A remark on rotationally symmetric solutions to the centroaffine Minkowski problem

Jian Lu
Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
Received 1 April 2018
Available online 6 November 2018

Abstract

In this paper we study the solvability of the rotationally symmetric centroaffine Minkowski problem. By delicate blow-up analyses, we remove a technical condition in the existence result obtained by Lu and Wang [30].

© 2018 Elsevier Inc. All rights reserved.

MSC: 35J96; 35J75; 53A15; 53A07
Keywords: Monge-Ampère equation; Centroaffine Minkowski problem; Existence of solutions; Blow-up analyses

1. Introduction

Given a convex body X in the Euclidean space \mathbb{R}^{n+1} containing the origin, the centroaffine curvature of ∂X at point p is by definition equal to K / d^{n+2}, where K is the Gauss curvature and d is the distance from the origin to the tangent hyperplane of ∂X at p. The centroaffine curvature is invariant under unimodular linear transforms in \mathbb{R}^{n+1} and has received much attention in geometry [36,37]. The centroaffine Minkowski problem [11] is a prescribed centroaffine curvature problem, which in the smooth case is equivalent to solving the following Monge-Ampère type equation

[^0]\[

$$
\begin{equation*}
\operatorname{det}\left(\nabla^{2} H+H I\right)=\frac{f}{H^{n+2}} \quad \text { on } S^{n} \tag{1}
\end{equation*}
$$

\]

where f is a given positive function, H is the support function of a bounded convex body X in \mathbb{R}^{n+1}, I is the unit matrix, $\nabla^{2} H=\left(\nabla_{i j} H\right)$ is the Hessian matrix of covariant derivatives of H with respect to an orthonormal frame on S^{n}. When f is a constant, this equation describes affine hyperspheres of elliptic type, and all its solutions are ellipsoids centered at the origin [8].

Equation (1) is also the special case of the L_{p}-Minkowski problem with $p=-n-1$. The L_{p}-Minkowski problem, introduced by Lutwak [31], is an important generalization of the classical Minkowski problem, and is a basic problem in the L_{p}-Brunn-Minkowski theory in modern convex geometry. It has attracted great attention over the last two decades, see e.g. [5,6,10,11,14, 16,18-21,26,32-34,39,40,42,44,46] and references therein.

Equation (1) naturally arises in anisotropic Gauss curvature flows and describes their selfsimilar solutions [4,7,12,17,41]. Besides, its parabolic form can be used for image processing [2]. Eq. (1) can be reduced to a singular Monge-Ampère equation in the half Euclidean space \mathbb{R}_{+}^{n+1}, the regularity of which was strongly studied in [22,23].

Equation (1) corresponds to the critical case of the famous Blaschke-Santaló inequality in convex geometry [35]:

$$
\begin{equation*}
\operatorname{vol}(X) \inf _{\xi \in X} \frac{1}{n+1} \int_{S^{n}} \frac{\mathrm{~d} S(x)}{(H(x)-\xi \cdot x)^{n+1}} \leq \kappa_{n+1}^{2} \tag{2}
\end{equation*}
$$

where X is any convex body in $\mathbb{R}^{n+1}, \operatorname{vol}(X)$ is the volume of the convex body X, H is the support function of X, and κ_{n+1} is the volume of the unit ball in \mathbb{R}^{n+1}. Also Eq. (1) remains invariant under projective transforms on $S^{n}[11,30]$. When f is a constant function, it only has constant solutions up to projective transformations. This result has been known for a long time, see e.g. [8], which implies that there is no a priori estimates on solutions for general f without additional assumptions. Besides, Chou and Wang [11] found an obstruction for solutions to Eq. (1), which means it may have no solution for some f. On the other hand, it may also have many solutions for some f [15]. This situation is similar, in some aspects, to the prescribed scalar curvature problem on S^{n}, which involves critical exponents of Sobolev inequalities and the Kazdan-Warner obstruction $[9,38]$. So the solvability of Eq. (1) is a rather complicated problem due to these features.

For $n=1$, the existence of solutions to Eq. (1) was investigated in [1,3,10, 12, 13, 24, 25, 40, 43]. In general, one needs to impose some non-degenerate and topological degree conditions on f to obtain an existence result.

For higher n-dimension, only several special cases were studied, see $[29,30]$ for the rotationally symmetric case, [27] for a generalized rotationally symmetric case, [21] for the mirrorsymmetric case, and [45] for the discrete case. In these papers, sufficient conditions for the existence of solutions can be found. However, the solvability of Eq. (1) for a general f is still open.

In this paper, we are only concerned about the rotationally symmetric case of Eq. (1). That is, the given function f and solutions H are assumed to be rotationally symmetric with respect to the x_{n+1}-axis in \mathbb{R}^{n+1} with $n \geq 1$. In the spherical coordinates, a rotationally symmetric function f on S^{n} can be regarded as a function on $[0, \pi]$, such that

$$
f(\theta):=f\left(x_{1}, \cdots, x_{n+1}\right) \text { with } x_{n+1}=\cos \theta .
$$

In particular, $f(0)$ and $f(\pi)$ are values of f at the north and south poles respectively. By the correspondence $x_{n+1}=\cos \theta$, one can naturally extend $f(\theta)$ on $[0, \pi]$ to be a 2π-periodic and even function on \mathbb{R}. Observe that if $f \in C^{m}\left(S^{n}\right)$ for some integer m, then $f \in C^{m}(\mathbb{R})$. Using the superscript ' denotes $\frac{\mathrm{d}}{\mathrm{d} \theta}$, we have $f^{\prime}(0)=f^{\prime}(\pi)=0$ if it is differentiable. Throughout this paper, we will always use these conventions.

A typical existence result about the rotationally symmetric case of Eq. (1) was first established in [30] and then supplemented in [29]. To state this result, we introduce two quantities:

$$
n i(f)= \begin{cases}-f^{\prime \prime}\left(\frac{\pi}{2}\right), & n \geq 2 \\ \int_{0}^{\pi}\left[f^{\prime}(\theta)-f^{\prime}\left(\frac{\pi}{2}\right)\right] \tan \theta \mathrm{d} \theta, & n=1\end{cases}
$$

and

$$
p i(f)=\int_{0}^{\pi} f^{\prime}(\theta) \cot \theta \mathrm{d} \theta
$$

Theorem A $([29,30])$. Assume that $f \in C^{2}\left(S^{n}\right)$ (requiring C^{6} for $n=2$), and that f is positive and rotationally symmetric. If $f^{\prime}\left(\frac{\pi}{2}\right)=0$ and ni $(f) \cdot p i(f)<0$, then Eq. (1) admits a rotationally symmetric solution.

The assumption $f^{\prime}\left(\frac{\pi}{2}\right)=0$ in the above theorem is not essential, but used to reduce some difficulties in blow-up analyses. It was showed in [29] that this assumption can be removed when f is very close to a positive constant. The aim of this paper is to remove this technical assumption in a general case.

For $n=1,2$, we follow the arguments in $[29,30]$, carry out more delicate analyses, and then remove the condition $f^{\prime}\left(\frac{\pi}{2}\right)=0$ completely.

Theorem 1. Assume that $f \in C^{2}\left(S^{1}\right)$ or $f \in C^{2, \alpha}\left(S^{2}\right)$ for some $\alpha \in(0,1)$, and that f is positive and rotationally symmetric. If ni $(f) \cdot p i(f)<0$, then Eq. (1) admits a rotationally symmetric solution.

For $n \geq 3$, the above method is no longer applicable. Inspired by [27], we carry out blow-up analyses for a variational method to obtain the following

Theorem 2. Assume that $f \in C^{2}\left(S^{n}\right)$ with $n \geq 3$, and that f is positive and rotationally symmetric. If $n i(f)<-\frac{n+1}{n+2} f^{\prime}\left(\frac{\pi}{2}\right)^{2} / f\left(\frac{\pi}{2}\right)$ and pi(f)>0, then Eq. (1) admits a rotationally symmetric solution.

We see in the case $n \geq 3$, a little more restriction on $n i(f)$ will be needed when the assumption $f^{\prime}\left(\frac{\pi}{2}\right)=0$ is removed. However if $f^{\prime}\left(\frac{\pi}{2}\right)=0$, Theorem 2 just becomes into the existence theorem [30, Theorem 1.3].

The paper is organized as follows. In section 2, we provide some basic facts about Eq. (1) and convex bodies. Then we prove Theorem 1 and 2 in section 3 and section 4 respectively.

2. Preliminaries

In this section we state some properties about Eq. (1) and a few facts in convex geometry, which will be used throughout this paper. One can consult [37] for more knowledge about convex geometry.

An obstruction for solutions to Eq. (1) was found by Chou and Wang [11].
Lemma 1 ([11]). Let H be a C^{3}-solution to equation (1). Then we have

$$
\begin{equation*}
\int_{S^{n}} \frac{\nabla_{\xi} f}{H^{n+1}}=0 \tag{3}
\end{equation*}
$$

for any projective vector field ξ, given by

$$
\xi(x)=B x-\left(x^{T} B x\right) x, \quad x \in S^{n}
$$

where B is an arbitrary matrix of order $n+1$.
In the rotationally symmetric case, (3) is reduced to

$$
\begin{equation*}
\int_{0}^{\pi} \frac{f^{\prime}(\theta) \sin ^{n} \theta \cos \theta}{H^{n+1}(\theta)} d \theta=0 \tag{4}
\end{equation*}
$$

See [30, Proposition 3.1].
We have a volume estimate for any solution to Eq. (1).
Lemma 2 ([30]). There exist positive constants C_{n}, \tilde{C}_{n}, depending only on n, such that for any solution H to Eq. (1), we have

$$
C_{n} \sqrt{f_{\min }} \leq \operatorname{vol}(H) \leq \tilde{C}_{n} \sqrt{f_{\max }}
$$

where $f_{\min }=\inf _{S^{n}} f, f_{\max }=\sup _{S^{n}} f$, and $\operatorname{vol}(H)$ is the volume of the convex body determined by H.

Let X be any convex body in \mathbb{R}^{n+1}, and H be its support function. Under the action of a unimodular linear transform $A^{T} \in \operatorname{SL}(n+1), X$ becomes into another convex body $X_{A}:=A^{T} X$. Denote the support function of X_{A} by H_{A}. Then

$$
\begin{equation*}
H_{A}(x)=|A x| \cdot H\left(\frac{A x}{|A x|}\right), \quad x \in S^{n} . \tag{5}
\end{equation*}
$$

See e.g. [30, (2.11)].
We remark that if H is a solution to Eq. (1), then H_{A} is a solution to the following equation

$$
\begin{equation*}
\operatorname{det}\left(\nabla^{2} H_{A}+H_{A} I\right)=\frac{f_{A}}{H_{A}^{n+2}}, \quad f_{A}(x)=f\left(\frac{A x}{|A x|}\right) . \tag{6}
\end{equation*}
$$

See [11] for more details.

Related to the linear transform, there is an integral variable substitution formula.
Lemma 3 ([28]). For any integral function g on S^{n}, and any matrix $A \in \mathrm{GL}(n+1)$, we have the following variable substitution for integration:

$$
\int_{S^{n}} g(y) \mathrm{d} S(y)=\int_{S^{n}} g\left(\frac{A x}{|A x|}\right) \cdot \frac{|\operatorname{det} A|}{|A x|^{n+1}} \mathrm{~d} S(x)
$$

By this lemma and (5), we see for any unimodular linear transform $A \in \operatorname{SL}(n+1)$, there is

$$
\begin{equation*}
\int_{S^{n}} \frac{f}{H^{n+1}}=\int_{S^{n}} \frac{f_{A}}{H_{A}^{n+1}} \tag{7}
\end{equation*}
$$

where f_{A} is the same as in (6).
John's Lemma in convex geometry says that for any non-degenerate convex body X in \mathbb{R}^{n+1}, there is a unique ellipsoid E which attains the minimum volume among all ellipsoids containing X. This ellipsoid E is called the minimum ellipsoid of X. It satisfies

$$
\frac{1}{n+1} E \subset X \subset E
$$

where $\lambda E=\left\{x_{0}+\lambda\left(x-x_{0}\right): x \in E\right\}$ with x_{0} the center of E. We say X is normalized if the E is a ball.

We denote the area of S^{n} by σ_{n}, and the unit vector along x_{i}-axis by e_{i} for $i=1,2, \cdots, n+1$.

3. Proof of Theorem 1

In this section, we prove Theorem 1. To achieve this, one needs an improvement of [30, Theorem 1.2].

Theorem 3. Assume that $f \in C^{2}\left(S^{1}\right)$ or $f \in C^{2, \alpha}\left(S^{2}\right)$ for some $\alpha \in(0,1)$, and that f is positive and rotationally symmetric. If $n i(f) \cdot p i(f) \neq 0$, then there exist positive constants C, \tilde{C} depending only on n and f, such that for any rotationally symmetric solution H to Eq. (1), we have

$$
C \leq H \leq \tilde{C} .
$$

Once we have Theorem 3, we can repeat the arguments of [29] to prove that Eq. (1) admits a rotationally symmetric solution provided $n i(f) \cdot p i(f)<0$, yielding Theorem 1 . One can consult [29] for details. So in the rest of this section, we are only concerned about Theorem 3, and give its proof.

Let $\left\{H_{k}\right\}$ be any sequence of rotationally symmetric solutions to Eq. (1). For each H_{k}, define $a_{k} \in \mathbb{R}$ and $A_{k} \in \operatorname{SL}(n+1)$ as

$$
\begin{gather*}
a_{k}=f\left(\frac{\pi}{2}\right)^{\frac{1}{2}} / H_{k}\left(\frac{\pi}{2}\right)^{n+1} \\
A_{k}=\operatorname{diag}\left(a_{k}^{\frac{1}{n+1}}, \cdots, a_{k}^{\frac{1}{n+1}}, a_{k}^{-\frac{n}{n+1}}\right) \tag{8}
\end{gather*}
$$

Let

$$
\begin{equation*}
H_{A_{k}}(x)=\left|A_{k} x\right| \cdot H_{k}\left(\frac{A_{k} x}{\left|A_{k} x\right|}\right), \quad x \in S^{n} . \tag{9}
\end{equation*}
$$

Then $H_{A_{k}}$ is a rotationally symmetric solution to Eq. (6) with A replaced by A_{k}. Note that

$$
\begin{equation*}
H_{A_{k}}\left(\frac{\pi}{2}\right)=a_{k}^{\frac{1}{n+1}} H_{k}\left(\frac{\pi}{2}\right)=f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}} . \tag{10}
\end{equation*}
$$

Lemma 4. There exist positive constants C, \tilde{C} depending only on $n, f_{\max }$ and $f_{\min }$, such that

$$
\begin{equation*}
C \leq H_{A_{k}} \leq \tilde{C} . \tag{11}
\end{equation*}
$$

Proof. By the rotational symmetry of $H_{A_{k}}$, one can easily see that

$$
\begin{equation*}
\operatorname{vol}\left(H_{A_{k}}\right) \geq \frac{\kappa_{n}}{n+1} H_{A_{k}}\left(\frac{\pi}{2}\right)^{n}\left[H_{A_{k}}(0)+H_{A_{k}}(\pi)\right] \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\max H_{A_{k}} \leq \sqrt{H_{A_{k}}\left(\frac{\pi}{2}\right)^{2}+\left[H_{A_{k}}(0)+H_{A_{k}}(\pi)\right]^{2}} \tag{13}
\end{equation*}
$$

Recalling $H_{A_{k}}$ satisfies equation (6), by the volume estimate given in Lemma 2, we have

$$
\begin{equation*}
\operatorname{vol}\left(H_{A_{k}}\right) \leq C_{n} \sqrt{\max f_{A_{k}}}=C_{n} \sqrt{f_{\max }} \tag{14}
\end{equation*}
$$

which together with (12) yields

$$
\begin{aligned}
H_{A_{k}}(0)+H_{A_{k}}(\pi) & \leq \tilde{C}_{n} \sqrt{f_{\max }} \cdot H_{A_{k}}\left(\frac{\pi}{2}\right)^{-n} \\
& =\tilde{C}_{n} \sqrt{f_{\max }} \cdot f\left(\frac{\pi}{2}\right)^{-\frac{n}{2 n+2}} \\
& \leq \tilde{C}_{n} f_{\max }^{\frac{1}{2}} f_{\min }^{-\frac{n}{2 n+2}},
\end{aligned}
$$

where we have used (10) for the equality. Now from (13) we obtain

$$
\begin{equation*}
\max H_{A_{k}} \leq f_{\max }^{\frac{1}{2 n+2}}+\tilde{C}_{n} f_{\max }^{\frac{1}{2}} f_{\min }^{-\frac{n}{2 n+2}} \tag{15}
\end{equation*}
$$

which means the second inequality in (11) is true.
On the other hand, by virtue of [30, Lemma 2.3], there is

$$
\min H_{A_{k}} \cdot\left(\max H_{A_{k}}\right)^{n} \cdot \operatorname{vol}\left(H_{A_{k}}\right) \geq C_{n} f_{\min } .
$$

Combining it with (14) and (15), we easily obtain the first inequality in (11).

To obtain uniform upper and lower bounds for $\left\{H_{k}\right\}$, by (9) and Lemma 4, we should exclude two cases, namely $a_{k} \rightarrow+\infty$ or $a_{k} \rightarrow 0^{+}$when $k \rightarrow+\infty$. The second case can be still solved by the method developed in [30]. But for the first case where $a_{k} \rightarrow+\infty$, one needs more delicate analyses to deal with. The following are details.

First note that in the rotationally symmetric case, $f_{A_{k}}$ defined in (6) can be written as

$$
\begin{equation*}
f_{A_{k}}(\theta)=f\left(\gamma_{a_{k}}(\theta)\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{a_{k}}(\theta)=\arccos \left(\frac{\cos \theta}{i_{a_{k}}(\theta)}\right), \quad i_{a_{k}}(\theta)=\sqrt{a_{k}^{2} \sin ^{2} \theta+\cos ^{2} \theta} \tag{17}
\end{equation*}
$$

see [30, (3.3)-(3.4)].
Lemma 5. Assume $a_{k} \rightarrow+\infty$ when $k \rightarrow+\infty$. Then $H_{A_{k}}$ converges to the constant function $f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}}$ uniformly on $[0, \pi]$.

Proof. From Lemma 4, we see $\left\{H_{A_{k}}\right\}$ is uniformly bounded. By the Blaschke selection theorem, one may assume that $\left\{H_{A_{k}}\right\}$ converges uniformly to some support function H_{∞} on S^{n}, which is also rotationally symmetric. It remains to prove that

$$
\begin{equation*}
H_{\infty} \equiv f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}} \text { on } S^{n} \tag{18}
\end{equation*}
$$

Recall Eq. (6), namely

$$
\begin{equation*}
\operatorname{det}\left(\nabla^{2} H_{A_{k}}+H_{A_{k}} I\right)=\frac{f_{A_{k}}}{H_{A_{k}}^{n+2}} \text { on } S^{n} \tag{19}
\end{equation*}
$$

Note when $a_{k} \rightarrow+\infty, f_{A_{k}}$ converges to $f\left(\frac{\pi}{2}\right)$ almost everywhere on $[0, \pi]$, see (16). Passing to the limit in Eq. (19), we see H_{∞} is a generalized solution to

$$
\operatorname{det}\left(\nabla^{2} H_{\infty}+H_{\infty} I\right)=\frac{f\left(\frac{\pi}{2}\right)}{H_{\infty}^{n+2}} \text { on } S^{n}
$$

So H_{∞} is an elliptic affine sphere, which must be an ellipsoid [8]. By the rotational symmetry of H_{∞}, it should be expressed as

$$
\begin{equation*}
H_{\infty}(x)=f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}}|\Lambda x|, \quad x \in S^{n} \tag{20}
\end{equation*}
$$

for some $\Lambda \in \operatorname{SL}(n+1)$ of form

$$
\Lambda=\operatorname{diag}\left(\lambda^{\frac{1}{n+1}}, \cdots, \lambda^{\frac{1}{n+1}}, \lambda^{-\frac{n}{n+1}}\right) \text { with } \lambda>0 .
$$

Then

$$
H_{\infty}\left(\frac{\pi}{2}\right)=f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}} \lambda^{\frac{1}{n+1}} .
$$

On the other hand, recalling (10), we have

$$
H_{\infty}\left(\frac{\pi}{2}\right)=f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}}
$$

Hence $\lambda=1$, namely Λ is the identity matrix of order $n+1$. Now (20) is simplified into (18). The proof of this lemma is completed.

Recall $H_{A_{k}}$ satisfies equation (19), which in the rotationally symmetric case can be simplified into the following form:

$$
\begin{equation*}
\left(H_{A_{k}}^{\prime \prime}+H_{A_{k}}\right)\left(H_{A_{k}}^{\prime} \cot \theta+H_{A_{k}}\right)^{n-1}=\frac{f_{A_{k}}}{H_{A_{k}}^{n+2}} \text { on }[0, \pi], \tag{21}
\end{equation*}
$$

see [29, (2)].

Lemma 6.

(a) There exist positive constants C, \tilde{C} depending only on $n, f_{\max }$ and $f_{\min }$, such that

$$
\begin{gather*}
C \leq H_{A_{k}}^{\prime} \cot \theta+H_{A_{k}} \leq \tilde{C}, \tag{22}\\
C \leq H_{A_{k}}^{\prime \prime}+H_{A_{k}} \leq \tilde{C} . \tag{23}
\end{gather*}
$$

(b) If $a_{k} \rightarrow+\infty$ when $k \rightarrow+\infty$, then $\left\{H_{A_{k}}^{\prime \prime} \sin ^{\frac{1}{4}} \theta\right\}$ converges to 0 uniformly on $[0, \pi]$.

Proof. (a) Recalling Lemma 4, we obtain from (21) that

$$
\begin{equation*}
C_{1} \leq\left(H_{A_{k}}^{\prime \prime}+H_{A_{k}}\right)\left(H_{A_{k}}^{\prime} \cot \theta+H_{A_{k}}\right)^{n-1} \leq C_{2} \tag{24}
\end{equation*}
$$

for some positive constants C_{1}, C_{2} depending only on $n, f_{\max }$ and $f_{\min }$. Note

$$
\left(H_{A_{k}}^{\prime} \cos \theta+H_{A_{k}} \sin \theta\right)^{\prime}=\left(H_{A_{k}}^{\prime \prime}+H_{A_{k}}\right) \cos \theta,
$$

the above inequality can be written as

$$
\begin{equation*}
C_{1} \leq \frac{1}{n \sin ^{n-1} \theta \cos \theta} \cdot \frac{\mathrm{~d}}{\mathrm{~d} \theta}\left(H_{A_{k}}^{\prime} \cos \theta+H_{A_{k}} \sin \theta\right)^{n} \leq C_{2} . \tag{25}
\end{equation*}
$$

When $\theta \in[0, \pi / 2]$, we have by (25) that

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta} C_{1} \sin ^{n} \theta \leq \frac{\mathrm{d}}{\mathrm{~d} \theta}\left(H_{A_{k}}^{\prime} \cos \theta+H_{A_{k}} \sin \theta\right)^{n} \leq \frac{\mathrm{d}}{\mathrm{~d} \theta} C_{2} \sin ^{n} \theta
$$

which together with $H_{A_{k}}^{\prime}(0)=0$ implies

$$
C_{1}^{\frac{1}{n}} \sin \theta \leq H_{A_{k}}^{\prime} \cos \theta+H_{A_{k}} \sin \theta \leq C_{2}^{\frac{1}{n}} \sin \theta, \quad \forall \theta \in[0, \pi / 2] .
$$

Similarly, by (25) and $H_{A_{k}}^{\prime}(\pi)=0$, we also have

$$
C_{1}^{\frac{1}{n}} \sin \theta \leq H_{A_{k}}^{\prime} \cos \theta+H_{A_{k}} \sin \theta \leq C_{2}^{\frac{1}{n}} \sin \theta, \quad \forall \theta \in[\pi / 2, \pi] .
$$

Therefore

$$
C_{1}^{\frac{1}{n}} \leq H_{A_{k}}^{\prime} \cot \theta+H_{A_{k}} \leq C_{2}^{\frac{1}{n}}, \quad \forall \theta \in[0, \pi],
$$

which is just (22). Now recalling (24), one can obtain (23).
(b) We first note that by (11) and (23), there is

$$
\begin{equation*}
\left|H_{A_{k}}^{\prime \prime}\right| \leq C_{3} \tag{26}
\end{equation*}
$$

for some positive constant C_{3} depending only on $n, f_{\max }$ and $f_{\min }$.
Now assume $a_{k} \rightarrow+\infty$ as $k \rightarrow+\infty$. We claim that for any $\delta \in(0, \pi / 2)$,

$$
\begin{equation*}
H_{A_{k}}^{\prime \prime} \rightrightarrows 0 \text { uniformly on }[\delta, \pi-\delta] . \tag{27}
\end{equation*}
$$

In fact, by (16), $f_{A_{k}} \rightrightarrows f\left(\frac{\pi}{2}\right)$ uniformly on $[\delta, \pi-\delta]$. By Lemma 5, $H_{A_{k}} \rightrightarrows f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}}$ uniformly on $[0, \pi]$, which implies that $H_{A_{k}}^{\prime} \rightrightarrows 0$ uniformly on $[0, \pi]$. Then by (21), when $\theta \in[\delta, \pi-\delta]$, we have

$$
\begin{aligned}
H_{A_{k}}^{\prime \prime} & =f_{A_{k}} H_{A_{k}}^{-n-2}\left(H_{A_{k}}^{\prime} \cot \theta+H_{A_{k}}\right)^{1-n}-H_{A_{k}} \\
& \rightrightarrows f\left(\frac{\pi}{2}\right) \cdot f\left(\frac{\pi}{2}\right)^{-\frac{n+2}{2 n+2}} \cdot f\left(\frac{\pi}{2}\right)^{\frac{1-n}{2 n+2}}-f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}} \\
& =0
\end{aligned}
$$

Thus (27) is true.
We now prove

$$
\begin{equation*}
H_{A_{k}}^{\prime \prime} \sin ^{\frac{1}{4}} \theta \rightrightarrows 0 \text { uniformly on }[0, \pi] \tag{28}
\end{equation*}
$$

Given any $\epsilon>0$. By (26), there exists some $\delta \in(0, \pi / 2)$, such that

$$
\begin{equation*}
\sup _{[0, \delta] \cup[\pi-\delta, \pi]}\left|H_{A_{k}}^{\prime \prime} \sin ^{\frac{1}{4}} \theta\right|<\epsilon, \quad \forall k \tag{29}
\end{equation*}
$$

Then by virtue of (27), there exists a k_{0}, such that

$$
\begin{equation*}
\sup _{[\delta, \pi-\delta]}\left|H_{A_{k}}^{\prime \prime}\right|<\epsilon, \quad \forall k \geq k_{0} . \tag{30}
\end{equation*}
$$

Combining (29) and (30), we have

$$
\sup _{[0, \pi]}\left|H_{A_{k}}^{\prime \prime} \sin ^{\frac{1}{4}} \theta\right|<\epsilon, \quad \forall k \geq k_{0} .
$$

Thus (28) is true.

With a more detailed analysis, we can strengthen Lemma 5 for $n=1,2$.
Lemma 7. Assume $a_{k} \rightarrow+\infty$ as $k \rightarrow+\infty$. For sufficiently large k, we have

$$
\max _{[0, \pi]}\left|H_{A_{k}}-f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}}\right| \leq C \begin{cases}\int_{0}^{\pi}\left|f_{A_{k}}-f\left(\frac{\pi}{2}\right)\right| \mathrm{d} \theta, & \text { if } n=1 \tag{31}\\ \int_{0}^{\pi}\left|f_{A_{k}}-f\left(\frac{\pi}{2}\right)\right| \sin ^{\frac{1}{2}} \theta \mathrm{~d} \theta, & \text { if } n=2\end{cases}
$$

where C is a positive constant depending only on $f\left(\frac{\pi}{2}\right)$.
Proof. For simplicity, let

$$
\beta:=f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}} \text { and } h_{k}(\theta):=H_{A_{k}}(\theta)-\beta
$$

Also we will drop the subscript k in the following proof if no confusion arises. Recall by Lemma $5, h$ converges uniformly to 0 on $[0, \pi]$ as $k \rightarrow+\infty$.
(a) When $n=1$. Now Eq. (21) is simplified as

$$
\begin{equation*}
h^{\prime \prime}+h+\beta=\frac{f_{A}}{H_{A}^{3}} . \tag{32}
\end{equation*}
$$

Observing that

$$
\begin{aligned}
H_{A}^{-3} & =(\beta+h)^{-3} \\
& =\beta^{-3}-3 \beta^{-4} h+6 \tau^{-5} h^{2}
\end{aligned}
$$

where τ is between β and $H_{A}(\theta)$, and that $\beta=f\left(\frac{\pi}{2}\right)^{1 / 4}$, we have

$$
\frac{f\left(\frac{\pi}{2}\right)}{H_{A}^{3}}=\beta-3 h+6 \beta^{4} \tau^{-5} h^{2} .
$$

Then (32) can be written as

$$
h^{\prime \prime}+h+3 h-6 \beta^{4} \tau^{-5} h^{2}=\frac{f_{A}-f\left(\frac{\pi}{2}\right)}{H_{A}^{3}}
$$

namely

$$
\begin{equation*}
h^{\prime \prime}+4 h=\frac{f_{A}-f\left(\frac{\pi}{2}\right)}{H_{A}^{3}}+6 \beta^{4} \tau^{-5} h^{2} . \tag{33}
\end{equation*}
$$

Recalling $h\left(\frac{\pi}{2}\right)=0$ by (10), we can apply Lemma 8 to equation (33) and then obtain

$$
\begin{equation*}
\max |h| \leq\left\|\frac{f_{A}-f\left(\frac{\pi}{2}\right)}{H_{A}^{3}}\right\|_{L^{1}[0, \pi]}+\left\|6 \beta^{4} \tau^{-5} h^{2}\right\|_{L^{1}[0, \pi]} \tag{34}
\end{equation*}
$$

Since $H_{A} \rightrightarrows \beta>0$ uniformly on $[0, \pi]$ as $k \rightarrow+\infty$, there exists a large integer k_{0}, such that

$$
\max \left|H_{A}-\beta\right| \leq \frac{\beta}{2}, \quad \forall k \geq k_{0}
$$

Then when $k \geq k_{0}$ we have

$$
\begin{equation*}
\max |h| \leq \frac{\beta}{2} \text { and } H_{A}, \tau \in\left[\frac{\beta}{2}, \frac{3 \beta}{2}\right] \tag{35}
\end{equation*}
$$

Thus (34) is simplified into

$$
\max |h| \leq 8 \beta^{-3}\left\|f_{A}-f\left(\frac{\pi}{2}\right)\right\|_{L^{1}[0, \pi]}+192 \beta^{-1} \pi(\max |h|)^{2}
$$

By virtue of $\max |h| \rightarrow 0$ as $k \rightarrow+\infty$, we also can assume

$$
192 \beta^{-1} \pi \cdot \max |h|<\frac{1}{2} \text { when } k \geq k_{0}
$$

Hence

$$
\max |h| \leq 16 \beta^{-3}\left\|f_{A}-f\left(\frac{\pi}{2}\right)\right\|_{L^{1}[0, \pi]}, \quad \forall k \geq k_{0}
$$

which is just (31) for $n=1$.
(b) When $n=2$. Now Eq. (21) is written as

$$
\begin{equation*}
\left(h^{\prime \prime}+h+\beta\right)\left(h^{\prime} \cot \theta+h+\beta\right)=\frac{f_{A}}{H_{A}^{4}} \tag{36}
\end{equation*}
$$

namely

$$
\begin{equation*}
\beta\left(h^{\prime \prime}+h^{\prime} \cot \theta+2 h\right)+\beta^{2}+\left(h^{\prime \prime}+h\right)\left(h^{\prime} \cot \theta+h\right)=\frac{f_{A}}{H_{A}^{4}} \tag{37}
\end{equation*}
$$

Observing that

$$
\begin{aligned}
H_{A}^{-4} & =(\beta+h)^{-4} \\
& =\beta^{-4}-4 \beta^{-5} h+10 \tau^{-6} h^{2}
\end{aligned}
$$

where τ is between β and $H_{A}(\theta)$, and that $\beta=f\left(\frac{\pi}{2}\right)^{1 / 6}$, we have

$$
\begin{equation*}
\frac{f\left(\frac{\pi}{2}\right)}{H_{A}^{4}}=\beta^{2}-4 \beta h+10 \beta^{6} \tau^{-6} h^{2} \tag{38}
\end{equation*}
$$

Then (37) can be written as

$$
\beta\left(h^{\prime \prime}+h^{\prime} \cot \theta+6 h\right)+\left(h^{\prime \prime}+h\right)\left(h^{\prime} \cot \theta+h\right)-10 \beta^{6} \tau^{-6} h^{2}=\frac{f_{A}-f\left(\frac{\pi}{2}\right)}{H_{A}^{4}}
$$

namely

$$
\begin{equation*}
h^{\prime \prime}+h^{\prime} \cot \theta+6 h=\frac{f_{A}-f\left(\frac{\pi}{2}\right)}{\beta H_{A}^{4}}+R_{a}(\theta), \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{a}(\theta)=10 \beta^{5} \tau^{-6} h^{2}-\beta^{-1}\left(h^{\prime \prime}+h\right)\left(h^{\prime} \cot \theta+h\right) . \tag{40}
\end{equation*}
$$

Applying Lemma 10 to equation (39), we have

$$
\begin{aligned}
\max |h| \leq & 2 \int_{0}^{\pi} \frac{\left|f_{A}-f\left(\frac{\pi}{2}\right)\right|}{\beta H_{A}^{4}}(2-\log \sin \theta) \sin \theta \mathrm{d} \theta \\
& +2 \int_{0}^{\pi}\left|R_{a}(\theta)\right|(2-\log \sin \theta) \sin \theta \mathrm{d} \theta \\
& \leq 4 \int_{0}^{\pi} \frac{\left|f_{A}-f\left(\frac{\pi}{2}\right)\right|}{\beta H_{A}^{4}} \sin ^{\frac{1}{2}} \theta \mathrm{~d} \theta+6 \int_{0}^{\pi}\left|R_{a}(\theta)\right| \sin ^{\frac{3}{4}} \theta \mathrm{~d} \theta .
\end{aligned}
$$

Recalling (35), we obtain

$$
\begin{equation*}
\max |h| \leq 64 \beta^{-5} \int_{0}^{\pi}\left|f_{A}-f\left(\frac{\pi}{2}\right)\right| \sin ^{\frac{1}{2}} \theta \mathrm{~d} \theta+6 \int_{0}^{\pi}\left|R_{a}(\theta)\right| \sin ^{\frac{3}{4}} \theta \mathrm{~d} \theta \tag{41}
\end{equation*}
$$

We see R_{a} involves derivatives of h. To deal with them, we need to explore (36) more carefully. Note that

$$
\left(h^{\prime} \cos \theta+h \sin \theta+\beta \sin \theta\right)^{\prime}=\left(h^{\prime \prime}+h+\beta\right) \cos \theta
$$

then Eq. (36) is equivalent to

$$
\frac{\mathrm{d}}{\mathrm{~d} \theta}\left(h^{\prime} \cos \theta+h \sin \theta+\beta \sin \theta\right)^{2}=\frac{f_{A}}{H_{A}^{4}} \cdot 2 \sin \theta \cos \theta
$$

Therefore we have

$$
\begin{equation*}
\left(h^{\prime} \cos \theta+h \sin \theta+\beta \sin \theta\right)^{2}=\int_{0}^{\theta} \frac{f_{A}}{H_{A}^{4}} \cdot 2 \sin t \cos t \mathrm{~d} t, \quad \forall \theta \in[0, \pi / 2] . \tag{42}
\end{equation*}
$$

Since $h^{\prime} \cot \theta+h+\beta>0$, there is

$$
h^{\prime} \cos \theta+h \sin \theta+\beta \sin \theta=\left(\int_{0}^{\theta} \frac{f_{A}}{H_{A}^{4}} \cdot 2 \sin t \cos t \mathrm{~d} t\right)^{1 / 2}
$$

Thus we have

$$
\begin{align*}
\left|h^{\prime} \cos \theta+h \sin \theta\right| & =\left|\left(\int_{0}^{\theta} \frac{f_{A}}{H_{A}^{4}} \cdot 2 \sin t \cos t \mathrm{~d} t\right)^{1 / 2}-\beta \sin \theta\right| \\
& =\frac{\left|\int_{0}^{\theta} \frac{f_{A}}{H_{A}^{4}} \cdot 2 \sin t \cos t \mathrm{~d} t-\beta^{2} \sin ^{2} \theta\right|}{\left(\int_{0}^{\theta} \frac{f_{A}}{H_{A}^{4}} \cdot 2 \sin t \cos t \mathrm{~d} t\right)^{1 / 2}+\beta \sin \theta} \tag{43}\\
& \leq \frac{1}{\beta \sin \theta}\left|\int_{0}^{\theta} \frac{f_{A}}{H_{A}^{4}} \cdot 2 \sin t \cos t \mathrm{~d} t-\beta^{2} \sin ^{2} \theta\right|
\end{align*}
$$

Recalling (38), there is

$$
\frac{f_{A}}{H_{A}^{4}}=\frac{f_{A}-f\left(\frac{\pi}{2}\right)}{H_{A}^{4}}+\beta^{2}-4 \beta h+10 \beta^{6} \tau^{-6} h^{2},
$$

which implies that

$$
\begin{aligned}
\int_{0}^{\theta} \frac{f_{A}}{H_{A}^{4}} \cdot 2 \sin t \cos t \mathrm{~d} t= & \int_{0}^{\theta} \frac{f_{A}-f\left(\frac{\pi}{2}\right)}{H_{A}^{4}} \cdot 2 \sin t \cos t \mathrm{~d} t+\beta^{2} \int_{0}^{\theta} 2 \sin t \cos t \mathrm{~d} t \\
& +\int_{0}^{\theta}\left(-4 \beta h+10 \beta^{6} \tau^{-6} h^{2}\right) \cdot 2 \sin t \cos t \mathrm{~d} t \\
= & \int_{0}^{\theta} \frac{f_{A}-f\left(\frac{\pi}{2}\right)}{H_{A}^{4}} \cdot 2 \sin t \cos t \mathrm{~d} t+\beta^{2} \sin ^{2} \theta \\
& +\int_{0}^{\theta}\left(-4 \beta+10 \beta^{6} \tau^{-6} h\right) h \cdot 2 \sin t \cos t \mathrm{~d} t
\end{aligned}
$$

Recalling (35), we obtain from the above equality that

$$
\left|\int_{0}^{\theta} \frac{f_{A}}{H_{A}^{4}} \cdot 2 \sin t \cos t \mathrm{~d} t-\beta^{2} \sin ^{2} \theta\right| \leq 32 \beta^{-4} \int_{0}^{\theta}\left|f_{A}-f\left(\frac{\pi}{2}\right)\right| \sin t \mathrm{~d} t+324 \beta(\max |h|) \sin ^{2} \theta
$$

Then (43) is simplified into

$$
\left|h^{\prime} \cos \theta+h \sin \theta\right| \leq \frac{32 \beta^{-5}}{\sin \theta} \int_{0}^{\theta}\left|f_{A}-f\left(\frac{\pi}{2}\right)\right| \sin t \mathrm{~d} t+324(\max |h|) \sin \theta
$$

namely

$$
\left|h^{\prime} \cot \theta+h\right| \sin ^{\frac{1}{2}} \theta \leq \frac{32 \beta^{-5}}{\sin ^{\frac{3}{2}} \theta} \int_{0}^{\theta}\left|f_{A}-f\left(\frac{\pi}{2}\right)\right| \sin t \mathrm{~d} t+324(\max |h|) \sin ^{\frac{1}{2}} \theta .
$$

Integrating both sides over $[0, \pi / 2]$, we have

$$
\begin{align*}
\left.\int_{0}^{\frac{\pi}{2}} \right\rvert\, h^{\prime} \cot \theta & +h \left\lvert\, \sin ^{\frac{1}{2}} \theta \mathrm{~d} \theta\right. \\
& \leq 32 \beta^{-5} \int_{0}^{\frac{\pi}{2}} \frac{\mathrm{~d} \theta}{\sin ^{\frac{3}{2}} \theta} \int_{0}^{\theta}\left|f_{A}-f\left(\frac{\pi}{2}\right)\right| \sin t \mathrm{~d} t+162 \pi(\max |h|) \tag{44}\\
& =32 \beta^{-5} \int_{0}^{\frac{\pi}{2}}\left|f_{A}-f\left(\frac{\pi}{2}\right)\right| \sin t \mathrm{~d} t \int_{t}^{\frac{\pi}{2}} \frac{\mathrm{~d} \theta}{\sin ^{\frac{3}{2}} \theta}+162 \pi(\max |h|) .
\end{align*}
$$

Note that

$$
\begin{aligned}
\int_{t}^{\frac{\pi}{2}} \frac{\mathrm{~d} \theta}{\sin ^{\frac{3}{2}} \theta} & \leq\left(\frac{\pi}{2}\right)^{\frac{3}{2}} \int_{t}^{\frac{\pi}{2}} \frac{\mathrm{~d} \theta}{\theta^{\frac{3}{2}}} \\
& =\left(\frac{\pi}{2}\right)^{\frac{3}{2}} \cdot 2\left[t^{-\frac{1}{2}}-(\pi / 2)^{-\frac{1}{2}}\right] \\
& <4 \sin ^{-\frac{1}{2}} t
\end{aligned}
$$

then (44) is reduced into

$$
\begin{equation*}
\int_{0}^{\frac{\pi}{2}}\left|h^{\prime} \cot \theta+h\right| \sin ^{\frac{1}{2}} \theta \mathrm{~d} \theta \leq 128 \beta^{-5} \int_{0}^{\frac{\pi}{2}}\left|f_{A}-f\left(\frac{\pi}{2}\right)\right| \sin ^{\frac{1}{2}} t \mathrm{~d} t+162 \pi(\max |h|) \tag{45}
\end{equation*}
$$

Now similar to (42), we have

$$
\left(h^{\prime} \cos \theta+h \sin \theta+\beta \sin \theta\right)^{2}=\int_{\theta}^{\pi} \frac{f_{A}}{H_{A}^{4}} \cdot 2 \sin t|\cos t| \mathrm{d} t, \quad \forall \theta \in[\pi / 2, \pi] .
$$

Then following almost the same arguments used to obtain (45), one can get

$$
\begin{equation*}
\int_{\frac{\pi}{2}}^{\pi}\left|h^{\prime} \cot \theta+h\right| \sin ^{\frac{1}{2}} \theta \mathrm{~d} \theta \leq 128 \beta^{-5} \int_{\frac{\pi}{2}}^{\pi}\left|f_{A}-f\left(\frac{\pi}{2}\right)\right| \sin ^{\frac{1}{2}} t \mathrm{~d} t+162 \pi(\max |h|) . \tag{46}
\end{equation*}
$$

Adding (45) and (46) together, we have

$$
\begin{equation*}
\int_{0}^{\pi}\left|h^{\prime} \cot \theta+h\right| \sin ^{\frac{1}{2}} \theta \mathrm{~d} \theta \leq 128 \beta^{-5} \int_{0}^{\pi}\left|f_{A}-f\left(\frac{\pi}{2}\right)\right| \sin ^{\frac{1}{2}} t \mathrm{~d} t+324 \pi \cdot \max |h| . \tag{47}
\end{equation*}
$$

Now we can estimate the integral about R_{a} in (41). By the definition of R_{a} in (40), there is

$$
\begin{aligned}
\int_{0}^{\pi}\left|R_{a}(\theta)\right| \sin ^{\frac{3}{4}} \theta \mathrm{~d} \theta \leq & \int_{0}^{\pi} 10 \beta^{5} \tau^{-6} h^{2} \sin ^{\frac{3}{4}} \theta \mathrm{~d} \theta \\
& +\int_{0}^{\pi} \beta^{-1}\left|h^{\prime \prime}+h\right|\left|h^{\prime} \cot \theta+h\right| \sin ^{\frac{3}{4}} \theta \mathrm{~d} \theta \\
\leq & 640 \pi \beta^{-1}(\max |h|)^{2}+m_{k} \int_{0}^{\pi}\left|h^{\prime} \cot \theta+h\right| \sin ^{\frac{1}{2}} \theta \mathrm{~d} \theta
\end{aligned}
$$

where (35) is used, and m_{k} is defined as

$$
m_{k}:=\beta^{-1} \max _{\theta \in[0, \pi]}\left|h^{\prime \prime}(\theta)+h(\theta)\right| \sin ^{\frac{1}{4}} \theta
$$

By estimate (47), the above inequality becomes into

$$
\begin{align*}
\int_{0}^{\pi}\left|R_{a}(\theta)\right| \sin ^{\frac{3}{4}} \theta \mathrm{~d} \theta \leq & 640 \pi \beta^{-1}(\max |h|)^{2}+324 \pi m_{k} \cdot \max |h| \tag{48}\\
& +128 \beta^{-5} m_{k} \int_{0}^{\pi}\left|f_{A}-f\left(\frac{\pi}{2}\right)\right| \sin ^{\frac{1}{2}} t \mathrm{~d} t
\end{align*}
$$

Recall Lemma $6(\mathrm{~b}),\left|h^{\prime \prime}(\theta)+h(\theta)\right| \sin ^{\frac{1}{4}} \theta$ converges uniformly to 0 on $[0, \pi]$ when $k \rightarrow+\infty$, which implies

$$
m_{k} \rightarrow 0 \text { as } k \rightarrow+\infty .
$$

Also recall $\max |h| \rightarrow 0$. We can assume when $k \geq k_{0}$ that

$$
640 \pi \beta^{-1} \max |h|+324 \pi m_{k}<\frac{1}{12}
$$

Then (48) is simplified into

$$
\begin{equation*}
\int_{0}^{\pi}\left|R_{a}(\theta)\right| \sin ^{\frac{3}{4}} \theta \mathrm{~d} \theta \leq \frac{1}{12} \max |h|+\frac{1}{12} \beta^{-5} \int_{0}^{\pi}\left|f_{A}-f\left(\frac{\pi}{2}\right)\right| \sin ^{\frac{1}{2}} t \mathrm{~d} t . \tag{49}
\end{equation*}
$$

Now combining (41) and (49), we obtain

$$
\max |h| \leq 129 \beta^{-5} \int_{0}^{\pi}\left|f_{A}-f\left(\frac{\pi}{2}\right)\right| \sin ^{\frac{1}{2}} \theta \mathrm{~d} \theta,
$$

which is just (31) for $n=2$.
The following Lemmas 8 and 10 have been used in the proof of the above Lemma 7.
Lemma 8. Assume $h \in C^{2}(\mathbb{R})$ is 2π-periodic and even. If it satisfies the following differential equation

$$
\begin{equation*}
h^{\prime \prime}+4 h=g, \tag{50}
\end{equation*}
$$

and $h\left(\frac{\pi}{2}\right)=0$, then there is

$$
\max _{\mathbb{R}}|h| \leq\|g\|_{L^{1}[0, \pi]} .
$$

Proof. One can easily solve equation (50) to obtain

$$
h(\theta)=c_{1} \cos 2 \theta+c_{2} \sin 2 \theta-\frac{1}{2} \cos 2 \theta \int_{0}^{\theta} g(t) \sin 2 t \mathrm{~d} t+\frac{1}{2} \sin 2 \theta \int_{0}^{\theta} g(t) \cos 2 t \mathrm{~d} t
$$

where c_{1} and c_{2} are constants to be determined. Then we have

$$
h^{\prime}(\theta)=-2 c_{1} \sin 2 \theta+2 c_{2} \cos 2 \theta+\sin 2 \theta \int_{0}^{\theta} g(t) \sin 2 t \mathrm{~d} t+\cos 2 \theta \int_{0}^{\theta} g(t) \cos 2 t \mathrm{~d} t .
$$

From $h^{\prime}(0)=0$, we get $c_{2}=0$. And $h\left(\frac{\pi}{2}\right)=0$ implies

$$
c_{1}=\frac{1}{2} \int_{0}^{\frac{\pi}{2}} g(t) \sin 2 t \mathrm{~d} t
$$

Therefore h is given by

$$
h(\theta)=\frac{1}{2} \cos 2 \theta \int_{\theta}^{\frac{\pi}{2}} g(t) \sin 2 t \mathrm{~d} t+\frac{1}{2} \sin 2 \theta \int_{0}^{\theta} g(t) \cos 2 t \mathrm{~d} t .
$$

Hence when $\theta \in[0, \pi]$,

$$
\begin{aligned}
|h(\theta)| & \leq \frac{1}{2}\left|\int_{\theta}^{\frac{\pi}{2}} g(t) \sin 2 t \mathrm{~d} t\right|+\frac{1}{2}\left|\int_{0}^{\theta} g(t) \cos 2 t \mathrm{~d} t\right| \\
& \leq \frac{1}{2} \int_{0}^{\pi}|g(t)| \mathrm{d} t+\frac{1}{2} \int_{0}^{\pi}|g(t)| \mathrm{d} t \\
& =\int_{0}^{\pi}|g(t)| \mathrm{d} t
\end{aligned}
$$

which leads to the conclusion of this lemma.
Lemma 9. The homogeneous differential equation

$$
h^{\prime \prime}+h^{\prime} \cot \theta+6 h=0 \text { in }(0, \pi)
$$

has the following two fundamental solutions:

$$
\begin{gathered}
h_{1}(\theta)=1-3 \cos ^{2} \theta, \\
h_{2}(\theta)=-\frac{3}{4} \cos \theta+\frac{1}{8}\left(1-3 \cos ^{2} \theta\right) \log \frac{1-\cos \theta}{1+\cos \theta} .
\end{gathered}
$$

These two solutions have the following properties:
(a) $h_{1}\left(\frac{\pi}{2}\right)=1, h_{1}^{\prime}\left(\frac{\pi}{2}\right)=0$ and $h_{2}\left(\frac{\pi}{2}\right)=0, h_{2}^{\prime}\left(\frac{\pi}{2}\right)=1$.
(b) Abel's identity: $h_{1} h_{2}^{\prime}-h_{1}^{\prime} h_{2}=\csc \theta, \forall \theta \in(0, \pi)$.
(c) $h_{1}^{\prime}(\theta)=6 \sin \theta \cos \theta$.
(d) $\left|h_{2}(\theta)\right| \leq 2-\log \sin \theta, \forall \theta \in(0, \pi)$.
(e) $\left|h_{2}^{\prime}(\theta) \sin \theta\right| \leq 5 / 2, \forall \theta \in(0, \pi)$.
(f) $\operatorname{As} \theta \rightarrow 0^{+}$or $\theta \rightarrow \pi^{-}$, there is

$$
h_{2}^{\prime}(\theta)=\frac{-1 / 2+o(1)}{\sin \theta} .
$$

Proof. Direct computations show that h_{1} and h_{2} are solutions to the differential equation in the lemma. And one can easily check (a), (b) and (c).

We note that

$$
\frac{1}{2}\left|\log \frac{1-\cos \theta}{1+\cos \theta}\right| \leq-\log \sin \theta+\log 2, \quad \forall \theta \in(0, \pi)
$$

Since both sides are symmetric with respect to $\theta=\pi / 2$, we only need to verify it for $\theta \in(0, \pi / 2]$, which is a direct corollary of the following equality:

$$
\frac{1}{2}\left|\log \frac{1-\cos \theta}{1+\cos \theta}\right|=\frac{1}{2}\left|\log \frac{1-\cos ^{2} \theta}{(1+\cos \theta)^{2}}\right|=\left|\log \frac{\sin \theta}{1+\cos \theta}\right| .
$$

Now by the expression of h_{2}, there is

$$
\begin{aligned}
\left|h_{2}(\theta)\right| & \leq \frac{3}{4}+\frac{1}{2}\left|\log \frac{1-\cos \theta}{1+\cos \theta}\right| \\
& \leq \frac{3}{4}-\log \sin \theta+\log 2 \\
& \leq 2-\log \sin \theta
\end{aligned}
$$

which is just (d).
Computing h_{2}^{\prime}, we have

$$
h_{2}^{\prime}(\theta)=\frac{3}{4} \sin \theta+\frac{3}{4} \sin \theta \cos \theta \log \frac{1-\cos \theta}{1+\cos \theta}+\frac{1}{4}\left(1-3 \cos ^{2} \theta\right) \csc \theta .
$$

Then

$$
\begin{aligned}
\left|h_{2}^{\prime}(\theta)\right| & \leq \frac{3}{4}+\frac{3}{4} \sin \theta\left|\log \frac{1-\cos \theta}{1+\cos \theta}\right|+\frac{1}{2} \csc \theta \\
& \leq \frac{3}{4}+\frac{3}{2} \sin \theta \cdot(-\log \sin \theta+\log 2)+\frac{1}{2} \csc \theta \\
& \leq 2+\frac{1}{2} \csc \theta
\end{aligned}
$$

which implies (e).
By the expression of h_{2}^{\prime}, we see as $\theta \rightarrow 0^{+}$or $\theta \rightarrow \pi^{-}$that

$$
h_{2}^{\prime}(\theta) \sin \theta \rightarrow-\frac{1}{2},
$$

yielding (f).
Lemma 10. Assume $h \in C^{2}(\mathbb{R})$ is 2π-periodic and even. If it satisfies the following differential equation

$$
\begin{equation*}
h^{\prime \prime}+h^{\prime} \cot \theta+6 h=g \tag{51}
\end{equation*}
$$

and $h\left(\frac{\pi}{2}\right)=0$, then there is

$$
\begin{equation*}
\max _{\mathbb{R}}|h| \leq 2 \int_{0}^{\pi}|g(\theta)|(2-\log \sin \theta) \sin \theta \mathrm{d} \theta \tag{52}
\end{equation*}
$$

Proof. Recalling Lemma 9, h_{1} and h_{2} are two fundamental solutions to the homogeneous differential equation:

$$
h^{\prime \prime}+h^{\prime} \cot \theta+6 h=0 \text { in }(0, \pi) .
$$

By method of variation of parameters and Lemma 9 (b), we solve (51) in $(0, \pi)$ and obtain

$$
\begin{equation*}
h(\theta)=c_{1} h_{1}+c_{2} h_{2}-h_{1} \int_{\pi / 2}^{\theta} h_{2}(t) g(t) \sin t \mathrm{~d} t+h_{2} \int_{\pi / 2}^{\theta} h_{1}(t) g(t) \sin t \mathrm{~d} t \tag{53}
\end{equation*}
$$

where c_{1} and c_{2} are constants to be determined. Note the assumption $h\left(\frac{\pi}{2}\right)=0$, and by (53)

$$
h\left(\frac{\pi}{2}\right)=c_{1} h_{1}\left(\frac{\pi}{2}\right)+c_{2} h_{2}\left(\frac{\pi}{2}\right)=c_{1},
$$

there is $c_{1}=0$. Then

$$
\begin{equation*}
h^{\prime}(\theta)=c_{2} h_{2}^{\prime}-h_{1}^{\prime} \int_{\pi / 2}^{\theta} h_{2}(t) g(t) \sin t \mathrm{~d} t+h_{2}^{\prime} \int_{\pi / 2}^{\theta} h_{1}(t) g(t) \sin t \mathrm{~d} t . \tag{54}
\end{equation*}
$$

To determine c_{2}, we need to compute $h^{\prime}(0)$.
By Lemma $9(\mathrm{~d}),\left|h_{2}\right|$ is an integrable function in $(0, \pi / 2]$. Then

$$
\int_{\pi / 2}^{0} h_{2}(t) g(t) \sin t \mathrm{~d} t
$$

is a finite number. For small $\theta>0$, one can rewrite (54) as

$$
\begin{equation*}
\frac{1}{h_{2}^{\prime}(\theta)}\left[h^{\prime}(\theta)+h_{1}^{\prime}(\theta) \int_{\pi / 2}^{\theta} h_{2}(t) g(t) \sin t \mathrm{~d} t\right]=c_{2}+\int_{\pi / 2}^{\theta} h_{1}(t) g(t) \sin t \mathrm{~d} t \tag{55}
\end{equation*}
$$

Letting $\theta \rightarrow 0^{+}$, and recalling $h^{\prime}(0)=0, h_{1}^{\prime}(0)=0$ and Lemma 9 (f), we obtain

$$
0=c_{2}+\int_{\pi / 2}^{0} h_{1}(t) g(t) \sin t \mathrm{~d} t
$$

namely

$$
c_{2}=\int_{0}^{\pi / 2} h_{1}(t) g(t) \sin t \mathrm{~d} t
$$

Therefore (53) is simplified into

$$
\begin{equation*}
h(\theta)=-h_{1} \int_{\pi / 2}^{\theta} h_{2}(t) g(t) \sin t \mathrm{~d} t+h_{2} \int_{0}^{\theta} h_{1}(t) g(t) \sin t \mathrm{~d} t . \tag{56}
\end{equation*}
$$

Recalling Lemma 9 (d) and the expression of h given in (56), we obtain for any $\theta \in(0, \pi / 2$] that

$$
|h(\theta)| \leq 2 \int_{\theta}^{\pi / 2}(2-\log \sin t)|g(t)| \sin t \mathrm{~d} t+(2-\log \sin \theta) \int_{0}^{\theta} 2|g(t)| \sin t \mathrm{~d} t .
$$

Observing

$$
(2-\log \sin \theta) \int_{0}^{\theta} 2|g(t)| \sin t \mathrm{~d} t \leq 2 \int_{0}^{\theta}(2-\log \sin t)|g(t)| \sin t \mathrm{~d} t,
$$

we have

$$
|h(\theta)| \leq 2 \int_{0}^{\pi / 2}(2-\log \sin t)|g(t)| \sin t \mathrm{~d} t, \quad \forall \theta \in(0, \pi / 2] .
$$

Namely

$$
\begin{equation*}
\max _{[0, \pi / 2]}|h| \leq 2 \int_{0}^{\pi}(2-\log \sin t)|g(t)| \sin t \mathrm{~d} t \tag{57}
\end{equation*}
$$

Again by Lemma 9 (d), we see

$$
\int_{\pi / 2}^{\pi} h_{2}(t) g(t) \sin t \mathrm{~d} t
$$

is a finite number. Since (55) is also true when θ is close to π^{-}, letting $\theta \rightarrow \pi^{-}$, and recalling $h^{\prime}(\pi)=0, h_{1}^{\prime}(\pi)=0$ and Lemma $9(\mathrm{f})$, we obtain

$$
0=c_{2}+\int_{\pi / 2}^{\pi} h_{1}(t) g(t) \sin t \mathrm{~d} t
$$

Recall the expression of c_{2}, there is

$$
\int_{0}^{\pi} h_{1}(t) g(t) \sin t \mathrm{~d} t=0
$$

Now h in (56) can be also expressed as

$$
\begin{equation*}
h(\theta)=-h_{1} \int_{\pi / 2}^{\theta} h_{2}(t) g(t) \sin t \mathrm{~d} t+h_{2} \int_{\pi}^{\theta} h_{1}(t) g(t) \sin t \mathrm{~d} t \tag{58}
\end{equation*}
$$

By Lemma 9 (d), we obtain for any $\theta \in[\pi / 2, \pi$) that

$$
|h(\theta)| \leq 2 \int_{\pi / 2}^{\theta}(2-\log \sin t)|g(t)| \sin t \mathrm{~d} t+(2-\log \sin \theta) \int_{\theta}^{\pi} 2|g(t)| \sin t \mathrm{~d} t
$$

Observing

$$
(2-\log \sin \theta) \int_{\theta}^{\pi} 2|g(t)| \sin t \mathrm{~d} t \leq 2 \int_{\theta}^{\pi}(2-\log \sin t)|g(t)| \sin t \mathrm{~d} t
$$

we have

$$
|h(\theta)| \leq 2 \int_{\pi / 2}^{\pi}(2-\log \sin t)|g(t)| \sin t \mathrm{~d} t, \quad \forall \theta \in[\pi / 2, \pi) .
$$

Namely

$$
\begin{equation*}
\max _{[\pi / 2, \pi]}|h| \leq 2 \int_{0}^{\pi}(2-\log \sin t)|g(t)| \sin t \mathrm{~d} t \tag{59}
\end{equation*}
$$

Now combining (57) and (59), we obtain (52).

Based on Lemma 7, one can easily find out the asymptotic behavior of $H_{A_{k}}$.

Lemma 11. Assume $a_{k} \rightarrow+\infty$ as $k \rightarrow+\infty$. Then we have

$$
H_{A_{k}}-f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}}=O(1) \begin{cases}a_{k}^{-1} \log a_{k}, & \text { if } n=1 \tag{60}\\ a_{k}^{-1}, & \text { if } n=2\end{cases}
$$

where the bounds of $O(1)$ depend only on $\|f\|_{C^{1}}$.

Proof. Let

$$
\Lambda_{k}=\int_{0}^{\pi}\left|f\left(\gamma_{a_{k}}(\theta)\right)-f\left(\frac{\pi}{2}\right)\right| \sin ^{2 \delta} \theta \mathrm{~d} \theta, \quad \delta=0 \text { or } 1 / 4 .
$$

Consider the variable substitution

$$
\theta=\gamma_{1 / a_{k}}(t)=\arccos \left(\frac{\cos t}{i_{1 / a_{k}}(t)}\right)
$$

see (17) for its definition. Direct computations show that

$$
\begin{aligned}
\sin \theta & =\frac{\sin t}{\left(\sin ^{2} t+a_{k}^{2} \cos ^{2} t\right)^{1 / 2}}, \\
\mathrm{~d} \theta & =\frac{a_{k}}{\sin ^{2} t+a_{k}^{2} \cos ^{2} t} \mathrm{~d} t .
\end{aligned}
$$

Then we have

$$
\begin{align*}
\Lambda_{k} & =\int_{0}^{\pi}\left|f(t)-f\left(\frac{\pi}{2}\right)\right| \frac{\sin ^{2 \delta} t \cdot a_{k} \mathrm{~d} t}{\left(\sin ^{2} t+a_{k}^{2} \cos ^{2} t\right)^{1+\delta}} \\
& \leq\|f\|_{C^{1}} \int_{0}^{\pi} \frac{|t-\pi / 2| \cdot a_{k} \mathrm{~d} t}{\left(\sin ^{2} t+a_{k}^{2} \cos ^{2} t\right)^{1+\delta}} \\
& =2\|f\|_{C^{1}} a_{k} \int_{0}^{\frac{\pi}{2}} \frac{|t-\pi / 2| \mathrm{d} t}{\left(\sin ^{2} t+a_{k}^{2} \cos ^{2} t\right)^{1+\delta}} \tag{61}\\
& =2\|f\|_{C^{1}} a_{k} \int_{0}^{\frac{\pi}{2}} \frac{t \mathrm{~d} t}{\left(\cos ^{2} t+a_{k}^{2} \sin ^{2} t\right)^{1+\delta}} .
\end{align*}
$$

Since $a_{k} \rightarrow+\infty$ as $k \rightarrow+\infty$, we can assume $a_{k}>2$ without loss of generality. For $t \in[0, \pi / 2]$, we have

$$
\begin{align*}
\cos ^{2} t+a_{k}^{2} \sin ^{2} t & =1+\left(a_{k}^{2}-1\right) \sin ^{2} t \\
& \geq 1+\frac{a_{k}^{2}}{4} \cdot \frac{4}{\pi^{2}} t^{2} \tag{62}\\
& =\frac{1}{\pi^{2}}\left(\pi^{2}+a_{k}^{2} t^{2}\right) .
\end{align*}
$$

Then (61) can be simplified as

$$
\begin{aligned}
\Lambda_{k} & \leq 2 \pi^{3}\|f\|_{C^{1}} a_{k} \int_{0}^{\frac{\pi}{2}} \frac{t \mathrm{~d} t}{\left(\pi^{2}+a_{k}^{2} t^{2}\right)^{1+\delta}} \\
& \leq 2 \pi^{3}\|f\|_{C^{1}} \begin{cases}a_{k}^{-1} \log a_{k}, & \text { if } \delta=0 \\
2 a_{k}^{-1}, & \text { if } \delta=1 / 4\end{cases}
\end{aligned}
$$

Now note $f_{A_{k}}(\theta)=f\left(\gamma_{a_{k}}(\theta)\right),(31)$ is reduced into

$$
\max _{[0, \pi]}\left|H_{A_{k}}-f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}}\right| \leq C \begin{cases}a_{k}^{-1} \log a_{k}, & \text { if } n=1 \\ a_{k}^{-1}, & \text { if } n=2\end{cases}
$$

where $C>0$ depends only on $\|f\|_{C^{1}}$. This inequality immediately leads to (60).
We can prove the following
Lemma 12. Assume $a_{k} \rightarrow+\infty$ as $k \rightarrow+\infty$. Then we have

$$
\int_{0}^{\pi} \frac{1}{H_{A_{k}}^{n+1}} \cdot \frac{a_{k} \sin ^{n} \theta \cos \theta}{i_{a_{k}}^{2}(\theta)} \mathrm{d} \theta=O(1) \begin{cases}a_{k}^{-2} \log ^{2} a_{k}, & \text { if } n=1 \tag{63}\\ a_{k}^{-2}, & \text { if } n=2\end{cases}
$$

where the bounds of $O(1)$ depend only on $\|f\|_{C^{1}}$.
Proof. Let Λ_{k} denote the integral on the left hand side of (63), and

$$
h_{k}:=H_{A_{k}}-f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}} .
$$

Observe that

$$
\begin{aligned}
H_{A_{k}}^{-n-1} & =\left[f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}}+h_{k}\right]^{-n-1} \\
& =f\left(\frac{\pi}{2}\right)^{-\frac{1}{2}}-(n+1) \tau^{-n-2} h_{k},
\end{aligned}
$$

where τ is between $f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}}$ and $H_{A_{k}}$. Then

$$
\begin{aligned}
\Lambda_{k} & =f\left(\frac{\pi}{2}\right)^{-\frac{1}{2}} \int_{0}^{\pi} \frac{a_{k} \sin ^{n} \theta \cos \theta}{i_{a_{k}}^{2}(\theta)} \mathrm{d} \theta-(n+1) \int_{0}^{\pi} \tau^{-n-2} h_{k} \cdot \frac{a_{k} \sin ^{n} \theta \cos \theta}{i_{a_{k}}^{2}(\theta)} \mathrm{d} \theta \\
& =-(n+1) \int_{0}^{\pi} \tau^{-n-2} h_{k} \cdot \frac{a_{k} \sin ^{n} \theta \cos \theta}{i_{a_{k}}^{2}(\theta)} \mathrm{d} \theta
\end{aligned}
$$

Recall $H_{A_{k}} \rightrightarrows f\left(\frac{\pi}{2}\right)^{\frac{1}{n+2}}$ uniformly on $[0, \pi]$, we can assume that

$$
\frac{1}{2} f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}} \leq \tau \leq \frac{3}{2} f\left(\frac{\pi}{2}\right)^{\frac{1}{2 n+2}}
$$

for sufficiently large k. Therefore

$$
\begin{equation*}
\left|\Lambda_{k}\right| \leq C \int_{0}^{\pi}\left|h_{k}\right| \cdot \frac{a_{k} \sin ^{n} \theta}{i_{a_{k}}^{2}(\theta)} \mathrm{d} \theta \tag{64}
\end{equation*}
$$

for some positive constant C depending only on n and $f\left(\frac{\pi}{2}\right)$.
(a) When $n=1$. By Lemma 11,

$$
h_{k}=O(1) a_{k}^{-1} \log a_{k}
$$

Then we obtain from (64) that

$$
\begin{equation*}
\left|\Lambda_{k}\right| \leq C \log a_{k} \int_{0}^{\pi} \frac{\sin \theta}{a_{k}^{2} \sin ^{2} \theta+\cos ^{2} \theta} \mathrm{~d} \theta \tag{65}
\end{equation*}
$$

where $C>0$ depends only on $\|f\|_{C^{1}}$. Assume $a_{k}>2$ and recall (62), we have

$$
\begin{aligned}
\int_{0}^{\pi} \frac{\sin \theta \mathrm{d} \theta}{a_{k}^{2} \sin ^{2} \theta+\cos ^{2} \theta} & =2 \int_{0}^{\frac{\pi}{2}} \frac{\sin \theta \mathrm{~d} \theta}{a_{k}^{2} \sin ^{2} \theta+\cos ^{2} \theta} \\
& \leq 2 \pi^{2} \int_{0}^{\frac{\pi}{2}} \frac{\theta \mathrm{~d} \theta}{\pi^{2}+a_{k}^{2} \theta^{2}} \\
& \leq 2 \pi^{2} a_{k}^{-2} \log a_{k}
\end{aligned}
$$

Thus (65) says

$$
\left|\Lambda_{k}\right| \leq C a_{k}^{-2} \log ^{2} a_{k}
$$

which is just (63) for $n=1$.
(b) When $n=2$. By Lemma 11,

$$
h_{k}=O(1) a_{k}^{-1}
$$

Then we obtain by (64) that

$$
\begin{aligned}
\left|\Lambda_{k}\right| & \leq C \int_{0}^{\pi} \frac{\sin ^{2} \theta}{a_{k}^{2} \sin ^{2} \theta+\cos ^{2} \theta} \mathrm{~d} \theta \\
& \leq C \pi a_{k}^{-2}
\end{aligned}
$$

where $C>0$ depends only on $\|f\|_{C^{1}}$. Thus (63) with $n=2$ is true.
Now we can strengthen [30, Lemma 3.2] when $n=1,2$.
Lemma 13. Assume $a_{k} \rightarrow+\infty$ as $k \rightarrow+\infty$. Then we have

$$
\int_{0}^{\pi} \frac{f^{\prime}\left(\gamma_{a_{k}}(\theta)\right)}{H_{A_{k}}^{n+1}} \cdot \frac{a_{k} \sin ^{n} \theta \cos \theta}{i_{a_{k}}^{2}(\theta)} \mathrm{d} \theta=f\left(\frac{\pi}{2}\right)^{-\frac{1}{2}}[n i(f)+o(1)] \begin{cases}a_{k}^{-1}, & \text { if } n=1 \tag{66}\\ a_{k}^{-2} \log a_{k}^{2}, & \text { if } n=2\end{cases}
$$

Proof. Let Λ_{k} denote the integral on the left hand side of (66). Then

$$
\begin{aligned}
\Lambda_{k} & =\int_{0}^{\pi} \frac{f^{\prime}\left(\gamma_{a_{k}}(\theta)\right)-f^{\prime}\left(\frac{\pi}{2}\right)}{H_{A_{k}}^{n+1}} \cdot \frac{a_{k} \sin ^{n} \theta \cos \theta}{i_{a_{k}}^{2}(\theta)} \mathrm{d} \theta+\int_{0}^{\pi} \frac{f^{\prime}\left(\frac{\pi}{2}\right)}{H_{A_{k}}^{n+1}} \cdot \frac{a_{k} \sin ^{n} \theta \cos \theta}{i_{a_{k}}^{2}(\theta)} \mathrm{d} \theta \\
& =: I_{k}+I_{k}
\end{aligned}
$$

(a) When $n=1$. Applying [30, Lemma 3.2] to I_{k} and Lemma 12 to I_{k}, we have

$$
\begin{aligned}
\Lambda_{k} & =f\left(\frac{\pi}{2}\right)^{-\frac{1}{2}}[n i(f)+o(1)] a_{k}^{-1}+f^{\prime}\left(\frac{\pi}{2}\right) \cdot O(1) a_{k}^{-2} \log ^{2} a_{k} \\
& =f\left(\frac{\pi}{2}\right)^{-\frac{1}{2}}[n i(f)+o(1)] a_{k}^{-1}
\end{aligned}
$$

(b) When $n=2$. Applying [30, Lemma 3.2] ${ }^{1}$ to I_{k} and Lemma 12 to I_{k}, we have

$$
\begin{aligned}
\Lambda_{k} & =f\left(\frac{\pi}{2}\right)^{-\frac{1}{2}}[n i(f)+o(1)] a_{k}^{-2} \log a_{k}^{2}+f^{\prime}\left(\frac{\pi}{2}\right) \cdot O(1) a_{k}^{-2} \\
& =f\left(\frac{\pi}{2}\right)^{-\frac{1}{2}}[n i(f)+o(1)] a_{k}^{-2} \log a_{k}^{2} .
\end{aligned}
$$

The proof of this lemma is completed.
We are in position to complete the proof of Theorem 3.

[^1]Proof of Theorem 3. By [30, Theorem 1.1], we only need to obtain a uniform positive lower bound for rotationally symmetric solutions. Suppose to the contrary that there exists a sequence of rotationally symmetric solutions $\left\{H_{k}\right\}$ to equation (1) such that $\min _{S^{n}} H_{k} \rightarrow 0^{+}$as $k \rightarrow+\infty$. For each k, we define a_{k}, A_{k} and $H_{A_{k}}$ as in (8) and (9). By Lemma 4, $H_{A_{k}}$ is uniformly bounded from above and below. Then we have either $a_{k} \rightarrow+\infty$ or $a_{k} \rightarrow 0^{+}$.

Recall $H_{A_{k}}$ is a rotationally symmetric solution to equation (6) with A replaced by A_{k}. Applying the obstruction condition (4), we have the following

$$
\begin{align*}
0 & =\int_{0}^{\pi} \frac{f_{A_{k}}^{\prime}(\theta) \sin ^{n} \theta \cos \theta}{H_{A_{k}}^{n+1}(\theta)} \mathrm{d} \theta \tag{67}\\
& =\int_{0}^{\pi} \frac{f^{\prime}\left(\gamma_{a_{k}}(\theta)\right)}{H_{A_{k}}^{n+1}(\theta)} \cdot \frac{a_{k} \sin ^{n} \theta \cos \theta}{i_{a_{k}}^{2}(\theta)} \mathrm{d} \theta
\end{align*}
$$

For the case when $a_{k} \rightarrow+\infty$, applying Lemma 13 to (67), we have $n i(f)=0$. For the case when $a_{k} \rightarrow 0^{+}$, since by Blaschke selection theorem a subsequence of $\left\{H_{A_{k}}\right\}$ converges uniformly to some positive support function on S^{n}, we apply [30, Lemma 3.3] to (67), and see $p i(f)=0$. In both cases we reach a contradiction with our assumptions on f in Theorem 3. The proof of this theorem is completed.

4. Proof of Theorem 2

In this section, we prove Theorem 2, which dealing with the case when $n \geq 3$. The method given in the previous section is not applicable to the higher dimensional case. Instead, we use the variational method and blow-up analyses posted in [27].

By arguments in [27], in order to obtain a rotationally symmetric solution to Eq. (1), we only need to find a maximizer of

$$
\begin{equation*}
\sup _{|X|=\kappa_{n+1}} \inf _{\xi \in X} J[H(x)-\xi \cdot x], \tag{68}
\end{equation*}
$$

where the supremum is taken among all rotationally symmetric bounded convex bodies X in \mathbb{R}^{n+1} containing the origin with volume κ_{n+1}, the infimum is taken among all points $\xi \in X, H$ is the support function of X, and the functional J is given by

$$
\begin{equation*}
J[H]=\frac{1}{n+1} \int_{S^{n}} \frac{f}{H^{n+1}} \tag{69}
\end{equation*}
$$

Note that for each $H, \inf _{\xi \in X} J[H(x)-\xi \cdot x]$ is attained at a unique point $\xi \in X$. By the BlaschkeSantaló inequality (2), the maximizing problem (68) has an upper bound. But it may not admit a maximizer for some f, see [28]. So we need to impose additional conditions on f to obtain the existence of a maximizer. A class of these conditions can be found by the method of blow-up analysis.

Let $\left\{H_{k}\right\}$ be a maximizing sequence to (68). If it is uniformly bounded, by the Blaschke selection theorem, a subsequence of $\left\{H_{k}\right\}$ converges uniformly to a support function H_{∞} which would be a maximizer. If not, namely

$$
\begin{equation*}
\sup _{S^{n}} H_{k} \rightarrow+\infty \text { as } k \rightarrow \infty \tag{70}
\end{equation*}
$$

then we will deduce a contradiction by the assumptions of Theorem 2, and thus complete the proof of this theorem.

Let X_{k} be the convex body determined by H_{k}. For each k choose a unimodular linear transformation $A_{k}^{T} \in \mathrm{SL}(n+1)$ that normalizes X_{k}. Namely the convex body

$$
X_{A_{k}}:=A_{k}^{T}\left(X_{k}\right)
$$

is normalized. Denote its support function by $H_{A_{k}}$. Since $X_{A_{k}}$ has the same volume κ_{n+1}, they are uniformly bounded. On account of Blaschke selection theorem, we assume without loss of generality that $X_{A_{k}}$ converges to some normalized convex body \hat{X}, namely $H_{A_{k}}$ converges uniformly on S^{n} to \hat{H}, the support function of \hat{X}. One can prove that \hat{H} is positive on S^{n}. Applying formula (7) and the bounded convergence theorem, one gets

$$
\begin{align*}
J_{\text {sup }} & :=\lim _{k \rightarrow \infty} J\left[H_{k}\right] \\
& =\lim _{k \rightarrow \infty} \frac{1}{n+1} \int_{S^{n}} \frac{f_{A_{k}}}{H_{A_{k}}^{n+1}} \tag{71}\\
& =\frac{1}{n+1} \int_{S^{n}} \frac{\hat{f}}{\hat{H}^{n+1}},
\end{align*}
$$

where \hat{f} is the limit function of $f_{A_{k}}$. We want to find some rotationally symmetric H with volume κ_{n+1}, such that

$$
\begin{equation*}
J_{\text {sup }}<\inf _{\xi} J[H(x)-\xi \cdot x] . \tag{72}
\end{equation*}
$$

This is a contradiction, from which we will know (70) is false and then complete the proof of the theorem.

To construct (72), we need to find out the expression of \hat{f} first. Note by the rotational symmetry of X_{k}, the normalizing matrix A_{k}^{T} can be chosen as

$$
A_{k}^{T}=\operatorname{diag}\left(\lambda_{k}^{\frac{1}{n+1}}, \cdots, \lambda_{k}^{\frac{1}{n+1}}, \lambda_{k}^{-\frac{n}{n+1}}\right) \text { with } \lambda_{k}>0
$$

Recalling the definition in (7), we have

$$
f_{A_{k}}\left(x_{1}, \cdots, x_{n}, x_{n+1}\right)=f\left(\frac{\lambda_{k} x_{1}, \cdots, \lambda_{k} x_{n}, x_{n+1}}{\sqrt{\lambda_{k}^{2}\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)+x_{n+1}^{2}}}\right) .
$$

By the assumption (70), there are only two cases:

$$
\lambda_{k} \rightarrow 0 \text { or } \lambda_{k} \rightarrow \infty, \text { as } k \rightarrow \infty
$$

Correspondingly, we have

$$
\hat{f}\left(x_{1}, \cdots, x_{n}, x_{n+1}\right)=\left\{\begin{array}{ll}
f\left(e_{n+1}\right), & \text { if } x_{n+1}>0 ; \tag{73}\\
f\left(-e_{n+1}\right), & \text { if } x_{n+1}<0
\end{array} \text { when } \lambda_{k} \rightarrow 0\right.
$$

or

$$
\begin{equation*}
\hat{f}\left(x_{1}, \cdots, x_{n}, x_{n+1}\right)=f\left(\frac{x_{1}, \cdots, x_{n}, 0}{\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}}\right) \text { when } \lambda_{k} \rightarrow \infty \tag{74}
\end{equation*}
$$

For the case when $\lambda_{k} \rightarrow 0$, we can still use the arguments in [27, Section 4.1] to show (72) under the assumption $p i(f)>0$.

It remains to consider the case when $\lambda_{k} \rightarrow \infty$. Now the analyses in [21,27] are no longer suitable. We provide new blow-up analyses in the following. Since f is rotationally symmetric, one can see from (74) that

$$
\hat{f} \text { is a constant function on } S^{n} \text { when } \lambda_{k} \rightarrow \infty .
$$

This fact is crucial in our following proof.
A good upper bound of $J_{\text {sup }}$ will be needed.
Lemma 14. Assume $\lambda_{k} \rightarrow \infty$. There is $J_{\text {sup }} \leq \hat{f} \kappa_{n+1}$.
Proof. Recall [27, (3.12)]:

$$
J_{\text {sup }}=\inf _{\xi \in \hat{X}} \frac{1}{n+1} \int_{S^{n}} \frac{\hat{f}(x) \mathrm{d} S(x)}{(\hat{H}(x)-\xi \cdot x)^{n+1}} .
$$

Note \hat{f} is now a constant, by the Blaschke-Santaló inequality (2), we have

$$
\begin{aligned}
J_{\text {sup }} & =\hat{f} \inf _{\xi \in \hat{X}} \frac{1}{n+1} \int_{S^{n}} \frac{\mathrm{~d} S(x)}{(\hat{H}(x)-\xi \cdot x)^{n+1}} \\
& \leq \hat{f} \kappa_{n+1}^{2} / \operatorname{vol}(\hat{X}) \\
& =\hat{f} \kappa_{n+1},
\end{aligned}
$$

which is just our lemma.
To prove (72), we consider a family of ellipsoids:

$$
E_{a}=\left\{\xi \in \mathbb{R}^{n+1}:|A(a) \xi| \leq 1\right\}
$$

where $A(a) \in \mathrm{SL}(n+1)$ is given by

$$
A(a)=\operatorname{diag}\left(a^{\frac{1}{n+1}}, \cdots, a^{\frac{1}{n+1}}, a^{-\frac{n}{n+1}}\right), \quad a>0
$$

Note each E_{a} is a rotationally symmetric ellipsoid with volume κ_{n+1}. And its support function, H_{a}, is given by

$$
H_{a}(x)=\left|A(a)^{-1} x\right|, \quad \forall x \in S^{n}
$$

Now we define

$$
\begin{equation*}
J(a):=\inf _{\xi \in E_{a}} J\left[H_{a}(x)-\xi \cdot x\right] . \tag{75}
\end{equation*}
$$

By (7), we have

$$
\begin{align*}
J(a) & =\inf _{\xi \in E_{a}} \frac{1}{n+1} \int_{S^{n}} \frac{f}{\left(H_{a}-\xi \cdot x\right)^{n+1}} \\
& =\inf _{|\xi| \leq 1} \frac{1}{n+1} \int_{S^{n}} \frac{f_{A(a)}}{(1-\xi \cdot x)^{n+1}} \tag{76}\\
& =: \frac{1}{n+1} \int_{S^{n}} \frac{f_{a}}{\left(1-\xi_{a} \cdot x\right)^{n+1}}
\end{align*}
$$

where the infimum is attained at ξ_{a}, and $f_{a}=f_{A(a)}$ is defined as

$$
\begin{equation*}
f_{a}\left(x_{1}, \cdots, x_{n}, x_{n+1}\right)=f\left(\frac{a x_{1}, \cdots, a x_{n}, x_{n+1}}{\sqrt{a^{2}\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)+x_{n+1}^{2}}}\right) . \tag{77}
\end{equation*}
$$

Recalling (74), we see when $a \rightarrow \infty$ that

$$
\begin{equation*}
f_{a} \rightarrow \hat{f} \text { a.e. on } S^{n} \tag{78}
\end{equation*}
$$

For the function f defined on S^{n}, one can extend it to \mathbb{R}^{n+1} such that it is homogeneous of degree zero. Note that f remains rotationally symmetric in the whole \mathbb{R}^{n+1}. For a point $x \in$ \mathbb{R}^{n+1}, we write $x=\left(x^{\prime}, z\right)$ where

$$
x^{\prime}=\left(x_{1}, \cdots, x_{n}\right), \quad z=x_{n+1}
$$

Then we can use the standard notations in Euclidean space such as $f_{z}^{\prime}, f_{z z}^{\prime \prime}$ for partial derivatives of f with respect to z.

The following analysis about f_{a} will be needed.
Lemma 15. For any $\varphi \in C\left(S^{n}\right)$, we have as $a \rightarrow \infty$ that

$$
\begin{align*}
& \int_{S^{n}} \varphi(x)\left[f_{a}(x)-\hat{f}\right] \mathrm{d} S(x) \\
&=\frac{1}{a} \cdot f_{z}^{\prime}\left(e_{1}\right) \int_{S^{n}} \frac{\varphi(x) z}{\left|x^{\prime}\right|} \mathrm{d} S(x)+\frac{1}{a^{2}} \cdot f_{z z}^{\prime \prime}\left(e_{1}\right) \int_{S^{n}} \frac{\varphi(x) z^{2}}{2\left|x^{\prime}\right|^{2}} \mathrm{~d} S(x)+\frac{o(1)}{a^{2}} . \tag{79}
\end{align*}
$$

Proof. Let Λ_{a} denote the integral on the left hand side of (79). By virtue of the Taylor's expansion, for each $x=\left(x^{\prime}, z\right) \in S^{n}$ with $x^{\prime} \neq 0$, there exists a $t(x) \in(0,1 / a)$ such that

$$
f_{a}(x)-\hat{f}=f\left(x^{\prime}, z / a\right)-f\left(x^{\prime}, 0\right)=f_{z}^{\prime}\left(x^{\prime}, 0\right) \frac{z}{a}+\frac{1}{2} f_{z z}^{\prime \prime}\left(x^{\prime}, t z\right) \frac{z^{2}}{a^{2}} .
$$

Then

$$
\begin{align*}
\Lambda_{a} & =\frac{1}{a} \int_{S^{n}} \varphi(x) f_{z}^{\prime}\left(x^{\prime}, 0\right) z \mathrm{~d} S(x)+\frac{1}{2 a^{2}} \int_{S^{n}} \varphi(x) f_{z z}^{\prime \prime}\left(x^{\prime}, t z\right) z^{2} \mathrm{~d} S(x) \tag{80}\\
& =: \frac{1}{a} I+\frac{1}{2 a^{2}} I I .
\end{align*}
$$

To deal with these integrals, we need the following formula:

$$
\begin{equation*}
\int_{S^{n}} g(x) \mathrm{d} S(x)=\sigma_{n-1} \int_{0}^{\pi} g(\cdot, \cos \theta) \sin ^{n-1} \theta \mathrm{~d} \theta \tag{81}
\end{equation*}
$$

for any rotationally symmetric and integrable function g defined on S^{n}. One can easily check it by the coarea formula.

Now for I, since f_{z}^{\prime} is homogeneous of degree -1 , then

$$
f_{z}^{\prime}\left(x^{\prime}, 0\right)=\frac{1}{\left|x^{\prime}\right|} f_{z}^{\prime}\left(\frac{x^{\prime}}{\left|x^{\prime}\right|}, 0\right)=\frac{1}{\left|x^{\prime}\right|} f_{z}^{\prime}\left(e_{1}\right)
$$

Therefore

$$
\begin{equation*}
I=f_{z}^{\prime}\left(e_{1}\right) \int_{S^{n}} \frac{\varphi(x) z}{\left|x^{\prime}\right|} \mathrm{d} S(x) \tag{82}
\end{equation*}
$$

We remark that I is well defined, since when $n \geq 3$,

$$
\int_{S^{n}} \frac{z}{\left|x^{\prime}\right|} \mathrm{d} S(x)=\sigma_{n-1} \int_{0}^{\pi} \cos \theta \sin ^{n-2} \theta \mathrm{~d} \theta=C(n)<+\infty .
$$

For II, note that $f_{z z}^{\prime \prime}$ is homogeneous of degree -2 , then

$$
\begin{aligned}
\left|\varphi(x) f_{z z}^{\prime \prime}\left(x^{\prime}, t z\right) z^{2}\right| & =\left|\varphi(x) f_{z z}^{\prime \prime}\left(\frac{x^{\prime}, t z}{\sqrt{\left|x^{\prime}\right|^{2}+t^{2} z^{2}}}\right) \frac{z^{2}}{\left|x^{\prime}\right|^{2}+t^{2} z^{2}}\right| \\
& \leq\|\varphi\|_{C^{0}} \cdot\|f\|_{C^{2}} \cdot \frac{z^{2}}{\left|x^{\prime}\right|^{2}}
\end{aligned}
$$

which is integrable on S^{n}, since when $n \geq 3$,

$$
\int_{S^{n}} \frac{z^{2}}{\left|x^{\prime}\right|^{2}} \mathrm{~d} S(x)=\sigma_{n-1} \int_{0}^{\pi} \cos ^{2} \theta \sin ^{n-3} \theta \mathrm{~d} \theta=C(n)<+\infty .
$$

Applying the dominated convergence theorem to II, we obtain

$$
\begin{aligned}
\lim _{a \rightarrow \infty} I I & =\int_{S^{n}} \varphi(x) f_{z z}^{\prime \prime}\left(x^{\prime}, 0\right) z^{2} \mathrm{~d} S(x) \\
& =\int_{S^{n}} \varphi(x) f_{z z}^{\prime \prime}\left(\frac{x^{\prime}}{\left|x^{\prime}\right|}, 0\right) \frac{z^{2}}{\left|x^{\prime}\right|^{2}} \mathrm{~d} S(x) \\
& =f_{z z}^{\prime \prime}\left(e_{1}\right) \int_{S^{n}} \frac{\varphi(x) z^{2}}{\left|x^{\prime}\right|^{2}} \mathrm{~d} S(x)
\end{aligned}
$$

Namely

$$
\begin{equation*}
I I=f_{z z}^{\prime \prime}\left(e_{1}\right) \int_{S^{n}} \frac{\varphi(x) z^{2}}{\left|x^{\prime}\right|^{2}} \mathrm{~d} S(x)+o(1) \text { as } a \rightarrow \infty \tag{83}
\end{equation*}
$$

Now combining (80), (82) and (83), we will obtain (79).
We also need to analyze ξ_{a} defined in (76). Since f_{a} is rotationally symmetric, by [27, (3.9)], ξ_{a} can be written as

$$
\begin{equation*}
\xi_{a}=\eta_{a} e_{n+1} \text { for some } \eta_{a} \in \mathbb{R} \tag{84}
\end{equation*}
$$

The following asymptotic behavior of η_{a} will be needed.
Lemma 16. When $a \rightarrow \infty$, we have

$$
\begin{equation*}
\eta_{a}=\left(\frac{-b_{1} f_{z}^{\prime}\left(e_{1}\right)}{(n+2) b_{0} \hat{f}}+o(1)\right) \frac{1}{a} \tag{85}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{0}=\int_{S^{n}} z^{2} \mathrm{~d} S(x), \quad b_{1}=\int_{S^{n}} \frac{z^{2}}{\left|x^{\prime}\right|} \mathrm{d} S(x) . \tag{86}
\end{equation*}
$$

Proof. Since $\left|\xi_{a}\right| \leq 1$, we assume without loss of generality that $\xi_{a} \rightarrow \xi_{\infty}$ as $a \rightarrow \infty$. By the definition of ξ_{a} in (76), for each $|\xi|<1$, there is

$$
\int_{S^{n}} \frac{f_{a}}{\left(1-\xi_{a} \cdot x\right)^{n+1}} \leq \int_{S^{n}} \frac{f_{a}}{(1-\xi \cdot x)^{n+1}}
$$

Passing to the limit and recalling (78), we obtain

$$
\int_{S^{n}} \frac{\hat{f}}{\left(1-\xi_{\infty} \cdot x\right)^{n+1}} \leq \int_{S^{n}} \frac{\hat{f}}{(1-\xi \cdot x)^{n+1}}, \quad \forall|\xi|<1
$$

Note \hat{f} is a constant, there is

$$
\int_{S^{n}} \frac{1}{\left(1-\xi_{\infty} \cdot x\right)^{n+1}}=\inf _{|\xi|<1} \int_{S^{n}} \frac{1}{(1-\xi \cdot x)^{n+1}}
$$

Thus $\xi_{\infty}=0$. Namely $\xi_{a} \rightarrow 0$ as $a \rightarrow \infty$, which implies

$$
\begin{equation*}
\eta_{a} \rightarrow 0 \text { as } a \rightarrow \infty . \tag{87}
\end{equation*}
$$

By definition, ξ_{a} is the unique minimum point of

$$
\int_{S^{n}} \frac{f_{a}}{(1-\xi \cdot x)^{n+1}}
$$

which is a strictly convex function with respect to ξ. The vanishing first order derivatives yield

$$
\int_{S^{n}} \frac{f_{a}}{\left(1-\xi_{a} \cdot x\right)^{n+2}} x_{i}=0, \quad i=1,2, \cdots, n+1 .
$$

Recall (84) and that f_{a} is rotationally symmetric, these equalities are equivalent to

$$
\begin{equation*}
\int_{S^{n}} \frac{f_{a} x_{n+1}}{\left(1-\eta_{a} x_{n+1}\right)^{n+2}}=0 . \tag{88}
\end{equation*}
$$

For simplicity, we write

$$
\phi(t)=-\frac{1}{t^{n+2}}, \quad \forall t>0
$$

Recall $x=\left(x^{\prime}, z\right)$, then (88) says

$$
\begin{equation*}
\int_{S^{n}} \phi\left(1-\eta_{a} z\right) f_{a} z \mathrm{~d} S(x)=0 \tag{89}
\end{equation*}
$$

By (87), for sufficiently large a, there is $\left|\eta_{a}\right|<1 / 2$. Then

$$
\frac{1}{2}<1-\eta_{a} z<\frac{3}{2} .
$$

Thus

$$
\phi\left(1-\eta_{a} z\right)=\phi(1)-\phi^{\prime}(1) \eta_{a} z+\frac{1}{2} \phi^{\prime \prime}(\tau) \eta_{a}^{2} z^{2}
$$

where τ varies in (1/2,3/2). Inserting it into (89), we obtain

$$
\phi(1) \int_{S^{n}} f_{a} z \mathrm{~d} S(x)-\phi^{\prime}(1) \eta_{a} \int_{S^{n}} f_{a} z^{2} \mathrm{~d} S(x)+\frac{1}{2} \eta_{a}^{2} \int_{S^{n}} \phi^{\prime \prime}(\tau) f_{a} z^{3} \mathrm{~d} S(x)=0,
$$

which obviously can be written as

$$
\begin{equation*}
\phi(1) \int_{S^{n}} f_{a} z \mathrm{~d} S(x)-\phi^{\prime}(1) \eta_{a} \int_{S^{n}} f_{a} z^{2} \mathrm{~d} S(x)+O(1) \eta_{a}^{2}=0 . \tag{90}
\end{equation*}
$$

Recalling \hat{f} is a constant, and applying Lemma 15, we have as $a \rightarrow \infty$ that

$$
\begin{align*}
\int_{S^{n}} f_{a} z \mathrm{~d} S(x) & =\int_{S^{n}} z\left(f_{a}-\hat{f}\right) \mathrm{d} S(x) \\
& =\frac{1}{a}\left(f_{z}^{\prime}\left(e_{1}\right) \int_{S^{n}} \frac{z^{2}}{\left|x^{\prime}\right|} \mathrm{d} S(x)+o(1)\right) \tag{91}\\
& =\frac{1}{a}\left[b_{1} f_{z}^{\prime}\left(e_{1}\right)+o(1)\right]
\end{align*}
$$

By (78), there is

$$
\begin{align*}
\int_{S^{n}} f_{a} z^{2} \mathrm{~d} S(x) & =\hat{f} \int_{S^{n}} z^{2} \mathrm{~d} S(x)+o(1) \tag{92}\\
& =b_{0} \hat{f}+o(1)
\end{align*}
$$

Now combining (90), (91) and (92), we obtain as $a \rightarrow \infty$ that

$$
\phi(1)\left[b_{1} f_{z}^{\prime}\left(e_{1}\right)+o(1)\right] \frac{1}{a}-\phi^{\prime}(1) \eta_{a}\left[b_{0} \hat{f}+o(1)\right]+O(1) \eta_{a}^{2}=0
$$

which yields

$$
\begin{aligned}
\eta_{a} & =\frac{\phi(1)\left[b_{1} f_{z}^{\prime}\left(e_{1}\right)+o(1)\right]}{\phi^{\prime}(1)\left[b_{0} \hat{f}+o(1)\right]} \cdot \frac{1}{a} \\
& =\left(\frac{\phi(1) b_{1} f_{z}^{\prime}\left(e_{1}\right)}{\phi^{\prime}(1) b_{0} \hat{f}}+o(1)\right) \frac{1}{a} .
\end{aligned}
$$

Observing $\phi(1)=-1$ and $\phi^{\prime}(1)=n+2$, we obtain (85).
Now we can obtain the asymptotic behavior of $J(a)$ defined in (75)-(76).

Lemma 17. When $a \rightarrow \infty$, we have

$$
\begin{equation*}
J(a)=\hat{f} \kappa_{n+1}+\left(\frac{b_{2} f_{z z}^{\prime \prime}\left(e_{1}\right)}{2(n+1)}-\frac{b_{1}^{2} f_{z}^{\prime}\left(e_{1}\right)^{2}}{2(n+2) b_{0} \hat{f}}+o(1)\right) \frac{1}{a^{2}}, \tag{93}
\end{equation*}
$$

where b_{0} and b_{1} are given in (86), and

$$
\begin{equation*}
b_{2}=\int_{S^{n}} \frac{z^{2}}{\left|x^{\prime}\right|^{2}} \mathrm{~d} S(x) \tag{94}
\end{equation*}
$$

Proof. For simplicity, we write

$$
\phi(t)=\frac{1}{n+1} t^{-n-1}, \quad \forall t>0 .
$$

Then (76) says

$$
\begin{align*}
J(a) & =\int_{S^{n}} \phi\left(1-\xi_{a} \cdot x\right) f_{a} \mathrm{~d} S(x) \\
& =\int_{S^{n}} \phi\left(1-\eta_{a} z\right) f_{a} \mathrm{~d} S(x), \tag{95}
\end{align*}
$$

where (84) and $x=\left(x^{\prime}, z\right)$ have been used for the second equality. By Lemma 16, one can assume

$$
\frac{1}{2}<1-\eta_{a} z<\frac{3}{2}
$$

for sufficiently large a. Then

$$
\phi\left(1-\eta_{a} z\right)=\phi(1)-\phi^{\prime}(1) \eta_{a} z+\frac{1}{2} \phi^{\prime \prime}(1) \eta_{a}^{2} z^{2}-\frac{1}{6} \phi^{\prime \prime \prime}(\tau) \eta_{a}^{3} z^{3},
$$

where τ varies in (1/2,3/2). Inserting it into (95), we obtain

$$
\begin{aligned}
J(a) & =\phi(1) \int_{S^{n}} f_{a}-\phi^{\prime}(1) \eta_{a} \int_{S^{n}} f_{a} z+\frac{1}{2} \phi^{\prime \prime}(1) \eta_{a}^{2} \int_{S^{n}} f_{a} z^{2}-\frac{1}{6} \eta_{a}^{3} \int_{S^{n}} \phi^{\prime \prime \prime}(\tau) f_{a} z^{3} \\
& =\phi(1) \int_{S^{n}} f_{a}-\phi^{\prime}(1) \eta_{a} \int_{S^{n}} f_{a} z+\frac{1}{2} \phi^{\prime \prime}(1) \eta_{a}^{2} \int_{S^{n}} f_{a} z^{2}+O(1) \eta_{a}^{3} .
\end{aligned}
$$

Recalling (87), (91) and (92), we have as $a \rightarrow \infty$ that

$$
J(a)=\phi(1) \int_{S^{n}} f_{a}-\phi^{\prime}(1) \eta_{a}\left[b_{1} f_{z}^{\prime}\left(e_{1}\right)+o(1)\right] \frac{1}{a}+\frac{1}{2} \phi^{\prime \prime}(1) \eta_{a}^{2}\left[b_{0} \hat{f}+o(1)\right] .
$$

Note by Lemma 16,

$$
\eta_{a}=\left(\frac{-b_{1} f_{z}^{\prime}\left(e_{1}\right)}{(n+2) b_{0} \hat{f}}+o(1)\right) \frac{1}{a}
$$

one gets

$$
\begin{aligned}
J(a)= & \phi(1) \int_{S^{n}} f_{a}-\phi^{\prime}(1)\left(\frac{-b_{1}^{2} f_{z}^{\prime}\left(e_{1}\right)^{2}}{(n+2) b_{0} \hat{f}}+o(1)\right) \frac{1}{a^{2}} \\
& +\frac{1}{2} \phi^{\prime \prime}(1)\left(\frac{b_{1}^{2} f_{z}^{\prime}\left(e_{1}\right)^{2}}{(n+2)^{2} b_{0} \hat{f}}+o(1)\right) \frac{1}{a^{2}}
\end{aligned}
$$

Observe $\phi(1)=\frac{1}{n+1}, \phi^{\prime}(1)=-1$ and $\phi^{\prime \prime}(1)=n+2$, then $J(a)$ is simplified as

$$
\begin{align*}
J(a) & =\frac{1}{n+1} \int_{S^{n}} f_{a}+\left(\frac{-b_{1}^{2} f_{z}^{\prime}\left(e_{1}\right)^{2}}{(n+2) b_{0} \hat{f}}+o(1)\right) \frac{1}{a^{2}}+\frac{1}{2}\left(\frac{b_{1}^{2} f_{z}^{\prime}\left(e_{1}\right)^{2}}{(n+2) b_{0} \hat{f}}+o(1)\right) \frac{1}{a^{2}} \\
& =\frac{1}{n+1} \int_{S^{n}} f_{a}+\left(\frac{-b_{1}^{2} f_{z}^{\prime}\left(e_{1}\right)^{2}}{2(n+2) b_{0} \hat{f}}+o(1)\right) \frac{1}{a^{2}} \tag{96}
\end{align*}
$$

By Lemma 15, when $a \rightarrow \infty$,

$$
\begin{aligned}
\int_{S^{n}}\left[f_{a}(x)-\hat{f}\right] \mathrm{d} S(x) & =\frac{1}{a^{2}} \cdot f_{z z}^{\prime \prime}\left(e_{1}\right) \int_{S^{n}} \frac{z^{2}}{2\left|x^{\prime}\right|^{2}} \mathrm{~d} S(x)+\frac{o(1)}{a^{2}} \\
& =\frac{1}{a^{2}}\left(\frac{1}{2} b_{2} f_{z z}^{\prime \prime}\left(e_{1}\right)+o(1)\right)
\end{aligned}
$$

namely

$$
\begin{equation*}
\frac{1}{n+1} \int_{S^{n}} f_{a}=\hat{f} \kappa_{n+1}+\frac{1}{a^{2}}\left(\frac{b_{2} f_{z z}^{\prime \prime}\left(e_{1}\right)}{2(n+1)}+o(1)\right) \tag{97}
\end{equation*}
$$

Inserting (97) into (96), we obtain when $a \rightarrow \infty$ that

$$
J(a)=\hat{f} \kappa_{n+1}+\left(\frac{b_{2} f_{z z}^{\prime \prime}\left(e_{1}\right)}{2(n+1)}-\frac{b_{1}^{2} f_{z}^{\prime}\left(e_{1}\right)^{2}}{2(n+2) b_{0} \hat{f}}+o(1)\right) \frac{1}{a^{2}}
$$

which is just (93).
Now by Lemma 17, if

$$
\begin{equation*}
\frac{b_{2} f_{z z}^{\prime \prime}\left(e_{1}\right)}{2(n+1)}-\frac{b_{1}^{2} f_{z}^{\prime}\left(e_{1}\right)^{2}}{2(n+2) b_{0} \hat{f}}>0 \tag{98}
\end{equation*}
$$

then for sufficiently large a there is

$$
J(a)>\hat{f} \kappa_{n+1} .
$$

Recalling Lemma 14 , for the case $\lambda_{k} \rightarrow \infty$, we have $J_{\text {sup }} \leq \hat{f} \kappa_{n+1}$. Thus

$$
J(a)>J_{\text {sup }}
$$

for sufficiently large a. Recalling the definition of $J(a)$ in (75), we see this inequality is just (72).
So to obtain (72) for the case when $\lambda_{k} \rightarrow \infty$, it remains to check (98). Recalling our notations, we have

$$
f(\theta)=f(\cdot, \cos \theta)=f(\sin \theta, 0, \cdots, 0, \cos \theta) .
$$

Note that $f\left(\frac{\pi}{2}\right)=f\left(e_{1}\right)=\hat{f}$. Also there is

$$
\begin{aligned}
f^{\prime}(\theta) & =\cos \theta f_{1}^{\prime}-\sin \theta f_{z}^{\prime} \\
& =-\cos \theta f_{z}^{\prime} \cot \theta-\sin \theta f_{z}^{\prime} \\
& =-\frac{f_{z}^{\prime}}{\sin \theta},
\end{aligned}
$$

where that $\nabla f(x) \cdot x=0$ has been used for the second equality. Therefore one immediately gets that $f^{\prime}\left(\frac{\pi}{2}\right)=-f_{z}^{\prime}\left(e_{1}\right)$, and that

$$
-n i(f)=f^{\prime \prime}\left(\frac{\pi}{2}\right)=f_{z z}^{\prime \prime}\left(e_{1}\right)
$$

Now (98) is equivalent to

$$
-\frac{b_{2} n i(f)}{2(n+1)}-\frac{b_{1}^{2} f^{\prime}\left(\frac{\pi}{2}\right)^{2}}{2(n+2) b_{0} f\left(\frac{\pi}{2}\right)}>0,
$$

namely

$$
\begin{equation*}
n i(f)<-\frac{(n+1) b_{1}^{2}}{(n+2) b_{0} b_{2}} f^{\prime}\left(\frac{\pi}{2}\right)^{2} / f\left(\frac{\pi}{2}\right) \tag{99}
\end{equation*}
$$

Here we recall that b_{0}, b_{1} and b_{2} are given in (86) and (94), which depend only on n and can be easily worked out by formula (81). Observe that

$$
\begin{aligned}
b_{1}^{2} & =\left(\int_{S^{n}} \frac{z^{2}}{\left|x^{\prime}\right|} \mathrm{d} S(x)\right)^{2} \\
& <\int_{S^{n}} z^{2} \mathrm{~d} S(x) \cdot \int_{S^{n}} \frac{z^{2}}{\left|x^{\prime}\right|^{2}} \mathrm{~d} S(x) \\
& =b_{0} b_{2},
\end{aligned}
$$

then the assumption on $n i(f)$ in Theorem 2 implies (99), namely (98).

Now we have obtained (72) in both possible blow-up cases under assumptions of Theorem 2. According to our previous discussion, the proof of this theorem is completed.

References

[1] J. Ai, K.-S. Chou, J. Wei, Self-similar solutions for the anisotropic affine curve shortening problem, Calc. Var. Partial Differential Equations 13 (2001) 311-337.
[2] L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel, Axioms and fundamental equations of image processing, Arch. Ration. Mech. Anal. 123 (1993) 199-257.
[3] B. Andrews, Evolving convex curves, Calc. Var. Partial Differential Equations 7 (1998) 315-371.
[4] B. Andrews, Motion of hypersurfaces by Gauss curvature, Pacific J. Math. 195 (2000) 1-34.
[5] K.J. Böröczky, P. Hegedűs, G. Zhu, On the discrete logarithmic Minkowski problem, Int. Math. Res. Not. IMRN (2016) 1807-1838.
[6] K.J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc. 26 (2013) 831-852.
[7] P. Bryan, M.N. Ivaki, J. Scheuer, A unified flow approach to smooth, even L_{p}-Minkowski problems, arXiv:1608. 02770v1.
[8] E. Calabi, Complete affine hyperspheres. I, in: Symposia Mathematica, vol. X, Convegno di Geometria Differenziale, INDAM, Rome, 1971, Academic Press, London, 1972, pp. 19-38.
[9] S.-Y.A. Chang, M.J. Gursky, P.C. Yang, The scalar curvature equation on 2- and 3-spheres, Calc. Var. Partial Differential Equations 1 (1993) 205-229.
[10] W. Chen, L_{p} Minkowski problem with not necessarily positive data, Adv. Math. 201 (2006) 77-89.
[11] K.-S. Chou, X.-J. Wang, The L_{p}-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math. 205 (2006) 33-83.
[12] K.-S. Chou, X.-P. Zhu, The Curve Shortening Problem, Chapman \& Hall/CRC, Boca Raton, FL, 2001.
[13] J. Dou, M. Zhu, The two dimensional L_{p} Minkowski problem and nonlinear equations with negative exponents, Adv. Math. 230 (2012) 1209-1221.
[14] C. Haberl, F.E. Schuster, General L_{p} affine isoperimetric inequalities, J. Differential Geom. 83 (2009) 1-26.
[15] Y. He, Q.-R. Li, X.-J. Wang, Multiple solutions of the L_{p}-Minkowski problem, Calc. Var. Partial Differential Equations 55 (2016) 117.
[16] Y. Huang, J. Liu, L. Xu, On the uniqueness of L_{p}-Minkowski problems: the constant p-curvature case in \mathbb{R}^{3}, Adv. Math. 281 (2015) 906-927.
[17] M.N. Ivaki, A flow approach to the L_{-2} Minkowski problem, Adv. in Appl. Math. 50 (2013) 445-464.
[18] M.N. Ivaki, A. Stancu, Volume preserving centro-affine normal flows, Comm. Anal. Geom. 21 (2013) 671-685.
[19] H. Jian, J. Lu, X.-J. Wang, Nonuniqueness of solutions to the L_{p}-Minkowski problem, Adv. Math. 281 (2015) 845-856.
[20] H. Jian, J. Lu, X.-J. Wang, A priori estimates and existence of solutions to the prescribed centroaffine curvature problem, J. Funct. Anal. 274 (2018) 826-862.
[21] H. Jian, J. Lu, G. Zhu, Mirror symmetric solutions to the centro-affine Minkowski problem, Calc. Var. Partial Differential Equations 55 (2016) 41.
[22] H. Jian, X.-J. Wang, Bernstein theorem and regularity for a class of Monge-Ampère equations, J. Differential Geom. 93 (2013) 431-469.
[23] H. Jian, X.-j. Wang, Optimal boundary regularity for nonlinear singular elliptic equations, Adv. Math. 251 (2014) 111-126.
[24] M. Jiang, L. Wang, J. Wei, 2π-periodic self-similar solutions for the anisotropic affine curve shortening problem, Calc. Var. Partial Differential Equations 41 (2011) 535-565.
[25] M. Jiang, J. Wei, 2π-periodic self-similar solutions for the anisotropic affine curve shortening problem II, Discrete Contin. Dyn. Syst. 36 (2016) 785-803.
[26] J. Kim, S. Reisner, Local minimality of the volume-product at the simplex, Mathematika 57 (2011) 121-134.
[27] J. Lu, A generalized rotationally symmetric case of the centroaffine Minkowski problem, J. Differential Equations 264 (2018) 5838-5869.
[28] J. Lu, Nonexistence of maximizers for the functional of the centroaffine Minkowski problem, Sci. China Math. 61 (2018) 511-516.
[29] J. Lu, H. Jian, Topological degree method for the rotationally symmetric L_{p}-Minkowski problem, Discrete Contin. Dyn. Syst. 36 (2016) 971-980.
[30] J. Lu, X.-J. Wang, Rotationally symmetric solutions to the L_{p}-Minkowski problem, J. Differential Equations 254 (2013) 983-1005.
[31] E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993) 131-150.
[32] E. Lutwak, V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41 (1995) 227-246.
[33] E. Lutwak, D. Yang, G. Zhang, Sharp affine L_{p} Sobolev inequalities, J. Differential Geom. 62 (2002) 17-38.
[34] E. Lutwak, D. Yang, G. Zhang, On the L_{p}-Minkowski problem, Trans. Amer. Math. Soc. 356 (2004) 4359-4370.
[35] E. Lutwak, G. Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997) 1-16.
[36] K. Nomizu, T. Sasaki, Affine Differential Geometry, Cambridge Tracts in Mathematics, vol. 111, Cambridge University Press, Cambridge, 1994, Geometry of affine immersions.
[37] R. Schneider, Convex Bodies: the Brunn-Minkowski Theory, expanded ed., Encyclopedia of Mathematics and Its Applications, vol. 151, Cambridge University Press, Cambridge, 2014.
[38] R. Schoen, D. Zhang, Prescribed scalar curvature on the n-sphere, Calc. Var. Partial Differential Equations 4 (1996) 1-25.
[39] A. Stancu, The discrete planar L_{0}-Minkowski problem, Adv. Math. 167 (2002) 160-174.
[40] V. Umanskiy, On solvability of two-dimensional L_{p}-Minkowski problem, Adv. Math. 180 (2003) 176-186.
[41] J. Urbas, The equation of prescribed Gauss curvature without boundary conditions, J. Differential Geom. 20 (1984) 311-327.
[42] E. Werner, D. Ye, New L_{p} affine isoperimetric inequalities, Adv. Math. 218 (2008) 762-780.
[43] S. Yijing, L. Yiming, The planar Orlicz Minkowski problem in the L^{1}-sense, Adv. Math. 281 (2015) 1364-1383.
[44] G. Zhu, The logarithmic Minkowski problem for polytopes, Adv. Math. 262 (2014) 909-931.
[45] G. Zhu, The centro-affine Minkowski problem for polytopes, J. Differential Geom. 101 (2015) 159-174.
[46] G. Zhu, The L_{p} Minkowski problem for polytopes for $0<p<1$, J. Funct. Anal. 269 (2015) 1070-1094.

[^0]: * This work was supported by Natural Science Foundation of China (11871432, 11401527).

 E-mail address: lj-tshu04@163.com.

[^1]: ${ }^{1}$ One can check that the conclusion for $n=2$ is still true under the weaker assumption $f \in C^{2, \alpha}\left(S^{2}\right)$.

