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Abstract
Non-rigid registration of 3D shapes is an essential task of increasing importance as commodity depth sensors
become more widely available for scanning dynamic scenes. Non-rigid registration is much more challenging than
rigid registration as it estimates a set of local transformations instead of a single global transformation, and hence
is prone to the overfitting issue due to underdetermination. The common wisdom in previous methods is to impose
an `2-norm regularization on the local transformation differences. However, the `2-norm regularization tends to
bias the solution towards outliers and noise with heavy-tailed distribution, which is verified by the poor goodness-
of-fit of the Gaussian distribution over transformation differences. On the contrary, Laplacian distribution fits
well with the transformation differences, suggesting the use of a sparsity prior. We propose a sparse non-rigid
registration (SNR) method with an `1-norm regularized model for transformation estimation, which is effectively
solved by an alternate direction method (ADM) under the augmented Lagrangian framework. We also devise a
multi-resolution scheme for robust and progressive registration. Results on both public datasets and our scanned
datasets show the superiority of our method, particularly in handling large-scale deformations as well as outliers
and noise.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Hierarchy and geometric transformations

1. Introduction

3D registration is an active research topic in computer graph-
ics and computer vision [BTP13, ARV07, ZNI∗14]. Given
a template shape (represented either as a point cloud or a
mesh) and a target shape, the aim of 3D registration is to find
a mapping between them that optimally transforms the tem-
plate onto the target. 3D registration is an essential technique
for 3D scanning systems, where several partial scans from
different viewpoints are fused to form complete 3D mod-
els. The scanned data often contains noise and outliers; this
is particularly problematic for cheap depth cameras such as
Microsoft Kinects, which have now seen wider use. Regis-
tration methods robust to noise and outliers are thus highly
desirable.

Rigid registration aims to find a global rigid-body trans-
formation that aligns two shapes. Various methods have been

† Corresponding author: lik@tju.edu.cn.

developed over the past decades [RKGB12]. Iterative Clos-
est Point (ICP) and its variants [BM92] are the most classic
ones. This kind of methods alternates between finding clos-
est points and solving the optimal transformation. The major
problem of such methods is its sensitivity to noise and out-
liers which are often observed in 3D scans. To address this,
Bouaziz et al. [BTP13] propose a new variant of the ICP
algorithm with sparsity-inducing norms, achieving superior
results for the data with noise and outliers.

For dynamic scenes containing deformable objects, non-
rigid registration is required. Such methods need to find a
set of local transformations instead of a single global trans-
formation. It is still a difficult, under-constrained problem
due to high degrees of freedom and lack of prior knowl-
edge. Most work in literature imposes the smoothness prior
as the total energy of transformation differences over all the
local neighbors in the `2 norm to make the problem well-
posed [SSP07, LSP08]. However, the smoothness term in
the `2-norm tends to penalize large transformation differ-
ences. Therefore it is not well suited to deformations with
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piecewise near rigid parts (common for articulated models)
where large changes happen in local areas, and is more sub-
stantially affected by noise and outliers of geometry and/or
correspondences.

We propose a sparse non-rigid registration (SNR) method.
Our method stands on the iterative framework consisting
of two steps: 1) correspondence computation and 2) trans-
formation estimation. We investigate the characteristics of
non-rigid transformations of 3D shapes, and observe that the
transformation functional on the graph is piecewise smooth,
and can be well described by the Laplacian distribution on
its local differences. Inspired by this, we propose a transfor-
mation estimation model based on the `1-norm regulariza-
tion of transformation differences. The model is solved by
the alternating direction method under the augmented La-
grangian multiplier (ADM-ALM) framework. Our method
is extended to a multi-resolution approach to achieve ro-
bust registration for complex deformations. The proposed
method is evaluated on public datasets [BBK08, VBMP08]
and real datasets captured using a Kinect depth sensor. The
results demonstrate that the proposed SNR method obtains
better results than the conventional non-rigid registration
with the `2-norm regularization. In particular, results on
datasets with noise and outliers (both geometry and cor-
respondences) show that our `1-norm regularization is less
sensitive to such problems typical in the input.

The main contributions of this work are summarized as:

• We propose a sparse non-rigid registration method. The
SNR model is constructed based on the verified observa-
tion that non-rigid transformations are piecewise smooth
on the underlying graph, and is able to handle flexible de-
formations of local geometries. The SNR model is trans-
ferred into a series of alternating optimization subprob-
lems with exact solutions and guaranteed convergence.
• We establish a multi-resolution non-rigid registration

scheme. The template and target shapes are downsam-
pled into low resolution versions of several scales. The
non-rigid registration at the full resolution is obtained in a
coarse-to-fine manner. This strategy is not only more ef-
ficient, but also prevents the method from trapping into
poor local minimums, providing robust registration for
complicated deformations.

2. Related Work

Over the last two decades, non-rigid registration has been an
intensively studied problem. A complete survey is beyond
the scope of this paper. Please refer to [TCL∗13] for a recent
survey. In this section, we provide a brief summary of most
relevant work from two aspects:

Model Selection: Non-rigid registration requires some as-
sumptions about the underlying deformation. Some methods
use a piecewise rigid transformation model, in which global

rigid transformations are computed for bones and local non-
rigid deformations occur near joints. Allen et al. [ACP02]
place markers on the object to help reconstruct the pose of
a scan, which is then used as a basis for modeling deforma-
tion. Pekelny et al. [PG08] use predefined bone information
to find and track transformations of rigid components. Fur-
ther techniques take more generic deformations into consid-
eration. Chui et al. [CR03] adopt the thin-plate spline (TPS)
as the model to represent non-rigid transformations. Myro-
nenko et al. [MS10] regularize the displacement field to en-
sure smoothness. Papazovet al. [PB11] model as-rigid-as-
possible shape deformations using an ordinary differential
equation.

Recently, local affine transformations are frequently used
in non-rigid registration [ACP03]. Amberg et al. [ARV07]
use a stiffness term to impose similarity between neigh-
boring affine matrices. Liao et al. [LZW∗09] use differen-
tial coordinates, which can be considered as local affine
transformations with smoothness constraints. Rouhani et
al. [RBS14] model non-rigid deformation as an integration
of locally rigid transformations. The template shape is clus-
tered into a collection of small patches that can deform
rigidly, and the target is represented by an implicit function.
The implicit function induces a distance field that helps align
the template to the target without explicit correspondences.
In our work, we use local affine transformation as it allows
more flexibility to capture fine surface details.

Regularization and Optimization: Non-rigid registration
is often formulated as an optimization problem. Most meth-
ods formulate some energy functional with both data (mea-
suring fitting error) and regularization terms. The latter helps
to preserve smoothness, avoid overfitting and thus make the
optimization more robust to noise and outliers.

Amberg et al. [ARV07] use a stiffness term to penalize
differences between transformation matrices of neighboring
vertices. Süßmuth et al. [SWG08] and Liao et al. [LZW∗09]
use a generalized as-rigid-as-possible energy [SA07] and
thin-plate splines (TPS) [CR03] to promote smoothness.
Wand et al. [WAO∗09] take a set of time-varying point data
as input, and reconstruct a single shape and a deformation
field that fit the data. The algorithm encourages the normals
of adjacent points to vary as smoothly as possible. To im-
prove robustness, Li et al. [LSP08] solve correspondences,
confidence weights, and a deformation field within a sin-
gle optimization framework. Their work [LSP08, LAGP09]
uses regularizers to improve local rigidity and transforma-
tion smoothness.

Regularization using the `1-norm: The `1-norm has been
widely used to solve the registration problem. Hontani
et al. [HMS12] propose a statistical shape model built
based on some training surfaces, which is then incorpo-
rated into the non-rigid ICP framework. Outliers can be
detected based on their sparseness. Based on the `1-norm,
Flöry et al. [FH10] propose a technique for rigid registration
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Figure 1: Normalized histograms of transformation differences and the associated fitted Laplacian distributions and Gaussian
distributions for datasets (a) Bouncing, (b) Jumping, and (c) Dog. The Laplacian distribution (corresponding to the `1-norm
regularizer) fits the histograms significantly better than the Gaussian distribution (corresponding to the `2-norm regularizer),
suggesting the use of sparsity — promoting `1 norm regularization.

of surfaces. Their technique performs better than `2-method
in the presence of outliers. Bouaziz et al. [BTP13] propose
an ICP-based algorithm for rigid registration with a general
`p sparse data term (p ≤ 1), which shows improved robust-
ness to noise and outliers. Yu et al. [YZL∗14] employ spar-
sity constraints to handle the outliers and gross errors when
dealing with noisy medical images.

In this paper, we propose a new non-rigid registration
method based on sparse representation. We formulate the
smoothness term with the `1 norm instead of the conven-
tional `2 norm to ensure that adjacent transformations are
similar. We will show that our method is more robust to noise
and outliers, consistent with theoretical discussion [KK03].

3. Proposed Method

3.1. Motivation

Non-rigid registration has much higher degrees of freedom,
and is more challenging than rigid registration. It is prone to
the over-fitting problem as one can optimize a transforma-
tion for each vertex with very small matching error, but the
deformation of the surface may be unnatural or even violate
the underlying physical model. Hence, the key is to impose
proper priors to make the problem well-posed.

Most work in the literature assumes smoothness of trans-
formations as deformations between neighboring vertices
are usually similar. Following this, the smoothness is de-
fined as the total energy of transformation differences over
all the local neighbors in the `2 norm [SSP07,LSP08]. While
it helps to make the problem well-posed, the `2-norm based
smoothness tends to penalize large transformation differ-
ences, causing incorrect estimation around vertices with in-
tensive deformations. From the statistic point of view, the
`2-norm regularization is to assume the Gaussian distribu-
tion of transformation differences [Bis06]. However, defor-
mations of most interested 3D surfaces, e.g., humans, ani-
mals, and robots, are articulated. In other words, the defor-
mations vary smoothly over the vertices except for flexible

joints with intensive deformations, and hence, the transfor-
mations are piecewise-smooth signals residing on 3D sur-
faces. This suggests that the transformation differences are
sparse, and should be modeled by a heavy-tailed distribu-
tion, rather than being dense and modeled by the rapidly-
vanishing Gaussian distribution. This is analogous to the
case of piecewise smooth images with sparse representations
under some transforms/dictionaries [EFM10].

This intuition is verified in Fig. 1. These 3D shapes come
with ground truth dense correspondences that describe the
non-rigid deformations. Their normalized histograms of lo-
cal rigid transform differences between adjacent vertices are
presented, together with fitted Laplacian distributions and
Gaussian distributions. The Laplacian distributions tightly fit
the histograms while the Gaussian distributions show signif-
icant departures. This motivates us to model transformation
differences with the Laplacian distribution, or equivalently
to use the `1 norm in measuring the smoothness of non-rigid
transformations.

3.2. Sparse Non-rigid Registration Method

3.2.1. Iterative Framework

Our non-rigid registration takes two shapes (a template
shape and a target shape) and finds a collection of local
transformations to deform the template shape to the target.
Like most non-rigid registration methods, our method op-
erates iteratively. Each iteration consists of two steps, i.e.,
correspondence estimation and transformation estimation. In
the first step, the correspondences between the template and
the target are estimated given the alignment with the trans-
formations obtained from the last iteration. Accurate corre-
spondence estimation is highly desirable for rapid conver-
gence. Similar to ICP, we also use closest points between
template and target shapes to suggest potential correspon-
dences. However, this is only effective when the template
and the target are in reasonably good alignment. To address
this, in particular at the beginning of the iteration where both
shapes can be arbitrarily placed, we incorporate correspon-
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dences based on intrinsic geometric features. We use a state-
of-the-art technique based on local geometric similarity and
diffusion pruning of inconsistent correspondence [TMRL14]
which often provides reliable correspondences. Alternative
correspondence techniques or manual specification of a few
correspondences may instead be used (see Fig. 8). After the
first iteration, the template mesh is generally close to the tar-
get so we add ICP-based correspondences for the following
iterations. In the second step (Sec. 3.2.2), non-rigid transfor-
mations are estimated by a proposed energy-minimization
approach based on sparse representation (SR) given the cor-
respondences from the first step.

3.2.2. SR-based Transformation Estimation

We start by giving a formal definition of the problem. De-
note a template set of 3D points by V , {v1, · · · ,vN}, where
vi , [xi,yi,zi,1]> is a 3D point in the homogeneous co-
ordinate and N is the number of points. Similarly, we de-
fine a target set of 3D points as U , {u1, · · · ,uM}. Let
f : {1, · · · ,N} 7→ {1, · · · ,M} be the index mapping from
the template points to the target points established by cor-
respondence computation: u f (i) ∈ U is the correspondence
point of vi ∈V . For non-rigid registration, we allow an affine
transformation for each point in the template to cover a wide
range of non-rigid deformations. Denote the set of non-rigid
transformations byX , {X1, · · · ,XN}, where Xi is the 3×4
transformation matrix for point vi. For convenience, denote
by X , [X1, · · · ,XN ]

> of size 4N × 3 the ensemble ma-
trix containing N transformation matrices to be estimated.
Given a correspondence mapping f , the aim of the proposed
method is to find non-rigid transformations X , or equiva-
lently X, that transforms the template V into the target U as
accurately as possible while ensuring the validity of 3D de-
formations (e.g., subjecting to physical constraints of the 3D
objects) by imposing a sparse prior of transformations.

To this end, we design an energy function to evaluate the
goodness of transformations:

E (X; f ) = Edata (X; f )+αEsmooth (X) , (1)

where Edata (X) is the data term to measure the registration
accuracy, Esmooth (X) is the smoothness term to measure the
smoothness of local transformations, and α is a weight to
twist the importance of the two terms. The data term and the
smoothness term are defined as follows.

Data term: The accuracy of deformation can be measured
by the closeness of the transformed points to their corre-
sponding target points. For some points in V , no reliable
correspondences from U can be found, which is common in
most matching algorithms such as SHOT [STDS14], diffu-
sion pruning [TMRL14] or closest points (using a standard
correspondence rejection strategy). We introduce a weight
denoted by wi for each point: wi is set at zero if vi does not
have a corresponding point in U , and one otherwise. Given

the correspondence mapping f , the data term is defined as

Edata (X; f ) = ∑
vi∈V

wi
∥∥Xivi− ũ f (i)

∥∥2
2 (2)

where ũ f (i) is the Cartesian coordinate of u f (i).

We define the following matrix/vector form of the vari-
ables to reformulate the data term (2) for the compact repre-
sentation in algorithm derivation.

W = diag(
√

w1, · · · ,
√

wN) ,

V = diag
(

v>1 , · · · ,v>N
)
,

Ũ f =
[
ũ f (1) · · · ũ f (N)

]>
,

(3)

where diag(·) returns the block-wise diagonal matrix of the
input vectors. Then, the data term can be rewritten as

Edata (X; f ) =
∥∥W

(
VX− Ũ f

)∥∥2
F , (4)

where ‖ · ‖2
F denotes Frobenius norm of a matrix.

Smoothness term: To impose a sparse prior on transforma-
tion differences, we define a graph G , (V,E), where the
vertices of the graph are the 3D points in V , and the edges
of the graph are denoted by E . For a 3D mesh, edges of the
graph are simply defined by the edges of the mesh; for 3D
point clouds, edges can be defined by connecting each vertex
with its K-nearest neighbors (K is typically set to 6).

For both cases, the edge set can be defined with a neigh-
boring system. Denote byNi the neighborhood of vertex vi,
and an edge ei j is defined between each neighboring vertex
v j and vi. So, we have E =

{
ei j | v j ∈Ni,vi ∈ V

}
. The anal-

ysis in Sec. 3.1 reveals that transformation differences on 3D
surfaces are sparse, and are well fitted by a Laplacian distri-
bution. Therefore, the cost of transformation smoothness is
measured by the `1 norm of transformation differences over
the neighboring system E :

Esmooth (X) = ∑
ei j∈E

∥∥Xi−X j
∥∥

1, (5)

where ‖ · ‖1 here represents the `1 norm of the matrix con-
sidered as a long vector.

Similar to the data term, we define a differential matrix
K∈ {−1,1}|E|×|V| on the graph G for concise presentation.
Concretely, each row of K corresponds to an edge in E and
each column corresponds to a vertex in V . Each row in K
has only two nonzero entries. For example, assuming the rth

row in K associates with edge ei j, then the entry linked to
the reference vertex vi is set at 1, while the one linked to the
neighboring vertex v j is set at -1, i.e. kri = 1 and kr j = −1.
Let I4 be a 4× 4 identity matrix to expand the differential
matrix K for differentiating 4×3 matrices (transpose of Xi).
The smoothness term can be rewritten as

Esmooth =
∥∥(K⊗ I4)X

∥∥
1 , (6)

where ⊗ denotes the operator of Kronecker product. The
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matrix-vector form of the energy function is obtained by
substituting (4) and (6) into (1), and the transformation ma-
trices are obtained by minimizing the following function:

min
X

∥∥W
(
VX− Ũ f

)∥∥2
F +α

∥∥(K⊗ I4)X
∥∥

1 , (7)

whose algorithm is detailed in the following section.

3.3. Proposed ADM-ALM Algorithm

Minimization (7) is essentially an unconstrained optimiza-
tion of X. The `1− `2 structure of energy functions has been
intensively studied over the past decade in line with sparse
representation [YPXD09]. However, the differential matrix
K⊗I4 impedes the direct use of efficient proximal operators
to attack the non-differential `1 term. We first transform the
minimization (7) into the following form with an auxiliary
variable A.

min
X,A

∥∥W
(
VX− Ũ f

)∥∥2
F +α

∥∥A
∥∥

1 ,

s.t. A = BX,
(8)

where B≡K⊗ I4 is introduced for concise notations.

We solve the constrained minimization (8) using the aug-
mented Lagrangian method [Ber82]. The ALM method con-
verts the original problem (8) to iterative minimization of its
augmented Lagrangian function:

L(X,A,Y,µ) =
∥∥W

(
VX− Ũ f

)∥∥2
F +α

∥∥A
∥∥

1

+ 〈Y,A−BX〉+ µ
2

∥∥A−BX
∥∥2

F ,
(9)

where µ is a positive constant, Y is the Lagrangian multiplier,
and 〈·, ·〉 denotes the inner product of two matrices consid-
ered as long vectors. Under the standard ALM framework,
Y and µ can be efficiently updated. However, each iteration
has to solve X and A simultaneously, which is difficult and
computationally demanding. Hence, we resort to the alter-
nate direction method (ADM) [BPC∗11] to optimize A and
X separately at each iteration:

A(k+1) = argminA α‖A‖1 + 〈Y(k),A−BXk〉
+ µ(k)

2 ‖A−BX(k)‖2
F ,

X(k+1) = argminX ‖W
(
VX− Ũ f

)
‖2

F + 〈Y(k),

A(k+1)−BX〉+ µ(k)
2 ‖A

(k+1)−BX‖2
F ,

Y(k+1) = Y(k)+
(

A(k+1)−BX(k+1)
)
,

µ(k+1) = ρµ(k), ρ > 1

(10)

The A-subproblem has the following closed solution:

A(k+1) = shrink
(

BX(k)− 1
µ(k)

Y(k),
α

µ(k)

)
, (11)

where shrink(·,·) is the shrinkage function applied on the ma-
trix element-wise:

shrink(x,τ) = sign(x)max(|x|− τ,0). (12)

Algorithm 1. Non-rigid registration
1. Input: template V , target U .
2. While not converged do
3. Find correspondence mapping f (l) : V 7→ U ;
4. Solve transformations X(l) via Algorithm 2;
5. End while
6. Output: X

The X-subproblem is a quadratic optimization, which can be
solved by setting its derivatives with respect to X to zeros,
yielding the following linear equations:(

V>W>WV+µ(k)B>B
)

X = V>W>WŨ f

+B>Y(k)+µ(k)B>A(k+1).
(13)

X(k+1) can be obtained by multiplying the left-side with the
inverse of V>W>WV+ µ(k)B>B. However, the inversion
can be problematic when the scale of the problem is large,
e.g., when registration point clouds with tens of thousands
of points. We avoid this problem by using the LDL decom-
position, a variant of Cholesky factorization.

(L,D) = ldl
(

V>W>WV+µ(k)B>B
)
. (14)

where L and D are the lower triangular matrix and the diag-
onal matrix returned by the LDL decomposition. Then, we
introduce two auxiliary variables Q and Z for clear presen-
tation, and X(k+1) is obtained by solving the following one
diagonal and two triangular systems:

LQ = D>W>WŨ f +B>Y(k)+µ(k)B>A(k+1),

DZ = Q,

L>X = Z.

(15)

We choose the ADM-ALM algorithm as it is much faster
than many other `1-minimization solvers such as interior-
point algorithms and proximal point methods, and is less
sensitive to problem sizes [YZB∗13]. The iterative non-rigid
registration framework is summarized in Algorithm 1. The
ADM-ALM algorithm (an inner iteration of Algorithm 1)
to estimate non-rigid transformations X is summarized in
Algorithm 2. Fig. 2 illustrates the typical convergence be-
havior of both algorithms. We observe that the total energy
decreases at each iteration for both the inner and outer loops.
The outer loop (Algorithm 1) converges after about 15 itera-
tions. As the registration gets more accurate with the increas-
ing iteration of Algorithm 1, fewer iterations are needed for
Algorithm 2 to converge.

3.4. Multi-resolution Approach

The transformation estimation model (7) is convex w.r.t. X
given a correspondence mapping f : V 7→ U , and the ADM-
ALM algorithm is guaranteed to converge to the optimum
[BPC∗11]. However, the ideal minimization should actually
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Algorithm 2. ADM-ALM algorithm to solve (7)
1. Input: Ũ f (l) ∈ RN×3, V ∈ RN×4N , B ∈ R|E|×4|V|;
2. Initialize: X(l,0) = 0, Y(0) = 0, µ > 0, ρ > 1;
3. While not converged do
4. Solve A(l,k+1) by (11);
5. Solve X(l,k+1) by (14)∼(15);

6. Y(k+1) = Y(k)+µ(k)
(

V(k+1)−BX(k+1)
)

;

7. µ(k+1) = ρµ(k);
8. End while
9. Output: X(l).
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Figure 2: Total energy of (7) vs. the number of iterations
for Algorithm 1 (curve in the large subplot) and Algorithm 2
(curves in three smaller subplots) on dataset Bouncing. The
number of iterations for Algorithm 2 to converge decreases
with increasing number of iterations of Algorithm 1.

be w.r.t. both X and f , and possibly has many local optima.
The separate treatment in Algorithm 1 may be trapped to
a local minimum that significantly departs from the desired
one. We propose a continuation approach that operates on
multi-resolution template and target shapes from coarse to
fine to reach a promising solution. Furthermore, the multi-
resolution approach also helps to attack large scale problems
that would otherwise be prohibitively expensive (in terms of
computation and storage costs).

Denote by V(s) the sth scale of the template shape V , ob-
tained by downsampling using a standard approach [GH97,
PGK02]. Assume that we totally have S scales, we have
multi-resolution shapes, V(S),V(S−1), · · · ,V(0), where V(S)

is the shape at the coarsest resolution and V(0) ≡ V is that at
the full resolution. Similarly, we define the multi-resolution
series for the target: U (S),U (S−1), · · · ,U (0).

As illustrated in Fig. 3, we first obtain non-rigid transfor-
mation X(S) and corresponding mapping f (S) from V(S) and
U (S) at the coarsest scale using Algorithms 1 and 2. The non-
rigid registration at the sth scale is solved by warm-starting

template mesh

target mesh

 result

coarse mesh

Figure 3: Illustration of multi-resolution non-rigid regis-
tration. The deformation of high-resolution template is pre-
dicted by the deformation of low-resolution template.

Figure 4: Example of multi-resolution registration. When
the resolution is too low, the transformations cannot be ef-
fectively represented, causing artifacts. This is resolved by
proceeding to a finer level of shapes.

the algorithm with the solution at the (s + 1)th scale. Let
v(s)i be a vertex at the sth scale. The deformation of v(s)i is
predicted by the weighted average of the deformations of
vertices within a spherical neighborhood of radius r at the
(s+1)th scale [LAGP09]. Denoted by ṽ(s)i the predicted po-

sition of v(s)i , and by Γ
(s+1)
i the index set of vertices within

the spherical neighborhood.

ṽ(s)i = ∑
j∈Γ

(s+1)
i

a j

(
v(s)i ,v(s+1)

j ,r
)

X(s+1)
j v(s+1)

j , (16)

The weight is defined as

a j
(
vi,v j,r

)
= max

(
0,

(
1−

d2 (vi,v j
)

r2

))
, (17)

where r is the effective radius (set based on the average edge
length) and d(vi,v j) is the Euclidean distance between vi
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Figure 5: Results on Dog (top) and Bouncing (bottom): (a) template, (b) target, (c) results, and (d) fitting errors.

and v j. The weight drops when the distance between these
two vertices increases.

By predicting the deformation of each vertex in V(s) via
(16), we obtain a predicted deformation, denoted by Ṽ(s).
Then, the correspondence mapping f (s) : V(s) 7→ U (s) is es-
timated as in the single resolution situation, using a com-
bination of intrinsic-based and ICP-based correspondences.
This procedure proceeds from a coarser level to a finer level
and terminates if either the highest level is reached, or the
transformation obtained is sufficiently accurate when ap-
plied to the input template and target shapes using (16).
Fig. 4 demonstrates that coarse template and target shapes
are not sufficient to represent the transformations effectively,
leading to the wavy artifact on the tail. Higher resolution
shapes effectively solve this problem. By using a coarse-to-
fine strategy, our method has less chance of getting stuck at
poor local minima, and handles high resolution shapes ef-
fectively as often coarser shapes are sufficient to represent
the transformations. In practice, the actual number of scales
and the resolution of the simplified meshes are not critical.
The meshes can be obtained by repeated simplification up
to a required number of vertices at the coarsest scale. In our
implementation, 1000 vertices are used at the coarsest scale.

4. Experimental Results

4.1. Results on Clean Datasets

Fig. 5 gives registration results for two datasets: Dog from
the TOSCA high-resolution dataset [BBK08] and Bounc-
ing from the human motion dataset [VBMP08]. Final reg-
istration results are shown as the overlap of the deformed
template (blue) and the target (ground truth), and fitting er-

0.1

0.05

0

(b)(a)

Figure 6: Comparison results of `2-norm regularization
(left) and our `1-norm regularization (right) on datasets
Bouncing (top) and Cat (bottom).

rors are color-coded on the reconstructed mesh for visual
inspection. For vertex vi, registration error is defined as
‖Xivi− gi‖2

2, where gi is the ground-truth correspondence
of vi. The results show that our method has promising regis-
tration results on the test datasets.

We compare our method with the following classic `2-
norm regularized non-rigid ICP method:

min
X

α
∥∥BX

∥∥2
F +

∥∥W(VX− Ũ f )
∥∥2

F . (18)

This is equivalent to solving the following linear equations:(
V>W>WV+αB>B

)
X = V>W>Ũ f , (19)
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(a)  (b) (c) 

Figure 7: Comparison results on Bouncing dataset: (a) template and target, (b) the method in [LSP08] and (c) our method.

(b) (c) (a) (d) 

0
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0.5

0

1

0.5

Figure 8: Comparison results on Crane dataset with 35 manually-specified correspondences: (a) given correspondences, (b)
deformed meshes, (c) overlap results, and (d) color-coded local transformation differences (in Frobenius norm). For (b)∼(d),
the top row place the `2-norm registration results while the bottom row presents our results.

by the LDL decomposition, similar to Eq. (13). In each reg-
istration, we adjust the value of α until we get the best result
(accurate without loss of smoothness). As shown in Fig. 6,
our method has better registration results with less fitting er-
rors in the areas with intensive deformations, such as the
wrinkles around the pant leg of the person and the paw of
the cat highlighted in rectangles.

Our method is also compared with a state-of-the-art
method [LSP08] in Fig. 7. Obvious errors on the head and
hands can be seen on the result of the method in [LSP08],
while our method achieves accurate non-rigid registration
for the whole body. [LSP08] iteratively optimizes correspon-
dences and transformations, with the initial correspondences
established using a closet point approach. This approach

works effectively when the template and target shapes are
close such that good initial correspondences can be obtained.
In this example however, the substantial pose change means
that it is difficult to obtain a good initialization.

We further compare our method with the `2-regularized
method by manually giving 35 correspondences on Crane
dataset in Fig. 8. In this case, there is no correspondence
around the right knee of the actor. As shown in Fig. 8 (b)
and (c), with `1 regularization, registration tends to follow
significant deformation (e.g. at joints) better than `2 regu-
larization. This is further illustrated by the the color-coded
local transformation differences in Fig. 8 (d), showing that
the `2 regularization presents significant discontinuities due
to incorrect deformation. The results demonstrate that our

c© 2015 The Author(s)
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(a) (b) (c)

Figure 9: Registration results with partially incorrect corre-
spondences on Jumping dataset shown as the deformed tem-
plate shapes (top row) and overlaps of the deformed tem-
plate and target shapes (bottom row): (a)(b) `2-norm regis-
tration results with α = 1.5 and 3 respectively, (c) `1-norm
registration results.
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Figure 10: Registration results of `2-norm regularization
(top) and our `1-norm regularization (middle) on datasets
with noise. The curves of average fitting errors vs. normal-
ized noise levels (bottom) show that our method is more ro-
bust than the `1-norm regularized method.

method is particularly effective when the deformation is sub-
stantial and nearly piecewise rigid as the `1 regularization
allows large deviations without compensating others. As a

 

 

 

 

 

 

 

 

 

 

0.4

0.8

1.2

1.6

2

0 0.4 0.8 1.2

e
rr

o
r

σ

bouncing_0100  with outliers

L2 error

L1 error

 

 

0.4

0.8

1.2

1.6

2

2.4

0 0.4 0.8 1.2
e

rr
o

r

σ

bouncing_0030  with outliers

L2 error

L1 error

0.4

0.8

1.2

1.6

2

2.4

0 0.2 0.4 0.6 0.8 1 1.2

er
ro

r

σ

bouncing_0030 with noises
L1 error

L2 errorFigure 11: Registration results of `2-norm regularization
(top) and our `1-norm regularization (middle) on datasets
with outliers. The curves of average fitting errors vs. normal-
ized outliers levels (bottom) show that our method is more
robust than the `1-norm regularized method.

result, `1 regularization helps converge to a much more ac-
curate local minimum than `2 regularization.

4.2. Results on Noisy Datasets

This section evaluates the robustness of our method in the
following noisy cases:

1) Correspondences with partially incorrect matchings:
It is common to include incorrect correspondences using es-
tablished methods. We simulate this in a controlled man-
ner. We obtain two thirds of correspondences using dif-
fusion pruning [TMRL14] and the remaining one third us-
ing local geometric feature matching based on SHOT signa-
tures [STDS14]. The majority of correspondences from the
former are correct while many correspondences from the lat-
ter are incorrect due to the ambiguity of local features. The
correspondences computed by SHOT signatures are shown
with red lines in our supplementary document.

Fig. 9 shows that the sparseness regularizer in our model
(7) is significantly more robust than the classic quadratic
regularizer in (18). The `2 norm based registration presents
holes and outliers in Fig. 9 (a) when the weight on the
smoothness term is small (α = 1.5). We try to increase
the weight, but the registration result will become over-
smoothed, which is inferior to our result. Fig. 9 (b) presents
the result of the `2 norm based registration with α = 3: severe
misalignments are observed at the hands and feet.
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(a) (c)(b)

Figure 12: Results on real data captured by Kinect: (a) tem-
plate and target, (b) `2-norm regularization, (c) our `1-norm
regularization.

2) Target shapes with noise or outliers: 3D shapes of tar-
gets are polluted with dense noise or sparse outliers along the
normal directions of the associated vertices. For dense noise,
all the target vertices are perturbed with Gaussian noise;
while, for the outliers, 1% of target vertices are contaminated
with Gaussian noise. Fig. 10 and Fig. 11 present registration
results for datasets with noise and outliers, respectively. The
variance of the noise σ is normalized by l̄2, where l̄ is the av-
erage length of triangle edges on the associated target mesh,
and chosen in the range of [0,1]. The datasets with noise or
outliers are shown in our supplementary document. The re-
sults show that our method is more robust than the classical
non-rigid method with `2-norm regularization, particularly
for high noise levels.

4.3. Results on Real Scans

Fig. 12 presents results on real scans generated by Kinect
Fusion [NIH∗11] using Kinect V2. The real scans are chal-
lenging due to 1) noise and outliers, 2) inconsistent topology
between the template and the target, and 3) uncertain corre-
spondences. The results show that the `2-norm regulariza-
tion presents misalignments around the hands while our `1-
norm regularization provides promising registration results.

4.4. Discussion

We compare the running times of the proposed method with
the `2-norm regularized method on Bouncing dataset by

downsampling the meshes into smaller ones with 1K to 10K
vertices. The number of iterations for non-rigid ICP is set as
20, and `1 has extra 20 inner iterations for each outer itera-
tion. All the experiments are performed on a desktop com-
puter with an Intel i5 3.2GHz CPU and 8GB RAM. Table 1
gives the comparison results. The proposed method needs
about 4× running times compared with the `2-regularized
method due to the ADM-ALM algorithm for each outer it-
eration in sparse non-rigid registration (Algorithm 1). This
is the main limitation of the proposed method, and further
numerical optimization would be beneficial.

While our method presents promising non-rigid registra-
tion results, some issues that could potentially improve per-
formance are still open for future work: e.g., 1) The data
consistency can also be measured by a sparsity-promoting
function [BTP13] for more robust registration; 2) The rota-
tion and translation parameters are equally treated in the reg-
ularization. However, rotation and translation with the same
deviation could lead to different amount of registration er-
rors, which suggests to assign different weights for more ef-
fective regularization.

Table 1: Comparison on running times.

Num. vertexes 1000 2000 5000 10000

`2-norm 1.67s 3.60s 12.41s 26.73s

`1-norm 8.05s 17.36s 52.48s 119.06s

5. Conclusions

This paper proposes a new non-rigid registration method
with sparse modeling of non-rigid transformations. We re-
veal and characterize the piecewise smoothness of transfor-
mation functional of non-rigid 3D shapes, which inspires
the incorporation of a sparseness regularization on the trans-
formation differences. An ADM-ALM algorithm is devised
to solve the `1-norm regularized transformation estima-
tion. Non-rigid 3D shapes are registered by alternating be-
tween correspondence computation and transformation esti-
mation. A multi-resolution scheme is developed to register
3D shapes in a coarse-to-fine manner for efficient and robust
registration. The results on various datasets demonstrate the
superiority of the proposed method over the classic `2-norm
regularization on non-rigid registration.
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