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Curvature estimates for stable free boundary
minimal hypersurfaces

By Qiang Guang at Santa Barbara, Martin Man-chun Li at Hong Kong and
Xin Zhou at Santa Barbara

Abstract. In this paper, we prove uniform curvature estimates for immersed stable free
boundary minimal hypersurfaces satisfying a uniform area bound, which generalize the cel-
ebrated Schoen–Simon–Yau interior curvature estimates up to the free boundary. Our curva-
ture estimates imply a smooth compactness theorem which is an essential ingredient in the
min-max theory of free boundary minimal hypersurfaces developed by the last two authors.
We also prove a monotonicity formula for free boundary minimal submanifolds in Riemann-
ian manifolds for any dimension and codimension. For 3-manifolds with boundary, we prove
a stronger curvature estimate for properly embedded stable free boundary minimal surfaces
without a-priori area bound. This generalizes Schoen’s interior curvature estimates to the free
boundary setting. Our proof uses the theory of minimal laminations developed by Colding and
Minicozzi.

1. Introduction

Let .Mm; g/ be an m-dimensional Riemannian manifold and N n �Mm an embedded
n-dimensional submanifold called the constraint submanifold. If we consider the k-dimen-
sional area functional on the space of immersed k-submanifolds†k �Mm with boundary à†
lying on the constraint submanifold N , the critical points are called free boundary minimal
submanifolds. These are minimal submanifolds † �M meeting N orthogonally along à†
(cf. Definition 2.2). Such a critical point is said to be stable (cf. Definition 2.4) if it minimizes
area up to second order. The purpose of this paper is three-fold. First, we prove uniform curva-
ture estimates (Theorem 1.1) for immersed stable free boundary minimal hypersurfaces satis-
fying a uniform area bound. Second, we prove a monotonicity formula (Theorem 3.4) near the
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boundary for free boundary minimal submanifolds in any dimension and codimension. Finally,
we use Colding–Minicozzi’s theory of minimal laminations (adapted to the free boundary set-
ting) to establish a stronger curvature estimate (Theorem 1.2) for properly embedded stable
free boundary minimal surfaces in compact Riemannian 3-manifolds with boundary, without
assuming a uniform area bound on the minimal surfaces.

Curvature estimates for immersed stable minimal hypersurfaces in Riemannian manifolds
were first proved in the celebrated work of Schoen, Simon and Yau in [18]. Such curvature
estimates have profound applications in the theory of minimal hypersurfaces. For example,
Pitts [14] made use of Schoen–Simon–Yau’s estimates in an essential way to establish the
regularity of minimal hypersurfaces † constructed by min-max methods, for 2 � dim† � 5

due to the dimension restriction in [18]. Shortly after, Schoen and Simon [17] generalized
these curvature estimates to any dimension (but still for codimension one, i.e. hypersurfaces)
for embedded stable minimal hypersurfaces, which enabled them to complete Pitts’ program
for dim† > 5.

In this paper, we establish uniform curvature estimates in the free boundary setting. The
theorem below follows from our curvature estimates near the free boundary (Theorem 4.1)
and the interior curvature estimates [18]. We refer the readers to Section 2 for the precise
definitions.

Theorem 1.1. Assume 2 � n � 6. Let M nC1 be a Riemannian manifold and N n �M

an embedded hypersurface, both without boundary. Suppose that U �M is an open subset
with compact closure. If .†; à†/ # .U;N \ U/ is an immersed (embedded when n D 6)
stable free boundary minimal hypersurface with Area.†/ � C0, then

jA†j2.x/ �
C1

dist2M .x; àU/
for all x 2 †;

where C1 > 0 is a constant depending only on C0, U and N \ U .

An important consequence of Theorem 1.1 is a smooth compactness theorem for stable
free boundary minimal hypersurfaces which are almost properly embedded (cf. [13]). As in the
work [14], this is a key ingredient in the regularity part of the min-max theory for free boundary
minimal hypersurfaces in compact Riemannian manifolds with boundary, which is developed
in [13] by the last two authors. We remark that any compact Riemannian manifold � with
boundary à� D N can be extended to a closed Riemannian manifold M with � as a compact
domain. Hence, our curvature estimates above can be applied in this situation as well.

Our proof of the curvature estimates uses a contradiction argument. If the curvature esti-
mates do not hold, we can apply a blow-up argument to a sequence of counterexamples together
with a reflection principle to obtain a nonflat complete stable immersed minimal hypersurface
†1 in RnC1 without boundary. We then apply the Bernstein theorem in [18, Theorem 2]
(which only holds for 2 � n � 5) or [17, Theorem 3] (when n D 6 for embedded hypersurface)
to conclude that†1 is flat, hence resulting in a contradiction. Using Ros’ estimates [15, Theo-
rem 9 and Corollary 11] for one-sided stable minimal surfaces, our result also holds true when
n D 2 if one removes the two-sided condition. When n � 7, the stable free boundary minimal
hypersurface may contain a singular set with Hausdorff codimension at least seven. This fol-
lows from similar arguments as in [17]. To keep this paper less technical, the details will appear
in a forthcoming paper.
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The classical monotonicity formula plays an important role in the regularity theory for
minimal submanifolds, even without the stability assumption. Unfortunately, it ceases to hold
once the ball hits the boundary of the minimal submanifold. Therefore, to study the boundary
regularity of free boundary minimal submanifolds, we need a monotonicity formula which
holds for balls centered at points lying on the constraint submanifold N . By an isometric
embedding of M into some Euclidean space RL, we establish a monotonicity formula (Theo-
rem 3.4) for free boundary minimal submanifolds relative to Euclidean balls of RL centered at
points on the constraint submanifold N .

We remark that Grüter and Jost proved in [10, Theorem 3.1] a version of monotonic-
ity formula and used it to establish an important Allard-type regularity theorem for varifolds
with free boundary. However, the monotonicity formula they obtained contains an extra term
involving the mass of the varifold in a reflected ball (whose center may not lie on the constraint
submanifold N ), which makes it difficult to apply in some situations (in [13] for example). In
contrast, our monotonicity formula (Theorem 3.4) does not require any reflection which makes
it more readily applicable. Moreover, the formula holds in the Riemannian manifold setting for
stationary varifolds with free boundary in any dimension and codimension. We expect that our
monotonicity formula might be useful in the regularity theory for other natural free boundary
problem in calibrated geometries (see for example [4] and [11]). We would like to mention
that other monotonicity formulas have been proved for free boundary minimal submanifolds in
a Euclidean unit ball (see [3, 21]).

Consider now the case of a compact Riemannian 3-manifold M with boundary àM ; by
the remark in the paragraph after Theorem 1.1, we can assume thatM is a compact subdomain
of a larger Riemannian manifoldfM without boundary andN D àM is the constraint submani-
fold. Furthermore, if we assume that the free boundary minimal surface† is properly embedded
in M (i.e. † �M and † \ àM D à†), then we prove a stronger uniform curvature estimate
similar to the one in Theorem 1.1, but independent of the area of †.

Theorem 1.2. Let .M 3; g/ be a compact Riemannian 3-manifold with nonempty bound-
ary àM . Then there exists a constant C2 > 0 depending only on the geometry of M and àM
such that if .†; à†/ � .M; àM/ is a compact, properly embedded stable minimal surface with
free boundary, then

sup
x2†

jAj2.x/ � C2:

Remark 1.3. For simplicity, we assume that† is compact in Theorem 1.2. This ensures
that † has no boundary points lying in the interior of M . Without the compactness assump-
tion, similar uniform estimates still hold as long as we stay away from the points in † n†
inside the interior of M as in Theorem 1.1. Note that † is always locally two-sided under the
embeddedness assumption.

Our proof of Theorem 1.2 involves the theory of minimal laminations which require the
minimal surface to be embedded. In view of the celebrated interior curvature estimates for
stable immersed minimal surfaces in 3-manifolds by Schoen [16] (see also [6] and [15]), we
conjecture that the embeddedness of † is unnecessary.

Conjecture 1.4. Theorem 1.2 holds even when † is immersed.
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The organization of the paper is as follows. In Section 2, we give the basic definitions
for free boundary minimal submanifolds in any dimension and codimension and discuss the
notion of stability in the hypersurface case. In Section 3, we prove the monotonicity formula
(Theorem 3.4) for stationary varifolds with free boundary near the free boundary in any dimen-
sion and codimension. In Section 4, we prove our main curvature estimates (Theorem 4.1) for
stable free boundary minimal hypersurfaces near the free boundary. In Section 5, we prove
the stronger curvature estimate (Theorem 1.2) in the case of properly embedded stable free
boundary minimal surfaces in a Riemannian 3-manifold with boundary. In Section 6, we prove
a general convergence result for free boundary minimal submanifolds (in any dimension and
codimension) satisfying uniform bounds on area and the second fundamental form. Finally,
in Section 7, we prove a lamination convergence result for free boundary minimal surfaces in
a three-manifold with uniform bound depending only on the second fundamental form of the
minimal surfaces.

2. Free boundary minimal submanifolds

In this section, we give the definition of free boundary minimal submanifolds (Defini-
tion 2.2) and the notion of stability (Definition 2.4) in the hypersurface case. We also prove
a reflection principle (Lemma 2.6) which will be useful in subsequent sections.

Let .M; g/ be anm-dimensional Riemannian manifold, and let N �M be an embedded
n-dimensional constraint submanifold. We will always assume that M;N are smooth without
boundary unless otherwise stated. Suppose that † is a k-dimensional smooth manifold with
boundary à† (possibly empty).

Definition 2.1. We use .†; à†/ # .M;N / to denote an immersion ' W †!M such
that '.à†/ � N . If, furthermore, ' is an embedding, we denote it as .†; à†/ � .M;N /. An
embedded submanifold .†; à†/ � .M;N / is said to be proper if '.†/ \N D '.à†/.

Definition 2.2. We say that .†; à†/ � .M;N / is an immersed (resp. embedded) free
boundary minimal submanifold if

(i) ' W †!M is a minimal immersion (resp. embedding),

(ii) † meets N orthogonally along à†.

Remark 2.3. Condition (ii), is often called the free boundary condition. Note that both
conditions (i) and (ii) are local properties.

Free boundary minimal submanifolds can be characterized variationally as critical points
to the k-dimensional area functional of .M; g/ among the class of all immersed k-submanifolds
.†; à†/ # .M;N /. Given a smooth one-parameter family of immersions

't W .†; à†/ # .M;N /; t 2 .��; �/;

whose variation vector field

X.x/ D
d

dt

ˇ̌̌̌
tD0

't .x/
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is compactly supported in †, the first variational formula (cf. [6, Section 1.3]) says that

d

dt

ˇ̌̌̌
tD0

Area.'t .†// D
Z
†

div†X da D �
Z
†

X �H daC

Z
à†
X � � ds;(2.1)

whereH is the mean curvature vector of the immersion '0 W †!M with outward unit conor-
mal �, da and ds are the induced measures on † and à†, respectively. Since 't .à†/ � N for
all t , it follows that the variation vector field X must be tangent to N along à†. Therefore,
' W .†; à†/ # .M;N / is a free boundary minimal submanifold if and only if (2.1) vanishes
for all compactly supported variational vector fieldX withX.p/ 2 TpN for all p 2 à†, which
is equivalent to conditions (i) and (ii) in Definition 2.2.

Since free boundary minimal submanifolds are critical points to the area functional, we
can look at the second variation and study their stability. Roughly speaking, a free boundary
minimal submanifold is said to be stable if the second variation is nonnegative. For simplicity
and our purpose, we will only consider the hypersurface case, i.e. dim† D dimN D m � 1,
wherem D dimM . Recall that an immersion ' W †!M is said to be two-sided if there exists
a globally defined continuous unit normal vector field � on †.

Definition 2.4. Let ' W .†; à†/ # .M;N / be an immersed free boundary minimal
hypersurface. Then ' is said to be stable if it is two-sided and satisfies the stability inequality,
i.e.

0 �
d2

dt2

ˇ̌̌̌
tD0

Area.'t .†//

D

Z
†

jr†f j
2
� .jA†j2 C Ric.�; �//f 2 da �

Z
à†
AN .�; �/f 2 ds;

where 't W .†; à†/ # .M;N / is any compactly supported variation of '0 D ' with variation
field X D f �, A† and AN are the second fundamental forms of † and N in M , respectively,
and Ric is the Ricci curvature of M .

Remark 2.5. The sign convention of AN in Definition 2.4 is taken such that AN � 0
if N D à� is the boundary of a convex domain in M .

One particularly important example is as follows:M D RnC1 andN D Rn D ¹x1 D 0º.
Let RnC1

C
D ¹x1 � 0º and let � W RnC1 ! RnC1 be the reflection map across Rn. We have the

following reflection principle that relates free boundary minimal hypersurfaces with minimal
hypersurfaces without boundary.

Lemma 2.6 (Reflection principle). If .†; à†/ # .RnC1;Rn/ is an immersed stable
free boundary minimal hypersurface, then † [ �.†/ is an immersed stable minimal hyper-
surface (without boundary) in RnC1.

Proof. Since minimality is preserved under the isometry � of RnC1 and that † is
orthogonal to Rn along à†, it follows that † [ �.†/ is a C 1 minimal hypersurface in RnC1

without boundary. Higher regularity for minimal hypersurfaces implies that it is indeed smooth
across à†. Stability follows directly from the definition since the boundary term in the stability
inequality of Definition 2.4 vanishes for N D Rn.
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3. Monotonicity formula

In this section, we prove a monotonicity formula (Theorem 3.4) for stationary vari-
folds with free boundary (cf. Definition 3.1) in Riemannian manifolds for any dimension
and codimension. The monotonicity formula for free boundary minimal submanifolds is then
a direct corollary.

Throughout this section, we will always assume that M is isometrically embedded into
the Euclidean space RL (such an embedding exists by Nash’s isometric embedding theorem)
and N �M is a closed n-dimensional constraint submanifold. We will denote eB.p; r/ to be
the open Euclidean ball in RL with center p and radius r > 0.1) The second fundamental form
of M in RL is denoted by AM .

We begin with a discussion on the notion of stationary varifolds with free boundary. Let
Vk.M/ denote the closure (with respect to the weak topology) of rectifiable k-varifolds in RL

which is supported in M (cf. [14, 2.1(18)(g)]). As usual, the weight of a varifold V 2 Vk.M/

is denoted by kV k. We refer the readers to the standard reference [19] on varifolds.
We use X.M;N / to denote the space of smooth vector fields X compactly supported

on RL such that X.x/ 2 TxM for all x 2M andX.p/ 2 TpN for all p 2 N . Any such vector
field X 2 X.M;N / generates a one-parameter family of diffeomorphisms �t WM !M with
�t .N / D N and the first variation of a varifold V 2 Vk.M/ along X is defined by

ıV .X/ WD
d

dt

ˇ̌̌̌
tD0

k.�t /]V k.M/;

where .�t /]V 2 Vk.M/ denotes the pushforward of the varifold V by the diffeomorphism �t
(cf. [14, 2.1(18)(h)]).

Definition 3.1. A k-varifold V 2 Vk.M/ is said to be stationary with free boundary
on N if ıV .X/ D 0 for all X 2 X.M;N /.

This generalizes the notion of free boundary minimal submanifolds to allow singulari-
ties. By the first variation formula for varifolds [19, Section 39.2], a k-varifold V 2 Vk.M/ is
stationary with free boundary on N if and only if

(3.1)
Z
Gk.RL/

divS X.x/ dV.x; S/ D 0

for all X 2 X.M;N /. If X is not tangent to M but X.p/ 2 TpN for all p 2 N , then (3.1)
implies that

(3.2)
Z
Gk.RL/

divS X.x/ dV.x; S/ D
Z
Gk.RL/

X.x/ � trS AM dV.x; S/;

where S � TxM is an arbitrary k-plane, and

trS AM D
kX
iD1

AM .ei ; ei /

for an orthonormal basis ¹e1; : : : ; ekº of S .
1) Note that our notation is different from that in [10] whereeB is used to denote some kind of reflected ball.
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The key idea to derive our monotonicity formula near a base point p 2 N is to find
a special test vector field X which is asymptotic (near p) to the radial vector field centered
at p and, at the same time, tangential along the constraint submanifold N . Our choice of X is
largely motivated by [2,10]. For convenience of the readers, we provide details on some of the
preliminary results below.

Let us review some local geometry of the k-dimensional closed constraint submanifold
N in RL essentially following the discussions in [2, Section 2]. We always identify a linear
subspace P �RL with its orthogonal projection P 2 Hom.RL;RL/ onto this subspace. Using
this notion, we define the maps �; � W N ! Hom.RL;RL/ to be

�.p/ WD TpN and �.p/ WD .TpN/
?;

where TpN is the tangent space of N in RL, and .TpN/? is the orthogonal complement
of TpN in RL.

To bound the turning of N inside RL, we define as in [2] a global geometric quantity

� WD inf
²
t � 0 W j�.x/.y � x/j �

t

2
jy � xj2 for all x; y 2 N

³
:

By the compactness and smoothness of N , � 2 Œ0;1/ and thus one can define the radius of
curvature for N to be

(3.3) R0 WD �
�1
2 .0;1�:

Let � be the nearest point projection map onto N and let �. � / WD distRL. � ; N / be the distance
function toN in RL, both defined on a tubular neighborhood ofN . More precisely, if we define
the open set

A WD
[
p2N

eB.p;R0/
which is an open neighborhood of N inside RL, we have the following from [2, Lemma 2.2].

Lemma 3.2. With the definitions as above, �, �, � , � are well-defined and smooth on A.
Moreover, we have the following estimates:

kD�p.v/k � �jvj for all p 2 N; v 2 TpN;(3.4)

kD�ak �
1

1 � ��.a/
for all a 2 A;(3.5)

j�.a/ � pj �
ja � pj

1 � �ja � pj
for all p 2 N; a 2 eB.p;R0/:(3.6)

Proof. See [2, Lemma 2.2].

From now on, we fix a point p 2 N . Without loss of generality, we can assume that p D 0
after a translation in RL. By Lemma 3.2, we can define a smooth map � W eB.0;R0/! RL by

�.x/ WD ��.�.x//�.x/:

Note that ��.x/ is the normal component (with respect to T�.x/N ) of the vector �.x/ � p
(which is equal to �.x/ when p D 0). See Figure 1.
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Figure 1. Definition of �.

Lemma 3.3. Fix any s 2 .0; R0/. If we let  D R0

2.R0�s/2
, then

(3.7) kD�xk � 2 jxj and j�.x/j �  jxj2 for all x 2 eB.0; s/:
Proof. Fix s 2 .0; R0/ and any x 2 eB.0; s/. As D�x.v/ 2 T�.x/N for any v 2 RL, we

have �.�.x//D�x.v/ D 0 for any v, thus

D�x.v/ D �ŒD��.x/ ıD�x.v/�.�.x// � �.�.x//D�x.v/

D �ŒD��.x/ ıD�x.v/�.�.x//:

Therefore, we have by (3.4), (3.5), (3.6), �.x/ � jxj and D�x.v/ 2 T�.x/N ,

kD�xk � � �
1

1 � ��.x/
�
jxj

1 � �jxj
�

R0

.R0 � jxj/2
jxj � 2 jxj:

The estimate for j�.x/j follows from a line integration from x D 0 using that �.0/ D 0.

We can now state our monotonicity formula.

Theorem 3.4 (Monotonicity formula). Assume that M is an embedded m-dimensional
submanifold in RL with second fundamental form AM bounded by some constant ƒ > 0,
i.e. jAM j � ƒ. Suppose that N �M is a closed embedded n-dimensional submanifold, and
V 2 Vk.M/ is a stationary k-varifold with free boundary on N . For any point p 2 N and
0 < � < � < 1

2
R0 as defined in (3.3), we have

eƒ1�
kV k.eB.p; �//

�k
� eƒ1�

kV k.eB.p; �//
�k

�

Z
Gk.eA.p;�;�// e

ƒ1r jr?S r j
2

.1C r/rk
dV.x; S/:

Here  D 2
R0

is defined in Lemma 3.3 (with s D 1
2
R0), ƒ1 WD k.ƒC 3/, r.x/ WD jx � pj,

r?S r is the projection of rr to the orthogonal complement S? of the k-plane S � RL, and
Gk.eA.p; �; �// WD eA.p; �; �/ �G.L; k/ is the restriction of the k-dimensional Grassmannian
on RL restricted to eA.p; �; �/ WD eB.p; �/ n eB.p; �/.

Proof. As before, we can assume that p D 0 by a translation in RL. The monotonicity
formula will be obtained by choosing a suitable test vector field X in (3.2). Define

X.x/ WD '.r/.x C �.x//;

where r D jxj and ' � 0 is a smooth cutoff function with '0 � 0, and '.r/ D 0 for r � 1
2
R0.

When x 2 N , we have �.x/ D x and thus

x C �.x/ D x � �.x/x D �.x/x 2 TxN:

Hence X.x/ 2 TxN for all x 2 N , and (3.2) holds true for such X .
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For any k-dimensional subspace S � RL, by the definition of X ,

divS X.x/ D '.r/.divS x C divS �.x//C '0.r/rSr � .x C �.x//

D '.r/.k C divS �.x//C '0.r/Œr.1 � jr?S r j
2/CrSr � �.x/�:

By (3.7), we have the estimates

j divS �.x/j � kkD�xk � 2kr and jr
Sr � �.x/j � j�.x/j � r2:

Using the fact that ' � 0 and '0 � 0, we have the following estimates:

divS X.x/ � '.r/.k � 2kr/C '0.r/Œr.1 � jr?S r j
2/C r2�

and
jX.x/j � '.r/.jxj C j�.x/j/ � '.r/.r C r2/:

Plugging these estimates into (3.2) and using the bound jAM j � ƒ,Z
'0.r/r.1C r/ dkV k C k

Z
'.r/ dkV k

�

Z
'0.r/r jr?S r j

2 dV.x; S/C kƒ

Z
†

'.r/r.1C r/ dkV k C 2k

Z
†

'.r/r dkV k:

Fix a smooth cutoff function � W Œ0;1/! Œ0; 1� such that �0 � 0 and �.s/ D 0 for s � 1.
For any � 2 .0; 1

2
R0/, if we define '.r/ D �. r

�
/, then it is a cutoff function satisfying all the

assumptions above. Moreover, r'0.r/ D �� d
d�
'. r
�
/. Plugging into the inequality above, using

the fact that �. r
�
/ D 0 for r � �,

� �.1C �/
d

d�

Z
�

�
r

�

�
C k

Z
�

�
r

�

�
� ��

d

d�

Z
�

�
r

�

�
jr
?
S r j

2
C kƒ�.1C �/

Z
�

�
r

�

�
C 2k�

Z
�

�
r

�

�
:

Adding k�
R
�. r
�
/ to both sides of the inequality, we obtain

� �.1C �/
d

d�

Z
�

�
r

�

�
C k.1C �/

Z
�

�
r

�

�
� ��

d

d�

Z
�

�
r

�

�
jr
?
S r j

2
C k�Œƒ.1C �/C 3�

Z
�

�
r

�

�
:

Denote I.�/ D
R
�. r
�
/dkV k and J.�/ D

R
�. r
�
/jr?S r j

2 dV.x; S/. Then we have

.1C �/
d

d�

�
I.�/

�k

�
�
J 0.�/

�k
� kŒƒ.1C �/C 3�

I.�/

�k
;

which clearly implies

d

d�

�
I.�/

�k

�
C k.ƒC 3/

I.�/

�k
�

J 0.�/

.1C �/�k
:

Therefore, we can rewrite it into the form

d

d�

�
ek.ƒC3/�

I.�/

�k

�
�
ek.ƒC3/�

.1C �/�k
J 0.�/:

The monotonicity formula follows by letting � approach the characteristic function of the
interval Œ0; 1�.
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10 Guang, Li and Zhou, Curvature estimates near free boundary

4. Curvature estimates

In this section, we prove our main curvature estimates (Theorem 4.1) which imply Theo-
rem 1.1. The estimates hold for immersed stable free boundary minimal hypersurfaces in any
closed Riemannian manifold .M; g/ with constraint hypersurface N �M . Moreover, the esti-
mates are local and uniform in the sense that the constants only depend on the geometry of M
andN , and the area of the minimal hypersurface. As in the previous section, we will continue to
assume that the .nC 1/-dimensional closed Riemannian manifold .M nC1; g/ is isometrically
embedded into RL and N �M is a compact embedded hypersurface in M with àN D ;.

Denote B.p; r/ �M as the open geodesic ball of M centered at p with radius r > 0.
Since the intrinsic distance on M and the extrinsic distance on RL are equivalent near a given
point p 2M , we can without loss of generality assume that the monotonicity formula (Theo-
rem 3.4) holds true for geodesic balls when the radius is less than some R0 > 0 (depending
only on .M;N / and the embedding to RL). Now we can state our main curvature estimates
near the boundary.

Theorem 4.1. Let 2 � n � 6. Suppose that M nC1 � RL, N and R0 are given as
above. Let p 2 N and 0 < R < R0. If .†; à†/ # .B.p;R/;N \ B.p;R// is an immersed
(embedded when n D 6) stable free boundary minimal hypersurface satisfying the area bound
Area.† \ B.p;R// � C0, then

sup
x2†\B.p;R

2
/

jA†j.x/ � C1;

where C1 > 0 is a constant depending on C0, M and N .

Proof. The proof is by a contradiction argument which will be divided into three steps.
First, if the assertion is false, then we can carry out a blow-up argument to obtain a limit after
a suitable rescaling. Second, we show that if the limit satisfies certain area growth condition,
it has to be a flat hyperplane which would give a contradiction to the choice of the blow-up
sequence. Finally, we check that the limit indeed satisfies the area growth condition using the
monotonicity formula (Theorem 3.4).

Step 1: The blow-up argument. Suppose that the assertion is false; then there exists
a sequence

.†i ; à†i / # .B.p;R/;N \ B.p;R//

of immersed (embedded when n D 6) stable free boundary minimal hypersurfaces such that

(4.1) Area.†i \ B.p;R// � C0;

but as i !1, we have
sup

x2†i\B.p;
R
2
/

jA†i j.x/!1:

Therefore, we can pick a sequence of points xi 2 †i \ B.p; R2 / such that jA†i j.xi /!1.
By compactness we can assume that xi ! x 2 B.p; 2R

3
/. By the Schoen–Simon–Yau interior

curvature estimates [18] (or Schoen–Simon’s curvature estimates [17] when n D 6), we must
have x 2 N , and moreover, the connected component of †i \ B.p;R/ that passes through xi
must have a nonempty free boundary component lying on N \ B.p;R/. Define a sequence of
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Guang, Li and Zhou, Curvature estimates near free boundary 11

Figure 2. The balls B.xi ; ri / and B.yi ; r 0i /.

positive numbers
ri WD .jA

†i j.xi //
� 1

2 :

Then we have ri ! 0 and ri jA†i j.xi /!1 as i !1. Now, choose yi 2 †i \ B.xi ; ri / so
that it achieves the maximum of

(4.2) sup
y2†i\B.xi ;ri /

jA†i j.y/ distM .y; àB.xi ; ri //:

Let r 0i WD ri � distM .yi ; xi / (see Figure 2). Note that r 0i ! 0 as r 0i � ri ! 0. Moreover, the
same point yi 2 †i \ B.xi ; ri / also achieves the maximum of

(4.3) sup
y2†i\B.yi ;r

0
i
/

jA†i j.y/ distM .y; àB.yi ; r 0i //:

Define �i WD jA†i j.yi /. Then we have �i !1 since r 0i ! 0 and

�ir
0
i D jA

†i j.yi / distM .yi ; àB.yi ; r 0i //

D jA†i j.yi / distM .yi ; àB.xi ; ri //

� jA†i j.xi / distM .xi ; àB.xi ; ri //

D ri jA
†i j.xi /!C1;

where the inequality above follows from (4.2).
Let �i W RL ! RL be the blow-up maps �i .z/ WD �i .z � yi / centered at yi . Denote

.M 0i ; N
0
i / WD .�i .M/; �i .N // and let B 0.0; r/ be the open geodesic ball in M 0i of radius r > 0

centered at 0 2M 0i . We get a blow-up sequence of immersed stable free boundary minimal
hypersurfaces

.†0i ; à†
0
i / WD .�i .†i /; �i .à†i // # .B 0.0; �iR/;N

0
\ B 0.0; �iR//:

Note that we have jA†
0
i j.0/ D ��1i jA

†i j.yi / D 1 for every i , and the connected component
of †0i passing through 0 must have nonempty free boundary lying on N 0i \ B

0.0; �iR/. For
each fixed r > 0, we have ��1i r < r 0i for all i sufficiently large since �ir 0i !C1. Hence, if
x 2 †0i \ B

0.0; r/, then ��1i .x/ 2 †i \ B.yi ; �
�1
i r/ � †i \ B.yi ; r

0
i /. Using (4.3), we have

(4.4) jA†
0
i j.x/ �

�ir
0
i

�ir
0
i � r

since distM .��1i .x/; àB.yi ; r 0i // � r
0
i � �

�1
i r for all i sufficiently large (depending on the fixed

r > 0). Note that the right hand side of (4.4) approaches 1 as i !1.
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12 Guang, Li and Zhou, Curvature estimates near free boundary

Step 2: The contradiction argument. By the smoothness ofM and that yi ! x 2M ,
we clearly have B 0.0; �ir 0i / converging to TxM smoothly and locally uniformly in RL. How-
ever, as yi does not necessarily lie on N , we have to consider two cases of convergence
scenario:

� Case I: lim infi!1 �i distRL.yi ; N / D1.

� Case II: lim infi!1 �i distRL.yi ; N / <1.

For Case I, the rescaled constraint surfaceN 0\B 0.0; �iR/will escape to infinity as i !1 and
therefore disappear in the limit. For Case II, after passing to a subsequence, N 0 \ B 0.0; �iR/
smoothly and locally uniformly converge to some n-dimensional affine subspace P � RL.

Assume for now that the blow-ups †0i satisfy a uniform Euclidean area growth with
respect to the geodesic balls in Mi , i.e. there exists a uniform constant C2 > 0 such that for
each fixed r > 0, when i is sufficiently large (depending possibly on r), we have

(4.5) Area.†0i \ B
0.0; r// � C2r

n:

By using either the classical convergence theorem for minimal submanifolds with bounded
curvature (for Case I) or Theorem 6.1 (for Case II), there exists a subsequence of the connected
component of †0i passing through 0 converging smoothly and locally uniformly to either

� a complete, immersed stable minimal hypersurface †11 in TxM , or

� an immersed stable free boundary minimal hypersurface .†21; à†21/ # .TxM;P / such
that à†21 ¤ ;,

satisfying the same Euclidean area growth as in (4.5) for all r > 0 with †0i replaced by †11
or †21. When n D 6, †11; †

2
1 are both embedded by our assumption. In the first case, the

classical Bernstein theorem [18, Theorem 2] (when 2 � n � 5) or [17, Theorem 3] (when
n D 6) implies that†11 is a flat hyperplane in TxM , which is a contradiction as jA†

1
1 j.0/ D 1.

In the second case, as the constraint hypersurface P is a hyperplane in TxM , we can double
†21 as in Lemma 2.6 by reflecting across P to obtain a complete, immersed (embedded when
n D 6) stable minimal hypersurface in TxM with Euclidean area growth. This gives the same
contradiction as in the first case.

Step 3: The area growth condition. It remains now to establish the uniform Euclidean
area growth for †0i in (4.5). This is essentially a consequence of the monotonicity formula
(Theorem 3.4). In the following, C3; C4; : : : will be used to denote constants depending only
on .M;N / and the embedding M � RL.

Let di WD distM .yi ; N / and let zi 2 N be the nearest point projection (inM ) of yi toN .
Hence di ! 0 by the choice of yi . We have to consider two cases:

� Case 1: lim infi!1 �idi D1.

� Case 2: lim infi!1 �idi <1.

Let us first consider Case 1. Fix r > 0. Since �idi !1, we have for all i sufficiently
large (depending on r),

(4.6) B.yi ; �
�1
i r/ � B.yi ; di / � B.zi ; 2di / � B.zi ;

R
2
/ � B.p;R/:

Note thatB.yi ; di / \N D ;, by the interior monotonicity formula [19, Theorem 17.6] and the
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Guang, Li and Zhou, Curvature estimates near free boundary 13

inclusions in (4.6), we have for i sufficiently large,

Area.†i \ B.yi ; ��1i r// � C3
Area.†i \ B.yi ; di //

dni
.��1i r/n:

Using di ! 0, (4.6) and the boundary monotonicity formula (Theorem 3.4), we have for i
sufficiently large,

Area.†i \ B.yi ; ��1i r// � 2nC4
Area.†i \ B.zi ; R2 //

.R
2
/n

.��1i r/n:

Finally, using (4.6) and (4.1), for i sufficiently large we have

Area.†i \ B.yi ; ��1i r// � .22nC4C0R
�n/ � .��1i r/n;

which implies (4.5). This finishes the proof for Case 1.
Now we consider Case 2, i.e. �idi is uniformly bounded for all i . By a similar argument

as above, we have

B.yi ; �
�1
i r/ � B.zi ; di C �

�1
i r/ � B.zi ;

R
2
/ � B.p;R/

for all i sufficiently large (for any fixed r > 0). By exactly the same arguments as in Case 1,
we have

Area.†i \ B.yi ; ��1i r// � C02
nC5R

�n

�
1C

�idi

r

�n
� .��1i r/n:

Since �idi is uniformly bounded, for r sufficiently large independent of i , estimate (4.5) is
satisfied. This proves Case 2 and thus completes the proof of Theorem 4.1.

5. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 using the same blow-up arguments as in the proof
of Theorem 4.1. However, since we do not assume a uniform area bound of the minimal sur-
faces, we may not get a single stable minimal surface in the blow-up limit. Nonetheless, with
the extra embeddedness assumption, the blow-up sequence would still subsequentially con-
verge to a minimal lamination. Roughly speaking, a minimal lamination in a 3-manifold M 3

is a disjoint collection L of embedded minimal surfaces ƒ (called the leaves of the lamina-
tion) such that

S
ƒ2Lƒ is a closed subset of M . In [5], Colding and Minicozzi proved that

a sequence of minimal laminations with uniformly bounded curvature subsequentially con-
verges to a limit minimal lamination. For our purpose, we will generalize the notion of minimal
laminations to include the case with free boundary.

Throughout this section, we will denote M 3 to be a compact 3-manifold with bound-
ary àM , and without loss of generality, suppose that M is a compact subdomain of another
closed Riemannian 3-manifold fM . We denote the half-space

R3C WD ¹.x
1; x2; x3/ 2 R3 W x1 � 0º;

whose boundary is given by the plane R21 D àR
3
C
D ¹x1 D 0º. First, let us recall the definition

of minimal lamination from [5].
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14 Guang, Li and Zhou, Curvature estimates near free boundary

Definition 5.1 ([5, Appendix B]). Let � �fM be an open subset. A minimal lami-
nation of � is a collection L of disjoint, embedded, connected minimal surfaces, denoted
by ƒ (called the leaves of the lamination) such that [ƒ2Lƒ is a closed subset of �. More-
over, for each x 2 �, there exists a neighborhood U of x in � and a local chart .U;ˆ/ with
ˆ.U / � R3 so that in these coordinates the leaves in L pass through ˆ.U / in slices of the
form .R2 � ¹tº/ \ˆ.U /.

Now we can define minimal laminations with free boundary.

Definition 5.2. A minimal lamination of M 3 with free boundary on àM is a collection
L of disjoint, embedded, connected minimal surfaces with (possibly empty) free boundary
on àM , denoted byƒ, such that

S
ƒ2Lƒ is a closed subset ofM . Moreover, for each x 2M ,

one of the following holds:

(i) x 2M n àM and there exists an open neighborhood U of x inM n àM such that the set
¹ƒ \ U W ƒ 2 Lº is a minimal lamination of U .

(ii) x 2 àM and there exist a relatively open neighborhood eU of x inM and a local coordinate
chart .eU ; ê/ such that ê.eU/ � R3

C
and ê.àM \ eU/ � àR3

C
so that in these coordinates

the leaves in L pass through the chart in slices of the form .R2 � ¹tº/ \ ê.eU/.
(iii) x 2 àM and there exists an open neighborhood U of x infM such that ¹ƒ \ U W ƒ 2 Lº

is a minimal lamination of U .

Remark 5.3. Note that the leaves ƒ of the lamination L in Definition 5.2 may not be
properly embedded in M . For example, ƒ may touch àM in the interior of ƒ in case (iii).

In the special case that M 3 D R3
C

, by the maximum principle [6, Corollary 1.28] we
know that all leaves of the lamination L are properly embedded (except when ƒ D àR3

C
).

Therefore Lemma 2.6 implies the following reflection principle for minimal lamination with
free boundary.

Lemma 5.4 (Lamination reflection principle). If L is a minimal lamination of R3
C

with
free boundary on àR3

C
, then ¹ƒ [ �.ƒ/ W ƒ 2 Lº is a minimal lamination of R3 (in the sense

of Definition 5.1).

We need the following convergence result, whose proof is postponed until Section 7.

Theorem 5.5. Let .M 3; g/ be a compact Riemannian 3-manifold with nonempty
boundary àM . If Li is a sequence of minimal laminations of M with free boundary on àM
with uniformly bounded curvature, i.e. there exists a constant C > 0 such that

sup¹jAƒj2.x/ W x 2 ƒ 2 Liº � C;

then a subsequence of Li converges in the C ˛ topology for any ˛ < 1 to a Lipschitz lamina-
tion L with minimal leaves in M and free boundary on àM .

Proof of Theorem 1.2. We follow the same contradiction argument as in the proof of
Theorem 4.1 and adopt the same notions therein. After a blow-up process, we again face two
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Guang, Li and Zhou, Curvature estimates near free boundary 15

types of convergence scenario. By Colding–Minicozzi’s convergence theorem for minimal lam-
inations with bounded curvature [5, Proposition B.1] (for Case I) and Theorem 5.5 (for Case II),
a subsequence of blow-ups converges to

� a minimal lamination QL in TxM ' R3, or

� a minimal lamination L in a half-space H ' R3
C

with free boundary on àH .

In the second case, we can apply the lamination reflection principle (Lemma 5.4) to obtain
a minimal lamination QL in TxM ' R3. By the blow-up assumption, we know that the origin
0 2 R3 is in the support of QL, and the curvature of the leaf ƒ0 passing through 0 is exactly 1
at 0, i.e. jAƒ0 j.0/ D 1.

Now we analyze the structure of the minimal lamination QL � R3 for both cases. We refer
to [12] for well-known terminologies for minimal laminations. If ƒ 2 QL is an accumulating
leaf, then eitherƒ or its double cover Qƒ is a complete, stable minimal surface in R3, which must
be an affine plane by the Bernstein theorem in R3 (see [7, 8]). Therefore, the leaf ƒ0 passing
through 0must be an isolated leaf. Since all the surfaces in the sequence†0i are stable with free
boundary, the smooth convergence of †0i to QL or L and the reflection principle (Lemma 2.6)
imply that ƒ0 is a complete, stable, minimal surface in R3. This again violates the Bernstein
theorem as jAƒ0 j.0/ D 1 by our construction. Therefore, we arrive at a contradiction and finish
the proof of Theorem 1.2.

6. Convergence of free boundary minimal submanifolds

In this section, we prove a general convergence result (Theorem 6.1) for free boundary
minimal submanifolds with uniformly bounded second fundamental form. Note that this con-
vergence result does not require stability and holds in any dimension and codimension.

To facilitate our discussion, let us first review some basic properties of Fermi coordi-
nates. Let N n �M nC1 be an embedded hypersurface (without boundary) in the Riemannian
manifold .M; g/. We can assume that both N and M are complete. Fix a point p 2 N . We let
.x1; : : : ; xn/ be the geodesic normal coordinates of N centered at p, and let t D distM . � ; N /
be the signed distance function from N which is well-defined and smooth in a neighborhood
of p inside M . Therefore, for r0 > 0 sufficiently small, there exists a diffeomorphism, called
a Fermi coordinate chart,

� W BnC1r0
.0/ � TpM ! U �M;

.t; x1; : : : ; xn/ 7! �.t; x1; : : : ; xn/;

such that U \N D �.¹t D 0º/. Here, BnC1r0
.0/ is the open Euclidean ball of TpM Š RnC1

of radius r0 > 0 centered at 0. We refer the readers to [13] for a more detailed discussion on
Fermi coordinates. The components of the metric g in Fermi coordinates satisfy gt t D 1 and
gxi t D 0 for i D 1; : : : ; n.

Let .†; à†/ � .M;N / be smooth embedded free boundary minimal k-dimensional sub-
manifold, with 1 � k � n. Fix any p 2 à† � N , and let � W BnC1r0

.0/! U be a Fermi coordi-
nate chart as above centered at p. After a rotation we can assume that

Tp.à†/ D ¹xk D � � � D xn D 0 D tº Š Rk�1:
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16 Guang, Li and Zhou, Curvature estimates near free boundary

Since † meets N orthogonally along à†, after picking a choice on the sign of t , the tangent
half-space Tp† is given by

Tp† D ¹xk D � � � D xn D 0; t � 0º Š RkC:

Hence, under the Fermi coordinates in a neighborhood of p, † can be written as a graph of
u D .u1; : : : ; unC1�k/ which is an RnC1�k-valued function of .t; x0/ D .t; x1; : : : ; xk�1/ in
a domain of Rk

C
, i.e. ��1.†/ D ¹.t; x0; u.t; x0//º � RnC1

C
. Moreover, ��1.à†/ is given by the

same graph with t D 0. Since ààt is a unit normal vector field along N \ U , it is clear that the
free boundary condition along à† is equivalent to

(6.1)
àu`
àt
.0; x0/ D 0 for ` D 1; : : : ; nC 1 � k.

We now state the convergence result for free boundary minimal submanifolds with uni-
formly bounded area and the second fundamental form.

Theorem 6.1. Suppose we have a sequence .†j ; à†j / # .M nC1; N n/ of immersed
free boundary minimal k-dimensional submanifolds, where 1� k � n, with uniformly bounded
area and second fundamental form, i.e. there exist positive constants C0; C1 > 0 such that

Area.†j / � C0 and sup
†j

jA†j j � C1

for all j , then after passing to a subsequence, .†j ; à†j / converges smoothly and locally
uniformly to .†1; à†1/ # .M;N / which is a smooth immersed free boundary minimal
k-dimensional submanifold.

Proof. The convergence away from N follows from the classical convergence results.
By the second fundamental form bound, we can cover N by balls (of a uniform size) under
Fermi coordinates centered at p 2 N such that each †j can be written as graphs over some
domain of Tp†j with uniformly bounded gradient (see [6, Section 2.2]). By using the uniform
area bound together with the monotonicity formula (Theorem 3.4), there is a uniform upper
bound on the number of sheets of the graphs. After passing to a subsequence, the number of
sheets remains constant for all j and each sheet is a graph over a k-dimensional subspace
of TpM or a k-dimensional half-space orthogonal to TpN . The first case again follows from
the classical interior convergence result. The second case follows from standard elliptic PDE
theory with Neumann boundary conditions (6.1) (see [1] for example).

7. Convergence of free boundary minimal lamination

Finally, we give the proof of Theorem 5.5 which was used in Section 5.

Proof of Theorem 5.5. For simplicity we will assume that each lamination Li has
finitely many leaves where the number of leaves may depend on i ; this will suffice for our
application. For any interior point x 2M n àM , the argument used in the proof of [5, Propo-
sition B.1] implies the convergence in a small neighborhood of x in M n àM . Hence, we only
need to deal with the convergence near a boundary point x 2 àM .
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Guang, Li and Zhou, Curvature estimates near free boundary 17

Fix p 2 àM and let N D àM . The theorem will follow once we construct uniform
coordinate charts in a small neighborhood of p in the Fermi coordinate system as in Section 6.
Let ' be a Fermi coordinate chart in a relatively open neighborhood U of p in M , i.e.

' W U �M ! eU � R3C;

such that '.p/ D 0 and '.N \ U/ D ¹x1 D 0º \ eU . Here, .x1; x2; x3/ are the local Fermi
coordinate system centered at p (i.e. t D x1). Suppose that BC4r0

� eU for some small r0 to
be chosen later, where BC4r0

D B4r0
\ ¹x1 � 0º denotes the half ball in R3

C
with radius 4r0

centered at the origin.
Next, we will construct uniform coordinate charts on '�1.BCr0

/. Note that for each i and
every ƒ 2 Li , we have supƒ jA

ƒj2 � C: We may choose r0 sufficiently small so that Cr0 is
as small as we wish. Then for each fixed i ,[

ƒ2Li

'.ƒ \ U/ \ BC4r0

gives a finite number of disconnected surfaces with bounded curvature in the Fermi coordinate
system.

Since the lamination has uniformly bounded curvature, by the tilt estimates [6, Lem-
ma 2.4], there exists a constant ı > 0 such that for each lamination Li , we have the following
two cases:

(i) None of the leaves of Li meets àR3
C

in BC
ır0

(except possibly for one leaf touching àR3
C

tangentially at some points).

(ii) There exists a leaf of Li meeting àR3
C

along some nonempty free boundary.

For case (i), we can construct uniform coordinate charts as in the proof of [5, Proposition B.1]
in a neighborhood of the larger manifold fM . For case (ii), we claim that in BC

2ır0
, all leaves

of Li which intersect BC
ır0

must meet àR3
C

along some nonempty free boundary; otherwise,
the tilt estimates will imply that two leaves intersect somewhere in BCr0

which contradicts the
assumption that all leaves are disjoint. Note that the tilt estimates in [6, Lemma 2.4] only use
the uniform curvature bound of leaves in Li , but not the minimal surface equations.

Now, we focus on case (ii). For simplicity, we use r0 to denote ır0. The free boundary
condition and the choice of Fermi coordinates imply that these surfaces meet àR3

C
orthogonally

in the Euclidean metric. Going to a further subsequence (possibly with r0 even smaller), for
fixed i , every sheet of [

ƒ2Li

'.ƒ \ U/ \ BC2r0

which intersects BCr0
is a graph with small gradient over a subset of certain fixed plane perpen-

dicular to àR3
C

(which can be chosen as R2 � ¹0º WD ¹x3 D 0º after a rotation keeping àR3
C

fixed as a set) containing a half ball of radius r0 (see [6, Lemma 2.4]).
We will show that in a concentric half ball of smaller radius in BC2r0

, the sequence of lam-
inations converges in the C ˛ topology to a lamination for any ˛ < 1. The coordinate chart ˆ
required by the definition of a lamination will be given by the Arzela–Ascoli theorem as a limit
of a sequence of bi-Lipschitz maps

ˆi W B
C
2r0
! R3C
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18 Guang, Li and Zhou, Curvature estimates near free boundary

with bounded bi-Lipschitz constants, and ˆ will be defined on a slightly smaller concentric
half ball BCsr0

for some s > 0 to be determined. Furthermore, we will show that for each i fixed

ˆi

�
BCsr0

\ '

� [
ƒ2Li

ƒ \ U

��

is the union of subsets of planes which are each parallel to R2 � ¹0º � R3
C

.
Set the map ˆi by letting

ˆ�1i .y1; y2; y3/ D .y1; y2; �i .y1; y2; y3//;

where �i is defined as follows: order the sheets ofBC2r0
\'.

S
ƒ2Li

ƒ\U/ asƒi;k for k � 1 by
increasing values of x3 and letƒi;k be the graph of the function fi;k over (part of) the R2 � ¹0º
plane. In the following we only need to consider those sheets ƒi;k where ƒi;k \ BCr0

¤ ;,
since we eventually will work on a much smaller concentric half ball. The domain of such fi;k
contains the half ball of radius r0 centered at the origin of the R2 � ¹0º plane. Again as Cr0
can be chosen small enough, we can assume that jrfi;kj are as small as we want. Moreover,
the free boundary condition satisfied byƒi;k is equivalent to the Neumann boundary condition

àfi;k.0; � /
àx1

D 0:

Set wi;k D fi;kC1 � fi;k . In the following, �, r, and div will be with respect to the
Euclidean metric on R2 � ¹0º. By a standard computation (cf. [6, Chapter 7] or [20, equa-
tion (7)]), we have

(7.1) div..aC Id/rwi;k/C brwi;k C cwi;k D 0 and
àwi;k.0; � /
àx1

D 0;

where a is a matrix-valued function, b is a vector-valued function, and c is simply a real-valued
function.

Note that a, b, and c depend on i , but the norms of a; b; c can be made uniformly small
if Cr0 is small enough and if we rescale our ambient manifold by a large factor. By (7.1), and
the Harnack inequality (see [9, Section 8.20] and [1, Section 6]) applied to the positive function
wi;k gives

(7.2) sup
BC2sr0

wi;k � C1 inf
BC2sr0

wi;k;

where C1 depends only on the norms of a; b and c. Here, BCt is the half ball in R2 � ¹0º with
radius t and center 0. Set Mi;k D fi;k.0; 0/. In the region ¹.y1; y2; y3/ 2 BCr0

�ŒMi;k;Mi;kC1�º,
define the function �i by

�i .y1; y2; y3/ D fi;k.y1; y2/C
y3 �Mi;k

Mi;kC1 �Mi;k

wi;k.y1; y2/:

Hence,
ˆ�1i .y1; y2; fi;k.0; 0// D .y1; y2; fi;k.y1; y2//I

that is, ˆi maps ƒi;k to a subset of the plane R2 � ¹fi;k.0; 0/º.
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Note that �i .0; 0; 0/ D 0. Moreover, we have

(7.3) r�i D rfi;k C
y3 �Mi;k

Mi;kC1 �Mi;k

rwi;k C
wi;k

Mi;kC1 �Mi;k

à
ày3

:

By (7.2) and (7.3), we know that for each i the mapˆi restricted to BCsr0
� R3

C
is bi-Lipschitz

with uniformly bounded bi-Lipschitz constant.
By the Arzela–Ascoli theorem, a subsequence of ˆi converges in the C ˛ topology for

any ˛ < 1 to a Lipschitz coordinate chart ˆ with the properties that are required. By standard
elliptic regularity theory, the leaves are either minimal surfaces (for the first case) or minimal
surfaces with free boundary on N (for the second case).
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