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1. Introduction

In recent years, the Orlicz–Brunn–Minkowski theory in convex geometry has been 
built up gradually and is developing rapidly. It can be viewed as the recent develop-
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ment of the classical Brunn–Minkowski theory, and has attracted great attention from 
many scholars, see for example [4,7–9,11,13,14,16,17,21,22,27,29,30,32–35,37–40,44] and 
references therein. In the Brunn–Minkowski theory, it is well known that the classical 
Minkowski problem is of central importance, and has many applications. In the new 
Orlicz–Brunn–Minkowski theory, the corresponding Minkowski problem is called the 
Orlicz–Minkowski problem.

Let ϕ : (0, +∞) → (0, +∞) be a given continuous function. For a convex body K ⊂ R
n

with the origin 0 ∈ K, the Orlicz surface area measure is defined as ϕ(hK)dSK . Here hK

is the support function of K, and SK is the surface area measure. The Orlicz–Minkowski 
problem, first proposed in [10], asks what are the necessary and sufficient conditions for 
a Borel measure μ on the unit sphere Sn−1 to be a multiple of the Orlicz surface area 
measure of a convex body K. Namely, this problem is to find a convex body K ⊂ R

n

such that

c ϕ(hK)dSK = dμ on Sn−1 (1.1)

for some positive constant c. Since the Orlicz surface area measure depends on ϕ, it is 
also called Lϕ-surface area measure. Correspondingly, the Orlicz–Minkowski problem is 
sometimes called the Lϕ-Minkowski problem.

When ϕ is a constant function, Eq. (1.1) is just the classical Minkowski problem. 
When ϕ(s) = s1−p, Eq. (1.1) reduces to the Lp-Minkowski problem, which has been 
extensively studied, see e.g. [1–3,12,15,17–20,23–26,28,31,41,43] and Schneider’s book 
[36], and corresponding references therein.

When the Radon–Nikodym derivative of μ with respect to the spherical measure 
on Sn−1 exists, namely dμ = fdx for a non-negative integrable function f , the equa-
tion (1.1) can be written as

c ϕ(hK) det(∇2hK + hKI) = f on Sn−1, (1.2)

where ∇2hK = (∇ijhK) is the Hessian matrix of covariant derivatives of hK with respect 
to an orthonormal frame on Sn−1, and I is the unit matrix of order n − 1. This is a 
Monge–Ampère type equation.

Eq. (1.1) has a variational structure, which can be used to prove the existence of 
solutions [10,14,37]. Haberl, Lutwak, Yang and Zhang [10] considered the even Orlicz–
Minkowski problem under the assumption

(A) ϕ : (0, +∞) → (0, +∞) is a continuous function such that φ(t) =
∫ t

0 1/ϕ(s)ds exists 
for every t > 0 and is unbounded as t → +∞.

They proved the following

Theorem 1.1 ([10, Theorem 2]). Suppose (A) is satisfied. If μ is an even finite Borel 
measure on Sn−1 which is not concentrated on any great sub-sphere of Sn−1, then there 
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exists an origin symmetric convex body K in Rn and a number c > 0 satisfying (1.1). 
Moreover, one can require that the Orlicz-norm of hK is equal to 1.

We note that the Orlicz-norm of hK in this theorem is defined with respect to φ(t) =∫ t

0 1/ϕ(s)ds and μ. Denoting it by ‖hK‖φ,μ, we have that

‖hK‖φ,μ = inf

⎧⎨
⎩λ > 0 : 1

μ(Sn−1)

∫
Sn−1

φ
(hK

λ

)
dμ ≤ φ(1)

⎫⎬
⎭ .

One can consult [10, Section 4] for more properties about this norm. We will use this 
notation throughout this paper.

Huang and He [14] studied the general (not necessarily even) Orlicz–Minkowski prob-
lem and obtained the following result.

Theorem 1.2 ([14, Theorem 1.2]). In addition to (A), further suppose that ϕ(s) tends 
to +∞ as s → 0+. If μ is a finite Borel measure on Sn−1 which is not concentrated in 
any closed hemisphere of Sn−1, then there exists a convex body K in Rn and a number 
c > 0 satisfying (1.1). Moreover, one can require that the Orlicz-norm ‖hK‖φ,μ is equal 
to 1.

We note that Theorem 1.1 includes the even Lp-Minkowski problem for p > 0, 
and Theorem 1.2 includes the general Lp-Minkowski problem for p > 1. There is 
no result about the general Orlicz–Minkowski problem which can include the general 
Lp-Minkowski problem for 0 < p < 1. In this paper, we will fill this gap. We obtain the 
following

Theorem 1.3. In addition to (A), further suppose that ϕ is non-decreasing and ϕ(s) tends 
to 0 as s → 0+. If μ is a finite Borel measure on Sn−1 which is not concentrated in any 
closed hemisphere of Sn−1, then there exists a convex body K in Rn and a number c > 0
satisfying (1.1). Moreover, one can require that the volume of hK is equal to 1.

One can see that ϕ(s) = s1−p with 0 < p < 1 satisfies the assumptions of Theorem 1.3. 
Therefore this theorem includes the general Lp-Minkowski problem for 0 < p < 1. 
Actually there was even no existence result about the general Lp-Minkowski problem for 
0 < p < 1 when our paper was completed, while now there is one existence result about 
this Lp-Minkowski problem [5].

The method of proving Theorem 1.3 is the variational method, which was used to 
study the Orlicz–Minkowski problem in [10,14] and the Lp-Minkowski problem in [6,42]. 
However our method is not a direct generalization of these previous methods, since [10]
is for the origin symmetric case, while in [6,14,42] extremum problems were considered in 
a class of support functions of convex bodies, which additionally need to analyze related 
properties of extremum convex bodies when computing variations, see Lemmas 5.5–5.6 
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in [6] or Lemmas 3.5–3.6 in [42]. To overcome these difficulties, in this paper we use a new 
technique combining the functionals given in [6] and [10], and making use of Alexandrov 
bodies to compute an extremum problem in the class of positive continuous functions 
on Sn−1. No additional properties of extremum convex bodies will be needed in our 
method.

The paper is organized as follows. In section 2, we provide some preliminaries about 
convex bodies. In section 3, we state Theorem 3.1 which is more general than Theorem 1.3
and prove a special discrete case of the theorem. Then we complete the proof of the 
theorem in section 4.

2. Preliminaries

In this section we state some notations and basic facts about convex bodies which 
will be used throughout this paper. For general references about convex bodies, one can 
consult [36].

A convex body is a compact convex subset of Rn with non-empty interior. For a 
convex body K, we use intK to denote the interior of K. The support function of a 
convex body, denoted by hK , is given by

hK(x) := max
ξ∈K

ξ · x, x ∈ Sn−1,

where “·” denotes the inner product in the Euclidean space Rn. It is well known that a 
convex body is uniquely determined by its support function, and the convergence of a 
sequence of convex bodies is equivalent to the uniform convergence of the corresponding 
support functions on Sn−1. The Blaschke selection theorem says that every bounded 
sequence of convex bodies has a subsequence that converges to a convex body.

Denote the set of positive continuous functions on Sn−1 by C+(Sn−1). For g ∈
C+(Sn−1) and a closed subset ω ⊂ Sn−1 not lying in any closed hemisphere, define 
the Alexandrov body associated with (g, ω) as

K :=
⋂
x∈ω

{ξ ∈ R
n : ξ · x ≤ g(x)} .

One can see that K is a bounded convex body and 0 ∈ K. Note that

hK(x) ≤ g(x), x ∈ ω.

We write vol(g, ω) for the volume of the Alexandrov body associated with (g, ω). For the 
concept of Alexandrov body, there is a useful variational formula due to Alexandrov, see 
e.g. [36, Lemma 7.5.3].

Lemma 2.1. Let ε > 0. Assume Gt(x) = G(t, x) : (−ε, ε) × ω → (0, +∞) is continuous. 
If there is a continuous function g on ω such that
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lim
t→0+

Gt −G0

t
= g uniformly on ω,

then

lim
t→0+

vol(Gt, ω) − vol(G0, ω)
t

=
∫
ω

g(x)dSK(x),

where K is the Alexandrov body associated with (G0, ω). The same assertion holds if the 
one-sided limit limt→0+ is replaced by limt→0− or by limt→0.

For a finite Borel measure μ on Sn−1, denote its support set by supp(μ), and its total 
mass μ(Sn−1) by |μ|.

3. A special discrete case

In this paper, instead of proving Theorem 1.3 directly, we will prove the following

Theorem 3.1. Suppose φ : (0, +∞) → (0, +∞) is an increasing concave C1 function 
satisfying that limt→+∞ φ(t) = +∞, φ′(t) > 0 and limt→0+ φ′(t) = +∞. If μ is a finite 
Borel measure on Sn−1 which is not concentrated in any closed hemisphere of Sn−1, then 
there exists a convex body K in Rn and a number c > 0 satisfying

c

φ′(hK)dSK = dμ on Sn−1. (3.1)

Moreover, one can require the volume of hK is equal to any given number v > 0.

One can easily prove Theorem 1.3 by virtue of Theorem 3.1.

Proof of Theorem 1.3. Given ϕ as in Theorem 1.3, we define φ as

φ(t) =
t∫

0

1/ϕ(s)ds, ∀t > 0.

By assumption (A), φ is an increasing C1 function in (0, +∞) satisfying

lim
t→+∞

φ(t) = +∞.

Note φ′ = 1/ϕ > 0 is non-increasing, then φ is a concave function. Also

lim
+
φ′(t) = lim

+

1 = +∞.

t→0 t→0 ϕ(t)
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So φ satisfies all assumptions of Theorem 3.1. By this theorem, there exists a convex 
body K in Rn and a number c > 0 satisfying

c

φ′(hK)dSK = dμ on Sn−1,

namely

c ϕ(hK)dSK = dμ on Sn−1,

which is just equation (1.1). Theorem 3.1 also says that the volume of hK can be equal 
to any given positive number v. We choose v = 1. Now Theorem 1.3 is proved to be 
true. �

From now on, we only focus on Theorem 3.1.
In this section, we mainly prove the following lemma, which is a special discrete case 

of Theorem 3.1.

Lemma 3.2. Suppose φ : (0, +∞) → (0, +∞) is an increasing concave C2 function sat-
isfying that limt→+∞ φ(t) = +∞, φ′(t) > 0, limt→0+ φ′(t) = +∞, and φ′′(t) < 0. If μ
is a finite discrete measure on Sn−1 which is not concentrated in any closed hemisphere 
of Sn−1, then there exists a convex body K in Rn containing the origin in its interior, 
and a number c > 0 satisfying Eq. (3.1). Moreover, one can require the volume of hK is 
equal to any given number v > 0.

We use a variational method to prove this Lemma. For any fixed positive constant v, 
we consider the following minimizing problem:

inf
{

sup
ξ∈Kg

J [g(x) − ξ · x] : g ∈ C+(Sn−1), vol(Kg) = v

}
, (3.2)

where Kg is the Alexandrov body associated with (g, supp(μ)), and

J [g] =
∫

Sn−1

φ(g(x))dμ(x) =
∫

supp(μ)

φ(g(x))dμ(x). (3.3)

Note when ξ ∈ Kg and x ∈ supp(μ), there is

g(x) − ξ · x ≥ hKg
(x) − ξ · x ≥ 0.

By the assumptions of φ, we can define φ(0) as limt→0+ φ(t) which exists and is finite. 
Note φ(0) ≥ 0. Therefore J [g(x) − ξ · x] in (3.2) is well-defined. The proof of Lemma 3.2
will be carried out in the following Lemmas 3.3–3.6 and finished after Lemma 3.6.
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Lemma 3.3. Assume that φ : (0, +∞) → (0, +∞) is an increasing concave C1 function 
satisfying limt→0+ φ′(t) = +∞, and that μ is a finite discrete measure on Sn−1 which is 
not concentrated in any closed hemisphere of Sn−1. Then for every non-negative contin-
uous function g on Sn−1 with Kg having nonempty interior, there is at least one point 
of Kg, denoted by ξg, such that

J [g(x) − ξg · x] = sup
ξ∈Kg

J [g(x) − ξ · x]. (3.4)

And for any such point, we have ξg ∈ intKg. If φ is additionally strictly concave, then 
ξg is unique, and depends continuously on g when g ∈ C+(Sn−1).

Proof. Define G : Kg → R as

G(ξ) := J [g(x) − ξ · x] =
∫

Sn−1

φ(g(x) − ξ · x)dμ(x).

We claim that G is concave with respect to ξ. In fact, for λ1, λ2 ∈ (0, 1) with λ1+λ2 = 1, 
and ξ1, ξ2 ∈ Kg, we have

G(λ1ξ1 + λ2ξ2) =
∫

Sn−1

φ[g(x) − (λ1ξ1 + λ2ξ2) · x]dμ(x)

=
∫

Sn−1

φ[λ1(g(x) − ξ1 · x) + λ2(g(x) − ξ2 · x)]dμ(x)

≥
∫

Sn−1

[λ1φ(g(x) − ξ1 · x) + λ2φ(g(x) − ξ2 · x)]dμ(x)

= λ1G(ξ1) + λ2G(ξ2).

Here we have used the concavity of φ. If φ is additionally strictly concave, when the 
above equality holds, there must be

g(x) − ξ1 · x = g(x) − ξ2 · x, ∀x ∈ supp(μ),

namely

(ξ1 − ξ2) · x = 0, ∀x ∈ supp(μ).

Recall μ is not concentrated on any closed hemisphere, then supp(μ) spans the whole 
space Rn. Thus ξ1 = ξ2, which implies G is strictly concave on Kg.

Note G is continuous on the convex body Kg, there exists at least one point ξg ∈ Kg

such that
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G(ξg) = sup
ξ∈Kg

G(ξ),

which is just (3.4). We need to prove ξg ∈ intKg. Otherwise, suppose ξg ∈ ∂Kg. We will 
prove that for some e ∈ Sn−1 and small λ > 0, ξg +λe ∈ intKg and G(ξg +λe) > G(ξg), 
which leads to a contradiction.

Recall the definition of Kg:

Kg =
⋂

x∈supp(μ)

{ξ ∈ R
n : ξ · x ≤ g(x)} ,

there must exist one x ∈ supp(μ) such that

ξg · x = g(x),

since otherwise ξg · x + δ < g(x) for some δ > 0 and every x ∈ supp(μ), which would 
imply ξg ∈ intKg.

Now we write supp(μ) as the union of two disjoint nonempty sets:

supp(μ) = A ∪B, (3.5)

where

A := {x ∈ supp(μ) : ξg · x = g(x)} ,

B := {x ∈ supp(μ) : ξg · x < g(x)} .

By virtue of the assumption that Kg has nonempty interior, one can find a unit vector 
e ∈ Sn−1 such that

e · x < 0 for every x ∈ A. (3.6)

Since supp(μ) is a discrete set by the assumption, B is a closed subset of Sn−1. Then 
there exists a λ0 > 0 satisfying

ξg · x + 2λ0 < g(x), ∀x ∈ B.

Thus for any 0 < λ < 2λ0, we have

(ξg + λe) · x < g(x), ∀x ∈ supp(μ).

By the definition of Kg,

ξ(λ) := ξg + λe ∈ intKg.
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We want to prove

G(ξ(λ)) > G(ξg)

for sufficiently small λ, which is a contradiction.
Recalling (3.5) and φ(0) is well defined, we have

G(ξ(λ)) −G(ξg) =
∫

A∪B

φ[g(x) − ξ(λ) · x]dμ(x) −
∫

A∪B

φ[g(x) − ξg · x]dμ(x)

=
∫
A

(
φ[g(x) − ξ(λ) · x] − φ(0)

)
dμ(x) (3.7)

+
∫
B

(
φ[g(x) − ξ(λ) · x] − φ[g(x) − ξg · x]

)
dμ(x).

Note that

g(x) − ξ(λ) · x = −λe · x, ∀x ∈ A.

And we can strengthen (3.6) as

e · x < −δ0 < 0 ∀x ∈ A

for some constant δ0 > 0. Then the first integral in the end of (3.7)
∫
A

(
φ[g(x) − ξ(λ) · x] − φ(0)

)
dμ(x) =

∫
A

(
φ(−λe · x) − φ(0)

)
dμ(x)

≥
∫
A

(
φ(δ0λ) − φ(0)

)
dμ(x) (3.8)

= [φ(δ0λ) − φ(0)]μ(A).

Here we have used that φ is increasing. To estimate the last integral in (3.7), we note 
that when 0 < λ < λ0 and x ∈ B, there is

g(x) − ξ(λ) · x = g(x) − ξg · x− λe · x
> 2λ0 − λ

> λ0.

Recalling φ is concave, we have

|φ[g(x) − ξ(λ) · x] − φ[g(x) − ξg · x]| ≤ φ′(λ0)| − λe · x| ≤ λφ′(λ0),
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which implies that
∫
B

|φ[g(x) − ξ(λ) · x] − φ[g(x) − ξg · x]|dμ(x) ≤ λφ′(λ0)μ(B). (3.9)

By (3.8) and (3.9), when 0 < λ < λ0 we simplify (3.7) as

G(ξ(λ)) −G(ξg) ≥ [φ(δ0λ) − φ(0)]μ(A) − λφ′(λ0)μ(B).

By the assumptions of φ,

lim
t→0+

φ(t) − φ(0)
t

= lim
t→0+

φ′(t) = +∞.

Hence, we can choose positive numbers δ and

M >
φ′(λ0)μ(B)
δ0μ(A) ,

such that

φ(t) − φ(0) > Mt, ∀0 < t < δ.

Now for 0 < λ < min {λ0, δ/δ0}, we have

G(ξ(λ)) −G(ξg) ≥ [Mδ0μ(A) − φ′(λ0)μ(B)]λ > 0,

which is impossible. So ξg can not be on ∂Kg, namely ξg ∈ intKg.
If φ is additionally strictly concave, then G is also strictly concave on Kg. So ξg must 

be unique. Let g ∈ C+(Sn−1), and {gk} ⊂ C+(Sn−1) be any sequence of functions 
uniformly converging to g on Sn−1. We want to prove that ξgk converges to ξg in Rn. 
Note that Kgk → Kg and ξgk ∈ Kgk , therefore {ξgk} is bounded. For any convergent 
subsequence 

{
ξgki

}
⊂ {ξgk}, we need to prove its limit, say ξ0, equals ξg.

Observe that for any ξ ∈ Kg, there exists a sequence of ξki
∈ Kgki

which converges 
to ξ. Then

G(ξ) = J [g(x) − ξ · x]

= lim
ki

J [gki
(x) − ξki

· x]

≤ lim
ki

J [gki
(x) − ξgki

· x]

= J [g(x) − ξ0 · x]

= G(ξ0),
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which implies that

G(ξ0) = sup
ξ∈Kg

G(ξ).

By the uniqueness of ξg, we have

ξ0 = ξg.

The proof of this lemma is completed. �
Lemma 3.4. Under the assumptions of Lemma 3.2, the minimizing problem (3.2) has a 
solution h.

Proof. Let m be the infimum of (3.2), namely

m = inf
{

sup
ξ∈Kg

J [g(x) − ξ · x] : g ∈ C+(Sn−1), vol(Kg) = v

}
.

By φ ≥ 0, we see m ≥ 0.
Let {gk} ⊂ C+(Sn−1), vol(Kgk) = v be a minimizing sequence. Denote the support 

function of Kgk by hk. Then

hk(x) ≤ gk(x), ∀x ∈ supp(μ),

and Khk
= Kgk . Since 0 ∈ intKgk , hk is positive on Sn−1. For any ξ ∈ Khk

= Kgk , by 
the monotonicity of φ,

J [hk(x) − ξ · x] =
∫

supp(μ)

φ(hk(x) − ξ · x)dμ(x)

≤
∫

supp(μ)

φ(gk(x) − ξ · x)dμ(x)

= J [gk(x) − ξ · x],

which implies

sup
ξ∈Khk

J [hk(x) − ξ · x] ≤ sup
ξ∈Kgk

J [gk(x) − ξ · x].

Therefore

lim
k→+∞

sup
ξ∈K

J [hk(x) − ξ · x] = m.

hk
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Namely {hk} is also a minimizing sequence of (3.2). Recalling Lemma 3.3, we have 
ξhk

∈ intKhk
such that

J [hk(x) − ξhk
· x] = sup

ξ∈Khk

J [hk(x) − ξ · x].

Note hk is also the support function of Khk
, by a translation transform we can always 

assume ξhk
= 0. This fact will be used a few times.

We claim that {hk} is uniformly bounded on Sn−1. If not, we can assume

lim
k→+∞

max
x∈Sn−1

hk(x) = +∞.

Write Rk = maxx∈Sn−1 hk(x). For each k, there exists xk ∈ Sn−1 such that hk(xk) = Rk. 
Since {xk} ⊂ Sn−1, there exists a convergent subsequence. Without loss of generality, 
we assume

xk → x0 ∈ Sn−1 when k → +∞.

Recall supp(μ) is not concentrated on any closed hemisphere, there is some x̄ ∈ supp(μ)
such that x̄ ·x0 > 0. Write δ = 1

2 x̄ ·x0, then δ > 0 and for sufficiently large k, e.g. k ≥ k0, 
we have

x̄ · xk > δ.

By the definition of support function, there is

hk(x̄) ≥ Rk(x̄ · xk) > Rkδ, k ≥ k0.

Note φ is increasing, limt→+∞ φ(t) = +∞ and μ is a finite discrete measure, we have

m = lim
k→+∞

J [hk]

= lim
k→+∞

∫
Sn−1

φ(hk(x))dμ(x)

≥ lim
k→+∞

φ(hk(x̄))μ(x̄)

≥ lim
k→+∞

φ(Rkδ)μ(x̄) → +∞.

However, by Lemma 3.3, m must be finite. This is a contradiction. Thus {hk} is uniformly 
bounded.

By the Blaschke selection theorem, there is a subsequence of {hk} which uniformly 
converges to some support function h on Sn−1. Correspondingly Khk

converges to Kh

which is the convex body determined by h. Obviously h ≥ 0 on Sn−1, vol(Kh) = v, and
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J [h] = m.

For any ξ ∈ Kh, there exists ξk ∈ Khk
such that ξk → ξ as k → +∞. Then

J [h(x) − ξ · x] = lim
k→+∞

J [hk(x) − ξk · x]

≤ lim
k→+∞

J [hk(x) − ξhk
· x]

= lim
k→+∞

J [hk(x)]

= J [h(x)],

which implies that

J [h] = sup
ξ∈Kh

J [h(x) − ξ · x].

By Lemma 3.3, 0 ∈ intKh. Therefore h > 0 on Sn−1. Hence, we see that h is a solution 
to the minimizing problem (3.2), and h is the support function of Kh. �

In the following we prove that the solution h obtained in Lemma 3.4 is also a solution 
to (3.1) for some c > 0.

For any given η ∈ C(Sn−1), let

qt = h + tη for t ≥ 0.

By h ∈ C+(Sn−1), qt ∈ C+(Sn−1) for sufficiently small t. By Lemma 2.1, we have

Lemma 3.5.

lim
t→0+

vol(Kqt) − vol(Kh)
t

=
∫

supp(μ)

ηdSKh
(x).

Let gt(x) = β(t)qt(x) where

β(t) = vol(Kqt)−1/nv1/n.

Then gt ∈ C+(Sn−1), and vol(Kgt) = v. Note g0(x) = h(x), and

lim
t→0+

gt(x) − g0(x)
t

= η(x) + β′(0)h(x) uniformly on Sn−1. (3.10)

Also by Lemma 3.5,
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β′(0) = −v1/n

n
vol(Kqt)−1/n−1 d vol(Kqt)

dt

∣∣∣
t=0

= − 1
nv

∫
Sn−1

ηdSKh
(x).

(3.11)

For each gt, ξ(t) := ξgt ∈ R
n is well defined by Lemma 3.3.

Lemma 3.6. ξ(t) is Lipschitz continuous with respect to t.

Proof. Since supξ∈Kgt
J [gt(x) − ξ · x] is attained at ξ = ξ(t), we have

∫
Sn−1

φ′(gt(x) − ξ(t) · x)xdμ(x) = 0. (3.12)

Recalling ξ(0) = ξh = 0, and taking t = 0 in the above equality, we have
∫

Sn−1

φ′(h(x))xdμ(x) = 0. (3.13)

Recalling that φ′′ < 0 in (0, +∞), and subtracting (3.13) from (3.12), we get
∫

Sn−1

φ′′(τ)[gt(x) − ξ(t) · x− h(x)]xdμ(x) = 0,

where τ : Sn−1 × (0, +∞) → R and τ(x, t) is between gt(x) − ξ(t) · x and h(x). Then
∫

Sn−1

φ′′(τ)[gt(x) − h(x)]xdμ(x) =
∫

Sn−1

φ′′(τ)(ξ(t) · x)xdμ(x).

Taking the inner product with ξ(t), we have
∫

Sn−1

φ′′(τ)[gt(x) − h(x)](ξ(t) · x)dμ(x) =
∫

Sn−1

φ′′(τ)(ξ(t) · x)2dμ(x). (3.14)

Note that when t is small,

sup
x∈Sn−1

|gt(x) − h(x)| = sup
x∈Sn−1

|(β(t) − 1)h(x) + tβ(t)η(x)|

≤ C[|β(t) − 1| + tβ(t)]

≤ Ct

for some positive constant C which is independent of x and t. Since h > 0, and gt(x) −
ξ(t) ·x converges to h(x) uniformly on Sn−1 when t → 0+, we can assume 1 minx h(x) <
2
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τ < 2 maxx h(x). Therefore there exist two positive constants C1 and C2 depending only 
on h and φ′′ such that

−C1 ≤ φ′′(τ) ≤ −C2.

Thus we can estimate (3.14) as

C2

∫
Sn−1

(ξ(t) · x)2dμ(x) ≤
∫

Sn−1

(−φ′′(τ))[gt(x) − h(x)](ξ(t) · x)dμ(x)

≤ C1Ct

∫
Sn−1

|ξ(t) · x|dμ(x) (3.15)

≤ C1C|μ| · |ξ(t)|t.

Recall μ is not concentrated on any closed hemisphere, there exists C3 > 0 depending 
only on μ, such that

∫
Sn−1

(y · x)2dμ(x) ≥ C3, ∀y ∈ Sn−1.

Then ∫
Sn−1

(ξ(t) · x)2dμ(x) ≥ C3|ξ(t)|2.

Therefore, it follows from (3.15) that

|ξ(t)| ≤ C1C|μ|
C2C3

t,

which is the desired result. �
Now, we are going to finish the proof of Lemma 3.2. Let

J(t) := J [gt(x) − ξ(t) · x].

Note ξ(0) = 0 and J(0) = J [h]. Since h is a minimizer of (3.2), we have

J(t) ≥ J(0)

for all small t ≥ 0. Thus

lim
+

J(tk) − J(0) ≥ 0 (3.16)

tk→0 tk
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for any convergent subsequence {tk}. By Lemma 3.6, we can assume without loss of 
generality that

lim
tk→0+

ξ(tk) − ξ(0)
t

= γ.

Recalling (3.10), we see that (3.16) is simplified as

∫
Sn−1

φ′(h)[η(x) + β′(0)h(x) − γ · x]dμ(x) ≥ 0, (3.17)

which, together with (3.13), implies

∫
Sn−1

φ′(h)[η(x) + β′(0)h(x)]dμ(x) ≥ 0.

By (3.11), we obtain

∫
Sn−1

φ′(h)ηdμ− c

∫
Sn−1

ηdSKh
≥ 0,

where

c = 1
nv

∫
Sn−1

φ′(h)hdμ.

Replacing η by −η, we see that

∫
Sn−1

φ′(h)ηdμ− c

∫
Sn−1

ηdSKh
= 0

for all η ∈ C(Sn−1). Thus

φ′(h)dμ− c dSKh
= 0,

namely

c

φ′(h)dSKh
= dμ,

which means that h solves equation (3.1). Obviously c > 0. The proof of Lemma 3.2 is 
completed.
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4. The general case

In the previous section, we have proved Lemma 3.2. This lemma says that Theo-
rem 3.1 holds under the additional assumptions: φ ∈ C2(0, +∞) with φ′′ < 0 and μ is a 
discrete measure on Sn−1. In this section, we will remove these additional assumptions 
to complete the proof of Theorem 3.1. We will use approximations to achieve this aim. 
First we remove the assumptions: φ ∈ C2(0, +∞) with φ′′ < 0. Namely we prove the 
following:

Lemma 4.1. Suppose φ : (0, +∞) → (0, +∞) is an increasing concave C1 function sat-
isfying that limt→+∞ φ(t) = +∞, φ′(t) > 0 and limt→0+ φ′(t) = +∞. If μ is a finite 
discrete measure on Sn−1 which is not concentrated in any closed hemisphere of Sn−1, 
then there exists a convex body K in Rn and a c > 0 satisfying

c

φ′(hK)dSK = dμ on Sn−1.

Moreover, one can require the volume of hK is equal to any given number v > 0. And 
hK ∈ C+(Sn−1) is a minimizer of

inf
{

sup
ξ∈Kg

J [g(x) − ξ · x] : g ∈ C+(Sn−1), vol(Kg) = v

}
. (4.1)

Here Kg is the Alexandrov body associated with (g, supp(μ)), and J is given by (3.3).

Proof. Assume ρ ∈ C∞(R) is a non-negative smooth function compactly supported in 
[−1, 0], and

∫
R

ρ(t)dt = 1.

Let ρε(t) = ε−1ρ(t/ε) for ε > 0. Then ρε is an approximation to the identity. Let φ̃ be 
the extension of φ from (0, +∞) to R, given by

φ̃(t) :=

⎧⎪⎪⎨
⎪⎪⎩
φ(t), if t > 0,
lim
t→0+

φ(t), if t = 0,

0, if t < 0.

Then φ̃ is non-decreasing and non-negative in R. Let φ̃ε be the convolution product of φ̃
and ρε, namely for any t ∈ R,

φ̃ε(t) := (φ̃ ∗ ρε)(t)
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=
∫
R

φ̃(t− τ)ρε(τ)dτ

=
0∫

−ε

φ̃(t− τ)ρε(τ)dτ.

Then φ̃ε is a non-negative C∞ function in R. For any t2 > t1, we have

φ̃ε(t2) − φ̃ε(t1) =
∫
R

[φ̃(t2 − τ) − φ̃(t1 − τ)]ρε(τ)dτ ≥ 0,

where the inequality is due to the monotonicity of φ̃ in R. Therefore φ̃ε is non-decreasing 
in R, and then φ̃′

ε ≥ 0. For any t > 0, we also have

φ̃ε(t) =
0∫

−ε

φ̃(t− τ)ρε(τ)dτ

≥
0∫

−ε

φ̃(t)ρε(τ)dτ

= φ̃(t) = φ(t),

which implies that

lim
t→+∞

φ̃ε(t) ≥ lim
t→+∞

φ(t) = +∞.

Next we show φ̃ε is also concave in (0, +∞). In fact, for any t2 > t1 > 0, there is

φ̃ε

( t1 + t2
2

)
=

0∫
−ε

φ̃
( t1 + t2

2 − τ
)
ρε(τ)dτ

=
0∫

−ε

φ̃
( t1 − τ + t2 − τ

2

)
ρε(τ)dτ

≥
0∫

−ε

1
2 [φ̃(t1 − τ) + φ̃(t2 − τ)]ρε(τ)dτ

= 1
2[φ̃ε(t1) + φ̃ε(t2)],
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where the inequality is true since φ̃ = φ is concave in (0, +∞). So φ̃ε is a non-negative, 
non-decreasing concave C∞ function in (0, +∞) satisfying that limt→+∞ φ̃ε(t) = +∞, 
φ̃′
ε(t) ≥ 0, and φ̃′′

ε (t) ≤ 0.
Now define φε as

φε(t) := φ̃ε(t) + εα(t), ∀t > 0,

where

α(t) =
√
t

1 +
√
t
.

Direct computations show that

α′(t) = 1
2(1 +

√
t)2

√
t
> 0,

α′′(t) = − 1 + 3
√
t

4(1 +
√
t)3t3/2

< 0.

Recalling the above properties about φ̃ε, we see that φε is a positive, increasing and 
concave C∞ function in (0, +∞) with limt→+∞ φε(t) = +∞, φ′

ε(t) > 0 and φ′′
ε (t) < 0. 

Observing φ̃ε is smooth in R, and limt→0+ α′(t) = +∞, we obtain

lim
t→0+

φ′
ε(t) = lim

t→0+
φ̃′
ε(t) + ε lim

t→0+
α′(t)

= φ̃′
ε(0) + ε lim

t→0+
α′(t)

= +∞.

Hence φε satisfies all the assumptions on φ in Lemma 3.2.
Now applying Lemma 3.2 on φε, there exists hε ∈ C+(Sn−1) which is a minimizer of

inf
{

sup
ξ∈Kg

Jε[g(x) − ξ · x] : g ∈ C+(Sn−1), vol(Kg) = v

}
,

where

Jε[g] =
∫

Sn−1

φε(g(x))dμ(x).

Moreover hε satisfies the following

cε
′ dSKhε

= dμ, (4.2)

φε(hε)
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where

cε = 1
nv

∫
Sn−1

φ′
ε(hε)hεdμ. (4.3)

And hε is the support function of Khε
.

For 0 < ε < 1, let

mε = Jε[hε].

We claim mε is uniformly bounded from above. In fact, denote Kμ the Alexandrov body 
associated with (1, supp(μ)). Here 1 means the constant function on Sn−1. Let

ḡ ≡
(

v

vol(Kμ)

)1/n

,

we have Kḡ = ḡKμ, and then vol(Kḡ) = gn vol(Kμ) = v. By definition, there is

mε ≤ sup
ξ∈Kḡ

Jε[ḡ − ξ · x]

= sup
ξ∈Kḡ

∫
supp(μ)

φε(ḡ − ξ · x)dμ(x)

≤
∫

supp(μ)

φε(diam(Kḡ))dμ(x)

= φε(diam(Kḡ))|μ|.

Note that when 0 < ε < 1

φε(t) < φ(t + ε) + ε < φ(t + 1) + 1,

we have

mε < [φ(diam(Kḡ) + 1) + 1] · |μ|. (4.4)

Next, we prove {hε} is uniformly bounded on Sn−1. If not, there exists a sequence 
{εk} such that

lim
k→+∞

max
x∈Sn−1

hεk(x) = +∞.

Write Rεk = maxx∈Sn−1 hεk(x). For each εk, there exists xεk ∈ Sn−1 such that 
hεk(xεk) = Rεk . Since {xεk} ⊂ Sn−1, there exists a convergent subsequence. Without 
loss of generality, we assume
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xεk → x0 ∈ Sn−1 when k → +∞.

Recall supp(μ) is not concentrated on any closed hemisphere, there is some x̄ ∈ supp(μ)
such that x̄ · x0 > 0. Write δ = 1

2 x̄ · x0 > 0, then for sufficiently large k, e.g. k ≥ k0, we 
have

x̄ · xεk > δ. (4.5)

By the definition of support function, there is

hεk(x̄) ≥ Rεk(x̄ · xεk) > Rεkδ, k ≥ k0. (4.6)

Note φε is increasing, φε(t) > φ(t) for t > 0, and limt→+∞ φ(t) = +∞, we have

mεk =
∫

Sn−1

φεk(hεk(x))dμ(x)

≥ φεk(hεk(x̄))μ(x̄)

≥ φεk(Rεkδ)μ(x̄)

≥ φ(Rεkδ)μ(x̄) → +∞.

(4.7)

However, by (4.4), mεk is uniformly bounded. This is a contradiction. Thus {hε} is 
uniformly bounded, namely there exists some positive constant C1 such that

max
x∈Sn−1

hε(x) ≤ C1, ∀ 0 < ε < 1. (4.8)

By the Blaschke selection theorem, we can assume hε converges to some support 
function h uniformly on Sn−1 when ε → 0+. Correspondingly Khε

converges to Kh. 
Note that vol(h) = v and h ≥ 0 on Sn−1. We claim that if non-negative gε converges to 
some g uniformly on Sn−1, then

lim
ε→0+

sup
ξ∈Kgε

Jε[gε(x) − ξ · x] = sup
ξ∈Kg

J [g(x) − ξ · x]. (4.9)

In fact, let ξ̂ε be a point in Kgε such that

Jε[gε(x) − ξ̂ε · x] = sup
ξ∈Kgε

Jε[gε(x) − ξ · x].

Since Kgε converges to Kg, one can assume ξ̂ε converges to some ξ̂ ∈ Kg. By our con-
struction, φε converges to φ uniformly on any closed interval of [0, +∞), then
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lim
ε→0+

Jε[gε(x) − ξ̂ε · x] = lim
ε→0+

∫
Sn−1

φε(gε(x) − ξ̂ε · x)dμ(x)

=
∫

Sn−1

φ(g(x) − ξ̂ · x)dμ(x)

= J [g(x) − ξ̂ · x]

≤ sup
ξ∈Kg

J [g(x) − ξ · x].

(4.10)

On the other hand, for any ξ ∈ Kg, there exists ξε ∈ Kgε such that ξε converges to ξ as 
ε → 0+. Then

J [g(x) − ξ · x] =
∫

Sn−1

φ(g(x) − ξ · x)dμ(x)

= lim
ε→0+

∫
Sn−1

φε(gε(x) − ξε · x)dμ(x)

= lim
ε→0+

Jε[gε(x) − ξε · x]

≤ lim
ε→0+

Jε[gε(x) − ξ̂ε · x],

which implies that

sup
ξ∈Kg

J [g(x) − ξ · x] ≤ lim
ε→0+

Jε[gε(x) − ξ̂ε · x]. (4.11)

Combining (4.10) and (4.11), we have obtained (4.9).
From (4.9), we have

lim
ε→0+

Jε[hε] = lim
ε→0+

sup
ξ∈Khε

Jε[hε(x) − ξ · x] = sup
ξ∈Kh

J [h(x) − ξ · x],

namely

J [h] = sup
ξ∈Kh

J [h(x) − ξ · x]. (4.12)

Recalling Lemma 3.3, we see ξh can be chosen as 0. Then 0 ∈ intKh, namely h ∈
C+(Sn−1). Now for any g ∈ C+(Sn−1) with vol(Kg) = v, by (4.9), there is

J [h] = lim
ε→0+

Jε[hε]

≤ lim
ε→0+

sup
ξ∈Kg

Jε[g(x) − ξ · x]

= sup
ξ∈Kg

J [g(x) − ξ · x],

which together with (4.12) implies that h is a minimizer of (4.1).
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Since h > 0 on Sn−1 and hε → h uniformly, there exists some positive constant C2
such that

min
x∈Sn−1

hε(x) ≥ C2

for sufficiently small ε, say 0 < ε < ε0. Recalling (4.8), we have

C2 ≤ hε(x) ≤ C1, ∀x ∈ Sn−1 and ε ∈ (0, ε0).

By the definition of φε, φ′
ε converges to φ′ uniformly on [C2, C1] when ε → 0+. Then

φ′
ε(hε) ⇒ φ′(h) uniformly on Sn−1.

Now passing to the limit in (4.2) and (4.3), we obtain

c

φ′(h)dSKh
= dμ,

where

c = 1
nv

∫
Sn−1

φ′(h)hdμ.

Obviously c is positive. In this way, we have completed the proof of this lemma. �
Based on Lemma 4.1 and using approximation, we can remove the restriction that μ

is discrete, and thus prove Theorem 3.1.

Proof of Theorem 3.1. As was shown in [36, Theorem 8.2.2], for a given finite Borel 
measure μ on Sn−1 which is not concentrated in any closed hemisphere, one can find a 
sequence of finite discrete measures {μj} on Sn−1 weakly converging to μ, and each of 
them is not concentrated in any closed hemisphere. Also we can require that |μj| = |μ|. 
For each μj , applying Lemma 4.1, there exists a support function hj ∈ C+(Sn−1) and a 
cj > 0 satisfying

cj
φ′(hj)

dSKj
= dμj on Sn−1, (4.13)

where Kj is the convex body determined by hj. Moreover, one can require the volume 
of hj is equal to any given number v > 0, and hj is a minimizer of

inf
{

sup
ξ∈Kg,μj

Jj [g(x) − ξ · x] : g ∈ C+(Sn−1), vol(Kg,μj
) = v

}
. (4.14)

Here Kg,μj
is the Alexandrov body associated with (g, supp(μj)), and Jj is given by
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Jj [g] =
∫

Sn−1

φ(g(x))dμj(x) =
∫

supp(μj)

φ(g(x))dμj(x).

Denote the minimum of (4.14) by mj , namely mj = Jj [hj ]. We claim that mj is 
uniformly bounded from above. In fact, denote Kμj

the Alexandrov body associated 
with (1, supp(μj)), and set

ḡj ≡
(

v

vol(Kμj
)

)1/n

.

Then we have Kḡj ,μj
= ḡjKμj

, and vol(Kḡj ,μj
) = ḡnj vol(Kμj

) = v. By definition, there is

mj ≤ sup
ξ∈Kḡj ,μj

Jj [ḡj − ξ · x]

= sup
ξ∈Kḡj ,μj

∫
supp(μj)

φ(ḡj − ξ · x)dμj(x)

≤
∫

supp(μj)

φ(diam(Kḡj ,μj
))dμj(x)

= φ(ḡj diam(Kμj
))|μj |.

(4.15)

We now prove diam(Kμj
) is uniformly bounded from above. Otherwise, without loss of 

generality, one can find a sequence of {ξj} such that ξj ∈ Kμj
and

lim
j→+∞

|ξj | = +∞.

Let ξ̃j = ξj/|ξj |, then ξ̃j ∈ Sn−1. We can assume

lim
j→+∞

ξ̃j = ξ̃ ∈ Sn−1.

Recall supp(μ) is not concentrated in any closed hemisphere, there is one x̃ ∈ supp(μ)
such that

ξ̃ · x̃ > 0. (4.16)

Note that for any neighborhood of x̃, say O(x̃), we have

lim inf
j→+∞

μj(O(x̃)) ≥ μ(O(x̃)) > 0,

which implies

O(x̃) ∩ supp(μj) �= ∅ for infinitely many j.
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Thus there exists a subsequence {ji} ⊂ {j} and x̃ji ∈ supp(μji) such that

lim
ji

x̃ji = x̃.

For each ji, since ξji ∈ Kμji
, by definition,

ξji · x̃ji ≤ 1,

namely

ξ̃ji · x̃ji ≤
1

|ξji |
.

Passing to the limit, we obtain

ξ̃ · x̃ ≤ 0,

which is a contradiction with (4.16). Thus there exists a positive constant C such that

diam(Kμj
) ≤ C for all j. (4.17)

Note the unit ball Bn in Rn is contained in Kμj
for each j, there is

ḡj ≤
(

v

vol(Bn)

)1/n

∀j. (4.18)

Combining (4.15), (4.17) and (4.18), there is a positive constant C1 such that

mj ≤ φ(C1)|μj | = φ(C1)|μ| for all j. (4.19)

Now with (4.19) instead of (4.4), we can prove that hj is uniformly bounded from above, 
just by the arguments from (4.4) to (4.8), but changing x̄ into a small neighborhood of x̄
in estimates (4.5)–(4.7). Therefore there exists a positive constant C2 such that

max
x∈Sn−1

hj(x) ≤ C2 for all j. (4.20)

By the Blaschke selection theorem, we can assume hj converges to some support func-
tion h uniformly on Sn−1 when j → +∞. Correspondingly, Kj converges to the convex 
body K determined by h. Note that vol(h) = v and h ≥ 0 on Sn−1. By the assumptions 
on φ, we see 1/φ′ is continuous on [0, C2]. Thus when j → +∞,

1
φ′(hj)

⇒ 1
φ′(h) uniformly on Sn−1. (4.21)

Integrating (4.13), we have
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cj = 1
nv

∫
Sn−1

φ′(hj)hjdμj

≤ 1
nv

∫
Sn−1

[φ(hj) − φ(0)]dμj

≤ 1
nv

∫
Sn−1

[φ(C2) − φ(0)]dμj

= 1
nv

[φ(C2) − φ(0)] · |μ|.

Then we assume without loss of generality that

lim
j→+∞

cj = c ≥ 0. (4.22)

With (4.21) and (4.22), we pass to the limit in (4.13) and then obtain

c

φ′(h)dSK = dμ on Sn−1.

Obviously c can not be zero, namely c > 0. The proof of Theorem 3.1 is completed. �
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