke–Santaló inequality in 
convex geometry [45]:

vol(X) inf
ξ∈X

1

n + 1

∫
Sn

dS(x)

(H(x) − ξ · x)n+1 ≤ ω2
n+1, (1.2)

where X is any convex body in Rn+1, vol(X) is the volume of the convex body X, H is the 
support function of X, and ωn+1 is the volume of the unit ball in Rn+1. Also Eq. (1.1) remains 
invariant under projective transforms on Sn [14,37]. When f is a constant function, it only has 
constant solution up to a projective transformation. This result has been known for a long time, 
see [10] for example, which implies that there is no a priori estimates on solutions for general f . 
Besides, Chou and Wang [14] found an obstruction for solutions to Eq. (1.1). By this obstruction, 
one can easily construct a smooth f such that Eq. (1.1) has no solution. Also Eq. (1.1) may have 
many solutions for some f [23]. This situation is similar, in some aspects, to the prescribed 
scalar curvature problem on Sn, which involves critical exponents of Sobolev inequalities and 
the Kazdan–Warner obstruction for solutions [12,49]. So the existence of solutions to equation 
(1.1) is a rather complicated problem due to these features.

For n = 1, the existence of solutions to Eq. (1.1) was investigated in [1,3,13,15,18,32,33,55,
59]. For general f , one needs to impose some nondegenerate and topological degree conditions 
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additionally to obtain an existence result, see e.g. [32,33]. But when f is a periodic function with 
period 2π

k
for k ≥ 3, Eq. (1.1) has at least a periodic solution without additional assumptions, see 

e.g. [1,13,18,55,59].
For higher n-dimension, only several special cases were studied, see [36,37] for the rotation-

ally symmetric case, [29] for the mirror-symmetric case, and [62] for the discrete case. Some 
sufficient conditions for the existence of solutions were found in these papers. There are no exis-
tence results of solutions about Eq. (1.1) for general f .

The major method to obtain these existence results for equation (1.1) when n ≥ 1 is the 
variational method, see [29,36,37,62]. This method is essentially to consider the following max-
imizing problem

sup
|X|=ωn+1

inf
ξ∈X

J [H(x) − ξ · x], (1.3)

where the supremum is taken among a certain class of bounded convex bodies X in Rn+1 con-
taining the origin with volume ωn+1, the infimum is taken among all points ξ ∈ X, H is the 
support function of X, and the functional J is given by

J [H ] = 1

n + 1

∫
Sn

f

Hn+1 . (1.4)

The maximizing problem is closely related to the Blaschke–Santaló inequality (1.2). When 
f ≡ 1, (1.3) is just the left hand side of the inequality. So for any given continuous positive 
function f on Sn, the maximizing problem has an upper bound. If there exists a maximizer H , 
we expect it to be a solution to Eq. (1.1) after multiplied by a proper constant [29,37,62].

Very recently it was proved in [35] that the maximizing problem (1.3) has no maximizer 
when f is even, namely f (−x) = f (x) for all x ∈ Sn. There the supremum is taken among all 
convex bodies or all origin symmetric convex bodies. This result implies that, in order to obtain a 
maximizer of (1.3), the class of convex bodies X should not be too large, especially can not be the 
set of all convex bodies. It also partly explains why all the known existence results for n ≥ 1 are 
about special cases. In this paper, we further investigate the variational method for this problem. 
In [29], the mirror symmetric case of Eq. (1.1) was studied and two sufficient conditions for the 
existence were found. Here, we study another common symmetric case of Eq. (1.1), namely a 
generalized rotationally symmetric case.

Assume n ≥ 2. Let SO(n) be the special orthogonal group in dimension n. Assume G is a 
discrete (or equivalently finite) subgroup of SO(n), such that for every nonzero x′ ∈ R

n, the 
orbit of x ′ under G spans Rn. A function F defined on Sn ⊂R

n+1 is called to be G-rotationally 
symmetric with respect to the xn+1-axis, if for any x = (x′, xn+1) ∈ Sn, there is

F(�x′, xn+1) = F(x′, xn+1), ∀� ∈ G.

Correspondingly, a convex body X in Rn+1 is called G-rotationally symmetric with respect to 
the xn+1-axis, if (

�

1

)
X = X, ∀� ∈ G.
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Obviously, the support function H of a convex body X is G-rotationally symmetric if and only 
if X is G-rotationally symmetric.

A trivial G-rotational symmetry is the SO(n)-rotational symmetry, namely G = SO(n). The 
existence of solutions to Eq. (1.1) for this case was already studied in [36,37]. In R

3, a typical 
G-rotational symmetry is the k-fold rotational symmetry. Namely, for any integer k ≥ 3, let G
be the group consisting of(

cos 2πi
k

− sin 2πi
k

sin 2πi
k

cos 2πi
k

)
, i = 0,1, · · · , k − 1.

Then the G-rotational symmetry of a convex body in R3 is equivalent to that it remains un-
changed under a rotation through an angle of 2π

k
around the x3-axis. So the G-rotational sym-

metry for n ≥ 2 is a generalization of the 2π
k

-periodicity for n = 1. The latter case of Eq. (1.1)
was intensively studied, as mentioned above. While there are no results about the former case for 
n ≥ 2.

We study the G-rotationally symmetric case of Eq. (1.1) in this paper, and obtain two sufficient 
conditions for existence of solutions. We state our results in the following.

Denote the area of the unit n-sphere by σn, and

Sn+ := Sn ∩ {xn+1 > 0} , Sn− := Sn ∩ {xn+1 < 0} .

Let

f̄ = 1

σn

∫
Sn

f (x)dS(x),

f̄N = 2

σn

∫
Sn+

f (x)dS(x),

f̄S = 2

σn

∫
Sn−

f (x)dS(x),

(1.5)

be the mean values of f on the sphere and on the northern and southern hemispheres respectively.

Theorem 1.1. If f is a G-rotationally symmetric positive continuous function on Sn, such that 
the maximum value of f restricted to the equator and the north and south poles is not greater 
than f̄ /2n+1 or 1

2 min
{
f̄N , f̄S

}
, then equation (1.1) admits a G-rotationally symmetric solution.

When f is additionally symmetric with respect to the equatorial hyperplane, from the proof 
of Theorem 1.1, we can easily improve it as the following

Theorem 1.2. Assume f ∈ C(Sn) is positive and G-rotationally symmetric, and also symmetric 
with respect to the equatorial hyperplane. If the maximum value of f restricted to the equator and 
the north and south poles is less than f̄ , then equation (1.1) admits a G-rotationally symmetric 
solution.
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Our another existence result involves derivatives of f . We introduce some notations first. Let

en+1 = (0,0, · · · ,0,1)

be the north pole, and e⊥
n+1 be the equatorial hyperplane. For each x ∈ Sn ∩ e⊥

n+1, we define

PI (x) =
π∫

0

f̃ ′(θ) cot θ dθ, (1.6)

where f̃ is the restriction of f on the half great circle on Sn through the three points x and ±en+1, 
parameterized by an arc parameter θ ∈ [0, π]. When f ∈ C1(Sn) is G-rotationally symmetric, 
one can check PI (x) is well defined, see Lemma 4.1. Note that for given x, PI (x) is just pi(f )

defined in [37] for a rotationally symmetric f .
Let M1/2[α, β] be the 1

2 -power mean of two positive numbers α and β , namely

M1/2[α,β] =
(√

α + √
β

2

)2
. (1.7)

Now we can state the following

Theorem 1.3. Assume f ∈ C2(Sn) is positive and G-rotationally symmetric. If the maximum 
value of f on the equator is less than M1/2[f (en+1), f (−en+1)], and PI ≥ 0 with at least one 
positive value, then equation (1.1) admits a G-rotationally symmetric solution.

In Theorems 1.1–1.3, we require f is G-rotationally symmetric on Sn with n ≥ 2. Here we 
note that these theorems also hold when n = 1 and f is rotationally symmetric. We also note that 
even when f is SO(n)-rotationally symmetric, which was studied in [37], our theorems provide 
new existence conditions.

The blow up analyses in our proofs of these theorems are inspired by [29], which treats the 
mirror symmetric case of equation (1.1). The mirror symmetry has two special advantages. One 
is that the infimum infξ∈X J [H(x) − ξ · x] in the maximizing problem (1.3) must be attained at 
ξ = 0. The other is that the first order derivatives of f vanish on the coordinate hyperplanes since 
f is even with respect to each component of x. These two features play a key role in the proofs 
of [29]. However there are no such advantages for a G-rotationally symmetric f . To overcome 
these difficulties, we estimate the supremum of (1.3) more carefully by a special construction, 
and combine assumptions about derivatives and values of f . Besides, we observe that the blow 
up analyses depend only on the shape of minimum ellipsoids of convex bodies.

Note that any generalized solution to equation (1.1) must be positive on Sn, see Corollary 2.4 
in [37]. Therefore, the regularity of solutions obtained in our theorems follows the standard 
regularity theory about Monge–Ampère equation, see [14] for example.

The paper is organized as follows. In Section 2, we investigate a variational method, which 
provides a solution to Eq. (1.1) whenever there exists a maximizer. Then we use blow up anal-
yses to prove that a maximizer exists under suitable assumptions, and thus complete proofs of 
Theorems 1.1 and 1.3 in Section 3 and Section 4 respectively.
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2. A variational method

As mentioned before, Eq. (1.1) admits a variational structure. We will study it in this section, 
and prove that its maximizer (if exists) is a solution to (1.1) after rescaling by a proper constant.

Let S denote the set of all support functions of convex bodies in Rn+1, namely

S =
{
H ∈ C(Sn) : H is the restriction of a sublinear function in R

n+1
}

.

Let

S+ := {H ∈ S : H > 0} ,

SG+ := {H ∈ S+ : H is G-rotationally symmetric} .

We use Ko to denote the set of all convex bodies in Rn+1 containing the origin in their interiors, 
and KG

o to denote the subset of Ko consisting of only G-rotationally symmetric ones. Note that 
there is a one-to-one correspondence between KG

o and SG+ .
Now we consider the following maximizing problem

sup
X∈KG

o|X|=ωn+1

inf
ξ∈X

J [H(x) − ξ · x], (2.1)

where the supremum is taken among all G-rotationally symmetric bounded convex bodies X in 
R

n+1 containing the origin with volume ωn+1, the infimum is taken among all points ξ ∈ X, H is 
the support function of X, and the functional J is given by

J [H ] = 1

n + 1

∫
Sn

f

Hn+1 . (2.2)

Here we require f is G-rotationally symmetric. Note that J [H(x) − ξ · x] is strictly convex with 
respect to ξ , and goes to infinity as ξ tends to the boundary of X, so infξ∈X J [H(x) − ξ · x] is 
attained at a unique point ξ .

By the Blaschke–Santaló inequality, the maximizing problem (2.1) has an upper bound. But 
it may not admit a maximizer, see [35]. In the following of this section, we always assume that 
h is a maximizer of (2.1), namely

J [h] = inf
ξ∈Xh

J [h(x) − ξ · x] = Jsup, (2.3)

where Xh denotes the convex body determined by h, and Jsup the supremum of the problem 
(2.1). Note that Xh is G-rotationally symmetric with respect to the xn+1-axis and its volume is 
ωn+1.

We shall first prove Xh is C1 and strictly convex, then h provides a solution to (1.1) after 
rescaling by a proper constant. The proof follows that of [14], where the maximizing problem 
(2.1) defined on the set Ko was studied. Here (2.1) is restricted on a smaller subset KG

o , so one 
must be cautious when dealing with the variation.
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Let |G| denote the order of the group G, namely the number of elements in G. Since G is 
finite, |G| is a positive integer. For any � ∈ G, write correspondingly

�̃ :=
(

�

1

)
. (2.4)

For any subset U ⊂ R
n+1, we use GU to denote the image of U under the group action of G, 

namely

GU :=
{
�̃y | � ∈ G, y ∈ U

}
. (2.5)

Lemma 2.1. The Gauss curvature of ∂Xh is bounded from below in the generalized sense by a 
positive constant C.

Proof. Fix a point p on ∂Xh. Let B̄r (p) be the closed ball in Rn+1 centered at p with radius r . 
Note that G is a finite subgroup of SO(n), for sufficiently small r > 0, GB̄r(p) (see (2.5) for the 
notation) must be a finite disjoint union of closed balls with the same radius r . For such an r , let

ω = ∂Xh ∩ B̄r (p).

Since ∂Xh is G-rotationally symmetric, there is

Gω = ∂Xh ∩ GB̄r(p),

which is also G-rotationally symmetric. Let ω∗ = ν(ω), where ν is the Gauss mapping of ∂Xh. 
Then Gω∗ = ν(Gω).

For any small t > 0, let Xt be the convex hull of Xh ∪ Nt(Gω) where

Nt(Gω) = {p : dist(p,Gω) < t} .

Obviously, Xt is G-rotationally symmetric. Denote its support function and volume by ht and 
vol(ht ) respectively. Then

ht (x) = h(x) + t, ∀x ∈ Gω∗,

and

lim
t→0+

vol(ht ) − vol(h)

t
≥ |Gω|.

Observe that for any x /∈ Gω∗, ht (x) = h(x) for sufficiently small t . Therefore

lim
t→0+

ht (x) − h(x)

t
= χ(x),

where χ is the characteristic function of Gω∗, namely χ(x) = 1 for x ∈ Gω∗ and χ(x) = 0 for 
x ∈ Sn\Gω∗.
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Let h0 be h, and α(t) > 0 be such that

vol(α(t)ht ) = ωn+1. (2.6)

Then α(0) = 1, and

α′(0) = − 1

(n + 1)ωn+1
lim

t→0+
vol(ht ) − vol(h)

t

≤ − |Gω|
(n + 1)ωn+1

,

where the limit can be taken for any convergent subsequence. Let

J (t) = inf
ξ

J [α(t)ht (x) − ξ · x], (2.7)

where the infimum is taken among all points inside the convex body determined by α(t)ht . 
Suppose the infimum is attained at the unique point ξ(t). Then ξ(t) is Lipschitz continuous. 
Without loss of generality, we can assume ξ ′(0) exists. Recalling ht is G-rotationally symmetric, 
and h is a maximizer of (2.1), we have

J (0) ≥ J (t).

Therefore

lim
t→0+

J (t) −J (0)

t
≤ 0,

where again the limit may be taken for any convergent subsequence. By

J (t) = J [α(t)ht (x) − ξ(t) · x],

we have

−
∫
Sn

f

hn+2 (α′(0)h + χ − ξ ′(0) · x) ≤ 0.

Recall (2.3) says the infimum of J [h(x) − ξ · x] is attained at ξ = 0. We have∫
Sn

f

hn+2 xi = 0, i = 1,2, · · · , n + 1.

Therefore

−
∫
n

f

hn+2 (α′(0)h + χ) ≤ 0. (2.8)
S
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By the estimate of α′(0) and the definition of χ , the above inequality becomes into

|Gω|
(n + 1)ωn+1

∫
Sn

f

hn+1 ≤
∫

Gω∗

f

hn+2 ,

which implies

|Gω∗|
|Gω| ≥ C > 0,

where C depends only on the bounds of h, f and n.
By our construction of ω, there is |Gω| = k|ω| for some integer 1 ≤ k ≤ |G|, and |Gω∗| ≤

|G| · |ω∗|. Hence

|ω∗|
|ω| ≥ |G|−1 · |Gω∗|

k−1|Gω| ≥ k

|G|C ≥ C

|G| . �
Lemma 2.2. The Gauss curvature of ∂Xh is bounded from above in the generalized sense by a 
positive constant C.

Proof. By the argument of [14, Lemma 5.6], it suffices to prove

|ω∗|
|ν−1(ω∗)| ≤ C (2.9)

for any closed subset ω∗ ⊂ Sn. Here ν is the Gauss mapping of ∂Xh as before.
Fix a vector x̄ ∈ Sn. Again let B̄r (x̄) be the closed ball in Rn+1 centered at x̄ with radius r . As 

explained in the previous lemma, GB̄r(x̄) is a finite disjoint union of closed balls with the same 
radius r when r is sufficiently small. For such an r , let

ω∗ = Sn ∩ B̄r (x̄).

For each � ∈ G,

�̃ω∗ = Sn ∩ B̄r (�̃x̄),

where �̃ is defined in (2.4). Then

Gω∗ = Sn ∩ GB̄r(x̄).

Let ω = ν−1(ω∗), then Gω = ν−1(Gω∗).
For a small t > 0, let

Xt,� :=
{
p ∈ R

n+1 : p · x ≤ h(x) − t (�̃x̄) · x, ∀x ∈ �̃ω∗} ∩ Xh,
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where the notation “·” denotes the standard inner product in Rn+1. Note h is positive on Sn, we 
see the origin is an interior point of Xt,� for a small t . Let

Xt :=
⋂
�∈G

Xt,�.

We claim Xt is a G-rotationally symmetric convex body. To see this, we first note that

�̃′Xt,� = Xt,�′�, ∀�′,� ∈ G. (2.10)

In fact, for p ∈ �̃′Xt,�, we have �̃′−1
p ∈ Xt,�. Namely,

�̃′−1
p ∈ Xh, (2.11)

and

�̃′−1
p · x ≤ h(x) − t (�̃x̄) · x, ∀x ∈ �̃ω∗. (2.12)

Since Xh is G-rotationally symmetric, (2.11) implies p ∈ Xh. Note �̃′−1
p · x = p · �̃′x and 

h(�̃′x) = h(x), then (2.12) is equivalent to

p · �̃′x ≤ h(�̃′x) − t (�̃x̄) · x, ∀x ∈ �̃ω∗.

Let y = �̃′x, then

p · y ≤ h(y) − t (�̃x̄) · (�̃′−1
y), ∀y ∈ �̃′�̃ω∗,

which is equivalent to

p · y ≤ h(y) − t (�̃′�x̄) · y, ∀y ∈ �̃′�ω∗.

Thus p ∈ Xt,�′�. Therefore

�̃′Xt,� ⊂ Xt,�′�.

Observing the above argument is reversible, we also have that

Xt,�′� ⊂ �̃′Xt,�.
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Hence (2.10) is true. Now for any �′ ∈ G,

�̃′Xt =
⋂
�∈G

�̃′Xt,�

=
⋂
�∈G

Xt,�′�

=
⋂

�′�∈G

Xt,�′�

=
⋂
�∈G

Xt,�

= Xt,

which implies Xt is G-rotationally symmetric.
Let ht be the support function of Xt . We also write X0 = Xh and h0 = h. Given an x ∈ Gω∗, 

there exists some � ∈ G such that x ∈ �̃ω∗. Note Xt ⊂ Xt,�, we have

ht (x) ≤ h(x) − t (�̃x̄) · x. (2.13)

Since �̃−1x ∈ ω∗ = Sn ∩ B̄r (x̄), and we can require r ≤ 1, there is

x̄ · (�̃−1x) ≥ 1

2
.

By (�̃x̄) · x = x̄ · (�̃−1x), we obtain

(�̃x̄) · x ≥ 1

2
.

Now (2.13) is simplified as

ht (x) ≤ h(x) − 1

2
t.

Note this inequality holds for all x ∈ Gω∗. Observe that ht is non-increasing in t and ht ≤ h. 
Thus

lim
t→0+

ht (x) − h(x)

t
≤ −1

2
χ(x), ∀x ∈ Sn. (2.14)

Here χ is the characteristic function of Gω∗, and the limit is taken for any convergent subse-
quence as before.

Now we estimate the volume of Xt . For each � ∈ G, there is �̃ω = ν−1(�̃ω∗). Therefore for 
any p ∈ ∂Xh\�̃ω, ν(p) ∩ �̃ω∗ = ∅. Hence p ∈ ∂Xt,� for sufficiently small t . Thus

lim+
vol(Xh) − vol(Xt,�) ≤ |�̃ω| = |ω|.
t→0 t
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By the definition of Xt , we have

lim
t→0+

vol(Xh) − vol(Xt )

t
≤ |G| · |ω|,

namely

lim
t→0+

vol(ht ) − vol(h)

t
≥ −|G| · |ω|. (2.15)

Again let α(t), ξ(t) and J (t) be defined as in the previous lemma. Then

lim
t→0+

J (t) −J (0)

t
≤ 0.

Similar to (2.8), this inequality can be reduced into the following

−
∫
Sn

f

hn+2

(
α′(0)h + lim

t→0+
ht − h

t

)
≤ 0. (2.16)

By (2.15), there is

α′(0) ≤ |G| · |ω|
(n + 1)ωn+1

.

Recalling (2.14), we obtain from (2.16) that

1

2

∫
Gω∗

f

hn+2 ≤ |G| · |ω|
(n + 1)ωn+1

∫
Sn

f

hn+1 ,

which implies

|Gω∗| ≤ C|G| · |ω|,

where C depends only on the bounds of h, f and n. Note |Gω∗| ≥ |ω∗|, we obtain

|ω∗|
|ω| ≤ C|G|.

Thus (2.9) holds, which completes the proof. �
In this section, a Borel measure μ on Sn is called to be G-rotationally symmetric, if

μ(�̃U) = μ(U)

for every � ∈ G and every Borel subset U ⊂ Sn.
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Lemma 2.3. Let μ1 and μ2 be two G-rotationally symmetric σ -finite Borel measures on Sn. If 
for every G-rotationally symmetric η ∈ C∞(Sn),∫

Sn

ηdμ1 =
∫
Sn

ηdμ2,

then μ1 = μ2 on Sn.

Proof. For x ∈ Sn, let Bx,r be the geodesic ball on Sn with center x and radius r . We first prove 
that for every x ∈ Sn, there exists some r̄ > 0 such that

μ1(Bx,r ) = μ2(Bx,r ), ∀0 < r < r̄. (2.17)

Given a point x ∈ Sn. Note G is a finite subgroup of SO(n), there exists an r̄ > 0 such that 
for 0 < r < r̄ , GBx,r is a finite disjoint union of geodesic balls with the same radius r . Denote 
the number of points in the orbit Gx by k. Since μ1 and μ2 are G-rotationally symmetric, we 
have

μi(GBx,r ) = kμi(Bx,r ), i = 1,2. (2.18)

We shall prove μ1(GBx,r ) = μ2(GBx,r ). Using smooth cut-off functions, one can easily con-
struct a family of G-rotationally symmetric smooth functions {ηm} on Sn, which is uniformly 
bounded and converges pointwise to the characteristic function, χ , of GBx,r . By assumptions of 
this lemma, ∫

Sn

ηmdμ1 =
∫
Sn

ηmdμ2.

By the bounded convergence theorem, we obtain∫
Sn

χdμ1 =
∫
Sn

χdμ2,

namely

μ1(GBx,r ) = μ2(GBx,r ).

Recalling (2.18), we have (2.17). Then one can easily obtain μ1 = μ2 on Sn. �
Proposition 2.4. ∂Xh is C1, and for some positive constant λ, λh is a generalized solution 
to (1.1).

Proof. By Lemmas 2.1 and 2.2, the Gauss curvature of ∂Xh is pinched between two positive 
constants. By [9], ∂Xh is C1 and strictly convex.
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Now for any G-rotationally symmetric η ∈ C∞(Sn), let

Xt :=
{
p ∈ R

n+1 : p · x ≤ (h + tη)(x), ∀x ∈ Sn
}

,

and ht be its support function. Since h is C1 and strictly convex, we have for small t ≥ 0 that

ht = h + tη. (2.19)

Therefore

lim
t→0+

ht − h

t
= η,

and

lim
t→0+

vol(ht ) − vol(h)

t
=

∫
Sn

ηdμ,

where μ is the area measure of ∂Xh.
Again let α(t) and J (t) be defined as in Lemma 2.1. Note ht is G-rotationally symmetric and 

h is a maximizer of (2.1), we have

lim
t→0+

J (t) −J (0)

t
≤ 0,

which again implies

−
∫
Sn

f

hn+2 (α′(0)h + η) ≤ 0.

Since

α′(0) = − 1

(n + 1)ωn+1

∫
Sn

ηdμ,

we have

c

∫
Sn

ηdμ −
∫
Sn

f

hn+2 η ≤ 0,

where

c = 1

(n + 1)ωn+1

∫
Sn

f

hn+1 .

Replacing η by −η, we see that
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c

∫
Sn

ηdμ −
∫
Sn

f

hn+2 η = 0

for all G-rotationally symmetric η ∈ C∞(Sn). Note f , h and dμ are all G-rotationally symmet-
ric, by Lemma 2.3, there is

cdμ = f

hn+2 dx,

where dx is the standard measure on Sn. But dμ = det(∇2h + hI)dx in the generalized sense, 
we obtain

c det(∇2h + hI) = f

hn+2 on Sn.

Now let

λ = c1/(2n+2),

then λh is a generalized solution to (1.1). �
3. Proof of Theorem 1.1

We will prove Theorems 1.1 and 1.3 in this and next sections. By arguments in the previ-
ous section, in order to prove the existence results in these theorems, one only need to find a 
maximizer of

sup
X∈KG

o|X|=ωn+1

inf
ξ∈X

J [H(x) − ξ · x] (3.1)

under assumptions of these theorems. We use blow-up analyses to find a maximizer in this paper. 
Several notions and properties will be needed.

First, the concept of minimum ellipsoids is needed. Recall John’s Lemma in convex geometry, 
see [54] for example. It says that for any convex body X in Rn+1, there is a minimum ellipsoid 
of X, denoted by E, such that

1

n + 1
E ⊂ X ⊂ E,

where λE = {x0 + λ(x − x0) : x ∈ E} and x0 is the center of E. We say X is normalized if the E
is a ball.

The minimum ellipsoid of a G-rotationally symmetric convex body is described by the fol-
lowing

Lemma 3.1. Assume n ≥ 2. If an ellipsoid E is the minimum ellipsoid of a G-rotationally sym-
metric convex body in Rn+1, then it must have the following form

E =
{
x ∈R

n+1 : |S(x − ten+1)| ≤ 1
}

,
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where t ∈ R and

S = diag(a, · · · , a, b)

is a diagonal matrix of order n + 1 with a, b > 0.

Proof. Since the minimum ellipsoid of a given convex body is unique, we see that E is 
G-rotationally symmetric. Write E as

E =
{
x ∈ R

n+1 : |S(x − x0)| ≤ 1
}

, (3.2)

where S is a positive definite symmetric matrix of order n + 1, and x0 is the center of E. Then 
for � ∈ G,

�̃E =
{
y : y = �̃x, |S(x − x0)| ≤ 1

}
=

{
y : |S(�̃−1y − x0)| ≤ 1

}
=

{
y : |�̃S�̃−1(y − �̃x0)| ≤ 1

}
.

Note �̃E = E and the expression (3.2) of E is unique, we have

�̃x0 = x0 and �̃S�̃−1 = S. (3.3)

We recall

�̃ =
(

�

1

)
.

Write x0 = (x′
0, xn+1), we have �̃x0 = (�x′

0, xn+1). By (3.3), there is

�x′
0 = x′

0, ∀� ∈ G.

Since the orbit of each nonzero z ∈R
n under G spans the whole space Rn, there must be x′

0 = 0. 
Therefore we can write

x0 = ten+1, t ∈ R. (3.4)

Now partition the symmetric matrix S as

S =
(

S′ α

αT b

)
,

where S′ is a square matrix of order n, and b is a number. By (3.3), we have �̃S = S�̃, namely(
�S′ �α

αT b

)
=

(
S′� α

αT � b

)
,
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which implies

�S′ = S′�,

and

�α = α, αT � = αT .

Again we have α = 0. Note S′ is symmetric, we fix an eigenvector z ∈ R
n and its corresponding 

eigenvalue a, namely

S′z = az.

For any point �z is the orbit Gz, there is

S′(�z) = �S′z = �(az) = a(�z).

Then �z is also an eigenvector corresponding to a. By our assumptions, Gz spans Rn. That is, 
the eigenspace corresponding to the eigenvalue a is the whole space Rn. Then we must have

S′ = aIn,

where In is the identity matrix of order n. Now S is written as

S =
(

aIn

b

)
.

Note S is positive definite, we have a, b > 0. The lemma is proved. �
Lemma 3.1 says that a linear transform like cS ∈ GL(n + 1) with c > 0 can transforms the 

corresponding G-rotationally symmetric convex body into a normalized one.
Another property that will be used is the invariance of the functional J under unimodular 

linear transforms, see [29,35]. For any convex body X in Rn+1, after performing a unimodular 
linear transform AT ∈ SL(n + 1), it becomes into another convex body XA. In the following, we 
use HA to denote the support function of XA. Then

HA(x) = |Ax| · H
(

Ax

|Ax|
)

, x ∈ Sn, (3.5)

where H is the support function of X. See [37] for more details about this type of transforms. As-
sociating with linear transforms, we recall an integral variable substitution formula given in [29,
35].
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Lemma 3.2. For any integral function g on Sn, and any matrix A ∈ GL(n + 1), we have the 
following variable substitution for integration:∫

Sn

g(y) dS(y) =
∫
Sn

g

(
Ax

|Ax|
)

· |detA|
|Ax|n+1 dS(x). (3.6)

The proof of this lemma can be found in [35]. And the invariance of J follows directly from 
(3.5) and (3.6). That is, for any unimodular linear transform A ∈ SL(n + 1),∫

Sn

f

Hn+1 =
∫
Sn

fA

Hn+1
A

, fA(x) = f

(
Ax

|Ax|
)

. (3.7)

Recall that for any support function H , there exists a unique interior point in the convex body 
X determined by H , denoted by ξH , such that

J [H(x) − ξH · x] = inf
ξ∈X

J [H(x) − ξ · x]. (3.8)

Here we note that for G-rotationally symmetric H , ξH must be located in the xn+1-axis, namely

ξH = tH en+1, tH ∈R. (3.9)

In fact, this is easily obtained by (3.6). For each � ∈ G, we have

J [H(x) − ξH · x] = 1

n + 1

∫
Sn

f (x)dS(x)

(H(x) − ξH · x)n+1

= 1

n + 1

∫
Sn

f (�̃x)dS(x)

(H(�̃x) − ξH · �̃x)n+1

= 1

n + 1

∫
Sn

f (x)dS(x)

(H(x) − �̃T ξH · x)n+1

= J [H(x) − �̃T ξH · x].
Since ξH is unique for an H , there is

�̃T ξH = ξH .

Similar to (3.3) and (3.4), we have (3.9).
After these preparations, we now start blow-up analyses to find a maximizer of (3.1). Since 

(3.1) has a finite upper bound, let {Hk} be a maximizing sequence. If it is uniformly bounded, 
by the Blaschke’s selection theorem, a subsequence of {Hk} converges uniformly to a support 
function H∞ which is a maximizer of (3.1). If not, namely

sup
n

Hk → ∞ as k → ∞. (3.10)

S
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Then we will deduce a contradiction by our assumptions, and thus complete proofs of our theo-
rems.

Let Xk be the convex body determined by Hk . For each k choose a unimodular linear trans-
formation AT

k ∈ SL(n + 1) that normalizes Xk . Namely the convex body

XAk
:= AT

k (Xk)

is normalized. Denote its support function by HAk
. Since XAk

has the same volume ωn+1, they 
are uniformly bounded. On account of Blaschke’s selection theorem, we assume without loss 
of generality that XAk

converges to some normalized convex body X̂, namely HAk
converges 

uniformly on Sn to Ĥ , the support function of X̂. By virtue of formula (3.7) and (2.17) in [37], 
we see HAk

also has a uniform positive lower bound. So Ĥ is positive on Sn. Applying again 
formula (3.7) and the bounded convergence theorem, one gets

Jsup := lim
k→∞J [Hk]

= lim
k→∞

1

n + 1

∫
Sn

fAk

Hn+1
Ak

= 1

n + 1

∫
Sn

f̂

Ĥ n+1
,

(3.11)

where f̂ is the limit function of fAk
.

We note that

Jsup = inf
ξ∈X̂

1

n + 1

∫
Sn

f̂ (x)dS(x)

(Ĥ (x) − ξ · x)n+1
. (3.12)

In fact, given ξ ∈ X̂, by XAk
→ X̂, there exists ξAk

∈ XAk
for each k, such that ξAk

→ ξ . Recall-
ing formula (3.7), and denoting ξk := A−T

k ξAk
, we have

1

n + 1

∫
Sn

fAk
(x)dS(x)(

HAk
(x) − ξAk

· x)n+1 = 1

n + 1

∫
Sn

f (x)dS(x)

(Hk(x) − ξk · x)n+1

= J [Hk(x) − ξk · x]
≥ J [Hk].

Passing to the limit as k → ∞, we have

1

n + 1

∫
Sn

f̂ (x)dS(x)

(Ĥ (x) − ξ · x)n+1
≥ Jsup.

Therefore (3.12) holds.
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We want to find some H ∈ SG+ with volume ωn+1, such that

Jsup < inf
ξ

J [H(x) − ξ · x]. (3.13)

This is a contradiction, and then completes proofs. To achieve this goal, we need to explore 
f̂ more carefully. The G-rotational symmetry is critical to reducing the possibilities of f̂ . By 
Lemma 3.1, we can choose the normalizing matrix AT

k as

AT
k = diag

(
λ

1
n+1
k , · · · , λ

1
n+1
k , λ

− n
n+1

k

)
,

where λk > 0. Recall the definition in (3.7), we have

fAk
(x1, · · · , xn, xn+1) = f

⎛⎜⎝ λkx1, · · · , λkxn, xn+1√
λ2

k(x
2
1 + · · · + x2

n) + x2
n+1

⎞⎟⎠ .

By the assumption (3.10), there must be

λk → 0 or λk → ∞, as k → ∞. (3.14)

For the case when λk → 0, we have

f̂ (x1, · · · , xn, xn+1) =
{

f (en+1), if xn+1 > 0;
f (−en+1), if xn+1 < 0.

(3.15)

And when λk → ∞, we have

f̂ (x1, · · · , xn, xn+1) = f

⎛⎜⎝ x1, · · · , xn,0√
x2

1 + · · · + x2
n

⎞⎟⎠ . (3.16)

The above arguments are applicable to both Theorems 1.1 and 1.3. We continue the proof of 
Theorem 1.1 in the following of this section, and Theorem 1.3 in the next section.

Proof of Theorem 1.1. As mentioned above, we only need to check (3.13). We first provide an 
upper bound of Jsup. Recall the Blaschke–Santaló inequality (1.2), for X̂, there exists a point 
ξ̃ ∈ X̂ such that

1

n + 1

∫
Sn

dS(x)

(Ĥ (x) − ξ̃ · x)n+1
≤ ωn+1.

By virtue of (3.12),
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Jsup ≤ 1

n + 1

∫
Sn

f̂ (x)dS(x)

(Ĥ (x) − ξ̃ · x)n+1

≤ max f̂ · 1

n + 1

∫
Sn

dS(x)

(Ĥ (x) − ξ̃ · x)n+1

≤ max f̂ · ωn+1.

(3.17)

Since f̂ is given by (3.15) if λk → 0 or (3.16) if λk → ∞, we see

max f̂ ≤ max
{
f (x) : x ∈ e⊥

n+1 or x = ±en+1

}
.

Therefore, under the assumption (3.10), we obtain

Jsup ≤ max
{
f (x) : x ∈ e⊥

n+1 or x = ±en+1

}
· ωn+1. (3.18)

On the other hand, let H ≡ 1 in the following proof. It is obviously that H is G-rotationally 
symmetric, and vol(H) = ωn+1. Recall (3.8) and (3.9), we have

inf
ξ

J [H − ξ · x] = J [1 − tH xn+1]

= 1

n + 1

∫
Sn

f (x)dS(x)

(1 − tH xn+1)n+1 .
(3.19)

Since tH ∈ (−1, 1), and note σn = (n + 1)ωn+1,

inf
ξ

J [H − ξ · x] >
1

2n+1 · 1

n + 1

∫
Sn

f

= 1

2n+1 f̄ · ωn+1.

(3.20)

We can also estimate (3.19) as follows. If tH ≥ 0, then

inf
ξ

J [H − ξ · x] >
1

n + 1

∫
Sn+

f (x)dS(x)

(1 − tH xn+1)n+1

≥ 1

n + 1

∫
Sn+

f

= 1

2
f̄N · ωn+1.

Similarly, if tH ≤ 0, we can obtain

infJ [H − ξ · x] >
1
f̄S · ωn+1.
ξ 2
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Thus there is

inf
ξ

J [H − ξ · x] >
1

2
min

{
f̄N , f̄S

} · ωn+1. (3.21)

Now recalling our assumption of Theorem 1.1, and combining (3.18), (3.20) and (3.21), we 
see

Jsup < inf
ξ

J [H − ξ · x].

This contradiction completes the proof of this theorem. �
Remark. If f is additionally symmetric with respect to the equatorial hyperplane, then one can 
easily see tH = 0 in (3.19), which implies that

inf
ξ

J [H − ξ · x] = f̄ · ωn+1.

Hence Theorem 1.2 holds.

4. Proof of Theorem 1.3

In this section, we complete the proof of Theorem 1.3. After the arguments in the previous 
section, we only need to find an H such that (3.13) holds, namely

Jsup < inf
ξ

J [H(x) − ξ · x], (4.1)

where Jsup is given by (3.11). There are two cases of f̂ to deal with, namely λk → 0 and λk → ∞. 
For the case λk → 0, we observe that the first derivatives of a G-rotationally symmetric f vanish 
at the north and south poles, the same as an (n + 1)-mirror symmetric function in [29]. Then 
we can follow the blow-up analyses in [29], with a few modifications. For the case λk → ∞, 
however, the first derivatives may not vanish on the equator, so the blow-up analyses in [29] are 
not applicable to the G-rotationally symmetric f . To overcome this difficulty, we carefully make 
use of the invariance of J , and construct a special support function to directly estimate the lower 
bound of Jsup. The following are details.

4.1. When λk → 0

Recall f̂ is given by (3.15), namely

f̂ (x1, · · · , xn, xn+1) =
{

f (en+1), if xn+1 > 0;
f (−en+1), if xn+1 < 0.

We consider the family of convex bodies X̂A(a) with A(a) ∈ SL(n + 1) given by

A(a) = diag
(
a− 1

n+1 , · · · , a− 1
n+1 , a

n
n+1

)
, a > 0.
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Since X̂ is G-rotationally symmetric, so is X̂A(a). Also

vol(X̂A(a)) = vol(X̂) = ωn+1.

Note the support function of X̂A(a) is ĤA(a). Let

J (a) := inf
ξ

J [ĤA(a) − ξ · x]. (4.2)

By (3.7), we have

J (a) = inf
ξ

1

n + 1

∫
Sn

f

(ĤA(a) − ξ · x)n+1

= inf
ξ

1

n + 1

∫
Sn

fA(a)−1

(Ĥ − ξ · x)n+1

=: 1

n + 1

∫
Sn

fa

(Ĥ − ξa · x)n+1
,

(4.3)

where the infimum is attained at ξa ∈ X̂, and fa = fA(a)−1 is defined as

fa(x1, · · · , xn, xn+1) = f

⎛⎜⎝ ax1, · · · , axn, xn+1√
a2(x2

1 + · · · + x2
n) + x2

n+1

⎞⎟⎠ . (4.4)

We allow a = 0 in (4.3) and (4.4). Then f0 = f̂ . Note (3.12), there is ξ0 = 0 and

J (0) = Jsup.

Now if we can find some a > 0 such that

J (a) > J(0), (4.5)

then (4.1) holds. So it remains to check (4.5). To achieve this, we shall analyze the asymptotic 
behavior of J (a) when a → 0+.

Following [29], for the function f defined on Sn, one can extend it to Rn+1 such that it is 
homogeneous of degree zero. Note that f remains G-rotationally symmetric in the whole Rn+1. 
For a point x ∈ R

n+1, we write x = (x ′, xn+1) where

x′ = (x1, · · · , xn).

Then we can use the standard notations in Euclidean space such as f ′
x′ for the gradient and f ′′

x′x′
for the Hessian of f with respect to x′. From now on, we always use these conventions unless 
explicitly stated otherwise.

We need the following observation about the G-rotationally symmetric f .
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Lemma 4.1. If f ∈ C1, then f ′
x′(0, xn+1) = 0 whenever xn+1 �= 0.

Proof. Fix any xn+1 �= 0 and let

g(z) := f (z, xn+1), z ∈R
n.

Then g ∈ C1(Rn). Note for any � ∈ G,

g(�z) = f (�z,xn+1) = f (z, xn+1) = g(z).

Differentiating both sides of this equality with respect to z yields

(∇g)(�z) · � = ∇g(z).

Let z = 0, we obtain

∇g(0) · � = ∇g(0).

Recall that the orbit of each nonzero z ∈ R
n under G spans Rn, and n ≥ 2, there must be

∇g(0) = 0,

which is equivalent to

f ′
x′(0, xn+1) = 0. �

Once we have Lemma 4.1, the second part of [29, Lemma 3.2] is true for a G-rotationally 
symmetric f . Here we provide it as the following lemma.

Lemma 4.2 ([29]). Let ϕ ∈ C(Sn) be a continuous function. Assume f ∈ C2(Sn), and fa is given 
by (4.4). Then as a → 0+, there is∫

Sn

ϕ(x)(fa(x) − f0(x))dS(x) = a
( ∫
Sn∩e⊥

n+1

ϕ(x)P I (x)dσ (x) + o(1)
)
.

Here PI (x) is given in (1.6).

We also have the following useful observation, which can be easily seen from the proof of [29, 
Lemma 3.2 (b)] as well.

Lemma 4.3. Assume f ∈ C2(Sn). Then∫
Sn

|fa(x) − f0(x)|dS(x) ≤ Ca, (4.6)

where C only depends on ‖f ‖C2(Sn) and n.
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But we can not use Lemma 4.2 directly, due to the existence of ξa in J (a), see (4.3). To deal 
with this problem, we need study ξa in more detail. Recall (4.3), ξa is the unique minimum point 
of

1

n + 1

∫
Sn

fa

(Ĥ − ξ · x)n+1
,

which is strictly convex as a function of ξ . So ξa is continuous with respect to a. Also the 
vanishing first order derivatives yield∫

Sn

fa

(Ĥ − ξa · x)n+2
xi = 0, i = 1,2, · · · , n + 1. (4.7)

If fa is a constant function, then ξa is actually the Santaló point of the convex body X̂. The 
Santaló map, which maps a convex body to its Santaló point, is Lipschitz continuous at each 
convex body, see Proposition 1 in Kim–Reisner [34]. Now for ξa given in (4.7), one can still 
prove its Lipschitz continuity at X̂ in a similar way. In fact, we have the following

Lemma 4.4. There exists a sufficiently small ā > 0, such that

|ξa| ≤ Ca, ∀0 ≤ a ≤ ā (4.8)

for some positive constant C depending only on Ĥ , f and n.

Proof. For simplicity, we write

φ(t) = − 1

tn+2 , ∀t > 0.

Then (4.7) says ∫
Sn

φ(Ĥ − ξa · x)fa x dS(x) = 0. (4.9)

In particular, for a = 0, ∫
Sn

φ(Ĥ )f0 x dS(x) = 0. (4.10)

Combining (4.9) and (4.10), we get∫
Sn

φ(Ĥ − ξa · x)(fa − f0)x dS(x) =
∫
Sn

[φ(Ĥ ) − φ(Ĥ − ξa · x)]f0 x dS(x).

Then
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∫
Sn

φ(Ĥ − ξa · x)(fa − f0)x dS(x) =
∫
Sn

φ′(τ )(ξa · x)f0 x dS(x),

where τ ∈R is between Ĥ (x) − ξa · x and Ĥ (x). Taking the inner product with ξa , we have∫
Sn

φ(Ĥ − ξa · x)(fa − f0)(ξa · x)dS(x) =
∫
Sn

φ′(τ )(ξa · x)2f0 dS(x). (4.11)

Since Ĥ > 0, and Ĥ (x) − ξa · x converges to Ĥ (x) uniformly on Sn when a → 0+, we can 
assume for a ∈ [0, ā] that

Ĥ (x) − ξa · x, Ĥ (x), τ ∈ [2−1Ĥmin,2Ĥmax] =: [C1,C2].

Thus we can estimate (4.11) as

φ′(C2)fmin

∫
Sn

(ξa · x)2dS(x) ≤
∫
Sn

φ(Ĥ − ξa · x)(fa − f0)(ξa · x)dS(x)

≤
∫
Sn

|φ(Ĥ − ξa · x)| · |fa − f0| · |ξa · x|dS(x)

≤ |φ(C1)| · |ξa|
∫
Sn

|fa − f0|dS(x)

≤ |φ(C1)| · |ξa|C3a,

(4.12)

where C3 is the positive constant in (4.6), which depends only on f and n. Note that∫
Sn

(ξa · x)2dS(x) = ωn+1|ξa|2.

Now (4.12) is simplified into

|ξa| ≤ |φ(C1)|C3

φ′(C2)fminωn+1
a.

We complete the proof of this lemma. �
Now we can analyze J (a) − J (0). Recall (4.3), we have

(n + 1)[J (a) − J (0)] =
∫
Sn

fa

(Ĥ − ξa · x)n+1
−

∫
Sn

f0

Ĥ n+1

=
∫
n

(
1

(Ĥ − ξa · x)n+1
− 1

Ĥ n+1

)
fa +

∫
n

fa − f0

Ĥ n+1
.

(4.13)
S S
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To estimate the first integral above, we use Taylor expansion to obtain

( 1

(Ĥ − ξa · x)n+1
− 1

Ĥ n+1

)
fa = (n + 1)fa

(Ĥ − ξa · x)n+2
(ξa · x) + O(1)(ξa · x)2,

where the bounds of O(1) are independent of x ∈ Sn and a, when 0 ≤ a ≤ ā for example. 
Therefore, by (4.7), we have∫

Sn

(
1

(Ĥ − ξa · x)n+1
− 1

Ĥ n+1

)
fa =

∫
Sn

O(1)(ξa · x)2dS(x)

= O(1)a2,

where the second equality holds due to (4.8). Now applying Lemma 4.2, (4.13) is simplified as

(n + 1)[J (a) − J (0)] = O(1)a2 +
∫
Sn

fa − f0

Ĥ n+1

= O(1)a2 + a
( ∫
Sn∩e⊥

n+1

Ĥ (x)−n−1PI (x)dσ (x) + o(1)
)

= a
( ∫
Sn∩e⊥

n+1

Ĥ (x)−n−1PI (x)dσ (x) + o(1)
)
.

By the assumption of PI (x) in the theorem, we see for sufficiently small a > 0, J (a) > J(0). 
Namely (4.1) holds, which is impossible.

4.2. When λk → ∞

In this case, f̂ is given in (3.16), namely

f̂ (x1, · · · , xn, xn+1) = f

⎛⎜⎝ x1, · · · , xn,0√
x2

1 + · · · + x2
n

⎞⎟⎠ .

Similar to (3.17), we have

Jsup ≤ max f̂ · ωn+1 = max
Sn∩e⊥

n+1

f · ωn+1. (4.14)

To achieve (4.1), we make the following construction. Denote

M = f (en+1), m = f (−en+1),

and
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α =
( 2√

M + √
m

) 1
n+1

.

Let h ∈ C(Sn) be given as

h(x) =
⎧⎨⎩αM

1
2n+2 , xn+1 ≥ 0,

αM− n
2n+2

√
M(x2

1 + · · · + x2
n) + mx2

n+1, xn+1 < 0.
(4.15)

One can easily see h is the support function of a G-rotationally symmetric convex body K , which 
consists of a semi-ball in the north and a semi-ellipsoid in the south. And its volume

vol(K) = 1

2
ωn+1

(
αM

1
2n+2

)n+1 + 1

2
ωn+1

(
αM

1
2n+2

)n · αM− n
2n+2

√
m

= ωn+1α
n+1 ·

√
M + √

m

2
= ωn+1.

Recall for any A ∈ SL(n + 1), H(x) = |Ax| is a solution to

det(∇2H + HI) = 1

Hn+2 on Sn.

One can check that h in (4.15) is a generalized solution to

det(∇2h + hI) = η

hn+2 on Sn, (4.16)

where

η(x) = α2n+2(Mχ{
xn+1>0

} + mχ{
xn+1<0

}).
Here χ is the characteristic function. Recall the necessary condition for the classical Minkowski 
problem, we have ∫

Sn

η

hn+2 xi = 0, i = 1,2, · · · , n + 1. (4.17)

Let ξh ∈ K be the unique point such that∫
Sn

η

(h − ξh · x)n+1 = inf
ξ∈K

∫
Sn

η

(h − ξ · x)n+1 .

By the vanishing derivatives with respect to ξ , we have∫
n

η

(h − ξh · x)n+2 xi = 0, i = 1,2, · · · , n + 1.
S
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Comparing it with (4.17), we obtain ξh = 0. Then

∫
Sn

η

hn+1 = inf
ξ∈K

∫
Sn

η

(h − ξ · x)n+1 . (4.18)

Now we consider the family of convex bodies KA(a) with A(a) ∈ SL(n + 1) given by

A(a) = diag
(
a− 1

n+1 , · · · , a− 1
n+1 , a

n
n+1

)
, a > 0.

Namely KA(a) is obtained by performing the linear transform A(a)T on K . Its support function 
is given by hA(a), see (3.5). Note that KA(a) is G-rotationally symmetric, and

vol(KA(a)) = vol(K) = ωn+1.

Let

J (a) := inf
ξ

J [hA(a) − ξ · x] = J [hA(a) − ξa · x]. (4.19)

By (3.7), we have

J (a) = 1

n + 1

∫
Sn

f

(hA(a) − ξa · x)n+1

= 1

n + 1

∫
Sn

fA(a)−1

(h − A(a)−T ξa · x)n+1

=: 1

n + 1

∫
Sn

fa

(h − ξ̃a · x)n+1
,

where fa = fA(a)−1 is given by

fa(x1, · · · , xn, xn+1) = f

⎛⎜⎝ ax1, · · · , axn, xn+1√
a2(x2

1 + · · · + x2
n) + x2

n+1

⎞⎟⎠ .

Since ξ̃a ∈ K , we can assume that ξ̃a → ξ̃ as a → 0+. Also note that

fa(x) → α−2n−2η(x), a.e. x ∈ Sn.
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Therefore we have

lim
a→0+ J (a) = 1

n + 1

∫
Sn

α−2n−2η

(h − ξ̃ · x)n+1

≥ α−2n−2 · 1

n + 1

∫
Sn

η

hn+1 ,

where the inequality is due to (4.18). Note h is a solution to (4.16), we have

1

n + 1

∫
Sn

η

hn+1 = 1

n + 1

∫
Sn

hdet(∇2h + hI)

= vol(h)

= ωn+1.

Thus

lim
a→0+ J (a) ≥ α−2n−2ωn+1 =

(√
M + √

m

2

)2
ωn+1. (4.20)

By our assumption in the theorem:

max
Sn∩e⊥

n+1

f <
(√

M + √
m

2

)2
,

combining (4.14) and (4.20), we have

lim
a→0+ J (a) > Jsup.

This implies J (a) > Jsup for sufficiently small a > 0. Recalling J (a) is given by (4.19), we see 
(4.1) holds, which is a contradiction. Now we complete the proof of Theorem 1.3.
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