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Abstract

Remeshing aims to produce a more regular mesh from a given
input mesh, while representing the original geometry as accu-
rately as possible. Many existing remeshing methods focus on
where to place new mesh vertices; these samples are placed
exactly on the input mesh. However, considering the output
mesh as a piecewise linear approximation of some geometry,
this simple scheme leads to significant systematic error in non-
planar regions. Here, we use parameterised meshes and the
recent mathematical development of orthogonal approximation
using Sobolev-type inner products to develop a novel sampling
scheme which allows vertices to lie in space near the input sur-
face, rather than exactly on it. The algorithm requires little
extra computational effort and can be readily incorporated into
many remeshing approaches. Experimental results show that
on average, approximation error can be reduced by 40% with
the same number of vertices. A similar technique can also be
applied to surface normals to provide more accurate rendering
results with the same number of vertices.

1 Introduction

With the maturity of 3D acquisition and modelling tech-
niques, 3D meshes are now widely available. Polygonal
meshes, especially triangular meshes, and to a lesser ex-
tent quad meshes, are widely used in digital geometry pro-
cessing for applications such as modelling and animation.
They are also popular in finite element analysis for engi-
neering simulation. In all of these applications, the quality
of meshes is of importance. Higher quality meshes typically
improve the efficiency of processing because fewer elements
suffice to accurately represent the geometry. In simulation,
they also improve the robustness and stability of numerical
computation. Low quality meshes, on the other hand, may
make certain algorithms behave poorly or even work incor-
rectly due to irregular connectivity, badly shaped triangles
etc. Unfortunately, meshes obtained directly from recon-
struction of scanned range images are often of low quality.
Thus, remeshing is commonly used for mesh preprocessing
before further operations.

Although different applications may have different re-
quirements, mesh regularity is often desirable. For trian-
gular meshes for example, elements should be close to equi-
lateral and, at least for some purposes, have similar size.
The degree of each vertex is ideally 6. This leads to a
large class of remeshing methods which attempt to per-
form (quasi-)isotropic remeshing (e.g. [2, 30, 31]). On the
other hand, the error with which the output mesh approxi-
mates the input mesh should be low. If low triangle counts
are important, this may be achieved via curvature adapted
sampling—using smaller triangles in regions with high cur-
vature and larger triangles for low-curvature regions.

Most remeshing methods assume that new vertices are
directly placed on the input mesh. This strategy is simple
and intuitive, but causes significant systematic approxi-
mation error in non-planar (convex or concave) regions.
For example, if the input is a mesh representing a convex
body, it is not hard to see that such remeshing will lead
to a new mesh entirely contained within the input mesh,

Figure 1: Two approaches to piecewise linear approximation.
The right hand approach has lower error.

hence having lower volume. The output mesh is actually
a piecewise linear representation with greater error at the
centre of each linear element. Some methods such as [31]
assume that the input triangle mesh (rather than the out-
put triangle mesh) is a piecewise linear approximation to
some smooth surface. Thus, instead of sampling vertices
on faces of the input mesh, vertices are placed on local
estimates of the original surface produced by fitting. A
simple and effective approach proposed in [33] substitutes
each triangle with a so-called curved PN triangle, i.e. an
interpolated three-sided cubic Bézier patch with a quadrat-
ically varying normal, given positions and normals at three
corner points. G1 continuity can be obtained by making
normals identical where adjacent triangles meet. A more
complex approach in [34] guarantees G1 continuity at the
cost of more complicated computation.

The input geometry to our algorithm is usually repre-
sented as a triangle mesh MI . If MI is sufficiently dense,
direct use of it can give a reasonable approximation to
the input surface. Otherwise, if the assumption that ver-
tex samples lie on the input surface can be made, we use
curved PN triangles to better approximate the geometry,
for simplicity. Alternative approaches such as those in [34]
could also be used. We use M̃I to represent the (approxi-
mated) input geometry in either case.

Even if the input surface can be well approximated
from the input mesh, systematic errors still exist. A simple
2D example is shown in Fig. 1, where in this case a smooth
curve (a circle) is approximated by a 2D piecewise linear
shape (a polygon rather than a mesh). Previous remesh-
ing approaches essentially perform a sampling of the kind
shown in Fig. 1(left) where sample points (vertices) are
located exactly on the shape. The approximation error
is unnecessarily large as the piecewise linear polygon lies
entirely within the shape to be approximated. A more ac-
curate solution can be achieved with the same number of
linear elements using the polygon in Fig. 1(right). The ver-
tices are now located off the shape, and the output polygon
is as close as possible to the shape—each linear element lies
partly inside and partly outside the shape. Similar errors
arise whether the input shape is exact, or a mesh approx-
imating that shape.

In this paper, we propose a novel algorithm to optimise
vertex locations near to, but not necessarily on, the input
shape, in order to significantly reduce the approximation
error with respect to the input surface when constructing
meshes—piecewise linear representations. The paper fo-
cuses on triangular remeshing for simplicity. The concepts
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proposed in the paper can be incorporated into various
remeshing approaches, or can be used as a post-processing
stage operating on the output of traditional remeshing al-
gorithms.

Previous work has considered optimising linear approx-
imation in the settings of shape approximation [11] and
linearisation of splines [27], but it appears that it has not
previously been used for optimising vertex locations to pro-
vide improved piecewise linear approximation in remesh-
ing. We give a robust and efficient algorithm for achieving
this. Similar to triangular remeshing algorithms, an it-
erative algorithm is used to balance the regularity of the
output mesh and the approximation error. Within each
iteration, we adapt the recent mathematical development
of piecewise linear orthogonal approximation defined over
triangulations of domains in Rd [6] to more general 2D
triangular meshes embedded in 3D space. By constructing
specific Sobolev-type inner products, hat functions defined
on the triangulation are made orthogonal, leading to ex-
plicit solutions to the approximation minimisation prob-
lem. Unlike using least-squares fitting with appropriate
constraints, no linear system needs to be solved, and thus
it can be computed very efficiently.

2 Related Work

Remeshing is an active research topic in digital geome-
try processing; we refer readers to [5] for a comprehensive
survey. Most work considers triangular remeshing. A va-
riety of algorithms has been proposed to achieve (quasi-
)isotropic remeshing of models with, ideally, equilateral
triangles of the same size, or size adapted according to
local curvature. Alliez et al. [3] use error diffusion to ini-
tially distribute new sample vertices over the input sur-
face. Their positions are then optimised using a centroidal
Voronoi diagram in the global conformal parameter do-
main. Constrained Delaunay triangulation is finally used
to build the connectivity. Although it is possible to con-
vert an arbitrary mesh into a topological disk, the method
does not work so well for high-genus models due to the
introduction of seams, and a greater degree of parametric
distortion. The work in [30, 31] uses local parameterisa-
tions to reduce artefacts introduced by global parameteri-
sation. Another approach to isotropic remeshing proposed
in [10] utilises iterative local modifications to incremen-
tally improve the regularity. The method proposed in [20]
uses a two-stage approach. In the first stage, vertices are
sampled over the surface and their positions optimised by
minimising a spring-like energy [36]. The connectivity is
then re-established through constrained Delaunay triangu-
lation in local (quasi-)conformal parameter domains. The
work in [8, 12] produces isotropic remeshing using Delau-
nay refinement. Under certain assumptions such methods
can produce meshes with bounded approximation error.
Yan et al. [37] gave an efficient and exact implementa-
tion of a restricted Voronoi diagram (an approximation of
a Voronoi diagram over surfaces but using Euclidean dis-
tance instead of geodesic distance) for improved isotropic
remeshing. The proposed method exploits the improve-
ment of (isotropic) remeshing by allowing vertices to stay
off the input surface. This can potentially be combined as
a post-processing step with various remeshing algorithms,
as demonstrated by various examples later in the paper.

Regularity and geometric fidelity are always a trade-off.
With downstream applications such as multi-resolution
modelling in mind, various algorithms attempt to achieve
semi-regular remeshing (often called remeshing with sub-
division connectivity), which requires the output mesh to

have a small number of extraordinary vertices while all
other vertices are completely regular. This kind of remesh-
ing can be achieved via a parameterisation (mapping) of
the input mesh to some simplified base mesh. An algorithm
proposed in [21] constructs the base mesh and builds the
parameterisation in the same process. Kobbelt et al. [18]
give an approach based on simulating the physical pro-
cess of shrink wrapping to obtain an optimised base mesh
for remeshing with subdivision connectivity. A completely
regular remeshing is also possible. Geometry images [16]
use global stretch minimisation parameterisation to map
an arbitrary surface to a square domain. By carefully
controlling the boundary parameterisation, the geometry
can be reduced to an image-like regular grid of 3D co-
ordinates (mimicking the red, green, blue components of
colours), with fully implicit connectivity. Spherical pa-
rameterisation can also be used for producing geometry
images [28]. It is particularly suitable for genus-zero sur-
faces since distortion in parameterisation can usually be
kept small. Achieving better regularity often implies sac-
rificing a certain degree of geometric accuracy for a given
number of samples.

Other research focuses more on reducing the approx-
imation error than on achieving regularity. Although
curvature-adapted sampling is widely used [3,30,31] (with
larger triangles in flat regions and smaller triangles in re-
gions of high curvatures), such an approach has limited
usefulness for regions having only one large principal cur-
vature. For sharp edges, methods like the one in [7] can not
only preserve but potentially enhance sharp edges in the
remeshed models. To deal with both smooth and sharp fea-
tures, [20] suggests an approach to isotropic remeshing us-
ing a feature sensitive metric which takes into account both
positions and normals—it robustly adapts triangle shape
according to the local principal curvatures. As isotropic
sampling is performed in a specifically defined metric, reg-
ularity in connectivity is well preserved. However, the re-
sulting triangles can significantly deviate from equilateral
in feature regions. Local adaptivity can also be controlled
using a user-provided importance map [4].

In all of the above approaches, a certain balance be-
tween regularity and geometric approximation error is
achieved. Our method, on the other hand, can be applied
to different remeshing algorithms, reducing the approxi-
mation error while keeping regularity.

Quad (dominant) remeshing has also received wide at-
tention. Quads are particularly suitable for represent-
ing local principal directions, and more naturally repre-
sent many man-made, nearly rectilinear, structures. Var-
ious methods have been proposed: streamline integra-
tion [1, 24], the gradient of a smooth harmonic field de-
signed by the user [14] or derived from Laplacian eigen-
functions [13], combinatorial optimisation [25], iterative
local incremental improvement [19], and global parame-
terisation [9, 17, 29]. Quad dominant meshes with edges
well aligned with principal directions tend to have quasi-
planar quads as the sum of inner angles is close to 2π.
Liu et al. [23] give an optimisation process to improve the
planarity of quad meshes. Although our current method
focuses on improving triangle remeshing, our ideas can po-
tentially be extended to quasi-planar quad remeshing, as
both use piecewise linear shapes to approximate underly-
ing geometry.

Using our method provides more accurate meshes for
the same number of triangles, or for a given accuracy, pro-
vides meshes with fewer triangles, which can both be of
benefit to downstream applications. Our method can be
considered as a mesh post-processing algorithm for im-
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proved remeshing. From this perspective, it is related
to [35]. That work, however, does not take into account
the piecewise linear nature of the mesh, but instead min-
imises an energy combining both fidelity (measured using
two-sided Hausdorff distances between vertices of the in-
put and remeshed models) and regularity (measured by the
shapes of triangles). If a dense input mesh is used, it can
produce results that bear some similarities with the pro-
posed method. However, significant conceptual differences
exist between the two approaches: our method explicitly
considers piecewise linear approximation by the remeshed
model while [35] uses dense point sampling to approximate
integration. A dense input mesh is thus essential for their
method to work effectively which is not required by our
method. Our method further uses an orthogonal weighted
Sobolev metric to explicitly calculate the updated positions
and the computational cost mainly depends on the size of
the remeshed model. On the other hand, [35] needs to
solve a much larger linear system in each iteration, which
is related to the sizes of both the input and the remeshed
meshes. Our method is typically tens or even hundreds of
times faster. Instead of optimising Hausdorff distance, our
method minimises some average distance which is prefer-
able at least for certain applications, as it takes into ac-
count the distribution of all the vertices. Further discus-
sion will be given in Sec. 4. A typical 40% reduction in
approximation error from the input can result with the
same number of vertices.

3 Algorithm

This section presents a detailed algorithm for vertex loca-
tion optimisation based on piecewise linear (PL) approx-
imation. Pseudocode is listed in Algorithm 1. Our algo-
rithm can be incorporated in various existing remeshing
algorithms. One important observation is that to reduce
the PL approximation error, only local considerations are
needed for adjustment of vertex positions. For greater effi-
ciency, our method can be applied in just the last few iter-
ations of traditional iterative remeshing algorithms. Many
remeshing algorithms use a two-stage strategy, and con-
nectivity is only re-established in the second stage after
position optimisation has finished. Since our modification
is assumed to be local, we make a further assumption that
only vertex positions need to be optimised and the con-
nectivity can be kept unchanged. This is in fact necessary,
since connectivity information is needed to determine the
optimal PL approximation. The input to our algorithm
includes the input mesh to be remeshed MI and the ini-
tial remeshing result M0. Optimising a PL approximation
changes the positions of vertices. Since the desired reg-
ularity (e.g. shape of triangles) is defined with respect
to the output triangulation, an iterative process is used
to balance goodness of approximation and regularity. A
sequence of iteratively optimised meshes Mt is produced,
until convergence (the maximum change in any vertex po-
sition between successive meshes in the sequence is below
a threshold ε), or a set maximum number of iterations has
been reached. During each iteration, vertex locations are
optimised to reduce PL approximation error followed by
regularity optimisation (e.g. to keep the new mesh regular
in terms of uniform edge lengths). This may be consid-
ered as an extension of traditional iterative optimisation
of point samples, but instead of optimisation in a search
space with points constrained to lie on the surface, we in-
stead optimise regularity in the search space of optimised
PL approximation. Similar convergence to remeshing al-
gorithms can be obtained with our proposed approach.

Algorithm 1 Vertex location optimisation for piecewise
linear approximation

input:
the input mesh MI to be remeshed
the initial output remesh M0

output: mesh MT with improved vertex locations
t⇐ 0
Fit curved PN triangles to MI

repeat
t⇐ t+ 1
for each vertex vi in mesh Mt−1 do

Project it onto curved PN triangles representingMI

to get the position pi and normal ni (see Sec. 3.1)
end for
for each edge ej in mesh Mt−1 do

Calculate the edge midpoints mj

Project midpoint mj onto curved PN triangles rep-
resentingMI to obtain the position p̄j (see Sec. 3.1)

end for
for each vertex vi in mesh Mt−1 do

Calculate the optimised position p̂i based on PL
approximation (see Sec. 3.2)

end for
for each vertex vi in mesh Mt−1 do

Update p̂i to minimise the spring-like energy (see
Sec. 3.3)

end for
Modify Mt−1 with updated positions p̂i to give Mt

until |Mt −Mt−1| < ε or or t > tmax

Return the last Mt as MT

3.1 Sampling by Projection

A triangulated mesh is a 2D PL discrete surface embed-
ded in 3D space. Since the connectivity is assumed to
be pre-determined, we use the concept of a parameterised
mesh [32] to treat the triangular mesh as a 3-dimensional
signal pi = (xi, yi, zi) defined over the abstract mesh struc-
ture, where each position pi corresponds to sampling of a
signal, i.e. projection of sample points on the input surface.
Normals ni can also be treated as a 3-dimensional signal as
well. If applicable (see Sec. 1), curved PN triangles [33] are
used to estimate the smooth surface described by the in-
put triangular mesh. The coefficients of the Bézier patches
in the curved PN triangles can be precomputed for each
triangle of MI . After that the position and normal of a
point on the surface can be evaluated using the face that
it lies on and the corresponding barycentric coordinate.
As described in the pseudocode (details given in the next
subsection), an iterative algorithm is used to update the
positions of the output mesh Mt and in each iteration, we
need the position pi and normal ni for each mesh vertex
vi, and the position p̄j of edge midpoint mj for each mesh
edge ej (derived from the mesh in the previous iteration
Mt−1). We find these as follows.

Take the midpoint initially as the average of the posi-
tions of two end points of the edge ej . This point is not
usually on the input surface M̃I . Vertex positions from the
previous iterations also in general lie off M̃I . Since the sig-
nal is defined over the input surface, we move these points
back on to it. Euclidean projection is used to find the clos-
est point on the input surface in both cases. Finding the
projection onMI can be accelerated using an approximate
nearest neighbor (ANN) library [26] to find the appropriate
mesh triangle containing the footpoint. In later iterations,
the face on MI containing a given vertex’s footpoint is un-
likely to change, and quickly testing this eliminates most
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ANN queries.

3.2 Approximated Piecewise Linear Optimisation

To estimate the optimal PL approximation to an input sur-
face while avoiding solving expensive equations, we utilise
the recent mathematical development in [6]. Given an ar-
bitrary function f(p) defined over some domain Ω ⊂ R2,
and some triangulation over the domain with vi ∈ V rep-
resenting the set of vertices, suppose we wish to find some
optimal PL approximation. The space of PL functions can
first be represented as a linear combination of hat func-
tions hi(p), which are 1 on vertex vi and 0 on every other
vertex vj 6= vi. Finding the optimal PL approximation
then is equivalent to finding the best coefficients for such a
linear combination that the approximation error between
the combined PL function and f is minimised. By using
appropriate weights W to form weighted Sobolev-type in-
ner products < ·, · >W , PL hat functions hi in this metric
are mutually orthogonal. Doing this, an arbitrary func-
tion defined over the domain can be explicitly decomposed
as a combination of PL hat functions, with coefficients
< f, hi >W / < hi, hi >W . This solution is optimal with
respect to the weighted Sobolev metric, rather than the
Euclidean metric, but many experiments show that this is
a good approximation in many practical situations [6].

We adapt the original method for PL approximation
from R2 to a triangulated mesh using the concept of a pa-
rameterised mesh. To avoid expensive integration, using
discrete approximation and the assumption that the sur-
face can locally be well approximated by a quadric, the up-
dated position of vi, with respect to one of the triangles Ti,s

within its 1-ring neighbour N (vi) (s = 1, 2, . . . , |N (vi)|)
can be explicitly computed [6] as

pi,s =
4

15
pi−

2

15
pj−

2

15
pk+

11

15
p̄i,j+

11

15
p̄i,k−

7

15
p̄j,k, (1)

where vj and vk are the other two vertices of Ti,s, pi, pj

and pk are the projections of vertices vi, vj and vk, respec-
tively and p̄i,j , p̄i,k, p̄j,k are projections of the midpoints
of edges (vi, vj), (vi, vk) and (vj , vk).

To achieve the overall minimal approximation error,
the optimal position under PL orthogonal approximation
is estimated by an area weighted combinations of these
positions:

p̂i =

∑
sA(Ti,s) · pi,s∑

sA(Ti,s)
, (2)

where A(Ti,s) is the area of the triangle Ti,s.
We initially update vertex vi to p̂i to fully minimise

approximation error. After a certain number of iterations,
to promote convergence, we restrict the vertex position up-
date to lie along the normal direction, discarding any tan-
gential movement: p̂i ⇐ pi +((p̂i − pi) · ni) ni. Changing
the number of initial iterations will lead to different balance
of approximation error and regularity. 20 initial iterations
were used in the experiments reported here. Our energy
minimisation scheme is similar to that used in [20, 36] for
regularity optimisation. Since movement along the normal
direction does not change the footpoint, similar conver-
gence can be obtained.

3.3 Regularity Optimisation

As well as providing geometric closeness, a remeshing pro-
cess is usually expected to optimise regularity in some sense
(e.g. the triangles should be close to equilateral). Updating
vertices to provide an optimised PL approximation usually
decreases regularity. We thus now use a step to improve

(a) (b)

(c) (d)

Figure 2: Vertex location optimisation for a sphere: (a) mesh
before optimisation; (b) mesh after optimisation; (c) and (d)
corresponding error rendering for (a) and (b). Colour indicates
error, with blue, green, yellow, orange and finally red indicating
increasing errors.

regularity. The overall algorithm alternates between the
previous step and this step to give the final mesh.

The usual regularity requirement is to provide isotropic
remeshing, and we use this as an example in this subsec-
tion. To optimise isotropic resampling, a spring-like energy
similar to that in [20,36] is defined between vertices vi and
vj sharing an edge:

Eij = exp(−|p̂i − p̂j |2

2σ2
), (3)

where σ can be set to the constant 0.3
√
A/N , where A

is the overall surface area and N is the number of output
vertices [36]. The force from vj exerted on vi minimising
the spring-like energy satisfies

Fi =
∑

vj∈N (vi)

(p̂i − p̂j)Eij , (4)

where N (vi) is the 1-ring neighbor of vertex vi. The up-
dated equilibrium vertex position is computed as p̂i ⇐
p̂i + ρFi, where ρ is a step size. Simply choosing ρ = 1
works well for most cases and is used throughout the pa-
per. Incorporating this into the iterative system together
with PL approximation leads to a system similar to the
traditional projected gradient descent solver. The gradi-
ent descent step optimises the energy derived from regu-
larity, while the optimised PL approximation step brings
the sampled points back to a state that minimises PL ap-
proximation errors.

Unlike many other spring-based approaches for remesh-
ing, we already have the mesh connectivity, so we can use
1-ring neighbours instead of k-nearest neighbours, which
is faster and more reliable. As the vertex distribution ap-
proaches equilibrium, the force tends to approach zero and
the result converges.

As new vertices are allowed to move off the surface, in
some vary rare situations (usually in rather bumpy surface
regions), it is possible that triangle flips may occur. While
geometric closeness and regularity are still well achieved,
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(a) (b)

(c) (d)

Figure 3: Vertex location optimisation for Armadillo: (a)
isotropic mesh before optimisation; (b) mesh after optimisation;
(c) and (d) corresponding error rendering for (a) and (b).

such flips are not ideal in practical applications. We use
a simple and effective strategy to detect and resolve this
problem. At the end of each iteration, we determine if any
normal direction has significantly changed before and after
optimisation, allowing us to count for each vertex vi the
number Ci of flipped faces adjacent to it. Let ni be the
number of adjustments applied to vi. We put all vi with
Ci > 0 in a priority queue with Ci−ni as the key, sorted by
decreasing key. We successively remove the first element in
the queue, reduce the update of this vertex by a half, and
update Cj for all the vertices vj adjacent to vi as well as Ci

and ni; the priority queue is also updated. This heuristic
assumes that vertices related to more flips are typically the
key vertices to be corrected. This further allows vertices
of similar priority to be adjusted in succession. This sim-
ple heuristic is guaranteed to terminate, as when all the
problematic vertices revert back to sufficiently close to the
input mesh, no flip exists. This may cause a slight increase
in approximation error. In practice, only very few vertices
need to be corrected, thus producing a valid remeshing
without losing the overall improvement. For models such
as Armadillo in Fig. 3 and Fandisk in Fig. 7, no corrections
are needed. Even for models such as Lucy in Fig. 5 with
lots of bumpy details, less than 0.1% of the total number
of vertices are corrected in each iteration on average. As
only a few vertices are affected, this has a negligible effect
on the average approximation error. This correction is in
spirit similar to mesh inversion prevention in mesh simpli-
fication [15]—mesh simplification also allows new vertices
to lie off the original surface.

3.4 Optimised Normal Sampling

In certain applications, rendering quality can be improved
by storing at each vertex not only the position but the nor-

mal as well. Treating normal also as a three dimensional
signal defined on the parameterised mesh, our method can
be used to find a better estimate of per-vertex normal. Un-
like when dealing with positions, we do not apply regular-
ity optimisation but instead normalise the normal vector to
be unit length. The normal vector at an arbitrary sample
point on the mesh is calculated using a linear combina-
tion of normals at the three vertices, with the barycen-
tric coordinates as weights, followed by a normalisation.
As demonstrated in the experimental results (Sec. 4), op-
timised normal sampling tends to reduce approximation
error of normals.

3.5 Applications to Other Remeshing

Previous sections assumed isotropic triangular remeshing.
Our method can be incorporated into other remeshing ap-
proaches. One example is to use geometry images [16], a
completely regular representation of geometry. Although
geometry images can be considered as a regular grid of
quads, for rendering purposes, each quad can be divided
into two triangles along the shorter diagonal [16]. Side-
band information in geometry images is used to merge
split boundaries to form a logically closed shape. Since
geometry images pay more attention to approximation er-
ror than regularity, optimising the latter is not needed. We
will show that our method can also reduce approximation
errors for models represented in geometry images.

4 Experimental Results

Various examples are presented in this section demonstrat-
ing the effectiveness of the proposed algorithm. Although
our algorithm optimises approximation error in a Sobolov
metric, our evaluation here is based on Euclidean distance.
For an input surface MI and a remeshed output surface
MO (either M0 for the output mesh before optimisation,
or MT after optimisation) represented as a piecewise lin-
ear mesh, the position error at p ∈ MO is defined as
ep = minq∈MI ||p − q||2 where p,q represent all points,
not just mesh vertices, of each surface. The maximum
and average errors for MO with respect to MI can thus be
defined as mMO = maxp∈MO ep, and

aMO =

∫
p∈MO

epdA(p)∫
p∈MO

dA(p)
, (5)

where dA(p) is a surface area element at point p. All
the models are rescaled to fit to a unit cube and the in-
put surfaces are treated as PN curved meshes. Detailed
statistics of various examples are given in Table 1. Our
method is applicable to a variety of input triangle meshes.
Meshes used for our testing were produced using isotropic
remeshing [20] (Figs. 2-4), feature sensitive remeshing [20]
(Fig. 5), centroidal Voronoi diagram based remeshing [22]
(Fig. 7) and geometry images [16] (Fig. 8). A fixed set of
parameters as described above was used in all experiments.

The first example is a discrete sphere with about 1000
vertices. As shown in Fig. 2, the shape is only slightly
changed with almost the same regularity, but the approx-
imation error is significantly reduced, maximum error by
more than 40% and average error reduced by about 75%.
We use the same colour coding scheme throughout the pa-
per, with blue, green, yellow, orange and finally red indi-
cating increasing errors. The same scale is used to ren-
der both input and optimised meshes. Since a sphere is
uniformly non-planar everywhere, a significant reduction
of approximation error is observed. Another example is
shown in Fig. 3 that optimises an isotropic remeshing with
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(a) (b) (c) (d) (e)

Figure 4: Vertex location optimisation for the David model. (a) high resolution model; (b) isotropic mesh before optimisation;
(c) isotropic mesh after optimisation; (d) isotropic mesh after optimisation with normal; (e) result of (d) with mesh displayed.

(a) (b) (c) (d)

Figure 5: Vertex location optimisation for Lucy model remeshed with feature sensitive metric: (a) dense mesh (21K vertices)
before optimisation; (b) coarse mesh (13.5K vertices) after optimisation; (c)(d) corresponding error rendering for (a) and (b).

about 20K vertices (a). The obtained result after optimisa-
tion is shown in (b). Colour coding shows that particularly
in feature regions, approximation error is significantly re-
duced. The average error is reduced by just over 50% and
the maximum error by about a third.

We applied our method to the David model produced
with isotropic remeshing. The whole model was optimised
but only the upper half is shown so that the differences
are more visible, as illustrated in Fig. 4. An average 44%
reduction in approximation error has been achieved. (a)
is the original high resolution reference model, (b) is the
initial isotropic remeshing, (c) is the result after position
optimisation and (d) is the result after both position and
normal optimisation. The average normal deviation in (c)
is 5.44 degrees, reduced from 5.91 degrees in (b). By incor-
porating an optimised normal map, the normal deviation
can be further reduced to 4.45 degrees. This is more accu-
rate than direct sampling of normals on the input surface,
which has a 4.67 degrees of normal deviation with a stored
normal map. Results with increasing visual details can be
observed from (b) to (d). Feature regions and regions with
highlights show the most noticeable differences. The op-
timised mesh of the result (d) is presented in (e), which
shows isotropy is well preserved.

We have applied our method to the Lucy model, this
time remeshing with a feature sensitive metric [20] (w =
0.05). The same model was remeshed at 5 different resolu-

tions. Detailed statistics of approximation errors are given
in Table 2. The average approximation error reduces with
the increasing number of vertices; doubling the number of
vertices roughly halves the approximation error. Using our
approach, the average approximation error is reduced by
more than 40%, compared with the mesh with the same
resolution before optimisation. It can also be observed
from the curve that more than 40% fewer vertices can be
used for the same approximation error. A comparative ren-
dering is shown in Fig. 5 which demonstrates that using
our approach, a coarse remesh (b) with only 13.5K ver-
tices actually leads to lower average approximation error
than an unoptimised dense mesh with 21K vertices. Er-
rors are colour-coded in (c) and (d) (lower error is darker
blue). As illustrated in Fig. 6, our method is consistently
effective at reducing approximation errors for both coarse
and fine output meshes alike.

Our method works well also for CAD models; these
may have sharp features. A typical example (Fandisk) is
shown in Fig. 7. For the input isotropic remesh (a), we ap-
ply our vertex position optimisation to obtain the result (b)
which shows that sharp features and isotropy are well pre-
served. The error distribution is shown as colour coding in
(c) and (d). For relatively flat regions, the approximation
error is small before optimisation and it is not surprising
that our method cannot improve these regions much. For
planar regions, no systematic error exists for traditional
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Example num. vertices Ab Aa AR Mb Ma MR αb αa

Sphere (Fig. 2) 1064 19.04 4.85 74.5% 61.54 36.22 41.1% 51.91 52.23
Armadillo (Fig. 3) 20019 8.56 4.16 51.4% 75.85 51.26 32.4% 51.37 48.16

David (Fig. 4) 21110 4.30 2.41 44.0% 159.5 133.7 16.2% 50.73 48.40
Fandisk (Fig. 7) 2003 1.96 1.47 25.0% 72.14 61.28 15.1% 51.94 52.09
Dragon (Fig. 8) 65× 65 31.88 20.98 34.2% 342.1 286.4 16.3% − −

Table 1: Comparisons of approximation errors. A: average error. M : maximum error. α: average minimum angle (degrees). b:
error before optimisation; a: error after optimisation; R: percentage reduction in error. All values in units of 10−4; model scaled
to fit in a unit cube.
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Figure 6: Average approximation errors for the Lucy model
remeshed using different resolutions in Fig. 5 before (blue cir-
cles) and after (red diamonds) optimisation. See also Table 2.

sampling. It can be observed that the approximation error
for curved regions is significantly reduced. Since the fan-
disk model contains quite large planar regions, the average
error is reduced by only 25.0% and the maximum error is
reduced by 15.1% (see Table 1). Like other examples, ver-
tex shift is relatively small and the original connectivity is
well suitable after optimisation.

Our method mainly aims to reduce the average (mean)
error (as in Eqn. 5). Although we explicitly minimise the
error in a weighted Sobolev metric, our method effectively
achieves this goal. As demonstrated in Tables 1 and 2, the
average errors are typically reduced by about 40% after op-
timisation. The maximum errors are reduced by 15%–41%
in these examples. Comparatively, since [35] minimises the
Hausdorff distance, the maximum error can be reduced
more significantly (e.g. about 50%), however, the mean
error only reduces by about 10%–15% and sometimes may
even increase. Our method can in general preserve the
isotropy of the meshes. One indication is to use the aver-
age minimum angle of triangles. An ideal isotropic mesh
will have this to be 60 degrees. As shown in Table 1, the
minimal angle may have slight increase or decrease but
generally close to the initial mesh.

We applied our method to geometry images of the
dragon model in [16] with high resolution of 257 × 257
(a)(b) (as input geometry), but down-sampled to 65 × 65
to obtain a low-resolution representation. As shown in
Fig. 8, the initial low resolution representation (c) has large
errors, but by using our approach, the generated geometry
image (d) reduces approximation error significantly with
the same resolution.

The experiments were carried out on an Intel
Core2Quad 2.66GHz computer. The algorithm is quite
fast. Our algorithm is iterative and in practice about 30 it-
erations are sufficient for most examples Assume the num-
bers of vertices in the input mesh and the output mesh
are denoted as NI and NO respectively. The time taken
in each iteration of our method is O(NO logNI). Thus the
running time is proportional to the size of the output mesh

and grows very slowly with the increasing size of the input.
To remesh the David model in Fig. 4 with about 217K ver-
tices (434K triangles) in the input mesh and about 21K
vertices (42K triangles) in the output, each iteration took
only about 0.1s and the whole algorithm took less than
3s. Comparatively, in each iteration, [35] needs to solve a
linear system the size of which is proportional to NI +NO.
The performance reported in the paper shows that for a
mesh with 173K vertices, each iteration takes 26.5s. Our
method is tens or even hundreds of times faster, especially
for cases with relatively dense input meshes.

(a) (b)

(c) (d)

Figure 7: Vertex location optimisation for the fandisk model:
(a) isotropic mesh before optimisation; (b) mesh after optimi-
sation; (c)(d) corresponding error rendering for (a) and (b).

5 Conclusions

In this paper, we have given a fast novel vertex location
optimisation algorithm for remeshing based on Sobolov
products. A typical reduction in average approximation
error of 40% is achieved for various models. If a fixed ac-
curacy is desired, many fewer vertices suffice, leading to
cost saving for various applications ranging from render-
ing to simulation. One limitation of our method is that
we cannot guarantee the optimised mesh to be free of self-
intersections. As vertices only move slightly off the surface,
this does not seem to cause visible problems in most cases.
We have focused on improving piecewise linear approxima-
tions in triangular remeshing. Quad remeshing algorithms
following surface features also tend to have almost planar
faces. We would like to extend our current method to han-
dle such remeshing. Although piecewise linear primitives
are widely used due to their simplicity, another possible
direction of reducing the number of elements in certain
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(a) (b) (c) (d)

Figure 8: Vertex location optimisation for the Dragon geometry image. (a) high resolution geometry image (b) corresponding
shape (c) approximation error with initial low resolution geometry image; (d) approximation error with optimised low resolution
geometry image.

Vertices 9935 13534 21076 29102 39353
Ab 7.77 5.93 4.13 3.21 2.58
Aa 4.44 3.37 2.30 1.75 1.34
AR 42.9% 43.2% 44.3% 45.5% 48.1%

Table 2: Remeshing of Lucy model using feature sensitive met-
ric. Ab, Aa: average error before, after optimisation; AR: per-
centage reduction in error. All values in units of 10−4.

applications is to use higher order primitives. We expect
to investigate this in future.
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