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Abstract

In this paper we study the solvability of the rotationally symmetric centroaffine Minkowski problem. 
By delicate blow-up analyses, we remove a technical condition in the existence result obtained by Lu and 
Wang [30].
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1. Introduction

Given a convex body X in the Euclidean space Rn+1 containing the origin, the centroaffine 
curvature of ∂X at point p is by definition equal to K/dn+2, where K is the Gauss curvature and 
d is the distance from the origin to the tangent hyperplane of ∂X at p. The centroaffine curvature 
is invariant under unimodular linear transforms in Rn+1 and has received much attention in ge-
ometry [36,37]. The centroaffine Minkowski problem [11] is a prescribed centroaffine curvature 
problem, which in the smooth case is equivalent to solving the following Monge–Ampère type 
equation
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det(∇2H + HI) = f

Hn+2 on Sn, (1)

where f is a given positive function, H is the support function of a bounded convex body X in 
R

n+1, I is the unit matrix, ∇2H = (∇ijH) is the Hessian matrix of covariant derivatives of H
with respect to an orthonormal frame on Sn. When f is a constant, this equation describes affine 
hyperspheres of elliptic type, and all its solutions are ellipsoids centered at the origin [8].

Equation (1) is also the special case of the Lp-Minkowski problem with p = −n − 1. The 
Lp-Minkowski problem, introduced by Lutwak [31], is an important generalization of the clas-
sical Minkowski problem, and is a basic problem in the Lp-Brunn–Minkowski theory in modern 
convex geometry. It has attracted great attention over the last two decades, see e.g. [5,6,10,11,14,
16,18–21,26,32–34,39,40,42,44,46] and references therein.

Equation (1) naturally arises in anisotropic Gauss curvature flows and describes their self-
similar solutions [4,7,12,17,41]. Besides, its parabolic form can be used for image processing [2]. 
Eq. (1) can be reduced to a singular Monge–Ampère equation in the half Euclidean space Rn+1+ , 
the regularity of which was strongly studied in [22,23].

Equation (1) corresponds to the critical case of the famous Blaschke–Santaló inequality in 
convex geometry [35]:

vol(X) inf
ξ∈X

1

n + 1

∫
Sn

dS(x)

(H(x) − ξ · x)n+1 ≤ κ2
n+1, (2)

where X is any convex body in Rn+1, vol(X) is the volume of the convex body X, H is the 
support function of X, and κn+1 is the volume of the unit ball in Rn+1. Also Eq. (1) remains 
invariant under projective transforms on Sn [11,30]. When f is a constant function, it only has 
constant solutions up to projective transformations. This result has been known for a long time, 
see e.g. [8], which implies that there is no a priori estimates on solutions for general f with-
out additional assumptions. Besides, Chou and Wang [11] found an obstruction for solutions 
to Eq. (1), which means it may have no solution for some f . On the other hand, it may also 
have many solutions for some f [15]. This situation is similar, in some aspects, to the prescribed 
scalar curvature problem on Sn, which involves critical exponents of Sobolev inequalities and the 
Kazdan–Warner obstruction [9,38]. So the solvability of Eq. (1) is a rather complicated problem 
due to these features.

For n = 1, the existence of solutions to Eq. (1) was investigated in [1,3,10,12,13,24,25,40,43]. 
In general, one needs to impose some non-degenerate and topological degree conditions on f to 
obtain an existence result.

For higher n-dimension, only several special cases were studied, see [29,30] for the rotation-
ally symmetric case, [27] for a generalized rotationally symmetric case, [21] for the mirror-
symmetric case, and [45] for the discrete case. In these papers, sufficient conditions for the 
existence of solutions can be found. However, the solvability of Eq. (1) for a general f is still 
open.

In this paper, we are only concerned about the rotationally symmetric case of Eq. (1). That is, 
the given function f and solutions H are assumed to be rotationally symmetric with respect to 
the xn+1-axis in Rn+1 with n ≥ 1. In the spherical coordinates, a rotationally symmetric function 
f on Sn can be regarded as a function on [0, π], such that

f (θ) := f (x1, · · · , xn+1) with xn+1 = cos θ.
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In particular, f (0) and f (π) are values of f at the north and south poles respectively. By the 
correspondence xn+1 = cos θ , one can naturally extend f (θ) on [0, π] to be a 2π -periodic and 
even function on R. Observe that if f ∈ Cm(Sn) for some integer m, then f ∈ Cm(R). Using 
the superscript ′ denotes d

dθ
, we have f ′(0) = f ′(π) = 0 if it is differentiable. Throughout this 

paper, we will always use these conventions.
A typical existence result about the rotationally symmetric case of Eq. (1) was first established 

in [30] and then supplemented in [29]. To state this result, we introduce two quantities:

ni(f ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−f ′′(π
2 ), n ≥ 2,

π∫
0

[f ′(θ) − f ′(π
2 )] tan θ dθ, n = 1,

and

pi(f ) =
π∫

0

f ′(θ) cot θ dθ.

Theorem A ([29,30]). Assume that f ∈ C2(Sn) (requiring C6 for n = 2), and that f is positive 
and rotationally symmetric. If f ′(π

2 ) = 0 and ni(f ) · pi(f ) < 0, then Eq. (1) admits a rotation-
ally symmetric solution.

The assumption f ′(π
2 ) = 0 in the above theorem is not essential, but used to reduce some 

difficulties in blow-up analyses. It was showed in [29] that this assumption can be removed when 
f is very close to a positive constant. The aim of this paper is to remove this technical assumption 
in a general case.

For n = 1, 2, we follow the arguments in [29,30], carry out more delicate analyses, and then 
remove the condition f ′(π

2 ) = 0 completely.

Theorem 1. Assume that f ∈ C2(S1) or f ∈ C2,α(S2) for some α ∈ (0, 1), and that f is positive 
and rotationally symmetric. If ni(f ) · pi(f ) < 0, then Eq. (1) admits a rotationally symmetric 
solution.

For n ≥ 3, the above method is no longer applicable. Inspired by [27], we carry out blow-up 
analyses for a variational method to obtain the following

Theorem 2. Assume that f ∈ C2(Sn) with n ≥ 3, and that f is positive and rotationally symmet-
ric. If ni(f ) < −n+1

n+2f ′(π
2 )2/f (π

2 ) and pi(f ) > 0, then Eq. (1) admits a rotationally symmetric 
solution.

We see in the case n ≥ 3, a little more restriction on ni(f ) will be needed when the assump-
tion f ′(π

2 ) = 0 is removed. However if f ′(π
2 ) = 0, Theorem 2 just becomes into the existence 

theorem [30, Theorem 1.3].
The paper is organized as follows. In section 2, we provide some basic facts about Eq. (1) and 

convex bodies. Then we prove Theorem 1 and 2 in section 3 and section 4 respectively.
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2. Preliminaries

In this section we state some properties about Eq. (1) and a few facts in convex geometry, 
which will be used throughout this paper. One can consult [37] for more knowledge about convex 
geometry.

An obstruction for solutions to Eq. (1) was found by Chou and Wang [11].

Lemma 1 ([11]). Let H be a C3-solution to equation (1). Then we have∫
Sn

∇ξ f

Hn+1 = 0 (3)

for any projective vector field ξ , given by

ξ(x) = Bx − (xT Bx)x, x ∈ Sn,

where B is an arbitrary matrix of order n + 1.

In the rotationally symmetric case, (3) is reduced to

π∫
0

f ′(θ) sinnθ cos θ

Hn+1(θ)
dθ = 0. (4)

See [30, Proposition 3.1].
We have a volume estimate for any solution to Eq. (1).

Lemma 2 ([30]). There exist positive constants Cn, C̃n, depending only on n, such that for any 
solution H to Eq. (1), we have

Cn

√
fmin ≤ vol(H) ≤ C̃n

√
fmax,

where fmin = inf
Sn

f , fmax = sup
Sn

f , and vol(H) is the volume of the convex body determined 

by H .

Let X be any convex body in Rn+1, and H be its support function. Under the action of a 
unimodular linear transform AT ∈ SL(n +1), X becomes into another convex body XA := AT X. 
Denote the support function of XA by HA. Then

HA(x) = |Ax| · H
( Ax

|Ax|
)
, x ∈ Sn. (5)

See e.g. [30, (2.11)].
We remark that if H is a solution to Eq. (1), then HA is a solution to the following equation

det(∇2HA + HAI) = fA

Hn+2
A

, fA(x) = f
( Ax

|Ax|
)
. (6)

See [11] for more details.
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Related to the linear transform, there is an integral variable substitution formula.

Lemma 3 ([28]). For any integral function g on Sn, and any matrix A ∈ GL(n + 1), we have the 
following variable substitution for integration:

∫
Sn

g(y)dS(y) =
∫
Sn

g

(
Ax

|Ax|
)

· |detA|
|Ax|n+1 dS(x).

By this lemma and (5), we see for any unimodular linear transform A ∈ SL(n + 1), there is∫
Sn

f

Hn+1 =
∫
Sn

fA

Hn+1
A

, (7)

where fA is the same as in (6).
John’s Lemma in convex geometry says that for any non-degenerate convex body X in Rn+1, 

there is a unique ellipsoid E which attains the minimum volume among all ellipsoids contain-
ing X. This ellipsoid E is called the minimum ellipsoid of X. It satisfies

1

n + 1
E ⊂ X ⊂ E,

where λE = {x0 + λ(x − x0) : x ∈ E} with x0 the center of E. We say X is normalized if the E
is a ball.

We denote the area of Sn by σn, and the unit vector along xi-axis by ei for i = 1, 2, · · · , n +1.

3. Proof of Theorem 1

In this section, we prove Theorem 1. To achieve this, one needs an improvement of [30, 
Theorem 1.2].

Theorem 3. Assume that f ∈ C2(S1) or f ∈ C2,α(S2) for some α ∈ (0, 1), and that f is positive 
and rotationally symmetric. If ni(f ) · pi(f ) �= 0, then there exist positive constants C, C̃ de-
pending only on n and f , such that for any rotationally symmetric solution H to Eq. (1), we 
have

C ≤ H ≤ C̃.

Once we have Theorem 3, we can repeat the arguments of [29] to prove that Eq. (1) admits 
a rotationally symmetric solution provided ni(f ) · pi(f ) < 0, yielding Theorem 1. One can 
consult [29] for details. So in the rest of this section, we are only concerned about Theorem 3, 
and give its proof.

Let {Hk} be any sequence of rotationally symmetric solutions to Eq. (1). For each Hk , define 
ak ∈ R and Ak ∈ SL(n + 1) as

ak = f (π
2 )

1
2 /Hk(

π
2 )n+1,

A = diag
(
a

1
n+1 , · · · , a

1
n+1 , a

− n
n+1

)
.

(8)
k k k k
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Let

HAk
(x) = |Akx| · Hk

(
Akx

|Akx|
)

, x ∈ Sn. (9)

Then HAk
is a rotationally symmetric solution to Eq. (6) with A replaced by Ak . Note that

HAk
(π

2 ) = a
1

n+1
k Hk(

π
2 ) = f (π

2 )
1

2n+2 . (10)

Lemma 4. There exist positive constants C, C̃ depending only on n, fmax and fmin, such that

C ≤ HAk
≤ C̃. (11)

Proof. By the rotational symmetry of HAk
, one can easily see that

vol(HAk
) ≥ κn

n + 1
HAk

(π
2 )n[HAk

(0) + HAk
(π)], (12)

and

maxHAk
≤

√
HAk

(π
2 )2 + [HAk

(0) + HAk
(π)]2. (13)

Recalling HAk
satisfies equation (6), by the volume estimate given in Lemma 2, we have

vol(HAk
) ≤ Cn

√
maxfAk

= Cn

√
fmax, (14)

which together with (12) yields

HAk
(0) + HAk

(π) ≤ C̃n

√
fmax · HAk

(π
2 )−n

= C̃n

√
fmax · f (π

2 )−
n

2n+2

≤ C̃nf
1
2

maxf
− n

2n+2
min ,

where we have used (10) for the equality. Now from (13) we obtain

maxHAk
≤ f

1
2n+2

max + C̃nf
1
2

maxf
− n

2n+2
min , (15)

which means the second inequality in (11) is true.
On the other hand, by virtue of [30, Lemma 2.3], there is

minHAk
· (maxHAk

)n · vol(HAk
) ≥ Cnfmin.

Combining it with (14) and (15), we easily obtain the first inequality in (11). �
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To obtain uniform upper and lower bounds for {Hk}, by (9) and Lemma 4, we should exclude 
two cases, namely ak → +∞ or ak → 0+ when k → +∞. The second case can be still solved 
by the method developed in [30]. But for the first case where ak → +∞, one needs more delicate 
analyses to deal with. The following are details.

First note that in the rotationally symmetric case, fAk
defined in (6) can be written as

fAk
(θ) = f (γak

(θ)), (16)

where

γak
(θ) = arccos

( cos θ

iak
(θ)

)
, iak

(θ) =
√

a2
k sin2 θ + cos2 θ, (17)

see [30, (3.3)–(3.4)].

Lemma 5. Assume ak → +∞ when k → +∞. Then HAk
converges to the constant function 

f (π
2 )

1
2n+2 uniformly on [0, π].

Proof. From Lemma 4, we see 
{
HAk

}
is uniformly bounded. By the Blaschke selection theorem, 

one may assume that 
{
HAk

}
converges uniformly to some support function H∞ on Sn, which is 

also rotationally symmetric. It remains to prove that

H∞ ≡ f (π
2 )

1
2n+2 on Sn. (18)

Recall Eq. (6), namely

det(∇2HAk
+ HAk

I) = fAk

Hn+2
Ak

on Sn. (19)

Note when ak → +∞, fAk
converges to f (π

2 ) almost everywhere on [0, π], see (16). Passing to 
the limit in Eq. (19), we see H∞ is a generalized solution to

det(∇2H∞ + H∞I ) = f (π
2 )

Hn+2∞
on Sn.

So H∞ is an elliptic affine sphere, which must be an ellipsoid [8]. By the rotational symmetry of 
H∞, it should be expressed as

H∞(x) = f (π
2 )

1
2n+2 |�x|, x ∈ Sn (20)

for some � ∈ SL(n + 1) of form

� = diag
(
λ

1
n+1 , · · · , λ

1
n+1 , λ− n

n+1
)

with λ > 0.

Then

H∞(π ) = f (π )
1

2n+2 λ
1

n+1 .
2 2
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On the other hand, recalling (10), we have

H∞(π
2 ) = f (π

2 )
1

2n+2 .

Hence λ = 1, namely � is the identity matrix of order n + 1. Now (20) is simplified into (18). 
The proof of this lemma is completed. �

Recall HAk
satisfies equation (19), which in the rotationally symmetric case can be simplified 

into the following form:

(H ′′
Ak

+ HAk
)(H ′

Ak
cot θ + HAk

)n−1 = fAk

Hn+2
Ak

on [0,π], (21)

see [29, (2)].

Lemma 6.

(a) There exist positive constants C, C̃ depending only on n, fmax and fmin, such that

C ≤ H ′
Ak

cot θ + HAk
≤ C̃, (22)

C ≤ H ′′
Ak

+ HAk
≤ C̃. (23)

(b) If ak → +∞ when k → +∞, then 
{
H ′′

Ak
sin

1
4 θ

}
converges to 0 uniformly on [0, π].

Proof. (a) Recalling Lemma 4, we obtain from (21) that

C1 ≤ (H ′′
Ak

+ HAk
)(H ′

Ak
cot θ + HAk

)n−1 ≤ C2 (24)

for some positive constants C1, C2 depending only on n, fmax and fmin. Note

(H ′
Ak

cos θ + HAk
sin θ)′ = (H ′′

Ak
+ HAk

) cos θ,

the above inequality can be written as

C1 ≤ 1

n sinn−1 θ cos θ
· d

dθ
(H ′

Ak
cos θ + HAk

sin θ)n ≤ C2. (25)

When θ ∈ [0, π/2], we have by (25) that

d

dθ
C1 sinn θ ≤ d

dθ
(H ′

Ak
cos θ + HAk

sin θ)n ≤ d

dθ
C2 sinn θ,

which together with H ′
Ak

(0) = 0 implies

C
1
n sin θ ≤ H ′ cos θ + HA sin θ ≤ C

1
n sin θ, ∀ θ ∈ [0,π/2].
1 Ak k 2
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Similarly, by (25) and H ′
Ak

(π) = 0, we also have

C
1
n

1 sin θ ≤ H ′
Ak

cos θ + HAk
sin θ ≤ C

1
n

2 sin θ, ∀ θ ∈ [π/2,π].
Therefore

C
1
n

1 ≤ H ′
Ak

cot θ + HAk
≤ C

1
n

2 , ∀ θ ∈ [0,π],
which is just (22). Now recalling (24), one can obtain (23).

(b) We first note that by (11) and (23), there is

|H ′′
Ak

| ≤ C3 (26)

for some positive constant C3 depending only on n, fmax and fmin.
Now assume ak → +∞ as k → +∞. We claim that for any δ ∈ (0, π/2),

H ′′
Ak

⇒ 0 uniformly on [δ,π − δ]. (27)

In fact, by (16), fAk
⇒ f (π

2 ) uniformly on [δ, π − δ]. By Lemma 5, HAk
⇒ f (π

2 )
1

2n+2 uniformly 
on [0, π], which implies that H ′

Ak
⇒ 0 uniformly on [0, π]. Then by (21), when θ ∈ [δ, π − δ], 

we have

H ′′
Ak

= fAk
H−n−2

Ak
(H ′

Ak
cot θ + HAk

)1−n − HAk

⇒ f (π
2 ) · f (π

2 )−
n+2
2n+2 · f (π

2 )
1−n
2n+2 − f (π

2 )
1

2n+2

= 0.

Thus (27) is true.
We now prove

H ′′
Ak

sin
1
4 θ ⇒ 0 uniformly on [0,π]. (28)

Given any ε > 0. By (26), there exists some δ ∈ (0, π/2), such that

sup
[0,δ]∪[π−δ,π]

|H ′′
Ak

sin
1
4 θ | < ε, ∀ k. (29)

Then by virtue of (27), there exists a k0, such that

sup
[δ,π−δ]

|H ′′
Ak

| < ε, ∀ k ≥ k0. (30)

Combining (29) and (30), we have

sup
[0,π]

|H ′′
Ak

sin
1
4 θ | < ε, ∀ k ≥ k0.

Thus (28) is true. �
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With a more detailed analysis, we can strengthen Lemma 5 for n = 1, 2.

Lemma 7. Assume ak → +∞ as k → +∞. For sufficiently large k, we have

max[0,π]
∣∣HAk

− f (π
2 )

1
2n+2

∣∣ ≤ C

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π∫
0

|fAk
− f (π

2 )|dθ, if n = 1,

π∫
0

|fAk
− f (π

2 )| sin
1
2 θ dθ, if n = 2,

(31)

where C is a positive constant depending only on f (π
2 ).

Proof. For simplicity, let

β := f (π
2 )

1
2n+2 and hk(θ) := HAk

(θ) − β.

Also we will drop the subscript k in the following proof if no confusion arises. Recall by 
Lemma 5, h converges uniformly to 0 on [0, π] as k → +∞.

(a) When n = 1. Now Eq. (21) is simplified as

h′′ + h + β = fA

H 3
A

. (32)

Observing that

H−3
A = (β + h)−3

= β−3 − 3β−4h + 6τ−5h2,

where τ is between β and HA(θ), and that β = f (π
2 )1/4, we have

f (π
2 )

H 3
A

= β − 3h + 6β4τ−5h2.

Then (32) can be written as

h′′ + h + 3h − 6β4τ−5h2 = fA − f (π
2 )

H 3
A

,

namely

h′′ + 4h = fA − f (π
2 )

3 + 6β4τ−5h2. (33)

HA
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Recalling h(π
2 ) = 0 by (10), we can apply Lemma 8 to equation (33) and then obtain

max |h| ≤
∥∥∥∥∥fA − f (π

2 )

H 3
A

∥∥∥∥∥
L1[0,π]

+
∥∥∥6β4τ−5h2

∥∥∥
L1[0,π] . (34)

Since HA ⇒ β > 0 uniformly on [0, π] as k → +∞, there exists a large integer k0, such that

max |HA − β| ≤ β

2
, ∀ k ≥ k0.

Then when k ≥ k0 we have

max |h| ≤ β

2
and HA,τ ∈

[β

2
,

3β

2

]
. (35)

Thus (34) is simplified into

max |h| ≤ 8β−3
∥∥fA − f (π

2 )
∥∥

L1[0,π] + 192β−1π(max |h|)2.

By virtue of max |h| → 0 as k → +∞, we also can assume

192β−1π · max |h| < 1

2
when k ≥ k0.

Hence

max |h| ≤ 16β−3
∥∥fA − f (π

2 )
∥∥

L1[0,π] , ∀ k ≥ k0,

which is just (31) for n = 1.
(b) When n = 2. Now Eq. (21) is written as

(h′′ + h + β)(h′ cot θ + h + β) = fA

H 4
A

, (36)

namely

β(h′′ + h′ cot θ + 2h) + β2 + (h′′ + h)(h′ cot θ + h) = fA

H 4
A

. (37)

Observing that

H−4
A = (β + h)−4

= β−4 − 4β−5h + 10τ−6h2,

where τ is between β and HA(θ), and that β = f (π )1/6, we have
2
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f (π
2 )

H 4
A

= β2 − 4βh + 10β6τ−6h2. (38)

Then (37) can be written as

β(h′′ + h′ cot θ + 6h) + (h′′ + h)(h′ cot θ + h) − 10β6τ−6h2 = fA − f (π
2 )

H 4
A

,

namely

h′′ + h′ cot θ + 6h = fA − f (π
2 )

βH 4
A

+ Ra(θ), (39)

where

Ra(θ) = 10β5τ−6h2 − β−1(h′′ + h)(h′ cot θ + h). (40)

Applying Lemma 10 to equation (39), we have

max |h| ≤ 2

π∫
0

|fA − f (π
2 )|

βH 4
A

(2 − log sin θ) sin θ dθ

+ 2

π∫
0

|Ra(θ)|(2 − log sin θ) sin θ dθ

≤ 4

π∫
0

|fA − f (π
2 )|

βH 4
A

sin
1
2 θ dθ + 6

π∫
0

|Ra(θ)| sin
3
4 θ dθ.

Recalling (35), we obtain

max |h| ≤ 64β−5

π∫
0

|fA − f (π
2 )| sin

1
2 θ dθ + 6

π∫
0

|Ra(θ)| sin
3
4 θ dθ. (41)

We see Ra involves derivatives of h. To deal with them, we need to explore (36) more care-
fully. Note that

(h′ cos θ + h sin θ + β sin θ)′ = (h′′ + h + β) cos θ,

then Eq. (36) is equivalent to

d

dθ
(h′ cos θ + h sin θ + β sin θ)2 = fA

H 4
A

· 2 sin θ cos θ.

Therefore we have
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(h′ cos θ + h sin θ + β sin θ)2 =
θ∫

0

fA

H 4
A

· 2 sin t cos t dt, ∀ θ ∈ [0,π/2]. (42)

Since h′ cot θ + h + β > 0, there is

h′ cos θ + h sin θ + β sin θ =
⎛
⎝ θ∫

0

fA

H 4
A

· 2 sin t cos t dt

⎞
⎠

1/2

.

Thus we have

∣∣h′ cos θ + h sin θ
∣∣ =

∣∣∣(
θ∫

0

fA

H 4
A

· 2 sin t cos t dt
)1/2 − β sin θ

∣∣∣

=
∣∣∫ θ

0
fA

H 4
A

· 2 sin t cos t dt − β2 sin2 θ
∣∣

(∫ θ

0
fA

H 4
A

· 2 sin t cos t dt
)1/2 + β sin θ

≤ 1

β sin θ

∣∣∣
θ∫

0

fA

H 4
A

· 2 sin t cos t dt − β2 sin2 θ

∣∣∣.

(43)

Recalling (38), there is

fA

H 4
A

= fA − f (π
2 )

H 4
A

+ β2 − 4βh + 10β6τ−6h2,

which implies that

θ∫
0

fA

H 4
A

· 2 sin t cos t dt =
θ∫

0

fA − f (π
2 )

H 4
A

· 2 sin t cos t dt + β2

θ∫
0

2 sin t cos t dt

+
θ∫

0

(−4βh + 10β6τ−6h2) · 2 sin t cos t dt

=
θ∫

0

fA − f (π
2 )

H 4
A

· 2 sin t cos t dt + β2 sin2 θ

+
θ∫

0

(−4β + 10β6τ−6h)h · 2 sin t cos t dt.

Recalling (35), we obtain from the above equality that
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∣∣∣
θ∫

0

fA

H 4
A

· 2 sin t cos t dt − β2 sin2 θ

∣∣∣ ≤ 32β−4

θ∫
0

|fA − f (π
2 )| sin t dt + 324β(max |h|) sin2 θ.

Then (43) is simplified into

∣∣h′ cos θ + h sin θ
∣∣ ≤ 32β−5

sin θ

θ∫
0

|fA − f (π
2 )| sin t dt + 324(max |h|) sin θ,

namely

∣∣h′ cot θ + h
∣∣ sin

1
2 θ ≤ 32β−5

sin
3
2 θ

θ∫
0

|fA − f (π
2 )| sin t dt + 324(max |h|) sin

1
2 θ.

Integrating both sides over [0, π/2], we have

π
2∫

0

|h′ cot θ + h| sin
1
2 θ dθ

≤ 32β−5

π
2∫

0

dθ

sin
3
2 θ

θ∫
0

|fA − f (π
2 )| sin t dt + 162π(max |h|)

= 32β−5

π
2∫

0

|fA − f (π
2 )| sin t dt

π
2∫

t

dθ

sin
3
2 θ

+ 162π(max |h|).

(44)

Note that

π
2∫

t

dθ

sin
3
2 θ

≤
(π

2

) 3
2

π
2∫

t

dθ

θ
3
2

=
(π

2

) 3
2 · 2[t− 1

2 − (π/2)−
1
2 ]

< 4 sin− 1
2 t,

then (44) is reduced into

π
2∫

0

|h′ cot θ + h| sin
1
2 θ dθ ≤ 128β−5

π
2∫

0

|fA − f (π
2 )| sin

1
2 t dt + 162π(max |h|). (45)

Now similar to (42), we have
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(h′ cos θ + h sin θ + β sin θ)2 =
π∫

θ

fA

H 4
A

· 2 sin t |cos t |dt, ∀ θ ∈ [π/2,π].

Then following almost the same arguments used to obtain (45), one can get

π∫
π
2

|h′ cot θ + h| sin
1
2 θ dθ ≤ 128β−5

π∫
π
2

|fA − f (π
2 )| sin

1
2 t dt + 162π(max |h|). (46)

Adding (45) and (46) together, we have

π∫
0

|h′ cot θ + h| sin
1
2 θ dθ ≤ 128β−5

π∫
0

|fA − f (π
2 )| sin

1
2 t dt + 324π · max |h|. (47)

Now we can estimate the integral about Ra in (41). By the definition of Ra in (40), there is

π∫
0

|Ra(θ)| sin
3
4 θ dθ ≤

π∫
0

10β5τ−6h2 sin
3
4 θ dθ

+
π∫

0

β−1|h′′ + h| |h′ cot θ + h| sin
3
4 θ dθ

≤ 640πβ−1(max |h|)2 + mk

π∫
0

|h′ cot θ + h| sin
1
2 θ dθ,

where (35) is used, and mk is defined as

mk := β−1 max
θ∈[0,π] |h

′′(θ) + h(θ)| sin
1
4 θ.

By estimate (47), the above inequality becomes into

π∫
0

|Ra(θ)| sin
3
4 θ dθ ≤ 640πβ−1(max |h|)2 + 324πmk · max |h|

+ 128β−5mk

π∫
0

|fA − f (π
2 )| sin

1
2 t dt.

(48)

Recall Lemma 6 (b), |h′′(θ) + h(θ)| sin
1
4 θ converges uniformly to 0 on [0, π] when k → +∞, 

which implies

mk → 0 as k → +∞.
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Also recall max |h| → 0. We can assume when k ≥ k0 that

640πβ−1 max |h| + 324πmk <
1

12
.

Then (48) is simplified into

π∫
0

|Ra(θ)| sin
3
4 θ dθ ≤ 1

12
max |h| + 1

12
β−5

π∫
0

|fA − f (π
2 )| sin

1
2 t dt. (49)

Now combining (41) and (49), we obtain

max |h| ≤ 129β−5

π∫
0

|fA − f (π
2 )| sin

1
2 θ dθ,

which is just (31) for n = 2. �
The following Lemmas 8 and 10 have been used in the proof of the above Lemma 7.

Lemma 8. Assume h ∈ C2(R) is 2π -periodic and even. If it satisfies the following differential 
equation

h′′ + 4h = g, (50)

and h(π
2 ) = 0, then there is

max
R

|h| ≤ ‖g‖L1[0,π] .

Proof. One can easily solve equation (50) to obtain

h(θ) = c1 cos 2θ + c2 sin 2θ − 1

2
cos 2θ

θ∫
0

g(t) sin 2t dt + 1

2
sin 2θ

θ∫
0

g(t) cos 2t dt,

where c1 and c2 are constants to be determined. Then we have

h′(θ) = −2c1 sin 2θ + 2c2 cos 2θ + sin 2θ

θ∫
0

g(t) sin 2t dt + cos 2θ

θ∫
0

g(t) cos 2t dt.

From h′(0) = 0, we get c2 = 0. And h(π
2 ) = 0 implies

c1 = 1

2

π
2∫
g(t) sin 2t dt.
0
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Therefore h is given by

h(θ) = 1

2
cos 2θ

π
2∫

θ

g(t) sin 2t dt + 1

2
sin 2θ

θ∫
0

g(t) cos 2t dt.

Hence when θ ∈ [0, π],

|h(θ)| ≤ 1

2

∣∣∣∣∣∣∣
π
2∫

θ

g(t) sin 2t dt

∣∣∣∣∣∣∣ + 1

2

∣∣∣∣∣∣
θ∫

0

g(t) cos 2t dt

∣∣∣∣∣∣
≤ 1

2

π∫
0

|g(t)|dt + 1

2

π∫
0

|g(t)|dt

=
π∫

0

|g(t)|dt,

which leads to the conclusion of this lemma. �
Lemma 9. The homogeneous differential equation

h′′ + h′ cot θ + 6h = 0 in (0,π)

has the following two fundamental solutions:

h1(θ) = 1 − 3 cos2 θ,

h2(θ) = −3

4
cos θ + 1

8
(1 − 3 cos2 θ) log

1 − cos θ

1 + cos θ
.

These two solutions have the following properties:

(a) h1(
π
2 ) = 1, h′

1(
π
2 ) = 0 and h2(

π
2 ) = 0, h′

2(
π
2 ) = 1.

(b) Abel’s identity: h1h
′
2 − h′

1h2 = csc θ, ∀ θ ∈ (0, π).
(c) h′

1(θ) = 6 sin θ cos θ .
(d) |h2(θ)| ≤ 2 − log sin θ, ∀ θ ∈ (0, π).
(e) |h′

2(θ) sin θ | ≤ 5/2, ∀ θ ∈ (0, π).
(f) As θ → 0+ or θ → π−, there is

h′
2(θ) = −1/2 + o(1)

sin θ
.

Proof. Direct computations show that h1 and h2 are solutions to the differential equation in the 
lemma. And one can easily check (a), (b) and (c).
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We note that

1

2

∣∣∣∣log
1 − cos θ

1 + cos θ

∣∣∣∣ ≤ − log sin θ + log 2, ∀ θ ∈ (0,π).

Since both sides are symmetric with respect to θ = π/2, we only need to verify it for θ ∈ (0, π/2], 
which is a direct corollary of the following equality:

1

2

∣∣∣∣log
1 − cos θ

1 + cos θ

∣∣∣∣ = 1

2

∣∣∣∣log
1 − cos2 θ

(1 + cos θ)2

∣∣∣∣ =
∣∣∣∣log

sin θ

1 + cos θ

∣∣∣∣ .
Now by the expression of h2, there is

|h2(θ)| ≤ 3

4
+ 1

2

∣∣∣∣log
1 − cos θ

1 + cos θ

∣∣∣∣
≤ 3

4
− log sin θ + log 2

≤ 2 − log sin θ,

which is just (d).
Computing h′

2, we have

h′
2(θ) = 3

4
sin θ + 3

4
sin θ cos θ log

1 − cos θ

1 + cos θ
+ 1

4
(1 − 3 cos2 θ) csc θ.

Then

|h′
2(θ)| ≤ 3

4
+ 3

4
sin θ

∣∣∣∣log
1 − cos θ

1 + cos θ

∣∣∣∣ + 1

2
csc θ

≤ 3

4
+ 3

2
sin θ · (− log sin θ + log 2) + 1

2
csc θ

≤ 2 + 1

2
csc θ,

which implies (e).
By the expression of h′

2, we see as θ → 0+ or θ → π− that

h′
2(θ) sin θ → −1

2
,

yielding (f). �
Lemma 10. Assume h ∈ C2(R) is 2π -periodic and even. If it satisfies the following differential 
equation

h′′ + h′ cot θ + 6h = g, (51)
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and h(π
2 ) = 0, then there is

max
R

|h| ≤ 2

π∫
0

|g(θ)|(2 − log sin θ) sin θ dθ. (52)

Proof. Recalling Lemma 9, h1 and h2 are two fundamental solutions to the homogeneous dif-
ferential equation:

h′′ + h′ cot θ + 6h = 0 in (0,π).

By method of variation of parameters and Lemma 9 (b), we solve (51) in (0, π) and obtain

h(θ) = c1h1 + c2h2 − h1

θ∫
π/2

h2(t)g(t) sin t dt + h2

θ∫
π/2

h1(t)g(t) sin t dt, (53)

where c1 and c2 are constants to be determined. Note the assumption h(π
2 ) = 0, and by (53)

h(π
2 ) = c1h1(

π
2 ) + c2h2(

π
2 ) = c1,

there is c1 = 0. Then

h′(θ) = c2h
′
2 − h′

1

θ∫
π/2

h2(t)g(t) sin t dt + h′
2

θ∫
π/2

h1(t)g(t) sin t dt. (54)

To determine c2, we need to compute h′(0).
By Lemma 9 (d), |h2| is an integrable function in (0, π/2]. Then

0∫
π/2

h2(t)g(t) sin t dt

is a finite number. For small θ > 0, one can rewrite (54) as

1

h′
2(θ)

[
h′(θ) + h′

1(θ)

θ∫
π/2

h2(t)g(t) sin t dt
]

= c2 +
θ∫

π/2

h1(t)g(t) sin t dt. (55)

Letting θ → 0+, and recalling h′(0) = 0, h′
1(0) = 0 and Lemma 9 (f), we obtain

0 = c2 +
0∫

h1(t)g(t) sin t dt,
π/2
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namely

c2 =
π/2∫
0

h1(t)g(t) sin t dt.

Therefore (53) is simplified into

h(θ) = −h1

θ∫
π/2

h2(t)g(t) sin t dt + h2

θ∫
0

h1(t)g(t) sin t dt. (56)

Recalling Lemma 9 (d) and the expression of h given in (56), we obtain for any θ ∈ (0, π/2]
that

|h(θ)| ≤ 2

π/2∫
θ

(2 − log sin t)|g(t)| sin t dt + (2 − log sin θ)

θ∫
0

2 |g(t)| sin t dt.

Observing

(2 − log sin θ)

θ∫
0

2 |g(t)| sin t dt ≤ 2

θ∫
0

(2 − log sin t)|g(t)| sin t dt,

we have

|h(θ)| ≤ 2

π/2∫
0

(2 − log sin t)|g(t)| sin t dt, ∀ θ ∈ (0,π/2].

Namely

max[0,π/2] |h| ≤ 2

π∫
0

(2 − log sin t)|g(t)| sin t dt. (57)

Again by Lemma 9 (d), we see

π∫
π/2

h2(t)g(t) sin t dt

is a finite number. Since (55) is also true when θ is close to π−, letting θ → π−, and recalling 
h′(π) = 0, h′ (π) = 0 and Lemma 9 (f), we obtain
1
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0 = c2 +
π∫

π/2

h1(t)g(t) sin t dt.

Recall the expression of c2, there is

π∫
0

h1(t)g(t) sin t dt = 0.

Now h in (56) can be also expressed as

h(θ) = −h1

θ∫
π/2

h2(t)g(t) sin t dt + h2

θ∫
π

h1(t)g(t) sin t dt. (58)

By Lemma 9 (d), we obtain for any θ ∈ [π/2, π) that

|h(θ)| ≤ 2

θ∫
π/2

(2 − log sin t)|g(t)| sin t dt + (2 − log sin θ)

π∫
θ

2 |g(t)| sin t dt.

Observing

(2 − log sin θ)

π∫
θ

2 |g(t)| sin t dt ≤ 2

π∫
θ

(2 − log sin t)|g(t)| sin t dt,

we have

|h(θ)| ≤ 2

π∫
π/2

(2 − log sin t)|g(t)| sin t dt, ∀ θ ∈ [π/2,π).

Namely

max[π/2,π] |h| ≤ 2

π∫
0

(2 − log sin t)|g(t)| sin t dt. (59)

Now combining (57) and (59), we obtain (52). �
Based on Lemma 7, one can easily find out the asymptotic behavior of HA .
k
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Lemma 11. Assume ak → +∞ as k → +∞. Then we have

HAk
− f (π

2 )
1

2n+2 = O(1)

{
a−1
k logak, if n = 1,

a−1
k , if n = 2,

(60)

where the bounds of O(1) depend only on ‖f ‖C1 .

Proof. Let

�k =
π∫

0

∣∣f (γak
(θ)) − f (π

2 )
∣∣ sin2δ θ dθ, δ = 0 or 1/4.

Consider the variable substitution

θ = γ1/ak
(t) = arccos

(
cos t

i1/ak
(t)

)
,

see (17) for its definition. Direct computations show that

sin θ = sin t

(sin2 t + a2
k cos2 t)1/2

,

dθ = ak

sin2 t + a2
k cos2 t

dt.

Then we have

�k =
π∫

0

∣∣f (t) − f (π
2 )

∣∣ sin2δ t · ak dt

(sin2 t + a2
k cos2 t)1+δ

≤ ‖f ‖C1

π∫
0

|t − π/2| · ak dt

(sin2 t + a2
k cos2 t)1+δ

= 2‖f ‖C1 ak

π
2∫

0

|t − π/2|dt

(sin2 t + a2
k cos2 t)1+δ

= 2‖f ‖C1 ak

π
2∫

0

t dt

(cos2 t + a2
k sin2 t)1+δ

.

(61)

Since ak → +∞ as k → +∞, we can assume ak > 2 without loss of generality. For t ∈ [0, π/2], 
we have
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cos2 t + a2
k sin2 t = 1 + (a2

k − 1) sin2 t

≥ 1 + a2
k

4
· 4

π2 t2

= 1

π2 (π2 + a2
k t

2).

(62)

Then (61) can be simplified as

�k ≤ 2π3 ‖f ‖C1 ak

π
2∫

0

t dt

(π2 + a2
k t

2)1+δ

≤ 2π3 ‖f ‖C1

{
a−1
k logak, if δ = 0,

2a−1
k , if δ = 1/4.

Now note fAk
(θ) = f (γak

(θ)), (31) is reduced into

max[0,π]
∣∣HAk

− f (π
2 )

1
2n+2

∣∣ ≤ C

{
a−1
k logak, if n = 1,

a−1
k , if n = 2,

where C > 0 depends only on ‖f ‖C1 . This inequality immediately leads to (60). �
We can prove the following

Lemma 12. Assume ak → +∞ as k → +∞. Then we have

π∫
0

1

Hn+1
Ak

· ak sinnθ cos θ

i2
ak

(θ)
dθ = O(1)

{
a−2
k log2 ak, if n = 1,

a−2
k , if n = 2,

(63)

where the bounds of O(1) depend only on ‖f ‖C1 .

Proof. Let �k denote the integral on the left hand side of (63), and

hk := HAk
− f (π

2 )
1

2n+2 .

Observe that

H−n−1
Ak

= [
f (π

2 )
1

2n+2 + hk

]−n−1

= f (π
2 )−

1
2 − (n + 1)τ−n−2hk,

where τ is between f (π )
1

2n+2 and HA . Then
2 k
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�k = f (π
2 )−

1
2

π∫
0

ak sinnθ cos θ

i2
ak

(θ)
dθ − (n + 1)

π∫
0

τ−n−2hk · ak sinnθ cos θ

i2
ak

(θ)
dθ

= −(n + 1)

π∫
0

τ−n−2hk · ak sinnθ cos θ

i2
ak

(θ)
dθ.

Recall HAk
⇒ f (π

2 )
1

2n+2 uniformly on [0, π], we can assume that

1

2
f (π

2 )
1

2n+2 ≤ τ ≤ 3

2
f (π

2 )
1

2n+2

for sufficiently large k. Therefore

|�k| ≤ C

π∫
0

|hk| · ak sinnθ

i2
ak

(θ)
dθ (64)

for some positive constant C depending only on n and f (π
2 ).

(a) When n = 1. By Lemma 11,

hk = O(1)a−1
k logak.

Then we obtain from (64) that

|�k| ≤ C logak

π∫
0

sin θ

a2
k sin2 θ + cos2 θ

dθ, (65)

where C > 0 depends only on ‖f ‖C1 . Assume ak > 2 and recall (62), we have

π∫
0

sin θ dθ

a2
k sin2 θ + cos2 θ

= 2

π
2∫

0

sin θ dθ

a2
k sin2 θ + cos2 θ

≤ 2π2

π
2∫

0

θ dθ

π2 + a2
k θ

2

≤ 2π2a−2
k logak.

Thus (65) says

|�k| ≤ Ca−2
k log2 ak,

which is just (63) for n = 1.
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(b) When n = 2. By Lemma 11,

hk = O(1)a−1
k .

Then we obtain by (64) that

|�k| ≤ C

π∫
0

sin2 θ

a2
k sin2 θ + cos2 θ

dθ

≤ Cπa−2
k ,

where C > 0 depends only on ‖f ‖C1 . Thus (63) with n = 2 is true. �
Now we can strengthen [30, Lemma 3.2] when n = 1, 2.

Lemma 13. Assume ak → +∞ as k → +∞. Then we have

π∫
0

f ′(γak
(θ))

Hn+1
Ak

· ak sinnθ cos θ

i2
ak

(θ)
dθ = f (π

2 )−
1
2 [ni(f ) + o(1)]

{
a−1
k , if n = 1,

a−2
k loga2

k , if n = 2.
(66)

Proof. Let �k denote the integral on the left hand side of (66). Then

�k =
π∫

0

f ′(γak
(θ)) − f ′(π

2 )

Hn+1
Ak

· ak sinnθ cos θ

i2
ak

(θ)
dθ +

π∫
0

f ′(π
2 )

Hn+1
Ak

· ak sinnθ cos θ

i2
ak

(θ)
dθ

=: Ik + IIk.

(a) When n = 1. Applying [30, Lemma 3.2] to Ik and Lemma 12 to IIk , we have

�k = f (π
2 )−

1
2 [ni(f ) + o(1)]a−1

k + f ′(π
2 ) · O(1)a−2

k log2 ak

= f (π
2 )−

1
2 [ni(f ) + o(1)]a−1

k .

(b) When n = 2. Applying [30, Lemma 3.2]1 to Ik and Lemma 12 to IIk , we have

�k = f (π
2 )−

1
2 [ni(f ) + o(1)]a−2

k loga2
k + f ′(π

2 ) · O(1)a−2
k

= f (π
2 )−

1
2 [ni(f ) + o(1)]a−2

k loga2
k .

The proof of this lemma is completed. �
We are in position to complete the proof of Theorem 3.

1 One can check that the conclusion for n = 2 is still true under the weaker assumption f ∈ C2,α(S2).
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Proof of Theorem 3. By [30, Theorem 1.1], we only need to obtain a uniform positive lower 
bound for rotationally symmetric solutions. Suppose to the contrary that there exists a sequence 
of rotationally symmetric solutions {Hk} to equation (1) such that minSn Hk → 0+ as k → +∞. 
For each k, we define ak , Ak and HAk

as in (8) and (9). By Lemma 4, HAk
is uniformly bounded 

from above and below. Then we have either ak → +∞ or ak → 0+.
Recall HAk

is a rotationally symmetric solution to equation (6) with A replaced by Ak . Ap-
plying the obstruction condition (4), we have the following

0 =
π∫

0

f ′
Ak

(θ) sinnθ cos θ

Hn+1
Ak

(θ)
dθ

=
π∫

0

f ′(γak
(θ))

Hn+1
Ak

(θ)
· ak sinnθ cos θ

i2
ak

(θ)
dθ.

(67)

For the case when ak → +∞, applying Lemma 13 to (67), we have ni(f ) = 0. For the case 
when ak → 0+, since by Blaschke selection theorem a subsequence of 

{
HAk

}
converges uni-

formly to some positive support function on Sn, we apply [30, Lemma 3.3] to (67), and see 
pi(f ) = 0. In both cases we reach a contradiction with our assumptions on f in Theorem 3. The 
proof of this theorem is completed. �
4. Proof of Theorem 2

In this section, we prove Theorem 2, which dealing with the case when n ≥ 3. The method 
given in the previous section is not applicable to the higher dimensional case. Instead, we use the 
variational method and blow-up analyses posted in [27].

By arguments in [27], in order to obtain a rotationally symmetric solution to Eq. (1), we only 
need to find a maximizer of

sup
|X|=κn+1

inf
ξ∈X

J [H(x) − ξ · x], (68)

where the supremum is taken among all rotationally symmetric bounded convex bodies X in 
R

n+1 containing the origin with volume κn+1, the infimum is taken among all points ξ ∈ X, H
is the support function of X, and the functional J is given by

J [H ] = 1

n + 1

∫
Sn

f

Hn+1 . (69)

Note that for each H , infξ∈X J [H(x) −ξ ·x] is attained at a unique point ξ ∈ X. By the Blaschke–
Santaló inequality (2), the maximizing problem (68) has an upper bound. But it may not admit 
a maximizer for some f , see [28]. So we need to impose additional conditions on f to obtain 
the existence of a maximizer. A class of these conditions can be found by the method of blow-up 
analysis.

Let {Hk} be a maximizing sequence to (68). If it is uniformly bounded, by the Blaschke 
selection theorem, a subsequence of {Hk} converges uniformly to a support function H∞ which 
would be a maximizer. If not, namely
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sup
Sn

Hk → +∞ as k → ∞, (70)

then we will deduce a contradiction by the assumptions of Theorem 2, and thus complete the 
proof of this theorem.

Let Xk be the convex body determined by Hk . For each k choose a unimodular linear trans-
formation AT

k ∈ SL(n + 1) that normalizes Xk . Namely the convex body

XAk
:= AT

k (Xk)

is normalized. Denote its support function by HAk
. Since XAk

has the same volume κn+1, they 
are uniformly bounded. On account of Blaschke selection theorem, we assume without loss of 
generality that XAk

converges to some normalized convex body X̂, namely HAk
converges uni-

formly on Sn to Ĥ , the support function of X̂. One can prove that Ĥ is positive on Sn. Applying 
formula (7) and the bounded convergence theorem, one gets

Jsup := lim
k→∞J [Hk]

= lim
k→∞

1

n + 1

∫
Sn

fAk

Hn+1
Ak

= 1

n + 1

∫
Sn

f̂

Ĥ n+1
,

(71)

where f̂ is the limit function of fAk
. We want to find some rotationally symmetric H with volume 

κn+1, such that

Jsup < inf
ξ

J [H(x) − ξ · x]. (72)

This is a contradiction, from which we will know (70) is false and then complete the proof of the 
theorem.

To construct (72), we need to find out the expression of f̂ first. Note by the rotational sym-
metry of Xk , the normalizing matrix AT

k can be chosen as

AT
k = diag

(
λ

1
n+1
k , · · · , λ

1
n+1
k , λ

− n
n+1

k

)
with λk > 0.

Recalling the definition in (7), we have

fAk
(x1, · · · , xn, xn+1) = f

(
λkx1, · · · , λkxn, xn+1√

λ2
k(x

2
1 + · · · + x2

n) + x2
n+1

)
.

By the assumption (70), there are only two cases:

λk → 0 or λk → ∞, as k → ∞.
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Correspondingly, we have

f̂ (x1, · · · , xn, xn+1) =
{

f (en+1), if xn+1 > 0;
f (−en+1), if xn+1 < 0

when λk → 0, (73)

or

f̂ (x1, · · · , xn, xn+1) = f

(
x1, · · · , xn,0√
x2

1 + · · · + x2
n

)
when λk → ∞. (74)

For the case when λk → 0, we can still use the arguments in [27, Section 4.1] to show (72)
under the assumption pi(f ) > 0.

It remains to consider the case when λk → ∞. Now the analyses in [21,27] are no longer 
suitable. We provide new blow-up analyses in the following. Since f is rotationally symmetric, 
one can see from (74) that

f̂ is a constant function on Sn when λk → ∞.

This fact is crucial in our following proof.
A good upper bound of Jsup will be needed.

Lemma 14. Assume λk → ∞. There is Jsup ≤ f̂ κn+1.

Proof. Recall [27, (3.12)]:

Jsup = inf
ξ∈X̂

1

n + 1

∫
Sn

f̂ (x)dS(x)

(Ĥ (x) − ξ · x)n+1
.

Note f̂ is now a constant, by the Blaschke–Santaló inequality (2), we have

Jsup = f̂ inf
ξ∈X̂

1

n + 1

∫
Sn

dS(x)

(Ĥ (x) − ξ · x)n+1

≤ f̂ κ2
n+1/vol(X̂)

= f̂ κn+1,

which is just our lemma. �
To prove (72), we consider a family of ellipsoids:

Ea =
{
ξ ∈R

n+1 : |A(a)ξ | ≤ 1
}

,

where A(a) ∈ SL(n + 1) is given by

A(a) = diag
(
a

1
n+1 , · · · , a

1
n+1 , a− n

n+1
)
, a > 0.
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Note each Ea is a rotationally symmetric ellipsoid with volume κn+1. And its support function, 
Ha , is given by

Ha(x) = |A(a)−1x|, ∀x ∈ Sn.

Now we define

J (a) := inf
ξ∈Ea

J [Ha(x) − ξ · x]. (75)

By (7), we have

J (a) = inf
ξ∈Ea

1

n + 1

∫
Sn

f

(Ha − ξ · x)n+1

= inf|ξ |≤1

1

n + 1

∫
Sn

fA(a)

(1 − ξ · x)n+1

=: 1

n + 1

∫
Sn

fa

(1 − ξa · x)n+1 ,

(76)

where the infimum is attained at ξa , and fa = fA(a) is defined as

fa(x1, · · · , xn, xn+1) = f

(
ax1, · · · , axn, xn+1√

a2(x2
1 + · · · + x2

n) + x2
n+1

)
. (77)

Recalling (74), we see when a → ∞ that

fa → f̂ a.e. on Sn. (78)

For the function f defined on Sn, one can extend it to Rn+1 such that it is homogeneous of 
degree zero. Note that f remains rotationally symmetric in the whole Rn+1. For a point x ∈
R

n+1, we write x = (x ′, z) where

x′ = (x1, · · · , xn), z = xn+1.

Then we can use the standard notations in Euclidean space such as f ′
z , f ′′

zz for partial derivatives 
of f with respect to z.

The following analysis about fa will be needed.

Lemma 15. For any ϕ ∈ C(Sn), we have as a → ∞ that

∫
Sn

ϕ(x)[fa(x) − f̂ ]dS(x)

= 1

a
· f ′

z(e1)

∫
Sn

ϕ(x)z

|x′| dS(x) + 1

a2 · f ′′
zz(e1)

∫
Sn

ϕ(x)z2

2|x′|2 dS(x) + o(1)

a2 . (79)



J. Lu / J. Differential Equations 266 (2019) 4394–4431 4423
Proof. Let �a denote the integral on the left hand side of (79). By virtue of the Taylor’s expan-
sion, for each x = (x ′, z) ∈ Sn with x′ �= 0, there exists a t (x) ∈ (0, 1/a) such that

fa(x) − f̂ = f (x′, z/a) − f (x′,0) = f ′
z(x

′,0)
z

a
+ 1

2
f ′′

zz(x
′, tz) z2

a2 .

Then

�a = 1

a

∫
Sn

ϕ(x)f ′
z(x

′,0)z dS(x) + 1

2a2

∫
Sn

ϕ(x)f ′′
zz(x

′, tz)z2 dS(x)

=: 1

a
I + 1

2a2 II.

(80)

To deal with these integrals, we need the following formula:

∫
Sn

g(x)dS(x) = σn−1

π∫
0

g(· , cos θ) sinn−1 θ dθ (81)

for any rotationally symmetric and integrable function g defined on Sn. One can easily check it 
by the coarea formula.

Now for I , since f ′
z is homogeneous of degree −1, then

f ′
z(x

′,0) = 1

|x′|f
′
z

(
x′

|x′| ,0

)
= 1

|x′|f
′
z(e1).

Therefore

I = f ′
z(e1)

∫
Sn

ϕ(x)z

|x′| dS(x). (82)

We remark that I is well defined, since when n ≥ 3,

∫
Sn

z

|x′| dS(x) = σn−1

π∫
0

cos θ sinn−2 θ dθ = C(n) < +∞.

For II , note that f ′′
zz is homogeneous of degree −2, then

∣∣∣ϕ(x)f ′′
zz(x

′, tz)z2
∣∣∣ =

∣∣∣∣∣ϕ(x)f ′′
zz

(
x′, tz√|x′|2 + t2z2

)
z2

|x′|2 + t2z2

∣∣∣∣∣
≤ ‖ϕ‖C0 · ‖f ‖C2 · z2

|x′|2 ,

which is integrable on Sn, since when n ≥ 3,
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∫
Sn

z2

|x′|2 dS(x) = σn−1

π∫
0

cos2 θ sinn−3 θ dθ = C(n) < +∞.

Applying the dominated convergence theorem to II , we obtain

lim
a→∞ II =

∫
Sn

ϕ(x)f ′′
zz(x

′,0)z2 dS(x)

=
∫
Sn

ϕ(x)f ′′
zz

(
x′

|x′| ,0

)
z2

|x′|2 dS(x)

= f ′′
zz(e1)

∫
Sn

ϕ(x)z2

|x′|2 dS(x).

Namely

II = f ′′
zz(e1)

∫
Sn

ϕ(x)z2

|x′|2 dS(x) + o(1) as a → ∞. (83)

Now combining (80), (82) and (83), we will obtain (79). �
We also need to analyze ξa defined in (76). Since fa is rotationally symmetric, by [27, (3.9)], 

ξa can be written as

ξa = ηaen+1 for some ηa ∈R. (84)

The following asymptotic behavior of ηa will be needed.

Lemma 16. When a → ∞, we have

ηa =
( −b1f

′
z(e1)

(n + 2)b0f̂
+ o(1)

)
1

a
, (85)

where

b0 =
∫
Sn

z2 dS(x), b1 =
∫
Sn

z2

|x′| dS(x). (86)

Proof. Since |ξa| ≤ 1, we assume without loss of generality that ξa → ξ∞ as a → ∞. By the 
definition of ξa in (76), for each |ξ | < 1, there is

∫
n

fa

(1 − ξa · x)n+1 ≤
∫
n

fa

(1 − ξ · x)n+1 .
S S
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Passing to the limit and recalling (78), we obtain

∫
Sn

f̂

(1 − ξ∞ · x)n+1 ≤
∫
Sn

f̂

(1 − ξ · x)n+1 , ∀ |ξ | < 1.

Note f̂ is a constant, there is

∫
Sn

1

(1 − ξ∞ · x)n+1 = inf|ξ |<1

∫
Sn

1

(1 − ξ · x)n+1 .

Thus ξ∞ = 0. Namely ξa → 0 as a → ∞, which implies

ηa → 0 as a → ∞. (87)

By definition, ξa is the unique minimum point of

∫
Sn

fa

(1 − ξ · x)n+1 ,

which is a strictly convex function with respect to ξ . The vanishing first order derivatives yield

∫
Sn

fa

(1 − ξa · x)n+2 xi = 0, i = 1,2, · · · , n + 1.

Recall (84) and that fa is rotationally symmetric, these equalities are equivalent to

∫
Sn

faxn+1

(1 − ηaxn+1)n+2 = 0. (88)

For simplicity, we write

φ(t) = − 1

tn+2 , ∀ t > 0.

Recall x = (x′, z), then (88) says

∫
Sn

φ(1 − ηaz)faz dS(x) = 0. (89)

By (87), for sufficiently large a, there is |ηa| < 1/2. Then

1

2
< 1 − ηaz <

3

2
.

Thus
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φ(1 − ηaz) = φ(1) − φ′(1)ηaz + 1

2
φ′′(τ )η2

az
2,

where τ varies in (1/2, 3/2). Inserting it into (89), we obtain

φ(1)

∫
Sn

faz dS(x) − φ′(1)ηa

∫
Sn

faz
2 dS(x) + 1

2
η2

a

∫
Sn

φ′′(τ )faz
3 dS(x) = 0,

which obviously can be written as

φ(1)

∫
Sn

faz dS(x) − φ′(1)ηa

∫
Sn

faz
2 dS(x) + O(1)η2

a = 0. (90)

Recalling f̂ is a constant, and applying Lemma 15, we have as a → ∞ that

∫
Sn

faz dS(x) =
∫
Sn

z(fa − f̂ )dS(x)

= 1

a

⎛
⎝f ′

z(e1)

∫
Sn

z2

|x′| dS(x) + o(1)

⎞
⎠

= 1

a
[b1f

′
z(e1) + o(1)].

(91)

By (78), there is

∫
Sn

faz
2 dS(x) = f̂

∫
Sn

z2 dS(x) + o(1)

= b0f̂ + o(1).

(92)

Now combining (90), (91) and (92), we obtain as a → ∞ that

φ(1)[b1f
′
z(e1) + o(1)] 1

a
− φ′(1)ηa[b0f̂ + o(1)] + O(1)η2

a = 0,

which yields

ηa = φ(1)[b1f
′
z(e1) + o(1)]

φ′(1)[b0f̂ + o(1)] · 1

a

=
(

φ(1)b1f
′
z(e1)

φ′(1)b0f̂
+ o(1)

)
1

a
.

Observing φ(1) = −1 and φ′(1) = n + 2, we obtain (85). �
Now we can obtain the asymptotic behavior of J (a) defined in (75)–(76).
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Lemma 17. When a → ∞, we have

J (a) = f̂ κn+1 +
(

b2f
′′
zz(e1)

2(n + 1)
− b2

1f
′
z(e1)

2

2(n + 2)b0f̂
+ o(1)

)
1

a2 , (93)

where b0 and b1 are given in (86), and

b2 =
∫
Sn

z2

|x′|2 dS(x). (94)

Proof. For simplicity, we write

φ(t) = 1

n + 1
t−n−1, ∀ t > 0.

Then (76) says

J (a) =
∫
Sn

φ(1 − ξa · x)fa dS(x)

=
∫
Sn

φ(1 − ηaz)fa dS(x),

(95)

where (84) and x = (x′, z) have been used for the second equality. By Lemma 16, one can assume

1

2
< 1 − ηaz <

3

2

for sufficiently large a. Then

φ(1 − ηaz) = φ(1) − φ′(1)ηaz + 1

2
φ′′(1)η2

az
2 − 1

6
φ′′′(τ )η3

az
3,

where τ varies in (1/2, 3/2). Inserting it into (95), we obtain

J (a) = φ(1)

∫
Sn

fa − φ′(1)ηa

∫
Sn

faz + 1

2
φ′′(1)η2

a

∫
Sn

faz
2 − 1

6
η3

a

∫
Sn

φ′′′(τ )faz
3

= φ(1)

∫
Sn

fa − φ′(1)ηa

∫
Sn

faz + 1

2
φ′′(1)η2

a

∫
Sn

faz
2 + O(1)η3

a.

Recalling (87), (91) and (92), we have as a → ∞ that

J (a) = φ(1)

∫
n

fa − φ′(1)ηa [b1f
′
z(e1) + o(1)] 1

a
+ 1

2
φ′′(1)η2

a [b0f̂ + o(1)].

S
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Note by Lemma 16,

ηa =
( −b1f

′
z(e1)

(n + 2)b0f̂
+ o(1)

)
1

a
,

one gets

J (a) = φ(1)

∫
Sn

fa − φ′(1)

(−b2
1f

′
z(e1)

2

(n + 2)b0f̂
+ o(1)

)
1

a2

+ 1

2
φ′′(1)

(
b2

1f
′
z(e1)

2

(n + 2)2b0f̂
+ o(1)

)
1

a2 .

Observe φ(1) = 1
n+1 , φ′(1) = −1 and φ′′(1) = n + 2, then J (a) is simplified as

J (a) = 1

n + 1

∫
Sn

fa +
(−b2

1f
′
z(e1)

2

(n + 2)b0f̂
+ o(1)

)
1

a2 + 1

2

(
b2

1f
′
z(e1)

2

(n + 2)b0f̂
+ o(1)

)
1

a2

= 1

n + 1

∫
Sn

fa +
( −b2

1f
′
z(e1)

2

2(n + 2)b0f̂
+ o(1)

)
1

a2 .

(96)

By Lemma 15, when a → ∞,

∫
Sn

[fa(x) − f̂ ]dS(x) = 1

a2 · f ′′
zz(e1)

∫
Sn

z2

2|x′|2 dS(x) + o(1)

a2

= 1

a2

(
1

2
b2f

′′
zz(e1) + o(1)

)
,

namely

1

n + 1

∫
Sn

fa = f̂ κn+1 + 1

a2

(
b2f

′′
zz(e1)

2(n + 1)
+ o(1)

)
. (97)

Inserting (97) into (96), we obtain when a → ∞ that

J (a) = f̂ κn+1 +
(

b2f
′′
zz(e1)

2(n + 1)
− b2

1f
′
z(e1)

2

2(n + 2)b0f̂
+ o(1)

)
1

a2 ,

which is just (93). �
Now by Lemma 17, if

b2f
′′
zz(e1)

2(n + 1)
− b2

1f
′
z(e1)

2

ˆ > 0, (98)

2(n + 2)b0f
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then for sufficiently large a there is

J (a) > f̂ κn+1.

Recalling Lemma 14, for the case λk → ∞, we have Jsup ≤ f̂ κn+1. Thus

J (a) > Jsup

for sufficiently large a. Recalling the definition of J (a) in (75), we see this inequality is just (72).
So to obtain (72) for the case when λk → ∞, it remains to check (98). Recalling our notations, 

we have

f (θ) = f (· , cos θ) = f (sin θ,0, · · · ,0, cos θ).

Note that f (π
2 ) = f (e1) = f̂ . Also there is

f ′(θ) = cos θf ′
1 − sin θf ′

z

= − cos θf ′
z cot θ − sin θf ′

z

= − f ′
z

sin θ
,

where that ∇f (x) · x = 0 has been used for the second equality. Therefore one immediately gets 
that f ′(π

2 ) = −f ′
z(e1), and that

−ni(f ) = f ′′(π
2 ) = f ′′

zz(e1).

Now (98) is equivalent to

−b2 ni(f )

2(n + 1)
− b2

1f
′(π

2 )2

2(n + 2)b0f (π
2 )

> 0,

namely

ni(f ) < − (n + 1)b2
1

(n + 2)b0b2
f ′(π

2 )2/f (π
2 ). (99)

Here we recall that b0, b1 and b2 are given in (86) and (94), which depend only on n and can be 
easily worked out by formula (81). Observe that

b2
1 =

⎛
⎝∫

Sn

z2

|x′| dS(x)

⎞
⎠

2

<

∫
Sn

z2 dS(x) ·
∫
Sn

z2

|x′|2 dS(x)

= b0 b2,

then the assumption on ni(f ) in Theorem 2 implies (99), namely (98).
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Now we have obtained (72) in both possible blow-up cases under assumptions of Theorem 2. 
According to our previous discussion, the proof of this theorem is completed.
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