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Abstract The centroaffine Minkowski problem is studied, which is the critical case of the Lp-Minkowski

problem. It admits a variational structure that plays an important role in studying the existence of solutions.

In this paper, we find that there is generally no maximizer of the corresponding functional for the centroaffine

Minkowski problem.
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1 Introduction

The centroaffine Minkowski problem [8] is to find necessary and sufficient conditions about a given positive

function f̃ , such that f̃ is the centroaffine curvature of a convex body containing the origin in Rn+1. In

the smooth case, the centroaffine Minkowski problem is equivalent to solving the following Monge-Ampère

type equation:

det(∇2H +HI) =
f

Hn+2
on Sn, (1.1)

where f is the given positive function (in fact f = 1/f̃), H is the support function of a bounded convex

body X in Rn+1, I is the unit matrix, and ∇2H = (∇ijH) is the Hessian matrix of covariant derivatives

of H with respect to an orthonormal frame on Sn.

Equation (1.1) is a special case of the Lp-Minkowski problem introduced by Lutwak [21], which has at-

tracted great attention (see for example [4,10–12,20,22,25,30] and the references therein). Equation (1.1)

has applications in anisotropic Gauss curvature flows (see [9, 27]), and image processing (see [2]). It can

be reduced to a singular Monge-Ampère equation in the half Euclidean space Rn+1
+ , and its regularity

was strongly studied in [14,15].

Equation (1.1) has a natural variational structure, which involves a type of Mahler volume for convex

bodies. Consider the following maximizing problem:

sup
X

inf
ξ∈X

vol(X) · 1

n+ 1

∫
Sn

f(x)dS(x)

(H(x)− ξ · x)n+1
, (1.2)
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where X is any bounded convex body in Rn+1, ξ is any point in X, vol(X) is the volume of the convex

body X, and H is the support function of X. Note that for any X, there exists a unique ξ ∈ X such

that the infimum is attained. By the arguments of [8], any maximizer of this problem provides a solution

to (1.1) after rescaling by a constant. When f ≡ 1, (1.2) is exactly the Mahler volume for X. For the

upper bound of Mahler volume, it is given by the famous Blaschke-Santaló inequality in convex geometry

(see [23]):

sup
X

inf
ξ∈X

vol(X) · 1

n+ 1

∫
Sn

dS(x)

(H(x)− ξ · x)n+1
= ω2

n+1, (1.3)

where ωn+1 is the volume of the unit ball in Rn+1, and the supremum is attained at any ellipsoid. So the

maximizing problem (1.2) is obviously bounded from above, and its maximizers may be not uniformly

bounded. This means that there is no a priori estimates for maximizers to (1.2). Actually, this feature

originates from (1.1) itself, which remains invariant under projective transforms on Sn (see [8, 20]).

When f is a constant function, all ellipsoids centered at the origin are the solutions to (1.1) (see [5]).

Equation (1.1) is similar, in some aspects, to the prescribed scalar curvature problem on Sn (see [6,24]),

but more complicated due to the lack of a Liouville type theorem after blow-up.

For n = 1, (1.1) is reduced to a semi-linear ordinary differential equation. The existence of solutions

was investigated in [1, 3, 7, 9, 10, 16, 17, 26]. For the higher n-dimension, there are few existence results

about (1.1) except several special cases; see [19,20] for the rotationally symmetric case, [13] for the mirror

symmetric case, and [30] for the discrete case.

The variational method is the major way to obtain the existence of solutions to the Lp-Minkowski

problem. For subcritical cases p > −n−1, see [4,8,28,29]. For the critical case p = −n−1, namely (1.1),

almost all existence results mentioned above for general dimension n were obtained by the variational

method corresponding to (1.2). In this paper, we find an interesting fact: the variational method cannot

be used to obtain a solution to (1.1) in the general case.

We say f is even, if f(−x) = f(x) for all x ∈ Sn.

Theorem 1.1. If f is a continuous and even function on Sn, then

sup
X

inf
ξ∈X

vol(X) · 1

n+ 1

∫
Sn

f(x)dS(x)

(H(x)− ξ · x)n+1
= fmaxω

2
n+1, (1.4)

where fmax = supx∈Sn f(x). When f is non-constant, the supremum cannot be attained.

Recall that when f ≡ 1, (1.4) is just the Blaschke-Santaló inequality (1.3), and the supremum is

attained at any ellipsoid. Although the variational method was used to obtain a solution to (1.1) for

some special symmetric cases and the discrete case, it unfortunately cannot be applied to (1.1) when f

is a general even function without additional restrictions by Theorem 1.1.

This paper consists of two sections. We prove Theorem 1.1 in the next section.

2 Nonexistence of a maximizer

In this section, we prove Theorem 1.1. First, note that the Mahler type volume

inf
ξ∈X

vol(X) · 1

n+ 1

∫
Sn

f(x)dS(x)

(H(x)− ξ · x)n+1

is invariant under any dilation of the convex body X. So (1.4) is equivalent to

sup
|X|=ωn+1

inf
ξ∈X

1

n+ 1

∫
Sn

f(x)dS(x)

(H(x)− ξ · x)n+1
= fmaxωn+1. (2.1)

Here, |X| denotes the volume of X, namely vol(X). For any support function H, let

J [H] =
1

n+ 1

∫
Sn

f

Hn+1
. (2.2)

Now, Theorem 1.1 is equivalent to the following.
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Theorem 2.1. If f is a continuous and even function on Sn, then

sup
|X|=ωn+1

inf
ξ∈X

J [H(x)− ξ · x] = fmaxωn+1. (2.3)

When f is non-constant, the supremum cannot be attained.

The proof of Theorem 2.1 is based on the invariance of the functional J under unimodular linear

transforms. For any convex body X in Rn+1, after performing a unimodular linear transform AT

∈ SL(n + 1), it becomes into another convex body XA, namely XA = AT(X). In the following, we

use HA to denote the support function of XA. Then

HA(x) = |Ax| ·H
(

Ax

|Ax|

)
, x ∈ Sn, (2.4)

where H is the support function of X (see [20] for more details about this type of transforms). The

invariance of J is a direct corollary of [18, Lemma 5.1].

Lemma 2.2 (See [18, Lemma 5.1]). For any integral function g on Sn, and any matrix A ∈ GL(n+1),

we have the following variable substitution for integration:∫
Sn

g(y) dS(y) =

∫
Sn

g

(
Ax

|Ax|

)
· |detA|
|Ax|n+1 dS(x). (2.5)

Proof. For completeness, here we provide the proof given in [18].

We first claim: for any homogeneous function φ in Rn+1 of degree zero, there is∫
Bn+1

φ(y) dy =
1

n+ 1

∫
Sn

φ(y) dS(y), (2.6)

where Bn+1 is the unit ball in Rn+1. In fact, recall that∫
Bn+1

φ(y) dy =

∫ 1

0

dr

∫
Sn(r)

φ(y) dS(y),

where Sn(r) is the n-sphere centered at the origin with radius r. Since φ is homogeneous of degree zero,

the above equality becomes into∫
Bn+1

φ(y) dy =

∫ 1

0

rndr

∫
Sn

φ(y) dS(y)

=
1

n+ 1

∫
Sn

φ(y) dS(y),

which implies the claim.

Now we can apply the variable substitution for integration in Rn+1 to prove (2.5). Extending g on Sn

as a homogeneous function of degree zero in Rn+1, noting (2.6) and using the variable substitution

y =
|x|
|Ax|

Ax, x ∈ Rn+1,

we obtain ∫
Sn

g(y) dS(y) = (n+ 1)

∫
Bn+1

g(y) dy

= (n+ 1)

∫
Bn+1

g

(
|x|
|Ax|

Ax

)
· |det y′x| dx.

By the direct computations, one can see

|det y′x| =
|detA| |x|n+1

|Ax|n+1 .
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Therefore, ∫
Sn

g(y) dS(y) = (n+ 1)

∫
Bn+1

g

(
|x|
|Ax|

Ax

)
· |detA| |x|n+1

|Ax|n+1 dx. (2.7)

Noting the integrand on the right-hand side of (2.7) is homogeneous of degree zero, and again apply-

ing (2.6), we obtain ∫
Sn

g(y) dS(y) =

∫
Sn

g

(
Ax

|Ax|

)
· |detA|
|Ax|n+1 dS(x).

This completes the proof of the lemma.

By (2.5) of this lemma, one immediately obtains the invariance about J . Namely, for any integral

function f on Sn, any support function H, and any matrix A ∈ SL(n+ 1), we have∫
Sn

f

Hn+1
=

∫
Sn

fA

Hn+1
A

, fA(x) = f

(
Ax

|Ax|

)
. (2.8)

Let σn := (n + 1)ωn+1 be the area of the unit n-sphere, and Jsup be the supremum on the left-hand

side of (2.3).

Lemma 2.3. If f is a continuous and even function on Sn, then the corresponding Jsup is equal to

fmaxωn+1.

Proof. Let X be any convex body with volume ωn+1, H be its support function, and ξ ∈ X. Since

J [H(x)− ξ · x] 6 fmax ·
1

n+ 1

∫
Sn

dS(x)

(H(x)− ξ · x)n+1
,

we have

inf
ξ∈X

J [H(x)− ξ · x] 6 fmax · inf
ξ∈X

1

n+ 1

∫
Sn

dS(x)

(H(x)− ξ · x)n+1

6 fmax · ωn+1,

where the second inequality holds due to the Blaschke-Santaló inequality (1.3). Thus,

Jsup 6 fmaxωn+1. (2.9)

On the other hand, for any matrix A ∈ SL(n+ 1), let HA(x) = |Ax|, x ∈ Sn be the support function

of the ellipsoid EA := AT(Bn+1), where Bn+1 is the unit ball in Rn+1. Since f is even, we easily see that

inf
ξ∈EA

J [HA(x)− ξ · x] = J [HA].

Noting the volume of EA is ωn+1, by the definition of Jsup, we have

Jsup > J [HA]

=
1

n+ 1

∫
Sn

f

Hn+1
A

=
1

n+ 1

∫
Sn

fA−1 ,

where the last equality comes from (2.8), and fA−1(x) = f( A−1x
|A−1x| ). Noting that A ∈ SL(n + 1) is

arbitrary, we obtain

Jsup > sup
A∈SL(n+1)

1

n+ 1

∫
Sn

fA−1 . (2.10)

We claim that the right-hand side of (2.10) equals fmaxωn+1. In fact, we can assume fmax is attained at

the north and south poles without loss of generality, namely f(±en+1) = fmax, where en+1 = (0, . . . , 0, 1).

Let

A−1
k = diag(k−

1
n+1 , . . . , k−

1
n+1 , k

n
n+1 ) ∈ SL(n+ 1), k > 0.
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Then for any x = (x1, . . . , xn+1) ∈ Sn with xn+1 ̸= 0,

fA−1
k
(x) = f

(
k−1x1, . . . , k

−1xn, xn+1√
k−2x2

1 + · · ·+ k−2x2
n + x2

n+1

)
→ f(±en+1), as k → +∞.

Therefore, by the bounded convergence theorem we have

sup
A∈SL(n+1)

1

n+ 1

∫
Sn

fA−1 > lim
k→+∞

1

n+ 1

∫
Sn

fA−1
k

=
1

n+ 1

∫
Sn

f(±en+1)

=
1

n+ 1
fmaxσn

= fmaxωn+1.

It is obvious that

sup
A∈SL(n+1)

1

n+ 1

∫
Sn

fA−1 6 fmaxωn+1.

Hence,

sup
A∈SL(n+1)

1

n+ 1

∫
Sn

fA−1 = fmaxωn+1.

Now, (2.10) becomes into

Jsup > fmaxωn+1,

which together with (2.9) leads to the conclusion of this lemma.

Now, we prove Theorem 2.1.

Proof of Theorem 2.1. Because of Lemma 2.3, it only needs to prove that the supremum cannot be

attained when f is non-constant. We prove it by contradiction. Assume Ĥ is a maximizer to the left-hand

side of (2.3), i.e.,

J [Ĥ] = inf
ξ
J [Ĥ(x)− ξ · x] = Jsup.

By virtue of the Blaschke-Santaló inequality (1.3), let ξ̃ be the point such that

1

n+ 1

∫
Sn

dS(x)

(Ĥ(x)− ξ̃ · x)n+1
6 ωn+1.

Noting f is continuous and non-constant, we have

J [Ĥ] 6 J [Ĥ(x)− ξ̃ · x]

=
1

n+ 1

∫
Sn

f(x)dS(x)

(Ĥ(x)− ξ̃ · x)n+1

< fmax ·
1

n+ 1

∫
Sn

dS(x)

(Ĥ(x)− ξ̃ · x)n+1

6 fmaxωn+1,

i.e.,

Jsup < fmaxωn+1,

which contradicts Lemma 2.3. This completes the proof of Theorem 2.1.
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