



#### Available online at www.sciencedirect.com

## **ScienceDirect**

Differential Equations

Journal of

J. Differential Equations 266 (2019) 4394-4431

www.elsevier.com/locate/jde

# A remark on rotationally symmetric solutions to the centroaffine Minkowski problem \*

### Jian Lu

Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China
Received 1 April 2018
Available online 6 November 2018

#### Abstract

In this paper we study the solvability of the rotationally symmetric centroaffine Minkowski problem. By delicate blow-up analyses, we remove a technical condition in the existence result obtained by Lu and Wang [30].

© 2018 Elsevier Inc. All rights reserved.

MSC: 35J96; 35J75; 53A15; 53A07

Keywords: Monge-Ampère equation; Centroaffine Minkowski problem; Existence of solutions; Blow-up analyses

#### 1. Introduction

Given a convex body X in the Euclidean space  $\mathbb{R}^{n+1}$  containing the origin, the *centroaffine* curvature of  $\partial X$  at point p is by definition equal to  $K/d^{n+2}$ , where K is the Gauss curvature and d is the distance from the origin to the tangent hyperplane of  $\partial X$  at p. The centroaffine curvature is invariant under unimodular linear transforms in  $\mathbb{R}^{n+1}$  and has received much attention in geometry [36,37]. The *centroaffine Minkowski problem* [11] is a prescribed centroaffine curvature problem, which in the smooth case is equivalent to solving the following Monge–Ampère type equation

 <sup>★</sup> This work was supported by Natural Science Foundation of China (11871432, 11401527).
 E-mail address: lj-tshu04@163.com.

$$\det(\nabla^2 H + HI) = \frac{f}{H^{n+2}} \quad \text{on } S^n, \tag{1}$$

where f is a given positive function, H is the support function of a bounded convex body X in  $\mathbb{R}^{n+1}$ , I is the unit matrix,  $\nabla^2 H = (\nabla_{ij} H)$  is the Hessian matrix of covariant derivatives of H with respect to an orthonormal frame on  $S^n$ . When f is a constant, this equation describes affine hyperspheres of elliptic type, and all its solutions are ellipsoids centered at the origin [8].

Equation (1) is also the special case of the  $L_p$ -Minkowski problem with p=-n-1. The  $L_p$ -Minkowski problem, introduced by Lutwak [31], is an important generalization of the classical Minkowski problem, and is a basic problem in the  $L_p$ -Brunn–Minkowski theory in modern convex geometry. It has attracted great attention over the last two decades, see e.g. [5,6,10,11,14, 16,18–21,26,32–34,39,40,42,44,46] and references therein.

Equation (1) naturally arises in anisotropic Gauss curvature flows and describes their self-similar solutions [4,7,12,17,41]. Besides, its parabolic form can be used for image processing [2]. Eq. (1) can be reduced to a singular Monge–Ampère equation in the half Euclidean space  $\mathbb{R}^{n+1}_+$ , the regularity of which was strongly studied in [22,23].

Equation (1) corresponds to the critical case of the famous Blaschke–Santaló inequality in convex geometry [35]:

$$\operatorname{vol}(X) \inf_{\xi \in X} \frac{1}{n+1} \int_{S^n} \frac{\mathrm{d}S(x)}{(H(x) - \xi \cdot x)^{n+1}} \le \kappa_{n+1}^2, \tag{2}$$

where X is any convex body in  $\mathbb{R}^{n+1}$ ,  $\operatorname{vol}(X)$  is the volume of the convex body X, H is the support function of X, and  $\kappa_{n+1}$  is the volume of the unit ball in  $\mathbb{R}^{n+1}$ . Also Eq. (1) remains invariant under projective transforms on  $S^n$  [11,30]. When f is a constant function, it only has constant solutions up to projective transformations. This result has been known for a long time, see e.g. [8], which implies that there is no a priori estimates on solutions for general f without additional assumptions. Besides, Chou and Wang [11] found an obstruction for solutions to Eq. (1), which means it may have no solution for some f. On the other hand, it may also have many solutions for some f [15]. This situation is similar, in some aspects, to the prescribed scalar curvature problem on  $S^n$ , which involves critical exponents of Sobolev inequalities and the Kazdan–Warner obstruction [9,38]. So the solvability of Eq. (1) is a rather complicated problem due to these features.

For n = 1, the existence of solutions to Eq. (1) was investigated in [1,3,10,12,13,24,25,40,43]. In general, one needs to impose some non-degenerate and topological degree conditions on f to obtain an existence result.

For higher n-dimension, only several special cases were studied, see [29,30] for the rotationally symmetric case, [27] for a generalized rotationally symmetric case, [21] for the mirror-symmetric case, and [45] for the discrete case. In these papers, sufficient conditions for the existence of solutions can be found. However, the solvability of Eq. (1) for a general f is still open.

In this paper, we are only concerned about the rotationally symmetric case of Eq. (1). That is, the given function f and solutions H are assumed to be rotationally symmetric with respect to the  $x_{n+1}$ -axis in  $\mathbb{R}^{n+1}$  with  $n \ge 1$ . In the spherical coordinates, a rotationally symmetric function f on  $S^n$  can be regarded as a function on  $[0, \pi]$ , such that

$$f(\theta) := f(x_1, \dots, x_{n+1}) \text{ with } x_{n+1} = \cos \theta.$$

In particular, f(0) and  $f(\pi)$  are values of f at the north and south poles respectively. By the correspondence  $x_{n+1} = \cos \theta$ , one can naturally extend  $f(\theta)$  on  $[0, \pi]$  to be a  $2\pi$ -periodic and even function on  $\mathbb{R}$ . Observe that if  $f \in C^m(S^n)$  for some integer m, then  $f \in C^m(\mathbb{R})$ . Using the superscript  $f'(0) = f'(0) = f'(\pi) = 0$  if it is differentiable. Throughout this paper, we will always use these conventions.

A typical existence result about the rotationally symmetric case of Eq. (1) was first established in [30] and then supplemented in [29]. To state this result, we introduce two quantities:

$$ni(f) = \begin{cases} -f''(\frac{\pi}{2}), & n \ge 2, \\ \int_{0}^{\pi} [f'(\theta) - f'(\frac{\pi}{2})] \tan \theta \, d\theta, & n = 1, \end{cases}$$

and

$$pi(f) = \int_{0}^{\pi} f'(\theta) \cot \theta \, d\theta.$$

**Theorem A** ([29,30]). Assume that  $f \in C^2(S^n)$  (requiring  $C^6$  for n=2), and that f is positive and rotationally symmetric. If  $f'(\frac{\pi}{2}) = 0$  and  $ni(f) \cdot pi(f) < 0$ , then Eq. (1) admits a rotationally symmetric solution.

The assumption  $f'(\frac{\pi}{2}) = 0$  in the above theorem is not essential, but used to reduce some difficulties in blow-up analyses. It was showed in [29] that this assumption can be removed when f is very close to a positive constant. The aim of this paper is to remove this technical assumption in a general case.

For n = 1, 2, we follow the arguments in [29,30], carry out more delicate analyses, and then remove the condition  $f'(\frac{\pi}{2}) = 0$  completely.

**Theorem 1.** Assume that  $f \in C^2(S^1)$  or  $f \in C^{2,\alpha}(S^2)$  for some  $\alpha \in (0,1)$ , and that f is positive and rotationally symmetric. If  $ni(f) \cdot pi(f) < 0$ , then Eq. (1) admits a rotationally symmetric solution.

For  $n \ge 3$ , the above method is no longer applicable. Inspired by [27], we carry out blow-up analyses for a variational method to obtain the following

**Theorem 2.** Assume that  $f \in C^2(S^n)$  with  $n \ge 3$ , and that f is positive and rotationally symmetric. If  $ni(f) < -\frac{n+1}{n+2}f'(\frac{\pi}{2})^2/f(\frac{\pi}{2})$  and pi(f) > 0, then Eq. (1) admits a rotationally symmetric solution.

We see in the case  $n \ge 3$ , a little more restriction on ni(f) will be needed when the assumption  $f'(\frac{\pi}{2}) = 0$  is removed. However if  $f'(\frac{\pi}{2}) = 0$ , Theorem 2 just becomes into the existence theorem [30, Theorem 1.3].

The paper is organized as follows. In section 2, we provide some basic facts about Eq. (1) and convex bodies. Then we prove Theorem 1 and 2 in section 3 and section 4 respectively.

#### 2. Preliminaries

In this section we state some properties about Eq. (1) and a few facts in convex geometry, which will be used throughout this paper. One can consult [37] for more knowledge about convex geometry.

An obstruction for solutions to Eq. (1) was found by Chou and Wang [11].

**Lemma 1** ([11]). Let H be a  $\mathbb{C}^3$ -solution to equation (1). Then we have

$$\int_{S^n} \frac{\nabla_{\xi} f}{H^{n+1}} = 0 \tag{3}$$

for any projective vector field  $\xi$ , given by

$$\xi(x) = Bx - (x^T Bx)x, \quad x \in S^n,$$

where B is an arbitrary matrix of order n + 1.

In the rotationally symmetric case, (3) is reduced to

$$\int_{0}^{\pi} \frac{f'(\theta)\sin^{n}\theta\cos\theta}{H^{n+1}(\theta)}d\theta = 0.$$
 (4)

See [30, Proposition 3.1].

We have a volume estimate for any solution to Eq. (1).

**Lemma 2** ([30]). There exist positive constants  $C_n$ ,  $\tilde{C}_n$ , depending only on n, such that for any solution H to Eq. (1), we have

$$C_n \sqrt{f_{\min}} \le \operatorname{vol}(H) \le \tilde{C}_n \sqrt{f_{\max}},$$

where  $f_{\min} = \inf_{S^n} f$ ,  $f_{\max} = \sup_{S^n} f$ , and vol(H) is the volume of the convex body determined by H.

Let X be any convex body in  $\mathbb{R}^{n+1}$ , and H be its support function. Under the action of a unimodular linear transform  $A^T \in SL(n+1)$ , X becomes into another convex body  $X_A := A^T X$ . Denote the support function of  $X_A$  by  $H_A$ . Then

$$H_A(x) = |Ax| \cdot H\left(\frac{Ax}{|Ax|}\right), \quad x \in S^n.$$
 (5)

See e.g. [30, (2.11)].

We remark that if H is a solution to Eq. (1), then  $H_A$  is a solution to the following equation

$$\det(\nabla^2 H_A + H_A I) = \frac{f_A}{H_A^{n+2}}, \quad f_A(x) = f\left(\frac{Ax}{|Ax|}\right). \tag{6}$$

See [11] for more details.

Related to the linear transform, there is an integral variable substitution formula.

**Lemma 3** ([28]). For any integral function g on  $S^n$ , and any matrix  $A \in GL(n+1)$ , we have the following variable substitution for integration:

$$\int_{S^n} g(y) \, \mathrm{d}S(y) = \int_{S^n} g\left(\frac{Ax}{|Ax|}\right) \cdot \frac{|\det A|}{|Ax|^{n+1}} \, \mathrm{d}S(x).$$

By this lemma and (5), we see for any unimodular linear transform  $A \in SL(n+1)$ , there is

$$\int_{S_n} \frac{f}{H^{n+1}} = \int_{S_n} \frac{f_A}{H_A^{n+1}},\tag{7}$$

where  $f_A$  is the same as in (6).

John's Lemma in convex geometry says that for any non-degenerate convex body X in  $\mathbb{R}^{n+1}$ , there is a unique ellipsoid E which attains the minimum volume among all ellipsoids containing X. This ellipsoid E is called the *minimum ellipsoid* of X. It satisfies

$$\frac{1}{n+1}E\subset X\subset E,$$

where  $\lambda E = \{x_0 + \lambda(x - x_0) : x \in E\}$  with  $x_0$  the center of E. We say X is normalized if the E is a hall.

We denote the area of  $S^n$  by  $\sigma_n$ , and the unit vector along  $x_i$ -axis by  $e_i$  for  $i = 1, 2, \dots, n+1$ .

#### 3. Proof of Theorem 1

In this section, we prove Theorem 1. To achieve this, one needs an improvement of [30, Theorem 1.2].

**Theorem 3.** Assume that  $f \in C^2(S^1)$  or  $f \in C^{2,\alpha}(S^2)$  for some  $\alpha \in (0,1)$ , and that f is positive and rotationally symmetric. If  $ni(f) \cdot pi(f) \neq 0$ , then there exist positive constants C,  $\tilde{C}$  depending only on n and f, such that for any rotationally symmetric solution H to Eq. (1), we have

$$C < H < \tilde{C}$$
.

Once we have Theorem 3, we can repeat the arguments of [29] to prove that Eq. (1) admits a rotationally symmetric solution provided  $ni(f) \cdot pi(f) < 0$ , yielding Theorem 1. One can consult [29] for details. So in the rest of this section, we are only concerned about Theorem 3, and give its proof.

Let  $\{H_k\}$  be any sequence of rotationally symmetric solutions to Eq. (1). For each  $H_k$ , define  $a_k \in \mathbb{R}$  and  $A_k \in SL(n+1)$  as

$$a_k = f(\frac{\pi}{2})^{\frac{1}{2}} / H_k(\frac{\pi}{2})^{n+1},$$

$$A_k = \operatorname{diag}(a_k^{\frac{1}{n+1}}, \dots, a_k^{\frac{1}{n+1}}, a_k^{-\frac{n}{n+1}}).$$
(8)

Let

$$H_{A_k}(x) = |A_k x| \cdot H_k\left(\frac{A_k x}{|A_k x|}\right), \quad x \in S^n.$$
(9)

Then  $H_{A_k}$  is a rotationally symmetric solution to Eq. (6) with A replaced by  $A_k$ . Note that

$$H_{A_k}(\frac{\pi}{2}) = a_k^{\frac{1}{n+1}} H_k(\frac{\pi}{2}) = f(\frac{\pi}{2})^{\frac{1}{2n+2}}.$$
 (10)

**Lemma 4.** There exist positive constants C,  $\tilde{C}$  depending only on n,  $f_{max}$  and  $f_{min}$ , such that

$$C \le H_{A_k} \le \tilde{C}. \tag{11}$$

**Proof.** By the rotational symmetry of  $H_{A_k}$ , one can easily see that

$$vol(H_{A_k}) \ge \frac{\kappa_n}{n+1} H_{A_k}(\frac{\pi}{2})^n [H_{A_k}(0) + H_{A_k}(\pi)], \tag{12}$$

and

$$\max H_{A_k} \le \sqrt{H_{A_k}(\frac{\pi}{2})^2 + [H_{A_k}(0) + H_{A_k}(\pi)]^2}.$$
 (13)

Recalling  $H_{A_k}$  satisfies equation (6), by the volume estimate given in Lemma 2, we have

$$vol(H_{A_k}) \le C_n \sqrt{\max f_{A_k}} = C_n \sqrt{f_{\text{max}}},\tag{14}$$

which together with (12) yields

$$H_{A_k}(0) + H_{A_k}(\pi) \leq \tilde{C}_n \sqrt{f_{\text{max}}} \cdot H_{A_k}(\frac{\pi}{2})^{-n}$$

$$= \tilde{C}_n \sqrt{f_{\text{max}}} \cdot f(\frac{\pi}{2})^{-\frac{n}{2n+2}}$$

$$\leq \tilde{C}_n f_{\text{max}}^{\frac{1}{2}} f_{\text{min}}^{-\frac{n}{2n+2}},$$

where we have used (10) for the equality. Now from (13) we obtain

$$\max H_{A_k} \le f_{\max}^{\frac{1}{2n+2}} + \tilde{C}_n f_{\max}^{\frac{1}{2n}} f_{\min}^{-\frac{n}{2n+2}}, \tag{15}$$

which means the second inequality in (11) is true.

On the other hand, by virtue of [30, Lemma 2.3], there is

$$\min H_{A_k} \cdot (\max H_{A_k})^n \cdot \operatorname{vol}(H_{A_k}) \geq C_n f_{\min}.$$

Combining it with (14) and (15), we easily obtain the first inequality in (11).  $\Box$ 

To obtain uniform upper and lower bounds for  $\{H_k\}$ , by (9) and Lemma 4, we should exclude two cases, namely  $a_k \to +\infty$  or  $a_k \to 0^+$  when  $k \to +\infty$ . The second case can be still solved by the method developed in [30]. But for the first case where  $a_k \to +\infty$ , one needs more delicate analyses to deal with. The following are details.

First note that in the rotationally symmetric case,  $f_{A_k}$  defined in (6) can be written as

$$f_{A_k}(\theta) = f(\gamma_{a_k}(\theta)), \tag{16}$$

where

$$\gamma_{a_k}(\theta) = \arccos\left(\frac{\cos\theta}{i_{a_k}(\theta)}\right), \quad i_{a_k}(\theta) = \sqrt{a_k^2 \sin^2\theta + \cos^2\theta}, \tag{17}$$

see [30, (3.3)-(3.4)].

**Lemma 5.** Assume  $a_k \to +\infty$  when  $k \to +\infty$ . Then  $H_{A_k}$  converges to the constant function  $f(\frac{\pi}{2})^{\frac{1}{2n+2}}$  uniformly on  $[0,\pi]$ .

**Proof.** From Lemma 4, we see  $\{H_{A_k}\}$  is uniformly bounded. By the Blaschke selection theorem, one may assume that  $\{H_{A_k}\}$  converges uniformly to some support function  $H_{\infty}$  on  $S^n$ , which is also rotationally symmetric. It remains to prove that

$$H_{\infty} \equiv f(\frac{\pi}{2})^{\frac{1}{2n+2}} \text{ on } S^n.$$
 (18)

Recall Eq. (6), namely

$$\det(\nabla^2 H_{A_k} + H_{A_k} I) = \frac{f_{A_k}}{H_{A_k}^{n+2}} \text{ on } S^n.$$
 (19)

Note when  $a_k \to +\infty$ ,  $f_{A_k}$  converges to  $f(\frac{\pi}{2})$  almost everywhere on  $[0, \pi]$ , see (16). Passing to the limit in Eq. (19), we see  $H_{\infty}$  is a generalized solution to

$$\det(\nabla^2 H_{\infty} + H_{\infty} I) = \frac{f(\frac{\pi}{2})}{H_{\infty}^{n+2}} \text{ on } S^n.$$

So  $H_{\infty}$  is an elliptic affine sphere, which must be an ellipsoid [8]. By the rotational symmetry of  $H_{\infty}$ , it should be expressed as

$$H_{\infty}(x) = f(\frac{\pi}{2})^{\frac{1}{2n+2}} |\Lambda x|, \quad x \in S^n$$
 (20)

for some  $\Lambda \in SL(n+1)$  of form

$$\Lambda = \operatorname{diag}(\lambda^{\frac{1}{n+1}}, \cdots, \lambda^{\frac{1}{n+1}}, \lambda^{-\frac{n}{n+1}}) \text{ with } \lambda > 0.$$

Then

$$H_{\infty}(\frac{\pi}{2}) = f(\frac{\pi}{2})^{\frac{1}{2n+2}} \lambda^{\frac{1}{n+1}}.$$

On the other hand, recalling (10), we have

$$H_{\infty}(\frac{\pi}{2}) = f(\frac{\pi}{2})^{\frac{1}{2n+2}}.$$

Hence  $\lambda = 1$ , namely  $\Lambda$  is the identity matrix of order n + 1. Now (20) is simplified into (18). The proof of this lemma is completed.  $\square$ 

Recall  $H_{A_k}$  satisfies equation (19), which in the rotationally symmetric case can be simplified into the following form:

$$(H_{A_k}'' + H_{A_k})(H_{A_k}' \cot \theta + H_{A_k})^{n-1} = \frac{f_{A_k}}{H_{A_k}^{n+2}} \text{ on } [0, \pi],$$
(21)

see [29, (2)].

#### Lemma 6.

(a) There exist positive constants C,  $\tilde{C}$  depending only on n,  $f_{max}$  and  $f_{min}$ , such that

$$C \le H'_{A_k} \cot \theta + H_{A_k} \le \tilde{C},\tag{22}$$

$$C \le H_{A_k}^{"} + H_{A_k} \le \tilde{C}. \tag{23}$$

(b) If  $a_k \to +\infty$  when  $k \to +\infty$ , then  $\{H''_{A_k} \sin^{\frac{1}{4}} \theta\}$  converges to 0 uniformly on  $[0, \pi]$ .

**Proof.** (a) Recalling Lemma 4, we obtain from (21) that

$$C_1 \le (H_{A_k}'' + H_{A_k})(H_{A_k}' \cot \theta + H_{A_k})^{n-1} \le C_2$$
 (24)

for some positive constants  $C_1$ ,  $C_2$  depending only on n,  $f_{\text{max}}$  and  $f_{\text{min}}$ . Note

$$(H'_{A_k}\cos\theta + H_{A_k}\sin\theta)' = (H''_{A_k} + H_{A_k})\cos\theta,$$

the above inequality can be written as

$$C_1 \le \frac{1}{n \sin^{n-1} \theta \cos \theta} \cdot \frac{\mathrm{d}}{\mathrm{d}\theta} (H'_{A_k} \cos \theta + H_{A_k} \sin \theta)^n \le C_2. \tag{25}$$

When  $\theta \in [0, \pi/2]$ , we have by (25) that

$$\frac{\mathrm{d}}{\mathrm{d}\theta}C_1\sin^n\theta \leq \frac{\mathrm{d}}{\mathrm{d}\theta}(H'_{A_k}\cos\theta + H_{A_k}\sin\theta)^n \leq \frac{\mathrm{d}}{\mathrm{d}\theta}C_2\sin^n\theta,$$

which together with  $H'_{A_k}(0) = 0$  implies

$$C_1^{\frac{1}{n}}\sin\theta \le H_{A_k}'\cos\theta + H_{A_k}\sin\theta \le C_2^{\frac{1}{n}}\sin\theta, \ \forall \theta \in [0, \pi/2].$$

Similarly, by (25) and  $H'_{A_k}(\pi) = 0$ , we also have

$$C_1^{\frac{1}{n}}\sin\theta \le H_{A_k}'\cos\theta + H_{A_k}\sin\theta \le C_2^{\frac{1}{n}}\sin\theta, \ \forall \theta \in [\pi/2, \pi].$$

Therefore

$$C_1^{\frac{1}{n}} \le H'_{A_k} \cot \theta + H_{A_k} \le C_2^{\frac{1}{n}}, \ \forall \theta \in [0, \pi],$$

which is just (22). Now recalling (24), one can obtain (23).

(b) We first note that by (11) and (23), there is

$$|H_{A_k}''| \le C_3 \tag{26}$$

for some positive constant  $C_3$  depending only on n,  $f_{max}$  and  $f_{min}$ .

Now assume  $a_k \to +\infty$  as  $k \to +\infty$ . We claim that for any  $\delta \in (0, \pi/2)$ ,

$$H_{A_k}^{"} \rightrightarrows 0 \text{ uniformly on } [\delta, \pi - \delta].$$
 (27)

In fact, by (16),  $f_{A_k} \Rightarrow f(\frac{\pi}{2})$  uniformly on  $[\delta, \pi - \delta]$ . By Lemma 5,  $H_{A_k} \Rightarrow f(\frac{\pi}{2})^{\frac{1}{2n+2}}$  uniformly on  $[0, \pi]$ , which implies that  $H'_{A_k} \Rightarrow 0$  uniformly on  $[0, \pi]$ . Then by (21), when  $\theta \in [\delta, \pi - \delta]$ , we have

$$H_{A_k}'' = f_{A_k} H_{A_k}^{-n-2} (H_{A_k}' \cot \theta + H_{A_k})^{1-n} - H_{A_k}$$

$$\Rightarrow f(\frac{\pi}{2}) \cdot f(\frac{\pi}{2})^{-\frac{n+2}{2n+2}} \cdot f(\frac{\pi}{2})^{\frac{1-n}{2n+2}} - f(\frac{\pi}{2})^{\frac{1}{2n+2}}$$

$$= 0.$$

Thus (27) is true.

We now prove

$$H_{A_k}'' \sin^{\frac{1}{4}} \theta \Rightarrow 0 \text{ uniformly on } [0, \pi].$$
 (28)

Given any  $\epsilon > 0$ . By (26), there exists some  $\delta \in (0, \pi/2)$ , such that

$$\sup_{[0,\delta]\cup[\pi-\delta,\pi]}|H_{A_k}''\sin^{\frac{1}{4}}\theta|<\epsilon,\ \forall k. \tag{29}$$

Then by virtue of (27), there exists a  $k_0$ , such that

$$\sup_{[\delta, \pi - \delta]} |H_{A_k}''| < \epsilon, \quad \forall \, k \ge k_0. \tag{30}$$

Combining (29) and (30), we have

$$\sup_{[0,\pi]} |H_{A_k}'' \sin^{\frac{1}{4}} \theta| < \epsilon, \quad \forall k \ge k_0.$$

Thus (28) is true.  $\square$ 

With a more detailed analysis, we can strengthen Lemma 5 for n = 1, 2.

**Lemma 7.** Assume  $a_k \to +\infty$  as  $k \to +\infty$ . For sufficiently large k, we have

$$\max_{[0,\pi]} \left| H_{A_k} - f(\frac{\pi}{2})^{\frac{1}{2n+2}} \right| \le C \begin{cases} \int_0^{\pi} |f_{A_k} - f(\frac{\pi}{2})| \, d\theta, & \text{if } n = 1, \\ 0_{\pi} & \\ \int_0^{\pi} |f_{A_k} - f(\frac{\pi}{2})| \sin^{\frac{1}{2}}\theta \, d\theta, & \text{if } n = 2, \end{cases}$$
(31)

where C is a positive constant depending only on  $f(\frac{\pi}{2})$ .

**Proof.** For simplicity, let

$$\beta := f(\frac{\pi}{2})^{\frac{1}{2n+2}}$$
 and  $h_k(\theta) := H_{A_k}(\theta) - \beta$ .

Also we will drop the subscript k in the following proof if no confusion arises. Recall by Lemma 5, h converges uniformly to 0 on  $[0, \pi]$  as  $k \to +\infty$ .

(a) When n = 1. Now Eq. (21) is simplified as

$$h'' + h + \beta = \frac{f_A}{H_A^3}. (32)$$

Observing that

$$H_A^{-3} = (\beta + h)^{-3}$$
  
=  $\beta^{-3} - 3\beta^{-4}h + 6\tau^{-5}h^2$ .

where  $\tau$  is between  $\beta$  and  $H_A(\theta)$ , and that  $\beta = f(\frac{\pi}{2})^{1/4}$ , we have

$$\frac{f(\frac{\pi}{2})}{H_A^3} = \beta - 3h + 6\beta^4 \tau^{-5} h^2.$$

Then (32) can be written as

$$h'' + h + 3h - 6\beta^4 \tau^{-5} h^2 = \frac{f_A - f(\frac{\pi}{2})}{H_A^3},$$

namely

$$h'' + 4h = \frac{f_A - f(\frac{\pi}{2})}{H_A^3} + 6\beta^4 \tau^{-5} h^2.$$
 (33)

Recalling  $h(\frac{\pi}{2}) = 0$  by (10), we can apply Lemma 8 to equation (33) and then obtain

$$\max |h| \le \left\| \frac{f_A - f(\frac{\pi}{2})}{H_A^3} \right\|_{L^1[0,\pi]} + \left\| 6\beta^4 \tau^{-5} h^2 \right\|_{L^1[0,\pi]}. \tag{34}$$

Since  $H_A \rightrightarrows \beta > 0$  uniformly on  $[0, \pi]$  as  $k \to +\infty$ , there exists a large integer  $k_0$ , such that

$$\max |H_A - \beta| \le \frac{\beta}{2}, \quad \forall k \ge k_0.$$

Then when  $k \ge k_0$  we have

$$\max |h| \le \frac{\beta}{2} \quad \text{and} \quad H_A, \tau \in \left[\frac{\beta}{2}, \frac{3\beta}{2}\right].$$
 (35)

Thus (34) is simplified into

$$\max |h| \le 8\beta^{-3} \|f_A - f(\frac{\pi}{2})\|_{L^1[0,\pi]} + 192\beta^{-1}\pi (\max |h|)^2.$$

By virtue of max  $|h| \to 0$  as  $k \to +\infty$ , we also can assume

$$192\beta^{-1}\pi \cdot \max|h| < \frac{1}{2} \text{ when } k \ge k_0.$$

Hence

$$\max |h| \le 16\beta^{-3} \|f_A - f(\frac{\pi}{2})\|_{L^1[0,\pi]}, \ \forall k \ge k_0,$$

which is just (31) for n = 1.

(b) When n = 2. Now Eq. (21) is written as

$$(h'' + h + \beta)(h' \cot \theta + h + \beta) = \frac{f_A}{H_A^4},$$
 (36)

namely

$$\beta(h'' + h'\cot\theta + 2h) + \beta^2 + (h'' + h)(h'\cot\theta + h) = \frac{f_A}{H_A^4}.$$
 (37)

Observing that

$$H_A^{-4} = (\beta + h)^{-4}$$
  
=  $\beta^{-4} - 4\beta^{-5}h + 10\tau^{-6}h^2$ ,

where  $\tau$  is between  $\beta$  and  $H_A(\theta)$ , and that  $\beta = f(\frac{\pi}{2})^{1/6}$ , we have

$$\frac{f(\frac{\pi}{2})}{H_A^4} = \beta^2 - 4\beta h + 10\beta^6 \tau^{-6} h^2. \tag{38}$$

Then (37) can be written as

$$\beta(h'' + h'\cot\theta + 6h) + (h'' + h)(h'\cot\theta + h) - 10\beta^{6}\tau^{-6}h^{2} = \frac{f_{A} - f(\frac{\pi}{2})}{H_{A}^{4}},$$

namely

$$h'' + h' \cot \theta + 6h = \frac{f_A - f(\frac{\pi}{2})}{\beta H_A^4} + R_a(\theta),$$
(39)

where

$$R_a(\theta) = 10\beta^5 \tau^{-6} h^2 - \beta^{-1} (h'' + h)(h' \cot \theta + h). \tag{40}$$

Applying Lemma 10 to equation (39), we have

$$\begin{split} \max|h| &\leq 2\int\limits_0^\pi \frac{|f_A - f(\frac{\pi}{2})|}{\beta H_A^4} (2 - \log\sin\theta)\sin\theta\,\mathrm{d}\theta \\ &+ 2\int\limits_0^\pi |R_a(\theta)| (2 - \log\sin\theta)\sin\theta\,\mathrm{d}\theta \\ &\leq 4\int\limits_0^\pi \frac{|f_A - f(\frac{\pi}{2})|}{\beta H_A^4}\sin^{\frac{1}{2}}\theta\,\mathrm{d}\theta + 6\int\limits_0^\pi |R_a(\theta)|\sin^{\frac{3}{4}}\theta\,\mathrm{d}\theta. \end{split}$$

Recalling (35), we obtain

$$\max |h| \le 64\beta^{-5} \int_{0}^{\pi} |f_A - f(\frac{\pi}{2})| \sin^{\frac{1}{2}} \theta \, d\theta + 6 \int_{0}^{\pi} |R_a(\theta)| \sin^{\frac{3}{4}} \theta \, d\theta. \tag{41}$$

We see  $R_a$  involves derivatives of h. To deal with them, we need to explore (36) more carefully. Note that

$$(h'\cos\theta + h\sin\theta + \beta\sin\theta)' = (h'' + h + \beta)\cos\theta,$$

then Eq. (36) is equivalent to

$$\frac{\mathrm{d}}{\mathrm{d}\theta}(h'\cos\theta + h\sin\theta + \beta\sin\theta)^2 = \frac{f_A}{H_A^4} \cdot 2\sin\theta\cos\theta.$$

Therefore we have

$$(h'\cos\theta + h\sin\theta + \beta\sin\theta)^2 = \int_0^\theta \frac{f_A}{H_A^4} \cdot 2\sin t \cos t \, dt, \quad \forall \theta \in [0, \pi/2]. \tag{42}$$

Since  $h' \cot \theta + h + \beta > 0$ , there is

$$h'\cos\theta + h\sin\theta + \beta\sin\theta = \left(\int_0^\theta \frac{f_A}{H_A^4} \cdot 2\sin t \cos t \, dt\right)^{1/2}.$$

Thus we have

$$|h'\cos\theta + h\sin\theta| = \left| \left( \int_0^\theta \frac{f_A}{H_A^4} \cdot 2\sin t \cos t \, dt \right)^{1/2} - \beta\sin\theta \right|$$

$$= \frac{\left| \int_0^\theta \frac{f_A}{H_A^4} \cdot 2\sin t \cos t \, dt - \beta^2 \sin^2\theta \right|}{\left( \int_0^\theta \frac{f_A}{H_A^4} \cdot 2\sin t \cos t \, dt \right)^{1/2} + \beta\sin\theta}$$

$$\leq \frac{1}{\beta\sin\theta} \left| \int_0^\theta \frac{f_A}{H_A^4} \cdot 2\sin t \cos t \, dt - \beta^2 \sin^2\theta \right|.$$
(43)

Recalling (38), there is

$$\frac{f_A}{H_A^4} = \frac{f_A - f(\frac{\pi}{2})}{H_A^4} + \beta^2 - 4\beta h + 10\beta^6 \tau^{-6} h^2,$$

which implies that

$$\int_{0}^{\theta} \frac{f_{A}}{H_{A}^{4}} \cdot 2 \sin t \cos t \, dt = \int_{0}^{\theta} \frac{f_{A} - f(\frac{\pi}{2})}{H_{A}^{4}} \cdot 2 \sin t \cos t \, dt + \beta^{2} \int_{0}^{\theta} 2 \sin t \cos t \, dt$$

$$+ \int_{0}^{\theta} (-4\beta h + 10\beta^{6} \tau^{-6} h^{2}) \cdot 2 \sin t \cos t \, dt$$

$$= \int_{0}^{\theta} \frac{f_{A} - f(\frac{\pi}{2})}{H_{A}^{4}} \cdot 2 \sin t \cos t \, dt + \beta^{2} \sin^{2} \theta$$

$$+ \int_{0}^{\theta} (-4\beta + 10\beta^{6} \tau^{-6} h) h \cdot 2 \sin t \cos t \, dt.$$

Recalling (35), we obtain from the above equality that

$$\left| \int_{0}^{\theta} \frac{f_{A}}{H_{A}^{4}} \cdot 2\sin t \cos t \, dt - \beta^{2} \sin^{2} \theta \right| \leq 32\beta^{-4} \int_{0}^{\theta} |f_{A} - f(\frac{\pi}{2})| \sin t \, dt + 324\beta (\max|h|) \sin^{2} \theta.$$

Then (43) is simplified into

$$\left| h' \cos \theta + h \sin \theta \right| \le \frac{32\beta^{-5}}{\sin \theta} \int_{0}^{\theta} |f_A - f(\frac{\pi}{2})| \sin t \, \mathrm{d}t + 324(\max |h|) \sin \theta,$$

namely

$$\left| h' \cot \theta + h \right| \sin^{\frac{1}{2}} \theta \le \frac{32\beta^{-5}}{\sin^{\frac{3}{2}} \theta} \int_{0}^{\theta} |f_A - f(\frac{\pi}{2})| \sin t \, dt + 324(\max |h|) \sin^{\frac{1}{2}} \theta.$$

Integrating both sides over  $[0, \pi/2]$ , we have

$$\int_{0}^{\frac{\pi}{2}} |h' \cot \theta + h| \sin^{\frac{1}{2}} \theta \, d\theta$$

$$\leq 32\beta^{-5} \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sin^{\frac{3}{2}} \theta} \int_{0}^{\theta} |f_{A} - f(\frac{\pi}{2})| \sin t \, dt + 162\pi (\max |h|)$$

$$= 32\beta^{-5} \int_{0}^{\frac{\pi}{2}} |f_{A} - f(\frac{\pi}{2})| \sin t \, dt \int_{t}^{\frac{\pi}{2}} \frac{d\theta}{\sin^{\frac{3}{2}} \theta} + 162\pi (\max |h|).$$
(44)

Note that

$$\int_{t}^{\frac{\pi}{2}} \frac{d\theta}{\sin^{\frac{3}{2}} \theta} \le \left(\frac{\pi}{2}\right)^{\frac{3}{2}} \int_{t}^{\frac{\pi}{2}} \frac{d\theta}{\theta^{\frac{3}{2}}}$$

$$= \left(\frac{\pi}{2}\right)^{\frac{3}{2}} \cdot 2[t^{-\frac{1}{2}} - (\pi/2)^{-\frac{1}{2}}]$$

$$< 4\sin^{-\frac{1}{2}} t.$$

then (44) is reduced into

$$\int_{0}^{\frac{\pi}{2}} |h' \cot \theta + h| \sin^{\frac{1}{2}} \theta \, d\theta \le 128 \beta^{-5} \int_{0}^{\frac{\pi}{2}} |f_A - f(\frac{\pi}{2})| \sin^{\frac{1}{2}} t \, dt + 162 \pi (\max |h|). \tag{45}$$

Now similar to (42), we have

$$(h'\cos\theta + h\sin\theta + \beta\sin\theta)^2 = \int_0^\pi \frac{f_A}{H_A^4} \cdot 2\sin t |\cos t| \, \mathrm{d}t, \quad \forall \theta \in [\pi/2, \pi].$$

Then following almost the same arguments used to obtain (45), one can get

$$\int_{\frac{\pi}{2}}^{\pi} |h' \cot \theta + h| \sin^{\frac{1}{2}} \theta \, d\theta \le 128 \beta^{-5} \int_{\frac{\pi}{2}}^{\pi} |f_A - f(\frac{\pi}{2})| \sin^{\frac{1}{2}} t \, dt + 162 \pi (\max |h|). \tag{46}$$

Adding (45) and (46) together, we have

$$\int_{0}^{\pi} |h' \cot \theta + h| \sin^{\frac{1}{2}} \theta \, d\theta \le 128 \beta^{-5} \int_{0}^{\pi} |f_A - f(\frac{\pi}{2})| \sin^{\frac{1}{2}} t \, dt + 324 \pi \cdot \max|h|. \tag{47}$$

Now we can estimate the integral about  $R_a$  in (41). By the definition of  $R_a$  in (40), there is

$$\begin{split} \int_{0}^{\pi} |R_{a}(\theta)| \sin^{\frac{3}{4}} \theta \, \mathrm{d}\theta &\leq \int_{0}^{\pi} 10 \beta^{5} \tau^{-6} h^{2} \sin^{\frac{3}{4}} \theta \, \mathrm{d}\theta \\ &+ \int_{0}^{\pi} \beta^{-1} |h'' + h| \, |h' \cot \theta + h| \sin^{\frac{3}{4}} \theta \, \mathrm{d}\theta \\ &\leq 640 \pi \beta^{-1} (\max |h|)^{2} + m_{k} \int_{0}^{\pi} |h' \cot \theta + h| \sin^{\frac{1}{2}} \theta \, \mathrm{d}\theta, \end{split}$$

where (35) is used, and  $m_k$  is defined as

$$m_k := \beta^{-1} \max_{\theta \in [0,\pi]} |h''(\theta) + h(\theta)| \sin^{\frac{1}{4}} \theta.$$

By estimate (47), the above inequality becomes into

$$\int_{0}^{\pi} |R_{a}(\theta)| \sin^{\frac{3}{4}} \theta \, d\theta \le 640\pi \beta^{-1} (\max |h|)^{2} + 324\pi m_{k} \cdot \max |h|$$

$$+ 128\beta^{-5} m_{k} \int_{0}^{\pi} |f_{A} - f(\frac{\pi}{2})| \sin^{\frac{1}{2}} t \, dt.$$

$$(48)$$

Recall Lemma 6 (b),  $|h''(\theta) + h(\theta)| \sin^{\frac{1}{4}}\theta$  converges uniformly to 0 on  $[0, \pi]$  when  $k \to +\infty$ , which implies

$$m_k \to 0$$
 as  $k \to +\infty$ .

Also recall max  $|h| \to 0$ . We can assume when  $k \ge k_0$  that

$$640\pi\beta^{-1}\max|h| + 324\pi m_k < \frac{1}{12}.$$

Then (48) is simplified into

$$\int_{0}^{\pi} |R_{a}(\theta)| \sin^{\frac{3}{4}} \theta \, d\theta \le \frac{1}{12} \max |h| + \frac{1}{12} \beta^{-5} \int_{0}^{\pi} |f_{A} - f(\frac{\pi}{2})| \sin^{\frac{1}{2}} t \, dt.$$
 (49)

Now combining (41) and (49), we obtain

$$\max |h| \le 129 \beta^{-5} \int_{0}^{\pi} |f_A - f(\frac{\pi}{2})| \sin^{\frac{1}{2}} \theta \, d\theta,$$

which is just (31) for n = 2.  $\square$ 

The following Lemmas 8 and 10 have been used in the proof of the above Lemma 7.

**Lemma 8.** Assume  $h \in C^2(\mathbb{R})$  is  $2\pi$ -periodic and even. If it satisfies the following differential equation

$$h'' + 4h = g, (50)$$

and  $h(\frac{\pi}{2}) = 0$ , then there is

$$\max_{\mathbb{R}} |h| \leq \|g\|_{L^1[0,\pi]}.$$

**Proof.** One can easily solve equation (50) to obtain

$$h(\theta) = c_1 \cos 2\theta + c_2 \sin 2\theta - \frac{1}{2} \cos 2\theta \int_0^{\theta} g(t) \sin 2t \, dt + \frac{1}{2} \sin 2\theta \int_0^{\theta} g(t) \cos 2t \, dt,$$

where  $c_1$  and  $c_2$  are constants to be determined. Then we have

$$h'(\theta) = -2c_1\sin 2\theta + 2c_2\cos 2\theta + \sin 2\theta \int_0^\theta g(t)\sin 2t \,dt + \cos 2\theta \int_0^\theta g(t)\cos 2t \,dt.$$

From h'(0) = 0, we get  $c_2 = 0$ . And  $h(\frac{\pi}{2}) = 0$  implies

$$c_1 = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} g(t) \sin 2t \, dt.$$

Therefore h is given by

$$h(\theta) = \frac{1}{2}\cos 2\theta \int_{\theta}^{\frac{\pi}{2}} g(t)\sin 2t \, dt + \frac{1}{2}\sin 2\theta \int_{0}^{\theta} g(t)\cos 2t \, dt.$$

Hence when  $\theta \in [0, \pi]$ ,

$$|h(\theta)| \le \frac{1}{2} \left| \int_{\theta}^{\frac{\pi}{2}} g(t) \sin 2t \, dt \right| + \frac{1}{2} \left| \int_{0}^{\theta} g(t) \cos 2t \, dt \right|$$

$$\le \frac{1}{2} \int_{0}^{\pi} |g(t)| \, dt + \frac{1}{2} \int_{0}^{\pi} |g(t)| \, dt$$

$$= \int_{0}^{\pi} |g(t)| \, dt,$$

which leads to the conclusion of this lemma.

**Lemma 9.** The homogeneous differential equation

$$h'' + h' \cot \theta + 6h = 0$$
 in  $(0, \pi)$ 

has the following two fundamental solutions:

$$h_1(\theta) = 1 - 3\cos^2\theta,$$
  
 $h_2(\theta) = -\frac{3}{4}\cos\theta + \frac{1}{8}(1 - 3\cos^2\theta)\log\frac{1 - \cos\theta}{1 + \cos\theta}.$ 

These two solutions have the following properties:

- (a)  $h_1(\frac{\pi}{2}) = 1$ ,  $h_1'(\frac{\pi}{2}) = 0$  and  $h_2(\frac{\pi}{2}) = 0$ ,  $h_2'(\frac{\pi}{2}) = 1$ . (b) Abel's identity:  $h_1h_2' h_1'h_2 = \csc\theta$ ,  $\forall \theta \in (0, \pi)$ .
- (c)  $h'_1(\theta) = 6\sin\theta\cos\theta$ .
- (d)  $|h_2(\theta)| \le 2 \log \sin \theta$ ,  $\forall \theta \in (0, \pi)$ .
- (e)  $|h_2'(\theta)\sin\theta| \le 5/2$ ,  $\forall \theta \in (0, \pi)$ .
- (f)  $As \theta \rightarrow 0^+ \text{ or } \theta \rightarrow \pi^-, \text{ there is }$

$$h_2'(\theta) = \frac{-1/2 + o(1)}{\sin \theta}.$$

**Proof.** Direct computations show that  $h_1$  and  $h_2$  are solutions to the differential equation in the lemma. And one can easily check (a), (b) and (c).

We note that

$$\frac{1}{2}\left|\log\frac{1-\cos\theta}{1+\cos\theta}\right| \leq -\log\sin\theta + \log 2, \ \forall \, \theta \in (0,\pi).$$

Since both sides are symmetric with respect to  $\theta = \pi/2$ , we only need to verify it for  $\theta \in (0, \pi/2]$ , which is a direct corollary of the following equality:

$$\frac{1}{2}\left|\log\frac{1-\cos\theta}{1+\cos\theta}\right| = \frac{1}{2}\left|\log\frac{1-\cos^2\theta}{(1+\cos\theta)^2}\right| = \left|\log\frac{\sin\theta}{1+\cos\theta}\right|.$$

Now by the expression of  $h_2$ , there is

$$|h_2(\theta)| \le \frac{3}{4} + \frac{1}{2} \left| \log \frac{1 - \cos \theta}{1 + \cos \theta} \right|$$
  
$$\le \frac{3}{4} - \log \sin \theta + \log 2$$
  
$$\le 2 - \log \sin \theta,$$

which is just (d).

Computing  $h'_2$ , we have

$$h_2'(\theta) = \frac{3}{4}\sin\theta + \frac{3}{4}\sin\theta\cos\theta\log\frac{1-\cos\theta}{1+\cos\theta} + \frac{1}{4}(1-3\cos^2\theta)\csc\theta.$$

Then

$$\begin{split} |h_2'(\theta)| &\leq \frac{3}{4} + \frac{3}{4}\sin\theta \left|\log\frac{1-\cos\theta}{1+\cos\theta}\right| + \frac{1}{2}\csc\theta \\ &\leq \frac{3}{4} + \frac{3}{2}\sin\theta \cdot (-\log\sin\theta + \log2) + \frac{1}{2}\csc\theta \\ &\leq 2 + \frac{1}{2}\csc\theta, \end{split}$$

which implies (e).

By the expression of  $h_2'$ , we see as  $\theta \to 0^+$  or  $\theta \to \pi^-$  that

$$h_2'(\theta)\sin\theta \to -\frac{1}{2},$$

yielding (f).  $\Box$ 

**Lemma 10.** Assume  $h \in C^2(\mathbb{R})$  is  $2\pi$ -periodic and even. If it satisfies the following differential equation

$$h'' + h' \cot \theta + 6h = g, \tag{51}$$

and  $h(\frac{\pi}{2}) = 0$ , then there is

$$\max_{\mathbb{R}} |h| \le 2 \int_{0}^{\pi} |g(\theta)| (2 - \log \sin \theta) \sin \theta \, d\theta. \tag{52}$$

**Proof.** Recalling Lemma 9,  $h_1$  and  $h_2$  are two fundamental solutions to the homogeneous differential equation:

$$h'' + h' \cot \theta + 6h = 0$$
 in  $(0, \pi)$ .

By method of variation of parameters and Lemma 9 (b), we solve (51) in  $(0, \pi)$  and obtain

$$h(\theta) = c_1 h_1 + c_2 h_2 - h_1 \int_{\pi/2}^{\theta} h_2(t) g(t) \sin t \, dt + h_2 \int_{\pi/2}^{\theta} h_1(t) g(t) \sin t \, dt, \tag{53}$$

where  $c_1$  and  $c_2$  are constants to be determined. Note the assumption  $h(\frac{\pi}{2}) = 0$ , and by (53)

$$h(\frac{\pi}{2}) = c_1 h_1(\frac{\pi}{2}) + c_2 h_2(\frac{\pi}{2}) = c_1,$$

there is  $c_1 = 0$ . Then

$$h'(\theta) = c_2 h_2' - h_1' \int_{\pi/2}^{\theta} h_2(t) g(t) \sin t \, dt + h_2' \int_{\pi/2}^{\theta} h_1(t) g(t) \sin t \, dt.$$
 (54)

To determine  $c_2$ , we need to compute h'(0).

By Lemma 9 (d),  $|h_2|$  is an integrable function in  $(0, \pi/2]$ . Then

$$\int_{\pi/2}^{0} h_2(t)g(t)\sin t \, \mathrm{d}t$$

is a finite number. For small  $\theta > 0$ , one can rewrite (54) as

$$\frac{1}{h_2'(\theta)} \left[ h'(\theta) + h_1'(\theta) \int_{\pi/2}^{\theta} h_2(t)g(t)\sin t \, dt \right] = c_2 + \int_{\pi/2}^{\theta} h_1(t)g(t)\sin t \, dt.$$
 (55)

Letting  $\theta \to 0^+$ , and recalling h'(0) = 0,  $h'_1(0) = 0$  and Lemma 9 (f), we obtain

$$0 = c_2 + \int_{\pi/2}^{0} h_1(t)g(t) \sin t \, dt,$$

namely

$$c_2 = \int_0^{\pi/2} h_1(t)g(t)\sin t \,\mathrm{d}t.$$

Therefore (53) is simplified into

$$h(\theta) = -h_1 \int_{\pi/2}^{\theta} h_2(t)g(t)\sin t \,dt + h_2 \int_{0}^{\theta} h_1(t)g(t)\sin t \,dt.$$
 (56)

Recalling Lemma 9 (d) and the expression of h given in (56), we obtain for any  $\theta \in (0, \pi/2]$  that

$$|h(\theta)| \le 2 \int_{\theta}^{\pi/2} (2 - \log \sin t) |g(t)| \sin t \, dt + (2 - \log \sin \theta) \int_{0}^{\theta} 2 |g(t)| \sin t \, dt.$$

Observing

$$(2 - \log \sin \theta) \int_{0}^{\theta} 2|g(t)|\sin t \, \mathrm{d}t \le 2 \int_{0}^{\theta} (2 - \log \sin t)|g(t)|\sin t \, \mathrm{d}t,$$

we have

$$|h(\theta)| \le 2 \int_{0}^{\pi/2} (2 - \log \sin t) |g(t)| \sin t \, dt, \quad \forall \, \theta \in (0, \pi/2].$$

Namely

$$\max_{[0,\pi/2]} |h| \le 2 \int_{0}^{\pi} (2 - \log \sin t) |g(t)| \sin t \, dt.$$
 (57)

Again by Lemma 9 (d), we see

$$\int_{\pi/2}^{\pi} h_2(t)g(t)\sin t \, \mathrm{d}t$$

is a finite number. Since (55) is also true when  $\theta$  is close to  $\pi^-$ , letting  $\theta \to \pi^-$ , and recalling  $h'(\pi) = 0$ ,  $h'_1(\pi) = 0$  and Lemma 9 (f), we obtain

$$0 = c_2 + \int_{\pi/2}^{\pi} h_1(t)g(t) \sin t \, dt.$$

Recall the expression of  $c_2$ , there is

$$\int_{0}^{\pi} h_1(t)g(t)\sin t \, \mathrm{d}t = 0.$$

Now h in (56) can be also expressed as

$$h(\theta) = -h_1 \int_{\pi/2}^{\theta} h_2(t)g(t)\sin t \,dt + h_2 \int_{\pi}^{\theta} h_1(t)g(t)\sin t \,dt.$$
 (58)

By Lemma 9 (d), we obtain for any  $\theta \in [\pi/2, \pi)$  that

$$|h(\theta)| \le 2\int_{\pi/2}^{\theta} (2 - \log \sin t)|g(t)|\sin t \, \mathrm{d}t + (2 - \log \sin \theta)\int_{\theta}^{\pi} 2|g(t)|\sin t \, \mathrm{d}t.$$

Observing

$$(2 - \log \sin \theta) \int_{0}^{\pi} 2|g(t)| \sin t \, \mathrm{d}t \le 2 \int_{0}^{\pi} (2 - \log \sin t)|g(t)| \sin t \, \mathrm{d}t,$$

we have

$$|h(\theta)| \le 2 \int_{\pi/2}^{\pi} (2 - \log \sin t) |g(t)| \sin t \, \mathrm{d}t, \quad \forall \, \theta \in [\pi/2, \pi).$$

Namely

$$\max_{[\pi/2,\pi]} |h| \le 2 \int_{0}^{\pi} (2 - \log \sin t) |g(t)| \sin t \, dt.$$
 (59)

Now combining (57) and (59), we obtain (52).  $\square$ 

Based on Lemma 7, one can easily find out the asymptotic behavior of  $H_{A_k}$ .

**Lemma 11.** Assume  $a_k \to +\infty$  as  $k \to +\infty$ . Then we have

$$H_{A_k} - f(\frac{\pi}{2})^{\frac{1}{2n+2}} = O(1) \begin{cases} a_k^{-1} \log a_k, & \text{if } n = 1, \\ a_k^{-1}, & \text{if } n = 2, \end{cases}$$
 (60)

where the bounds of O(1) depend only on  $||f||_{C^1}$ .

#### Proof. Let

$$\Lambda_k = \int_0^{\pi} \left| f(\gamma_{a_k}(\theta)) - f(\frac{\pi}{2}) \right| \sin^{2\delta} \theta \, d\theta, \quad \delta = 0 \text{ or } 1/4.$$

Consider the variable substitution

$$\theta = \gamma_{1/a_k}(t) = \arccos\left(\frac{\cos t}{i_{1/a_k}(t)}\right),$$

see (17) for its definition. Direct computations show that

$$\sin \theta = \frac{\sin t}{(\sin^2 t + a_k^2 \cos^2 t)^{1/2}},$$

$$d\theta = \frac{a_k}{\sin^2 t + a_k^2 \cos^2 t} dt.$$

Then we have

$$\Lambda_{k} = \int_{0}^{\pi} \left| f(t) - f(\frac{\pi}{2}) \right| \frac{\sin^{2\delta} t \cdot a_{k} \, dt}{(\sin^{2} t + a_{k}^{2} \cos^{2} t)^{1+\delta}} \\
\leq \|f\|_{C^{1}} \int_{0}^{\pi} \frac{|t - \pi/2| \cdot a_{k} \, dt}{(\sin^{2} t + a_{k}^{2} \cos^{2} t)^{1+\delta}} \\
= 2 \|f\|_{C^{1}} a_{k} \int_{0}^{\frac{\pi}{2}} \frac{|t - \pi/2| \, dt}{(\sin^{2} t + a_{k}^{2} \cos^{2} t)^{1+\delta}} \\
= 2 \|f\|_{C^{1}} a_{k} \int_{0}^{\frac{\pi}{2}} \frac{t \, dt}{(\cos^{2} t + a_{k}^{2} \sin^{2} t)^{1+\delta}}.$$
(61)

Since  $a_k \to +\infty$  as  $k \to +\infty$ , we can assume  $a_k > 2$  without loss of generality. For  $t \in [0, \pi/2]$ , we have

$$\cos^{2} t + a_{k}^{2} \sin^{2} t = 1 + (a_{k}^{2} - 1) \sin^{2} t$$

$$\geq 1 + \frac{a_{k}^{2}}{4} \cdot \frac{4}{\pi^{2}} t^{2}$$

$$= \frac{1}{\pi^{2}} (\pi^{2} + a_{k}^{2} t^{2}).$$
(62)

Then (61) can be simplified as

$$\begin{split} & \Lambda_k \leq 2\pi^3 \, \|f\|_{C^1} \, a_k \int\limits_0^{\frac{\pi}{2}} \frac{t \, \mathrm{d}t}{(\pi^2 + a_k^2 t^2)^{1+\delta}} \\ & \leq 2\pi^3 \, \|f\|_{C^1} \begin{cases} a_k^{-1} \log a_k, & \text{if } \delta = 0, \\ 2a_k^{-1}, & \text{if } \delta = 1/4. \end{cases} \end{split}$$

Now note  $f_{A_k}(\theta) = f(\gamma_{a_k}(\theta))$ , (31) is reduced into

$$\max_{[0,\pi]} \left| H_{A_k} - f(\frac{\pi}{2})^{\frac{1}{2n+2}} \right| \le C \begin{cases} a_k^{-1} \log a_k, & \text{if } n = 1, \\ a_k^{-1}, & \text{if } n = 2, \end{cases}$$

where C > 0 depends only on  $||f||_{C^1}$ . This inequality immediately leads to (60).

We can prove the following

**Lemma 12.** Assume  $a_k \to +\infty$  as  $k \to +\infty$ . Then we have

$$\int_{0}^{\pi} \frac{1}{H_{A_{k}}^{n+1}} \cdot \frac{a_{k} \sin^{n} \theta \cos \theta}{i_{a_{k}}^{2}(\theta)} d\theta = O(1) \begin{cases} a_{k}^{-2} \log^{2} a_{k}, & \text{if } n = 1, \\ a_{k}^{-2}, & \text{if } n = 2, \end{cases}$$
(63)

where the bounds of O(1) depend only on  $||f||_{C^1}$ .

**Proof.** Let  $\Lambda_k$  denote the integral on the left hand side of (63), and

$$h_k := H_{A_k} - f(\frac{\pi}{2})^{\frac{1}{2n+2}}.$$

Observe that

$$H_{A_k}^{-n-1} = \left[ f(\frac{\pi}{2})^{\frac{1}{2n+2}} + h_k \right]^{-n-1}$$
$$= f(\frac{\pi}{2})^{-\frac{1}{2}} - (n+1)\tau^{-n-2}h_k,$$

where au is between  $f(\frac{\pi}{2})^{\frac{1}{2n+2}}$  and  $H_{A_k}$ . Then

$$\Lambda_k = f(\frac{\pi}{2})^{-\frac{1}{2}} \int_0^{\pi} \frac{a_k \sin^n \theta \cos \theta}{i_{a_k}^2(\theta)} d\theta - (n+1) \int_0^{\pi} \tau^{-n-2} h_k \cdot \frac{a_k \sin^n \theta \cos \theta}{i_{a_k}^2(\theta)} d\theta$$
$$= -(n+1) \int_0^{\pi} \tau^{-n-2} h_k \cdot \frac{a_k \sin^n \theta \cos \theta}{i_{a_k}^2(\theta)} d\theta.$$

Recall  $H_{A_k} \rightrightarrows f(\frac{\pi}{2})^{\frac{1}{2n+2}}$  uniformly on  $[0,\pi]$ , we can assume that

$$\frac{1}{2}f(\frac{\pi}{2})^{\frac{1}{2n+2}} \le \tau \le \frac{3}{2}f(\frac{\pi}{2})^{\frac{1}{2n+2}}$$

for sufficiently large k. Therefore

$$|\Lambda_k| \le C \int_0^{\pi} |h_k| \cdot \frac{a_k \sin^n \theta}{i_{a_k}^2(\theta)} \, \mathrm{d}\theta \tag{64}$$

for some positive constant C depending only on n and  $f(\frac{\pi}{2})$ .

(a) When n = 1. By Lemma 11,

$$h_k = O(1)a_k^{-1}\log a_k.$$

Then we obtain from (64) that

$$|\Lambda_k| \le C \log a_k \int_0^{\pi} \frac{\sin \theta}{a_k^2 \sin^2 \theta + \cos^2 \theta} \, \mathrm{d}\theta, \tag{65}$$

where C > 0 depends only on  $||f||_{C^1}$ . Assume  $a_k > 2$  and recall (62), we have

$$\int_{0}^{\pi} \frac{\sin\theta \, d\theta}{a_k^2 \sin^2\theta + \cos^2\theta} = 2 \int_{0}^{\frac{\pi}{2}} \frac{\sin\theta \, d\theta}{a_k^2 \sin^2\theta + \cos^2\theta}$$
$$\leq 2\pi^2 \int_{0}^{\frac{\pi}{2}} \frac{\theta \, d\theta}{\pi^2 + a_k^2\theta^2}$$
$$\leq 2\pi^2 a_k^{-2} \log a_k.$$

Thus (65) says

$$|\Lambda_k| \le C a_k^{-2} \log^2 a_k,$$

which is just (63) for n = 1.

(b) When n = 2. By Lemma 11,

$$h_k = O(1)a_k^{-1}.$$

Then we obtain by (64) that

$$|\Lambda_k| \le C \int_0^{\pi} \frac{\sin^2 \theta}{a_k^2 \sin^2 \theta + \cos^2 \theta} \, d\theta$$
  
$$\le C \pi a_k^{-2},$$

where C > 0 depends only on  $||f||_{C^1}$ . Thus (63) with n = 2 is true.  $\square$ 

Now we can strengthen [30, Lemma 3.2] when n = 1, 2.

**Lemma 13.** Assume  $a_k \to +\infty$  as  $k \to +\infty$ . Then we have

$$\int_{0}^{\pi} \frac{f'(\gamma_{a_{k}}(\theta))}{H_{A_{k}}^{n+1}} \cdot \frac{a_{k} \sin^{n}\theta \cos \theta}{i_{a_{k}}^{2}(\theta)} d\theta = f(\frac{\pi}{2})^{-\frac{1}{2}} [ni(f) + o(1)] \begin{cases} a_{k}^{-1}, & \text{if } n = 1, \\ a_{k}^{-2} \log a_{k}^{2}, & \text{if } n = 2. \end{cases}$$
(66)

**Proof.** Let  $\Lambda_k$  denote the integral on the left hand side of (66). Then

$$\Lambda_k = \int_0^\pi \frac{f'(\gamma_{a_k}(\theta)) - f'(\frac{\pi}{2})}{H_{A_k}^{n+1}} \cdot \frac{a_k \sin^n \theta \cos \theta}{i_{a_k}^2(\theta)} d\theta + \int_0^\pi \frac{f'(\frac{\pi}{2})}{H_{A_k}^{n+1}} \cdot \frac{a_k \sin^n \theta \cos \theta}{i_{a_k}^2(\theta)} d\theta$$
$$=: I_k + II_k.$$

(a) When n = 1. Applying [30, Lemma 3.2] to  $I_k$  and Lemma 12 to  $I_k$ , we have

$$\Lambda_k = f(\frac{\pi}{2})^{-\frac{1}{2}} [ni(f) + o(1)] a_k^{-1} + f'(\frac{\pi}{2}) \cdot O(1) a_k^{-2} \log^2 a_k$$
$$= f(\frac{\pi}{2})^{-\frac{1}{2}} [ni(f) + o(1)] a_k^{-1}.$$

(b) When n = 2. Applying [30, Lemma 3.2]<sup>1</sup> to  $I_k$  and Lemma 12 to  $I_k$ , we have

$$\Lambda_k = f(\frac{\pi}{2})^{-\frac{1}{2}} [ni(f) + o(1)] a_k^{-2} \log a_k^2 + f'(\frac{\pi}{2}) \cdot O(1) a_k^{-2}$$
$$= f(\frac{\pi}{2})^{-\frac{1}{2}} [ni(f) + o(1)] a_k^{-2} \log a_k^2.$$

The proof of this lemma is completed.  $\Box$ 

We are in position to complete the proof of Theorem 3.

One can check that the conclusion for n = 2 is still true under the weaker assumption  $f \in C^{2,\alpha}(S^2)$ .

**Proof of Theorem 3.** By [30, Theorem 1.1], we only need to obtain a uniform positive lower bound for rotationally symmetric solutions. Suppose to the contrary that there exists a sequence of rotationally symmetric solutions  $\{H_k\}$  to equation (1) such that  $\min_{S^n} H_k \to 0^+$  as  $k \to +\infty$ . For each k, we define  $a_k$ ,  $A_k$  and  $H_{A_k}$  as in (8) and (9). By Lemma 4,  $H_{A_k}$  is uniformly bounded from above and below. Then we have either  $a_k \to +\infty$  or  $a_k \to 0^+$ .

Recall  $H_{A_k}$  is a rotationally symmetric solution to equation (6) with A replaced by  $A_k$ . Applying the obstruction condition (4), we have the following

$$0 = \int_{0}^{\pi} \frac{f'_{A_k}(\theta) \sin^n \theta \cos \theta}{H_{A_k}^{n+1}(\theta)} d\theta$$

$$= \int_{0}^{\pi} \frac{f'(\gamma_{a_k}(\theta))}{H_{A_k}^{n+1}(\theta)} \cdot \frac{a_k \sin^n \theta \cos \theta}{i_{a_k}^2(\theta)} d\theta.$$
(67)

For the case when  $a_k \to +\infty$ , applying Lemma 13 to (67), we have ni(f) = 0. For the case when  $a_k \to 0^+$ , since by Blaschke selection theorem a subsequence of  $\{H_{A_k}\}$  converges uniformly to some positive support function on  $S^n$ , we apply [30, Lemma 3.3] to (67), and see pi(f) = 0. In both cases we reach a contradiction with our assumptions on f in Theorem 3. The proof of this theorem is completed.  $\square$ 

#### 4. Proof of Theorem 2

In this section, we prove Theorem 2, which dealing with the case when  $n \ge 3$ . The method given in the previous section is not applicable to the higher dimensional case. Instead, we use the variational method and blow-up analyses posted in [27].

By arguments in [27], in order to obtain a rotationally symmetric solution to Eq. (1), we only need to find a maximizer of

$$\sup_{|X|=\kappa_{n+1}} \inf_{\xi \in X} J[H(x) - \xi \cdot x], \tag{68}$$

where the supremum is taken among all rotationally symmetric bounded convex bodies X in  $\mathbb{R}^{n+1}$  containing the origin with volume  $\kappa_{n+1}$ , the infimum is taken among all points  $\xi \in X$ , H is the support function of X, and the functional J is given by

$$J[H] = \frac{1}{n+1} \int_{S^n} \frac{f}{H^{n+1}}.$$
 (69)

Note that for each H,  $\inf_{\xi \in X} J[H(x) - \xi \cdot x]$  is attained at a unique point  $\xi \in X$ . By the Blaschke–Santaló inequality (2), the maximizing problem (68) has an upper bound. But it may not admit a maximizer for some f, see [28]. So we need to impose additional conditions on f to obtain the existence of a maximizer. A class of these conditions can be found by the method of blow-up analysis.

Let  $\{H_k\}$  be a maximizing sequence to (68). If it is uniformly bounded, by the Blaschke selection theorem, a subsequence of  $\{H_k\}$  converges uniformly to a support function  $H_\infty$  which would be a maximizer. If not, namely

$$\sup_{S^n} H_k \to +\infty \text{ as } k \to \infty, \tag{70}$$

then we will deduce a contradiction by the assumptions of Theorem 2, and thus complete the proof of this theorem.

Let  $X_k$  be the convex body determined by  $H_k$ . For each k choose a unimodular linear transformation  $A_k^T \in SL(n+1)$  that normalizes  $X_k$ . Namely the convex body

$$X_{A_k} := A_k^T(X_k)$$

is normalized. Denote its support function by  $H_{A_k}$ . Since  $X_{A_k}$  has the same volume  $\kappa_{n+1}$ , they are uniformly bounded. On account of Blaschke selection theorem, we assume without loss of generality that  $X_{A_k}$  converges to some normalized convex body  $\hat{X}$ , namely  $H_{A_k}$  converges uniformly on  $S^n$  to  $\hat{H}$ , the support function of  $\hat{X}$ . One can prove that  $\hat{H}$  is positive on  $S^n$ . Applying formula (7) and the bounded convergence theorem, one gets

$$J_{\sup} := \lim_{k \to \infty} J[H_k]$$

$$= \lim_{k \to \infty} \frac{1}{n+1} \int_{S^n} \frac{f_{A_k}}{H_{A_k}^{n+1}}$$

$$= \frac{1}{n+1} \int_{S^n} \frac{\hat{f}}{\hat{H}^{n+1}},$$
(71)

where  $\hat{f}$  is the limit function of  $f_{A_k}$ . We want to find some rotationally symmetric H with volume  $\kappa_{n+1}$ , such that

$$J_{\sup} < \inf_{\xi} J[H(x) - \xi \cdot x]. \tag{72}$$

This is a contradiction, from which we will know (70) is false and then complete the proof of the theorem.

To construct (72), we need to find out the expression of  $\hat{f}$  first. Note by the rotational symmetry of  $X_k$ , the normalizing matrix  $A_k^T$  can be chosen as

$$A_k^T = \operatorname{diag}\left(\lambda_k^{\frac{1}{n+1}}, \dots, \lambda_k^{\frac{1}{n+1}}, \lambda_k^{-\frac{n}{n+1}}\right) \text{ with } \lambda_k > 0.$$

Recalling the definition in (7), we have

$$f_{A_k}(x_1, \dots, x_n, x_{n+1}) = f\left(\frac{\lambda_k x_1, \dots, \lambda_k x_n, x_{n+1}}{\sqrt{\lambda_k^2 (x_1^2 + \dots + x_n^2) + x_{n+1}^2}}\right).$$

By the assumption (70), there are only two cases:

$$\lambda_k \to 0 \text{ or } \lambda_k \to \infty, \text{ as } k \to \infty.$$

Correspondingly, we have

$$\hat{f}(x_1, \dots, x_n, x_{n+1}) = \begin{cases} f(e_{n+1}), & \text{if } x_{n+1} > 0; \\ f(-e_{n+1}), & \text{if } x_{n+1} < 0 \end{cases} \text{ when } \lambda_k \to 0,$$
 (73)

or

$$\hat{f}(x_1, \dots, x_n, x_{n+1}) = f\left(\frac{x_1, \dots, x_n, 0}{\sqrt{x_1^2 + \dots + x_n^2}}\right) \text{ when } \lambda_k \to \infty.$$
 (74)

For the case when  $\lambda_k \to 0$ , we can still use the arguments in [27, Section 4.1] to show (72) under the assumption pi(f) > 0.

It remains to consider the case when  $\lambda_k \to \infty$ . Now the analyses in [21,27] are no longer suitable. We provide new blow-up analyses in the following. Since f is rotationally symmetric, one can see from (74) that

 $\hat{f}$  is a constant function on  $S^n$  when  $\lambda_k \to \infty$ .

This fact is crucial in our following proof.

A good upper bound of  $J_{\text{sup}}$  will be needed.

**Lemma 14.** Assume  $\lambda_k \to \infty$ . There is  $J_{sup} \leq \hat{f} \kappa_{n+1}$ .

**Proof.** Recall [27, (3.12)]:

$$J_{\sup} = \inf_{\xi \in \hat{X}} \frac{1}{n+1} \int_{S^n} \frac{\hat{f}(x) \, dS(x)}{(\hat{H}(x) - \xi \cdot x)^{n+1}}.$$

Note  $\hat{f}$  is now a constant, by the Blaschke–Santaló inequality (2), we have

$$J_{\sup} = \hat{f} \inf_{\xi \in \hat{X}} \frac{1}{n+1} \int_{S^n} \frac{dS(x)}{(\hat{H}(x) - \xi \cdot x)^{n+1}}$$

$$\leq \hat{f} \kappa_{n+1}^2 / \operatorname{vol}(\hat{X})$$

$$= \hat{f} \kappa_{n+1},$$

which is just our lemma.

To prove (72), we consider a family of ellipsoids:

$$E_a = \left\{ \xi \in \mathbb{R}^{n+1} : |A(a)\xi| \le 1 \right\},$$

where  $A(a) \in SL(n+1)$  is given by

$$A(a) = \operatorname{diag}\left(a^{\frac{1}{n+1}}, \cdots, a^{\frac{1}{n+1}}, a^{-\frac{n}{n+1}}\right), \quad a > 0.$$

Note each  $E_a$  is a rotationally symmetric ellipsoid with volume  $\kappa_{n+1}$ . And its support function,  $H_a$ , is given by

$$H_a(x) = |A(a)^{-1}x|, \quad \forall x \in S^n.$$

Now we define

$$J(a) := \inf_{\xi \in E_a} J[H_a(x) - \xi \cdot x]. \tag{75}$$

By (7), we have

$$J(a) = \inf_{\xi \in E_a} \frac{1}{n+1} \int_{S^n} \frac{f}{(H_a - \xi \cdot x)^{n+1}}$$

$$= \inf_{|\xi| \le 1} \frac{1}{n+1} \int_{S^n} \frac{f_{A(a)}}{(1 - \xi \cdot x)^{n+1}}$$

$$=: \frac{1}{n+1} \int_{S^n} \frac{f_a}{(1 - \xi_a \cdot x)^{n+1}},$$
(76)

where the infimum is attained at  $\xi_a$ , and  $f_a = f_{A(a)}$  is defined as

$$f_a(x_1, \dots, x_n, x_{n+1}) = f\left(\frac{ax_1, \dots, ax_n, x_{n+1}}{\sqrt{a^2(x_1^2 + \dots + x_n^2) + x_{n+1}^2}}\right).$$
(77)

Recalling (74), we see when  $a \to \infty$  that

$$f_a \to \hat{f}$$
 a.e. on  $S^n$ . (78)

For the function f defined on  $S^n$ , one can extend it to  $\mathbb{R}^{n+1}$  such that it is homogeneous of degree zero. Note that f remains rotationally symmetric in the whole  $\mathbb{R}^{n+1}$ . For a point  $x \in \mathbb{R}^{n+1}$ , we write x = (x', z) where

$$x'=(x_1,\cdots,x_n), \quad z=x_{n+1}.$$

Then we can use the standard notations in Euclidean space such as  $f'_z$ ,  $f''_{zz}$  for partial derivatives of f with respect to z.

The following analysis about  $f_a$  will be needed.

**Lemma 15.** For any  $\varphi \in C(S^n)$ , we have as  $a \to \infty$  that

$$\int_{S^{n}} \varphi(x) [f_{a}(x) - \hat{f}] dS(x)$$

$$= \frac{1}{a} \cdot f'_{z}(e_{1}) \int_{S^{n}} \frac{\varphi(x)z}{|x'|} dS(x) + \frac{1}{a^{2}} \cdot f''_{zz}(e_{1}) \int_{S^{n}} \frac{\varphi(x)z^{2}}{2|x'|^{2}} dS(x) + \frac{o(1)}{a^{2}}.$$
(79)

**Proof.** Let  $\Lambda_a$  denote the integral on the left hand side of (79). By virtue of the Taylor's expansion, for each  $x = (x', z) \in S^n$  with  $x' \neq 0$ , there exists a  $t(x) \in (0, 1/a)$  such that

$$f_a(x) - \hat{f} = f(x', z/a) - f(x', 0) = f_z'(x', 0) \frac{z}{a} + \frac{1}{2} f_{zz}''(x', tz) \frac{z^2}{a^2}.$$

Then

$$\Lambda_{a} = \frac{1}{a} \int_{S^{n}} \varphi(x) f'_{z}(x', 0) z \, dS(x) + \frac{1}{2a^{2}} \int_{S^{n}} \varphi(x) f''_{zz}(x', tz) z^{2} \, dS(x)$$

$$=: \frac{1}{a} I + \frac{1}{2a^{2}} I I.$$
(80)

To deal with these integrals, we need the following formula:

$$\int_{S^n} g(x) \, dS(x) = \sigma_{n-1} \int_{0}^{\pi} g(\cdot, \cos \theta) \sin^{n-1} \theta \, d\theta$$
 (81)

for any rotationally symmetric and integrable function g defined on  $S^n$ . One can easily check it by the coarea formula.

Now for I, since  $f'_z$  is homogeneous of degree -1, then

$$f'_z(x',0) = \frac{1}{|x'|} f'_z(\frac{x'}{|x'|},0) = \frac{1}{|x'|} f'_z(e_1).$$

Therefore

$$I = f_z'(e_1) \int_{S_n} \frac{\varphi(x)z}{|x'|} \, dS(x).$$
 (82)

We remark that I is well defined, since when n > 3,

$$\int_{S^n} \frac{z}{|x'|} dS(x) = \sigma_{n-1} \int_{0}^{\pi} \cos \theta \sin^{n-2} \theta d\theta = C(n) < +\infty.$$

For II, note that  $f_{zz}''$  is homogeneous of degree -2, then

$$\begin{split} \left| \varphi(x) f_{zz}''(x', tz) z^2 \right| &= \left| \varphi(x) f_{zz}'' \left( \frac{x', tz}{\sqrt{|x'|^2 + t^2 z^2}} \right) \frac{z^2}{|x'|^2 + t^2 z^2} \right| \\ &\leq \| \varphi \|_{C^0} \cdot \| f \|_{C^2} \cdot \frac{z^2}{|x'|^2}, \end{split}$$

which is integrable on  $S^n$ , since when  $n \ge 3$ ,

$$\int_{S^n} \frac{z^2}{|x'|^2} dS(x) = \sigma_{n-1} \int_{0}^{\pi} \cos^2 \theta \sin^{n-3} \theta d\theta = C(n) < +\infty.$$

Applying the dominated convergence theorem to II, we obtain

$$\lim_{a \to \infty} \mathbf{I} = \int_{S^n} \varphi(x) f_{zz}''(x', 0) z^2 \, \mathrm{d}S(x)$$

$$= \int_{S^n} \varphi(x) f_{zz}'' \left(\frac{x'}{|x'|}, 0\right) \frac{z^2}{|x'|^2} \, \mathrm{d}S(x)$$

$$= f_{zz}''(e_1) \int_{S^n} \frac{\varphi(x) z^2}{|x'|^2} \, \mathrm{d}S(x).$$

Namely

$$II = f_{zz}''(e_1) \int_{S_R} \frac{\varphi(x)z^2}{|x'|^2} dS(x) + o(1) \text{ as } a \to \infty.$$
 (83)

Now combining (80), (82) and (83), we will obtain (79).

We also need to analyze  $\xi_a$  defined in (76). Since  $f_a$  is rotationally symmetric, by [27, (3.9)],  $\xi_a$  can be written as

$$\xi_a = \eta_a e_{n+1} \text{ for some } \eta_a \in \mathbb{R}.$$
 (84)

The following asymptotic behavior of  $\eta_a$  will be needed.

**Lemma 16.** When  $a \to \infty$ , we have

$$\eta_a = \left(\frac{-b_1 f_z'(e_1)}{(n+2)b_0 \hat{f}} + o(1)\right) \frac{1}{a},\tag{85}$$

where

$$b_0 = \int_{S^n} z^2 \, \mathrm{d}S(x), \quad b_1 = \int_{S^n} \frac{z^2}{|x'|} \, \mathrm{d}S(x). \tag{86}$$

**Proof.** Since  $|\xi_a| \le 1$ , we assume without loss of generality that  $\xi_a \to \xi_\infty$  as  $a \to \infty$ . By the definition of  $\xi_a$  in (76), for each  $|\xi| < 1$ , there is

$$\int_{S^n} \frac{f_a}{(1 - \xi_a \cdot x)^{n+1}} \le \int_{S^n} \frac{f_a}{(1 - \xi \cdot x)^{n+1}}.$$

Passing to the limit and recalling (78), we obtain

$$\int\limits_{\mathbb{S}^n} \frac{\hat{f}}{(1-\xi_\infty \cdot x)^{n+1}} \leq \int\limits_{\mathbb{S}^n} \frac{\hat{f}}{(1-\xi \cdot x)^{n+1}}, \quad \forall \, |\xi| < 1.$$

Note  $\hat{f}$  is a constant, there is

$$\int_{S^n} \frac{1}{(1 - \xi_{\infty} \cdot x)^{n+1}} = \inf_{|\xi| < 1} \int_{S^n} \frac{1}{(1 - \xi \cdot x)^{n+1}}.$$

Thus  $\xi_{\infty} = 0$ . Namely  $\xi_a \to 0$  as  $a \to \infty$ , which implies

$$\eta_a \to 0 \text{ as } a \to \infty.$$
(87)

By definition,  $\xi_a$  is the unique minimum point of

$$\int_{S^n} \frac{f_a}{(1-\xi \cdot x)^{n+1}},$$

which is a strictly convex function with respect to  $\xi$ . The vanishing first order derivatives yield

$$\int_{S_n} \frac{f_a}{(1 - \xi_a \cdot x)^{n+2}} x_i = 0, \quad i = 1, 2, \dots, n+1.$$

Recall (84) and that  $f_a$  is rotationally symmetric, these equalities are equivalent to

$$\int_{c_n} \frac{f_a x_{n+1}}{(1 - \eta_a x_{n+1})^{n+2}} = 0.$$
 (88)

For simplicity, we write

$$\phi(t) = -\frac{1}{t^{n+2}}, \quad \forall t > 0.$$

Recall x = (x', z), then (88) says

$$\int_{S^n} \phi(1 - \eta_a z) f_a z \, dS(x) = 0.$$
 (89)

By (87), for sufficiently large a, there is  $|\eta_a| < 1/2$ . Then

$$\frac{1}{2} < 1 - \eta_a z < \frac{3}{2}.$$

Thus

$$\phi(1 - \eta_a z) = \phi(1) - \phi'(1)\eta_a z + \frac{1}{2}\phi''(\tau)\eta_a^2 z^2,$$

where  $\tau$  varies in (1/2, 3/2). Inserting it into (89), we obtain

$$\phi(1) \int_{S^n} f_a z \, dS(x) - \phi'(1) \eta_a \int_{S^n} f_a z^2 \, dS(x) + \frac{1}{2} \eta_a^2 \int_{S^n} \phi''(\tau) f_a z^3 \, dS(x) = 0,$$

which obviously can be written as

$$\phi(1) \int_{S^n} f_a z \, dS(x) - \phi'(1) \eta_a \int_{S^n} f_a z^2 \, dS(x) + O(1) \eta_a^2 = 0.$$
 (90)

Recalling  $\hat{f}$  is a constant, and applying Lemma 15, we have as  $a \to \infty$  that

$$\int_{S^n} f_a z \, dS(x) = \int_{S^n} z(f_a - \hat{f}) \, dS(x)$$

$$= \frac{1}{a} \left( f'_z(e_1) \int_{S^n} \frac{z^2}{|x'|} \, dS(x) + o(1) \right)$$

$$= \frac{1}{a} [b_1 f'_z(e_1) + o(1)].$$
(91)

By (78), there is

$$\int_{S^n} f_a z^2 dS(x) = \hat{f} \int_{S^n} z^2 dS(x) + o(1)$$

$$= b_0 \hat{f} + o(1).$$
(92)

Now combining (90), (91) and (92), we obtain as  $a \to \infty$  that

$$\phi(1)[b_1f_z'(e_1) + o(1)]\frac{1}{a} - \phi'(1)\eta_a[b_0\hat{f} + o(1)] + O(1)\eta_a^2 = 0,$$

which yields

$$\eta_a = \frac{\phi(1)[b_1 f_z'(e_1) + o(1)]}{\phi'(1)[b_0 \hat{f} + o(1)]} \cdot \frac{1}{a}$$
$$= \left(\frac{\phi(1)b_1 f_z'(e_1)}{\phi'(1)b_0 \hat{f}} + o(1)\right) \frac{1}{a}.$$

Observing  $\phi(1) = -1$  and  $\phi'(1) = n + 2$ , we obtain (85).  $\Box$ 

Now we can obtain the asymptotic behavior of J(a) defined in (75)–(76).

**Lemma 17.** When  $a \to \infty$ , we have

$$J(a) = \hat{f}\kappa_{n+1} + \left(\frac{b_2 f_{zz}''(e_1)}{2(n+1)} - \frac{b_1^2 f_z'(e_1)^2}{2(n+2)b_0 \hat{f}} + o(1)\right) \frac{1}{a^2},\tag{93}$$

where  $b_0$  and  $b_1$  are given in (86), and

$$b_2 = \int_{S_R} \frac{z^2}{|x'|^2} \, \mathrm{d}S(x). \tag{94}$$

**Proof.** For simplicity, we write

$$\phi(t) = \frac{1}{n+1} t^{-n-1}, \quad \forall t > 0.$$

Then (76) says

$$J(a) = \int_{S^n} \phi (1 - \xi_a \cdot x) f_a \, dS(x)$$

$$= \int_{S^n} \phi (1 - \eta_a z) f_a \, dS(x),$$
(95)

where (84) and x = (x', z) have been used for the second equality. By Lemma 16, one can assume

$$\frac{1}{2} < 1 - \eta_a z < \frac{3}{2}$$

for sufficiently large a. Then

$$\phi(1 - \eta_a z) = \phi(1) - \phi'(1)\eta_a z + \frac{1}{2}\phi''(1)\eta_a^2 z^2 - \frac{1}{6}\phi'''(\tau)\eta_a^3 z^3,$$

where  $\tau$  varies in (1/2, 3/2). Inserting it into (95), we obtain

$$J(a) = \phi(1) \int_{S^n} f_a - \phi'(1) \eta_a \int_{S^n} f_a z + \frac{1}{2} \phi''(1) \eta_a^2 \int_{S^n} f_a z^2 - \frac{1}{6} \eta_a^3 \int_{S^n} \phi'''(\tau) f_a z^3$$

$$= \phi(1) \int_{S^n} f_a - \phi'(1) \eta_a \int_{S^n} f_a z + \frac{1}{2} \phi''(1) \eta_a^2 \int_{S^n} f_a z^2 + O(1) \eta_a^3.$$

Recalling (87), (91) and (92), we have as  $a \to \infty$  that

$$J(a) = \phi(1) \int_{S^n} f_a - \phi'(1) \eta_a \left[ b_1 f_z'(e_1) + o(1) \right] \frac{1}{a} + \frac{1}{2} \phi''(1) \eta_a^2 \left[ b_0 \hat{f} + o(1) \right].$$

Note by Lemma 16,

$$\eta_a = \left(\frac{-b_1 f_z'(e_1)}{(n+2)b_0 \hat{f}} + o(1)\right) \frac{1}{a},$$

one gets

$$J(a) = \phi(1) \int_{S^n} f_a - \phi'(1) \left( \frac{-b_1^2 f_z'(e_1)^2}{(n+2)b_0 \hat{f}} + o(1) \right) \frac{1}{a^2}$$
  
+  $\frac{1}{2} \phi''(1) \left( \frac{b_1^2 f_z'(e_1)^2}{(n+2)^2 b_0 \hat{f}} + o(1) \right) \frac{1}{a^2}.$ 

Observe  $\phi(1) = \frac{1}{n+1}$ ,  $\phi'(1) = -1$  and  $\phi''(1) = n+2$ , then J(a) is simplified as

$$J(a) = \frac{1}{n+1} \int_{S^n} f_a + \left( \frac{-b_1^2 f_z'(e_1)^2}{(n+2)b_0 \hat{f}} + o(1) \right) \frac{1}{a^2} + \frac{1}{2} \left( \frac{b_1^2 f_z'(e_1)^2}{(n+2)b_0 \hat{f}} + o(1) \right) \frac{1}{a^2}$$

$$= \frac{1}{n+1} \int_{S^n} f_a + \left( \frac{-b_1^2 f_z'(e_1)^2}{2(n+2)b_0 \hat{f}} + o(1) \right) \frac{1}{a^2}.$$
(96)

By Lemma 15, when  $a \to \infty$ ,

$$\int_{S^n} [f_a(x) - \hat{f}] dS(x) = \frac{1}{a^2} \cdot f_{zz}''(e_1) \int_{S^n} \frac{z^2}{2|x'|^2} dS(x) + \frac{o(1)}{a^2}$$
$$= \frac{1}{a^2} \left( \frac{1}{2} b_2 f_{zz}''(e_1) + o(1) \right),$$

namely

$$\frac{1}{n+1} \int_{S^n} f_a = \hat{f} \kappa_{n+1} + \frac{1}{a^2} \left( \frac{b_2 f_{zz}''(e_1)}{2(n+1)} + o(1) \right). \tag{97}$$

Inserting (97) into (96), we obtain when  $a \to \infty$  that

$$J(a) = \hat{f}\kappa_{n+1} + \left(\frac{b_2 f_{zz}''(e_1)}{2(n+1)} - \frac{b_1^2 f_z'(e_1)^2}{2(n+2)b_0 \hat{f}} + o(1)\right) \frac{1}{a^2},$$

which is just (93).

Now by Lemma 17, if

$$\frac{b_2 f_{zz}''(e_1)}{2(n+1)} - \frac{b_1^2 f_z'(e_1)^2}{2(n+2)b_0 \hat{f}} > 0, \tag{98}$$

then for sufficiently large a there is

$$J(a) > \hat{f} \kappa_{n+1}$$
.

Recalling Lemma 14, for the case  $\lambda_k \to \infty$ , we have  $J_{\sup} \leq \hat{f} \kappa_{n+1}$ . Thus

$$J(a) > J_{\text{sup}}$$

for sufficiently large a. Recalling the definition of J(a) in (75), we see this inequality is just (72). So to obtain (72) for the case when  $\lambda_k \to \infty$ , it remains to check (98). Recalling our notations, we have

$$f(\theta) = f(\cdot, \cos \theta) = f(\sin \theta, 0, \dots, 0, \cos \theta).$$

Note that  $f(\frac{\pi}{2}) = f(e_1) = \hat{f}$ . Also there is

$$f'(\theta) = \cos \theta f'_1 - \sin \theta f'_z$$
$$= -\cos \theta f'_z \cot \theta - \sin \theta f'_z$$
$$= -\frac{f'_z}{\sin \theta},$$

where that  $\nabla f(x) \cdot x = 0$  has been used for the second equality. Therefore one immediately gets that  $f'(\frac{\pi}{2}) = -f_z'(e_1)$ , and that

$$-ni(f) = f''(\frac{\pi}{2}) = f''_{77}(e_1).$$

Now (98) is equivalent to

$$-\frac{b_2 n i(f)}{2(n+1)} - \frac{b_1^2 f'(\frac{\pi}{2})^2}{2(n+2)b_0 f(\frac{\pi}{2})} > 0,$$

namely

$$ni(f) < -\frac{(n+1)b_1^2}{(n+2)b_0b_2}f'(\frac{\pi}{2})^2/f(\frac{\pi}{2}).$$
 (99)

Here we recall that  $b_0$ ,  $b_1$  and  $b_2$  are given in (86) and (94), which depend only on n and can be easily worked out by formula (81). Observe that

$$b_1^2 = \left( \int_{S^n} \frac{z^2}{|x'|} \, dS(x) \right)^2$$

$$< \int_{S^n} z^2 \, dS(x) \cdot \int_{S^n} \frac{z^2}{|x'|^2} \, dS(x)$$

$$= b_0 b_2,$$

then the assumption on ni(f) in Theorem 2 implies (99), namely (98).

Now we have obtained (72) in both possible blow-up cases under assumptions of Theorem 2. According to our previous discussion, the proof of this theorem is completed.

#### References

- [1] J. Ai, K.-S. Chou, J. Wei, Self-similar solutions for the anisotropic affine curve shortening problem, Calc. Var. Partial Differential Equations 13 (2001) 311–337.
- [2] L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel, Axioms and fundamental equations of image processing, Arch. Ration. Mech. Anal. 123 (1993) 199–257.
- [3] B. Andrews, Evolving convex curves, Calc. Var. Partial Differential Equations 7 (1998) 315–371.
- [4] B. Andrews, Motion of hypersurfaces by Gauss curvature, Pacific J. Math. 195 (2000) 1–34.
- [5] K.J. Böröczky, P. Hegedűs, G. Zhu, On the discrete logarithmic Minkowski problem, Int. Math. Res. Not. IMRN (2016) 1807–1838.
- [6] K.J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc. 26 (2013) 831–852
- [7] P. Bryan, M.N. Ivaki, J. Scheuer, A unified flow approach to smooth, even L<sub>p</sub>-Minkowski problems, arXiv:1608. 02770v1.
- [8] E. Calabi, Complete affine hyperspheres. I, in: Symposia Mathematica, vol. X, Convegno di Geometria Differenziale, INDAM, Rome, 1971, Academic Press, London, 1972, pp. 19–38.
- [9] S.-Y.A. Chang, M.J. Gursky, P.C. Yang, The scalar curvature equation on 2- and 3-spheres, Calc. Var. Partial Differential Equations 1 (1993) 205–229.
- [10] W. Chen, L<sub>p</sub> Minkowski problem with not necessarily positive data, Adv. Math. 201 (2006) 77–89.
- [11] K.-S. Chou, X.-J. Wang, The  $L_p$ -Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math. 205 (2006) 33–83.
- [12] K.-S. Chou, X.-P. Zhu, The Curve Shortening Problem, Chapman & Hall/CRC, Boca Raton, FL, 2001.
- [13] J. Dou, M. Zhu, The two dimensional  $L_p$  Minkowski problem and nonlinear equations with negative exponents, Adv. Math. 230 (2012) 1209–1221.
- [14] C. Haberl, F.E. Schuster, General  $L_p$  affine isoperimetric inequalities, J. Differential Geom. 83 (2009) 1–26.
- [15] Y. He, Q.-R. Li, X.-J. Wang, Multiple solutions of the L<sub>p</sub>-Minkowski problem, Calc. Var. Partial Differential Equations 55 (2016) 117.
- [16] Y. Huang, J. Liu, L. Xu, On the uniqueness of  $L_p$ -Minkowski problems: the constant p-curvature case in  $\mathbb{R}^3$ , Adv. Math. 281 (2015) 906–927.
- [17] M.N. Ivaki, A flow approach to the  $L_{-2}$  Minkowski problem, Adv. in Appl. Math. 50 (2013) 445–464.
- [18] M.N. Ivaki, A. Stancu, Volume preserving centro-affine normal flows, Comm. Anal. Geom. 21 (2013) 671–685.
- [19] H. Jian, J. Lu, X.-J. Wang, Nonuniqueness of solutions to the L<sub>p</sub>-Minkowski problem, Adv. Math. 281 (2015) 845–856.
- [20] H. Jian, J. Lu, X.-J. Wang, A priori estimates and existence of solutions to the prescribed centroaffine curvature problem, J. Funct. Anal. 274 (2018) 826–862.
- [21] H. Jian, J. Lu, G. Zhu, Mirror symmetric solutions to the centro-affine Minkowski problem, Calc. Var. Partial Differential Equations 55 (2016) 41.
- [22] H. Jian, X.-J. Wang, Bernstein theorem and regularity for a class of Monge–Ampère equations, J. Differential Geom. 93 (2013) 431–469.
- [23] H. Jian, X.-j. Wang, Optimal boundary regularity for nonlinear singular elliptic equations, Adv. Math. 251 (2014) 111–126.
- [24] M. Jiang, L. Wang, J. Wei, 2π-periodic self-similar solutions for the anisotropic affine curve shortening problem, Calc. Var. Partial Differential Equations 41 (2011) 535–565.
- [25] M. Jiang, J. Wei, 2π-periodic self-similar solutions for the anisotropic affine curve shortening problem II, Discrete Contin. Dyn. Syst. 36 (2016) 785–803.
- [26] J. Kim, S. Reisner, Local minimality of the volume-product at the simplex, Mathematika 57 (2011) 121–134.
- [27] J. Lu, A generalized rotationally symmetric case of the centroaffine Minkowski problem, J. Differential Equations 264 (2018) 5838–5869.
- [28] J. Lu, Nonexistence of maximizers for the functional of the centroaffine Minkowski problem, Sci. China Math. 61 (2018) 511–516.
- [29] J. Lu, H. Jian, Topological degree method for the rotationally symmetric L<sub>p</sub>-Minkowski problem, Discrete Contin. Dyn. Syst. 36 (2016) 971–980.

- [30] J. Lu, X.-J. Wang, Rotationally symmetric solutions to the L<sub>p</sub>-Minkowski problem, J. Differential Equations 254 (2013) 983–1005.
- [31] E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993) 131–150.
- [32] E. Lutwak, V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41 (1995) 227–246.
- [33] E. Lutwak, D. Yang, G. Zhang, Sharp affine L<sub>p</sub> Sobolev inequalities, J. Differential Geom. 62 (2002) 17–38.
- [34] E. Lutwak, D. Yang, G. Zhang, On the L<sub>p</sub>-Minkowski problem, Trans. Amer. Math. Soc. 356 (2004) 4359–4370.
- [35] E. Lutwak, G. Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997) 1–16.
- [36] K. Nomizu, T. Sasaki, Affine Differential Geometry, Cambridge Tracts in Mathematics, vol. 111, Cambridge University Press, Cambridge, 1994, Geometry of affine immersions.
- [37] R. Schneider, Convex Bodies: the Brunn–Minkowski Theory, expanded ed., Encyclopedia of Mathematics and Its Applications, vol. 151, Cambridge University Press, Cambridge, 2014.
- [38] R. Schoen, D. Zhang, Prescribed scalar curvature on the *n*-sphere, Calc. Var. Partial Differential Equations 4 (1996) 1–25.
- [39] A. Stancu, The discrete planar  $L_0$ -Minkowski problem, Adv. Math. 167 (2002) 160–174.
- [40] V. Umanskiy, On solvability of two-dimensional L<sub>p</sub>-Minkowski problem, Adv. Math. 180 (2003) 176–186.
- [41] J. Urbas, The equation of prescribed Gauss curvature without boundary conditions, J. Differential Geom. 20 (1984) 311–327.
- [42] E. Werner, D. Ye, New  $L_p$  affine isoperimetric inequalities, Adv. Math. 218 (2008) 762–780.
- [43] S. Yijing, L. Yiming, The planar Orlicz Minkowski problem in the L<sup>1</sup>-sense, Adv. Math. 281 (2015) 1364–1383.
- [44] G. Zhu, The logarithmic Minkowski problem for polytopes, Adv. Math. 262 (2014) 909–931.
- [45] G. Zhu, The centro-affine Minkowski problem for polytopes, J. Differential Geom. 101 (2015) 159–174.
- [46] G. Zhu, The  $L_p$  Minkowski problem for polytopes for 0 , J. Funct. Anal. 269 (2015) 1070–1094.