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Abstract. In this survey, we discuss some recent results on free boundary

minimal surfaces in the Euclidean unit-ball. The subject has been a very ac-
tive field of research in the past few years due to the seminal work of Fraser

and Schoen on the extremal Steklov eigenvalue problem. We review several

different techniques of constructing examples of embedded free boundary min-
imal surfaces in the unit ball. Next, we discuss some uniqueness results for free

boundary minimal disks and the conjecture about the uniqueness of critical

catenoid. We also discuss several Morse index estimates for free boundary min-
imal surfaces. Moreover, we describe estimates for the first Steklov eigenvalue

on such free boundary minimal surfaces and various smooth compactness re-

sults. Finally, we mention some sharp area bounds for free boundary minimal
submanifolds and related questions.

1. Introduction

Minimal surfaces have been one of the most extensively studied objects in differ-
ential geometry, owing to its internal beauty and the connection with a wide range
of mathematics including complex analysis, partial differential equations, conformal
geometry, low dimensional topology and mathematical physics etc. The classical
Plateau problem asks for an area-minimizing disk whose boundary spans a given
Jordan curve in R3. Shortly after Douglas and Radó independently gave a positive
answer to this question, Courant [14] proposed to study the corresponding Neu-
mann boundary value problem for minimal disks in R3. This problem, called the
free boundary problem, asks for an area-minimizing disk whose boundary is lying on
a given constraint surface S in R3. Courant and his students [15] proved the first
existence results of such minimizers under certain assumptions, for example that
S is not simply-connected. The boundary regularity was then actively studied by
several mathematicians including Lewy [64], Hildebrandt [41] and Nitsche [40], just
to name a few. We refer the readers to a very well-written survey by Hildebrandt
[42] which summarized some of the major development up to 1986.

Before the 1980s, most attention was drawn to study area-minimizers. When the
constraint surface S is convex, it does not support any non-trivial area minimizers.
It is therefore important to look for stationary solutions, in other words general
critical points to the area functional. In a pioneering paper [76], Nitsche initiated
the study of free boundary minimal (and constant mean curvature) surfaces in the
unit ball B3 of R3. Several examples are given and a number of questions are
formulated. Using methods from harmonic maps and geometric measure theory, a
number of existence results (see for example [88] [33]) were established for unstable
free boundary minimal disks inside any convex body in R3. A general existence
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theory of free boundary minimal disks was later developed by Fraser [28] which
works in the setting of Riemannian manifolds of any dimension.

Despite these tremendous successes, still not much is known after the work of
Nitsche on free boundary minimal surfaces in B3. The situation changes drastically
after the groundbreaking work of Fraser and Schoen [24] [27]. They found a close
relationship between free boundary minimal surfaces in the unit n-ball Bn and an
extremal eigenvalue problem on compact surfaces with boundary. They studied the
spectrum, called Steklov eigenvalues, of the Dirichlet-to-Neumann map on surfaces
with boundary and discovered that any smooth metric maximizing the first nor-
malized Steklov eigenvalue must be realized by a free boundary minimal surface in
Bn. This is analogous to the study of the extremal problem for the first eigenvalue
of the Laplacian on closed surfaces, which is intimately related to closed minimal
surfaces in Sn (see [25] for an excellent overview). More surprisingly, it was shown
in [24] and [27] that there are many similarities between free boundary minimal
surfaces in Bn and closed minimal surfaces in Sn. Since then, there has been a lot
of interest in the research community on free boundary minimal surfaces. In this
survey, we will describe some of the recent advances focusing on the question of
existence and uniqueness for free boundary minimal surfaces in Bn, as well as some
of their analytic and geometric properties.

We would like to point out that recently there has also been substantial progress
in the general existence and regularity theory for free boundary minimal hyper-
surfaces in Riemannian manifolds with boundary. Thanks to the recent major
breakthroughs in the Almgren-Pitts min-max theory by Marques and Neves, which
have already led to the resolution of several longstanding conjectures in geometry
and topology (see the ICM proceedings [12] [75] for a more detailed discussion), we
have also witnessed rapid development in the free boundary setting. Some recent
works related to this include [65] [66] [16] [35] [34] [92] [93].
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Prof. Shing-Tung Yau for the valuable opportunity to deliver an invited lecture
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Guangzhou. The author is substantially supported by a research grant from the
Research Grants Council of the Hong Kong Special Administrative Region, China
[Project No.: CUHK 24305115] and CUHK Direct Grant [Project Code: 4053291].

2. Definitions and preliminaries

In this section, we will introduce some definitions and notations which will be
used throughout the rest of this paper. We also establish some foundational prop-
erties for free boundary minimal submanifolds in Bn.

2.1. Definitions. Throughout this paper, we denote, for any n ≥ 3, the closed
n-dimensional Euclidean unit-ball by

Bn := {(x1, x2, · · · , xn) ∈ Rn : x2
1 + x2

2 + · · ·+ x2
n ≤ 1}.

The boundary ∂Bn is the (n− 1)-dimensional unit sphere denoted by Sn−1.
Let Σ be a k-dimensional smooth manifold with boundary ∂Σ. Consider a

smooth immersion ϕ : Σ → Bn such that ϕ(∂Σ) ⊂ ∂Bn, the extrinsic curvature of
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Σ is described by a vector-valued symmetric two-tensor A : TΣ⊗TΣ→ NΣ, called
the second fundamental form of Σ, defined by

A(u, v) := (Duv)N ,

where D is the Euclidean connection on Rn and (·)N is the normal component of
a vector with respect to Σ. Here, TΣ and NΣ are respectively the tangent and
normal bundle of the immersed submanifold Σ in Rn. The mean curvature vector
~H of Σ is then defined to be the trace of its second fundamental form, i.e. at each
p ∈ Σ,

~H(p) := TrA(p) =

k∑
i=1

(Deiei)
N (p)

where {e1, · · · , ek} is an orthonormal basis of the tangent space TpΣ. The outward
conormal ν of ∂Σ is defined such that at each p ∈ ∂Σ, ν(p) is the unique unit vector
in TpΣ which is orthogonal to Tp∂Σ and pointing out of Σ.

Definition 2.1. An immersed (resp. embedded) submanifold ϕ : Σk → Bn with
ϕ(∂Σ) ⊂ ∂Bn is said to be an immersed (resp. embedded) free boundary minimal
submanifold if both of the following holds:

(i) Σ is a minimal submanifold (i.e. ~H ≡ 0);
(ii) Σ meets ∂Bn orthogonally along ∂Σ (i.e. ν ⊥ ∂Bn).

We often call Σ a free boundary minimal surface when k = 2 and a free boundary
minimal hypersurface when k = n− 1.

Free boundary minimal submanifolds can be characterized variationally as crit-
ical points of the area functional as follows. Suppose we have a smooth one-
parameter family of immersions ϕt : Σ→ Bn with ϕt(∂Σ) ⊂ ∂Bn for all t ∈ (−ε, ε).
The first variational formula (see e.g. [13, §1.3]) gives

δΣ(X) :=
d

dt

∣∣∣∣
t=0

Area(ϕt(Σ)) = −
∫

Σ

〈 ~H,X〉 da+

∫
∂Σ

〈ν,X〉 ds,

where X = ∂
∂tϕt is the variational vector field; da and ds are the k-dimensional

and (k − 1)-dimensional measures induced by ϕ on Σ and ∂Σ respectively. From
the above formula it is clear that Σ is a free boundary minimal submanifold if and
only if δΣ(X) = 0 for all variational vector field X along Σ

Note that the above discussions hold with Bn replaced by any n-dimensional
Riemannian manifold with boundary. Nonetheless, when the ambient space is Bn,
there is another useful characterization of free boundary minimal submanifolds.
Recall that (see e.g. [13, Proposition 1.7]) a submanifold Σ ⊂ Rn is minimal if
and only if the coordinate functions xi, i = 1, · · · , n, of Rn restrict to harmonic
functions on Σ (with respect to the intrinsic Laplacian ∆Σ). On the other hand,
since the outward unit normal of ∂Bn is given by the position vector. It is easy to
see that the free boundary condition ν ⊥ ∂Bn is equivalent to the condition that
∂xi/∂ν = xi for i = 1, · · · , n.

We summarize our discussions above into the following theorem.

Theorem 2.2. Let ϕ : Σk → Bn be an immersed k-dimensional submanifold with
ϕ(∂Σ) ⊂ ∂Bn. Then the following statements are equivalent:

(1) Σ is a free boundary minimal submanifold.
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(2) Σ is a critical point of the area functional among all k-dimensional sub-
manifolds in Bn with boundary lying on ∂Bn.

(3) The coordinate functions xi of Rn restrict to harmonic functions on Σ and
they satisfy the Robin boundary condition ∂xi/∂ν = xi along ∂Σ.

2.2. Basic properties. Before we proceed, we derive several geometric properties
of free boundary minimal submanifolds in Bn. In the remaining part of this section,
we denote Σ to be a k-dimensional immersed free boundary minimal submanifold
in Bn.

First of all, we show that ∂Σ must be non-empty and Σ cannot touch ∂Bn at an
interior point. Both of these are consequences of the maximum principle.

Proposition 2.3 (Properness). All free boundary minimal submanifolds Σ in Bn
are proper, i.e. ϕ(Σ) ∩ ∂Bn = ϕ(∂Σ) 6= ∅.

Proof. Since the coordinate functions xi are harmonic functions on Σ (with respect
to the induced metric), if we let |x|2 =

∑n
i=1 x

2
i , we have

(2.1) ∆Σ|x|2 = 2

n∑
i=1

xi∆Σxi + 2

n∑
i=1

|∇Σxi|2 = 2k.

Therefore, |x|2 is a strictly sub-harmonic function on Σ and hence the maximum
can only be achieved on ∂Σ. This implies the proposition. �

Next, we give a relationship between the volume of Σ and the boundary volume
of ∂Σ.

Proposition 2.4. k|Σ| = |∂Σ|.

Proof. We integrate (2.1) over Σ on both sides. Applying integration by parts and
using the fact that ∂xi/∂ν = xi, i = 1, · · · , n, on ∂Σ,

2|∂Σ| = 2

∫
∂Σ

n∑
i=1

x2
i ds =

∫
∂Σ

∂

∂ν
|x|2 ds =

∫
Σ

∆Σ|x|2 da = 2k|Σ|.

In the first equality we have used that
∑n
i=1 x

2
i = 1 on ∂Σ since ϕ(∂Σ) ⊂ ∂Bn. �

The next proposition shows that the boundary ∂Σ must be balanced, i.e. the
center of mass of ∂Σ is the origin.

Proposition 2.5.
∫
∂Σ
xi ds = 0 for each i = 1, · · · , n.

Proof. Note that each xi is harmonic in Σ and satisfies ∂xi/∂ν = xi along ∂Σ,
integrating by parts gives∫

∂Σ

xi ds =

∫
∂Σ

∂xi
∂ν

ds =

∫
Σ

∆Σxi da = 0.

�

Since π1(Bn) = 0, we have the following well-known fact from topology.

Proposition 2.6. If Σk ⊂ Bn is an embedded hypersurface (i.e. k = n− 1), then
Σ is orientable.
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3. Existence results

While there are no closed minimal submanifolds in Rn, there do exist some
interesting non-trivial examples of free boundary minimal submanifolds in Bn. It
is a difficult problem to construct embedded examples of free boundary minimal
submanifolds in Bn. For a long time the only known examples in B3 were given by
the equatorial disk and the critical catenoid [76]. The central question is:

Open Question 1. Are there any topological obstructions for a k-dimension sub-
manifold Σ to be a free boundary minimal submanifold in Bn? Does it depend on
whether Σ is immersed or embedded?

Despite many new existence results in the past few years, we still do not have
a satisfactory answer to Open Question 1 even in the case k = 2 = n − 1. It is
interesting to compare it with the analogous question for closed minimal submani-
folds in Sn. When n = 3, this analogous question was solved completely by Lawson
[63], who proved that every closed surface (orientable or not) except RP2 can be
minimally embedded into S3. To indicate the subtlety of the question in the free
boundary setting, it is yet unknown whether there exists a free boundary minimal
surface in B3 with genus 1 and one boundary component.

3.1. Low cohomogeneity examples. The simplest examples of free boundary
minimal submanifolds are the equatorial k-disks Bk ⊂ Bn given by the intersection
of Bn with any k-dimensional subspace of Rn. These examples are flat and totally
geodesic. When k = 2, we will sometimes denote it by D.

To look for the next simplest examples, it is natural to impose maximal symme-
tries. The first example of such is described by Nitsche [76] for the case k = 2 =
n− 1. Consider the surface of revolution (about the x3-axis) given by the equation√

x2
1 + x2

2 = α cosh
(x3

α

)
which describes a classical complete embedded minimal surface in R3 called the
catenoid (of certain scale described by the parameter α > 0). By a simple direct
calculation, one can show that the catenoid defined above intersects ∂Bn orthog-
onally if and only if α = (β2 + cosh2 β)−1/2 where β > 0 is the unique positive
solution to the (transcendental) equation

β = cothβ.

Numerically, we have β ≈ 1.19968 and α ≈ 0.460485. The restriction of such a
catenoid in B3 yields an embedded rotationally symmetric free boundary minimal
annulus called the critical catenoid [24].

In higher dimensions there also exists a complete embedded O(n−1)-symmetric
minimal hypersurface in Rn (see e.g. [89]). After possibly a rotation and transla-
tion, we can assume that such a hypersurface is rotationally invariant with respect
to the xn-axis. As before, up to the scale α > 0 the complete (n − 1)-catenoid is
given by √

x2
1 + x2

2 + · · ·+ x2
n = αf

(xn
α

)
where f : (−Ln, Ln)→ (0,∞) is the unique maximally defined positive solution to
the second order ordinary differential equation f ′′ = (n−2)f2n−5 with f(0) = 1 and
f ′(0) = 0. Again, a direct computation shows that such a minimal hypersurface
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Figure 1. The critical catenoid (on the left is a plot of the curves
y = x and y = cothx which intersect at β ≈ 1.19968)

intesects ∂Bn orthogonally if and only if α = (β2 +f(β)2)−1/2 where β ∈ (−Ln, Ln)
is the unique positive solution to the equation (see [85, §2.1] for more details)

βf ′(β) = f(β).

Therefore, we arrive at the following:

Theorem 3.1 (Nitsche [76], Fraser-Schoen [24], Smith-Stern-Tran-Zhou [85]). For
each n ≥ 3, there exists an embedded rotationally symmetric (i.e. O(n − 1)-
invariant) free boundary minimal hypersurface Kn−1 in Bn, each of which is home-
omorphic to the cylinder Sn−2 × [−1, 1]. We call Kn−1 the (n − 1)-dimensional
critical catenoid. When n = 3, we simply call it the critical catenoid denoted by K.

It is not hard to see from an ODE uniqueness argument that the equatorial
disks and the critical catenoids exhaust all the cohomogeneity one examples. In
[30], Freidin, Gulian and McGrath considered cohomogeneity two examples of free
boundary minimal hypersurfaces in Bn for n ≥ 4 which are O(k1)×O(k2)-invariant
with k1 + k2 = n. By analyzing the ODEs corresponding to the free boundary
minimal surface equation, they proved the following:

Theorem 3.2 (Freidin-Gulian-McGrath [30]). Let k1, k2 > 1 be any positive inte-
gers such that k1 + k2 = n.

(1) For n < 8, there exists an infinite family {ΣFGMk1,k2
(`)}`∈N of mutually non-

congruent, embedded, O(k1) × O(k2)-invariant free boundary minimal hy-
persurfaces in Bn, each of which is homeomorphic to Bk1 × Sk2−1.

(2) For n ≥ 8, there exists an embedded O(k1) × O(k2)-invariant free bound-
ary minimal hypersurface ΣFGMk1,k2

in Bn, each of which is homeomorphic to

Sk1−1 × Sk2−1 × [−1, 1].

For case (1) above, as ` → ∞, the family ΣFGMk1,k2
(`) converges in the Hausdorff

sense (and smoothly away from the origin) to the minimal cone over the Clifford

minimal hypersurface Sk1−1
(√

k1−1
n−2

)
× Sk2−1

(√
k2−1
n−2

)
in Sn−1. The examples

above are obtained by solving the ODEs with suitable boundary conditions after
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imposing the O(k1)×O(k2) symmetry (similar methods were employed by Hsiang
and Lawson [43] to construct closed minimal submanifolds in Sn). Note that there
is an intriguing dichotomy feature in Theorem 3.2 depending on the dimension n,
which is related to the existence of non-flat minimal cones in higher dimensions
[83].

3.2. Extremal eigenvalue problem. As mentioned in the introduction, the sub-
ject of free boundary minimal surfaces has attracted a lot of recent attention mostly
due to the groundbreaking work of Fraser and Schoen [24] [27] on the extremal
Steklov eigenvalue problem on compact surfaces with boundary. We now give a
brief discussion on their important work.

Let Σ be a smooth compact manifold with boundary. Given a Riemannian metric
g on Σ, one can define the Dirichlet-to-Neumann map L : C∞(∂Σ)→ C∞(∂Σ) by

Lu :=
∂û

∂ν

where ν is the outward unit normal of ∂Σ with respect to (Σ, g) and û ∈ C∞(Σ) is
the harmonic extension of u, i.e. û is the unique solution to the Dirichlet boundary
value problem {

∆gû = 0 on Σ
û|∂Σ = u.

It is well-known that L is a non-negative, self-adjoint elliptic pseudodifferential
operator of order one which has a discrete spectrum

0 = σ0 < σ1 ≤ σ2 ≤ · · · ≤ σk ≤ · · · → +∞.

These are called the Steklov eigenvalues of (Σ, g). The eigenfunctions {φi}∞i=0 ⊂
C∞(∂Σ) form a complete orthonormal basis of L2(∂Σ). For our convenience, we

will sometimes think of φi as defined on the whole Σ by their harmonic extension φ̂i.
The lowest eigenvalue σ0 is always zero which corresponds to constant functions.
Using Theorem 2.2 (3), Fraser and Schoen made an important observation which
links free boundary minimal submanifolds in Bn to the Steklov eigenvalues.

Lemma 3.3 (Fraser-Schoen [24]). An immersed submanifold ϕ : Σk → Bn is
a free boundary minimal submanifold if and only if the coordinate functions xi,
i = 1, · · · , n, restricted to Σ are Steklov eigenfunctions with eigenvalue 1.

The first non-zero Steklov eigenvalue σ1 can be characterized variationally as

(3.1) σ1 = inf
06=u∈C∞(∂Σ)

{∫
Σ
|∇û|2 da∫
∂Σ
u2 ds

:

∫
∂Σ

u ds = 0

}
.

More generally, we have for any k ∈ N,

σk = inf
06=u∈C∞(∂Σ)

{∫
Σ
|∇û|2 da∫
∂Σ
u2 ds

:

∫
∂Σ

uφj ds = 0 for j = 0, 1, 2, · · · , k − 1

}
,

where φj ∈ C∞(∂Σ) is the j-th Steklov eigenfunction corresponding to the j-th
Steklov eigenvalue σj .

We now focus on the case that Σ is a surface. By the work of Fraser and Schoen
[24] (for k = 1) and Girouard and Polterovich [32] (for k ≥ 2), we have the following
coarse upper bound for the k-th Steklov eigenvalue only in terms of the topology
of the surface. Note that the left hand side in the inequality is a scale-invariant
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quantity. One can equivalently consider only smooth metrics g normalized so that
|∂Σ|g = 1.

Proposition 3.4 (Fraser-Schoen [24], Girouard-Polterovich [32]). Let Σ be a smooth
compact surface with genus γ and ` boundary components. Then, for all k ∈ N,

sup
g
σk(g)|∂Σ|g ≤ 2π(γ + `)k

where the supremum is taken over all smooth Riemnanian metrics g on Σ. Here,
|∂Σ|g denotes the total boundary length of ∂Σ with respect to the metric g.

Proof. We recall the proof of Fraser and Schoen in the case k = 1. Their idea is
to use the variational characterization of σ1(Σ) together with Hersch’s balancing
trick to construct suitable test functions. By a result of Ahlfors and Gabard, there
exists a proper conformal branched cover ϕ : Σ → D to the unit disk D in R2.
Moreover, the degree of ϕ is at most γ + `. After possibly composing ϕ with a
suitable conformal diffeomorphism of D, we can assume that the covering map
ϕ = (ϕ1, ϕ2) is balanced on the boundary, i.e.

∫
∂Σ
ϕi = 0 for i = 1, 2. Using (3.1),

we obtain

σ1

∫
∂Σ

ϕ2
i ds ≤

∫
Σ

|∇ϕ̂i|2 da ≤
∫

Σ

|∇ϕi|2 da

where we have used the fact that harmonic functions minimize the Dirichlet energy
integral with fixed boundary value. Summing i = 1, 2, note that ϕ(∂Σ) ⊂ ∂D and
using conformality of ϕ, we have

σ1|∂Σ|g ≤ 2Area(ϕ(Σ)) ≤ 2π(γ + `).

�

We remark that the upper bound in Proposition 3.4 can be improved to a linear
bound of the form Aγ + Bk [39, Corollary 4.1] or 2π(γ + ` + k − 2) [59, Theorem
1.4]. The precise form does not concern us here as long as it is solely depending
on k and the topology of Σ. Given the coarse upper bound in Proposition 3.4, it is
reasonable to study the following extremal eigenvalue problems:

Open Question 2 (Fraser-Schoen [27]). For each topological type of Σ, what is
the sharp upper bound for σk(g)|∂Σ|g? Is it achieved by a smooth metric on Σ?

For k = 1 and simply connected domains in R2, this problem was studied in
1954 by Weinstock [94] where he showed that the bound in Proposition 3.4 is in
fact sharp and equality is only achieved by the round disk. More than fifty years
later, Fraser and Schoen initiated the study again on the annulus (also for k = 1)
and found in [24] [27] that the sharp upper bound is achieved by the rotationally
invariant metric on the critical catenoid K defined in Theorem 3.1. Remarkably,
they were also able to solve the problem completely for any genus 0 surfaces with
boundary. The problem is highly non-trivial even for the annulus case as apriori
there is no guarantee that a smooth extremal metric should exist (in fact, sometimes
an extremal metric ought to be singular [31]). However, if we assume that a smooth
extremal metric exists, then there is a nice geometric characterization of the metric
arising from free boundary minimal surfaces in Bn.

Theorem 3.5 (Fraser-Schoen [27]). Let Σ be a compact surface with boundary. If
g0 is a smooth metric on Σ such that for some k ∈ N,

σk(g0)|∂Σ|g0
= max

g
σk(g)|∂Σ|g
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where the maximum is taken over all smooth metrics on Σ. Then there exist in-
dependent first Steklov eigenfunctions u1, · · · , un which give a branched conformal
immersion u = (u1, · · · , un) : Σ → Bn such that u(Σ) is a free boundary minimal
surface in Bn, and up to rescaling of the metric u is an isometry on ∂Σ.

Theorem 3.5 reduces the extremal eigenvalue problem to studying the regularity
of an extremal metric. The regularity is a very subtle issue. In [27], Fraser and
Schoen completely solved the problem for k = 1 on all genus zero surfaces. Their
arguments are very clever and sophisticated. Roughly speaking, their proof involves
first controlling the conformal structure of metrics near the supremum, and then
controlling the metrics themselves. A key ingredient in the first part is to establish,
in the genus zero case, the strict monotonicity of the supremum of σ1|∂Σ| with
respect to the number of boundary components. Moreover, they were able to give a
precise control on the multiplicity of σ1 and a detailed description of the geometry
of the extremal metric in the genus 0 case. As a corollary of their main theorem
[27, Theorem 1.1], we have the following important existence result.

Theorem 3.6 (Fraser-Schoen [27]). For any ` ∈ N, there exists a smooth embedded
free boundary minimal surface ΣFS` in B3 of genus 0 and ` boundary components.
Each ΣFS` is star-shaped in the sense that a ray from the origin hits ΣFS` at most
once. Moreover, after a suitable rotation of each ΣFS` , the sequence {ΣFS` }`∈N
converges in C3-norm on compact subsets of the interior of B3 to the equatorial
disk with multiplicity two.

Note that up to rotations, we have ΣFS1 = D and ΣFS2 = K. A schematic picture
of the Fraser-Schoen surfaces are shown in Figure 2.

Figure 2. Fraser-Schoen surfaces

In the same paper [27, Theorem 1.5], they were also able to extend their argu-
ments (for k = 1) to the case of Möbius band. Note that the extremal metric is
embedded as a free boundary minimal surface in B4 instead of B3.

Theorem 3.7 (Fraser-Schoen [27]). There exists a smooth embedded free boundary
minimal surface in B4 called the critical Möbius band given by a suitable rescaling
of the embedding ϕ : [−T0, T0]× S1/ ∼→ R4 given by

ϕ(t, θ) = (2 sinh t cos θ, 2 sinh t sin θ, cosh 2t cos 2θ, cosh 2t sin 2θ)

where T0 > 0 is the unique positive solution of coth t = 2 tanh 2t. Here, we think of
the Möbius band as [−T0, T0]× S1 under the identification (t, θ) ∼ (−t, θ + π).
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Not much is known concerning the extremal eigenvalue problem for higher Steklov
eigenvalues σk when k ≥ 2. However, we would like to mention an interesting result
of Fan, Tam and Yu [19] who studied the extremal eigenvalue problem for σk, k ≥ 2,
on the space of smooth rotationally invariant metrics on annuli. They found that
except for k = 2, the supremum (among rotationally invariant metrics) of σk|∂Σ|
is achieved by a smooth extremal metric. For k = 2m − 1, m ∈ N, the extremal
metric is achieved by the m-fold cover (thus immersed when m > 1) of the critical
catenoid K in B3. This does not produce any new examples of free boundary min-
imal surfaces in B3. However, when k is even, this produces some new immersed
examples in B4 other than the critical Möbius band.

Theorem 3.8 (Fan-Tam-Tu [19]). For each m ∈ N, m ≥ 2, there exists a smooth
immersed free boundary minimal surface in B4 called the critical m-Möbius band
given by a suitable rescaling of the immersion ϕm : [−Tm, Tm]×S1/ ∼→ R4 defined
by

ϕm(t, θ) = (m sinh t cos θ,m sinh t sin θ, coshmt cosmθ, coshmt sinmθ)

where Tm > 0 is the unique positive solution of coth t = m tanhmt. Here, we think
of the Möbius band as [−Tm, Tm]× S1 under the identification (t, θ) ∼ (−t, θ + π).

Note that [19] only proved the examples above achieve the supremum among all
rotationally invariant metrics on the annulus. It is interesting to see whether they
also maximize among all smooth metrics on the annulus without the rotational
symmetry assumption. It is also conjectured that the supremum of σ2|∂Σ| is not
achieved by any smooth metric (c.f. [31]).

3.3. Gluing techniques. Another powerful tool in constructing examples of natu-
ral variationally defined geometric objects is the singular perturbation method. The
idea originated from the work of Schoen [81] on constant scalar curvature metrics
and was later pioneered by a series of important work of Kapouleas [45] [46] [48]
[49] on the construction of complete minimal and constant mean curvature surfaces.
In the past decade, we have witnessed tremendous success of gluing techniques in a
wide range of geometric variational problems, including for example closed minimal
surfaces in Sn [57] [52] [56], complete constant mean curvature surfaces in R3 [4],
Special Lagrangian cones [36] [37] [38] and self shrinkers of mean curvature flow
[53].

In the past few years, many of these powerful techniques have been applied to
construct many new examples of embedded free boundary minimal surfaces in B3.
The constructions can be divided into two different types: desingularization and
doubling (or tripling) constructions. For a desingularization construction, one typi-
cally takes a number of known free boundary minimal surfaces which intersect each
other transversely along some curves. Then one hopes to desingularize the curves
of intersection to produce another free boundary minimal surface. For a doubling
(or tripling) construction, one takes two (or three) nearby copies of a given free
boundary minimal surface. Then we try to produce another free boundary mini-
mal surface by connecting the nearby copies using small catenoidal necks (in the
interior) or half-catenoidal bridges (near the boundary). In both of these construc-
tions, a family of initial surfaces have to be built carefully out of known examples so
that they are approximate solutions to the free boundary minimal surface equation.
One then applies an implicit function theorem argument to show that one of these
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initial surfaces can be perturbed to an exact solution. We refer the readers to the
excellent surveys [50] [51] by Kapouleas on the basic methodology of these ideas.

The first desingularization construction of free boundary minimal surfaces in
B3 was done by Kapouleas and the author in [54]. This is a highly symmetric
construction with O(2)-symmetry. The idea is to take an equatorial disk D and
a critical catenoid K which are rotationally invariant about the same axis. Their
union D ∪ K is a free boundary minimal surface in B3 which is singular along
the circle of intersection C := D ∩ K. We proved that this configuration can be
desingularized to produce a free boundary analogue of the Costa-Hoffman-Meeks
surfaces which are complete embedded minimal surfaces in R3 with finite total
curvature.

Figure 3. Desingularizing the union of a pair of coaxial equatorial
disk and critical catenoid to obtain a free boundary analogue of
Costa-Hoffman-Meeks surfaces

To construct our initial surfaces, one needs to take away a tubular neighhood
of the circle of singularity C and glue in a smooth desingularizing surface which
is approximately minimal (in suitable scale). The desingularizing surface is con-
structed out of the standard Scherk’s surface S which is a complete singly-periodic
embedded minimal surface in R3 described by the equation

sinhx1 sinhx2 = cosx3.

The Scherk’s surface S provides a model to desingularize the line of intersection
between two mutually orthogonal planes in R3. Since the singularity C at hand
is a circle instead of a line, an extra bending (which creates the majority of non-
zero mean curvature other than the transition regions within where the pieces are
glued) has to be introduced to fit S into a neighborhood of C. Owing to the
O(2)-symmetry, the scale can be chosen to be uniform along C and is measured by
m−1 where m is the number of handles of the bent Scherk surface. By carefully
analyzing the linearization of the free boundary minimal surface equation, taking
the symmetries into account, we found that there is a one-dimensional kernel of
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the linearized equation on the building blocks. By the geometric principle, one
can account for this one-dimensional kernel by considering a one-parameter family
of initial surfaces Mθ,m, where θ measures the amount of rotation on the “wings”
of the Scherk surface to create unbalancing to cancel the one dimensional kernel.
Combining all the uniform linear and non-linear estimates, one can show using
Schauder’s fixed point theorem that for all m sufficiently large, one of the initial
surfaces Mθ,m can be perturbed to an exact solution of the non-linear free boundary
minimal surface equation. As a result, we have the following:

Theorem 3.9 (Kapouleas-Li [54]). For any g ∈ N sufficiently large, there exists an
embedded, orientable, smooth free boundary minimal surface ΣKLg in B3 which has

genus g and three connected boundary components. The surface ΣKLg is symmetric

under a dihedral group of order 4g + 4. Moreover, as g →∞, the sequence {ΣKLg }
converges in the Hausdorff sense (and smooth away from C = D ∩K) to D ∪K.

Note that the surfaces ΣKLg have the same symmetry as the Costa-Hoffman-

Meeks surfaces which are complete properly embedded minimal surfaces in R3. Fi-
nally we mention that in an article under preparation, we construct free boundary
minimal surfaces of arbitrary high genus with connected boundary, and also ones
with two boundary components, by desingularizing two disks intersecting orthogo-
nally along a diameter of the unit three-ball. The intersecting disks configuration
is clearly not rotationally invariant, and the symmetry group is small and indepen-
dent of the genus. These features make such desingularization construction much
harder, but we can overcome the difficulties by following the general approach in
[51] with appropriate modifications to handle the free boundary condition. This
construction can also be extended to the case of more than two disks symmetrically
arranged around a common diameter by using higher order Karcher-Scherk towers
as models. See Figure 4 for examples of such setup.

Figure 4. The intersection of two and three equatorial disks
which possess much less symmetry.

On the other hand, there have been several doubling and tripling constructions
of free boundary minimal surfaces in B3. The first such construction is given by
Folha, Pacard and Zolotareva in [20]. They considered taking two nearby copies of
the equatorial disk D joined together by a large number of half catenoidal bridges
near the boundary (and possibly a catenoidal neck joining the center of the disks)
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and showed that one of these can be perturbed to an exact free boundary minimal
surface in B3. As a result, they obtained the following:

Theorem 3.10 (Folha-Pacard-Zolotareva [20]). For any n ∈ N sufficiently large,

there exists a genus 0 surface ΣFPZn and a genus 1 surface Σ̃FPZn which are both
smooth embedded free boundary minimal surfaces in B3 with n boundary compo-
nents. As n → ∞, each of the sequences {ΣFPZn } and {Σ̃FPZn } converges in the
Hausdorff sense (and smooth away from the catenoidal neck and bridges) to an
equatorial disk with multiplicity two.

Each of the surfaces ΣFPZn and Σ̃FPZn is symmetric about a discrete group of
reflections generated by planes passing through the rotationally invariant axis and
a horizontal reflection switching the two copies of the disks. Note that the surfaces
ΣFPZn are homeomorphic to the Fraser-Schoen surfaces ΣFSn in Theorem 3.6. It
is conjectured that they are actually the same surfaces . Note that some positive
evidence was given by McGrath [73, Corollary 2] who showed that σ1(ΣFPZn ) = 1.

In a recent paper of Kapouleas and Wiygul [47], they considered a tripling con-
struction from the equatorial disks and produced surprisingly an infinite family of
new examples of free boundary minimal surfaces in B3 with connected boundary.

Theorem 3.11 (Kapouleas-Wiygul [47]). For any g ∈ N sufficiently large, there
exists a smooth embedded free boundary minimal surface ΣKWg in B3 which has

genus g and one boundary component. As g →∞, the sequence {ΣKWg } converges
in the Hausdorff sense (and smooth away from the catenoidal bridges) to the equa-
torial disk D with multiplicity three.

Note that the methodology in [47] can also be applied to the situation of stacking
more than three copies of the equatorial disk as done in [95] for the Clifford torus in
S3. Kapouleas and McGrath [55] have recently announced a doubling construction
of the critical catenoid which would produce new examples of high genus and 4
boundary components.

3.4. Min-max construction. During the last few years there has been substantial
development on the existence theory of minimal surfaces. In particular, the min-
max method pioneered by Almgren and Pitts [78] has been greatly advanced by a
series of recent work of Marques and Neves (see e.g. [12] [75] for an excellent survey
of some recent results). In the free boundary setting, Grüter and Jost [33] were
the first to apply the continuous min-max construction of Smith and Simon [84] to
produce an embedded free boundary minimal disk in any convex body of R3 (there
was also another approach of harmonic maps by Struwe [88] using the method of
Sacks and Uhlenbeck). A more general existence result was obtained by the author
in [65]. In a joint work with X. Zhou, the author established the Almgren-Pitts min-
max theory in the free boundary setting for any compact Riemannian manifold with
boundary. Combining with Lusternik-Schnirelmann theory, we were able to show
that there exist infinitely many smooth, geometrically distinct, properly embedded
free boundary minimal hypersurfaces in any compact Riemannian manifold (Mn, g),
where 3 ≤ n ≤ 7, with nonnegative Ricci curvature and strictly convex boundary.
More generally, the same holds for any Riemannian manifold (M, g) satisfying the
embedded Frankel property (c.f. Theorem 6.2 and [71, Definition 1.3]).

Unfortunately, the theorem mentioned above does not say anything new when the
ambient space is Bn. The reason is that once an embedded free boundary minimal



14 MARTIN LI

hypersurface (say Bn−1) is given, we can generate an infinite family of examples
by the isometries of Bn. This corresponds to the degenerate case of Lusternik-
Schnirelmann theory that ωp = ωp+1 for some p ∈ N where ωp here is the p-width
of the ambient manifold. In fact, by Morse index considerations (c.f. Theorem 5.3
and [70]) it is not hard to see that ω1(Bn) = ω2(Bn) = · · · = ωn(Bn) = |Bn−1|.

We now give a brief discussion on the p-width of Bn. In what follows we will
use some terminology from geometric measure theory, we refer the readers to [66]
for more details and precise definitions. Let Zn−1,rel(Bn, ∂Bn;Z2) be the space
of equivalence classes of (n − 1)-dimensional relative cycles in Bn with Z2 coeffi-
cients. Equipped with the flat topology, the space Zn−1,rel(Bn, ∂Bn;Z2) is weakly
homotopically equivalent to RP∞. Hence, H1(Zn−1,rel(Bn, ∂Bn;Z2),Z2) = Z2 and

we denote its generator by λ. For any finite dimensional simplicial complex X, a
map Φ : X → Zn−1,rel(Bn, ∂Bn;Z2) is called a p-sweepout if Φ is continuous in the

flat topology and Φ∗(λ
p
) 6= 0 ∈ Hp(X;Z2), where λ

p
= λ ∪ · · · ∪ λ is the k-times

cup product of λ in H∗(Zn−1,rel(Bn, ∂Bn;Z2),Z2). Denote Pp to be the set of
all p-sweepouts Φ that have no concentration of mass (see [71, §3.3] for a precise
definition). We define the p-width of Bn as

ωp(Bn) := inf
Φ∈Pp

sup{|Φ(x)| : x ∈ dmn(Φ)},

where dmn(Φ) is the domain of definition of Φ. As explained in [71], the p-width
can be expressed as the infimum of the widths of homotopy classes of discrete
p-sweepouts (see [71] for definitions):

ωp(Bn) = inf
Π∈Dp

L(Π).

By the min-max theorem of [66] and the embedded Frankel property (Theorem 6.2),
for each p ∈ N, there exists a smooth embedded free boundary minimal hypersurface
Σp in Bn and a positive integer np ∈ N such that

(3.2) ωp(Bn) = np|Σp|.
In [68], Lioukumovich, Marques and Neves proved that the p-widths satisfy a Weyl
law conjectured by Gromov:

lim
p→∞

ωp(Bn)p−1/n = a(n)|Bn|
n−1
n ,

where a(n) > 0 is a universal constant depending only on n. Using a sharp area
bound for free boundary minimal hypersurfaces in Bn (see Theorem 7.3), this im-
plies that the multiplicity np in (3.2) can grow at most like O(p1/n) as p→∞.

Open Question 3. Is {Σp}p∈N an infinite set? If so, does |Σp| → +∞ as p→∞?

It is generally believed that the minimal hypersurfaces realizing the p-width
would become dense and equidistributed in the ambient space. Making use of
the Weyl law [68], this has been proved for generic metrics in closed Riemannian
manifolds by Irie-Marques-Neves [44] and Marques-Neves-Song [72]. We would also
like to mention that in a very recent paper [87], Song settled in its full generality
(i.e. without assuming genericity of the metric) Yau’s conjecture on the existence of
infinitely many closed minimal hypersurfaces in any closed Riemannian manifold.

On the other hand, using a variant of the min-max theory in the continuous
and equivariant setting, Ketover constructed another infinite family of examples of
embedded free boundary minimal surfaces in B3.
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Theorem 3.12 (Ketover [61]). For each g ≥ 1, there exists a smooth embedded
free boundary minimal surface ΣKg in B3 which is symmetric under a dihedral group

of order 4g + 4. When g is sufficiently large, ΣKg has genus g and three boundary

components. Moreover, as g → ∞, the sequence {ΣKg } converges in the varifold
sense to D ∪K.

The proof was inspired by a plausible variational construction of the Costa-
Hoffman-Meeks surfaces suggested by Pitts and Rubinstein. By imposing the di-
hedral group symmetry, Ketover applied the equivariant min-max theory [60] to
produce the surfaces ΣKg . It is interesting to note that one is only able to get a

precise control on the topology of ΣKg for large enough g. Given that the topology
and the symmetry group are the same as those constructed in Theorem 3.9, it is
reasonable to ask the following:

Open Question 4. For all g sufficiently large, are the surfaces ΣKLg and ΣKg
congruent to each other?

Ketover also proved that surfaces of genus 0 with ` boundary components, iso-
topic to the Fraser-Schoen surfaces ΣFS` in Theorem 3.6 can be constructed vari-
ationally from a one-parameter equivariant min-max procedure [61, Theorem 1.2].
Finally, using the symmetry group of the Platonic solids, he was able to find three
possibly new genus zero examples [61, Theorem 1.3]. These are the free boundary
analogues of the construction of closed minimal surfaces in S3 by Karcher, Pinkall
and Sterling [58].

Theorem 3.13 (Ketover [61]). There exists an example of free boundary minimal
surface in B3 with tetrahedral symmetry of genus 0 with 4 boundary components;
an example with octahedral symmetry of genus 0 with 6 boundary components; and
an example of dodocahedral symmetry of genus 0 with 12 boundary components.

It is not clear that whether it is possible that these surfaces are the same as the
Fraser-Schoen surfaces ΣFS` for ` = 4, 6, 12.

4. Uniqueness questions for free boundary minimal surfaces

In this section, we discuss some uniqueness results for free boundary minimal
surfaces in Bn which are either topologically a disk or an annulus. Since any
isometry of Bn (e.g. rotations and reflections but not translations) takes a free
boundary minimal surface to another free boundary minimal surface, one can at
most determine a free boundary minimal surface up to isometries of Bn.

4.1. Disk-type solutions. In 1985, Nitsche proved the following uniqueness theo-
rem for disk-type free boundary minimal surfaces in B3. Note that the result holds
even for immersed surfaces.

Theorem 4.1 (Nitsche [76]). The equatorial disk is the only (up to rigid motions
of B3) immersed free boundary minimal disk in B3.

Proof. The proof is based on a Hopf-differential argument. Using isothermal co-
ordinates, we can represent the minimal disk as a conformal minimal immersion
u : D → B3. Let h be its second fundamental form extended C-linearly and con-
sider the quadratic differential Φ := h( ∂∂z ,

∂
∂z )dz2 defined on D. Minimality implies

that Φ is holomorphic and the free boundary condition implies that Φ is totally real



16 MARTIN LI

on ∂D. By Riemann-Roch, no such non-trivial holomorphic quadratic differential
exists on D and hence Φ ≡ 0. Thus, u is totally geodesic and hence must be an
equatorial disk. �

Recently, Fraser and Schoen generalized Nitsche’s result to higher codimensions
and allowing possibly some branch points. This is surprising as there are many
non-totally geodesic immersed minimal two-spheres in Sn for n ≥ 4 [8]. This shows
that free boundary minimal surfaces in Bn are in some sense more rigid than closed
minimal surfaces in Sn.

Theorem 4.2 (Fraser-Schoen [26]). Any proper branched, immersed free boundary
minimal disk in Bn, n ≥ 3, must be an equatorial plane disk.

Proof. As in the proof of Theorem 4.1, we can take a conformal branched minimal
immersion u : D → Bn (note that the normal bundle is smooth across branch
points). Consider the complex vector-valued function Φ := z4(u⊥zz · u⊥zz) where u⊥zz
denotes the component of uzz orthogonal to Σ = u(D) and · denotes the C-bilinear
product, one can show using minimality that Φ is holomorphic on D and the free
boundary condition that Φ is totally real on ∂D. Therefore, Φ must be constant
but Φ(0) = 0. Thus, we have Φ ≡ 0 which implies that the second fundamental
form of Σ is zero on ∂Σ. Hence, ∂Σ must be a great circle and Σ must be an
equatorial plane disk. �

We would like to point out that the arguments of Fraser and Schoen also work
for free boundary disks with parallel mean curvature vector inside a geodesic ball
of any n-dimensional space form.

4.2. Free boundary minimal annuli. In [76], it was claimed without proof that
the critical catenoid is the only free boundary minimal annulus in B3. The conjec-
ture was restated again in [23].

Open Question 5. Is the critical catenoid the only (up to rigid motions in B3)
embedded free boundary minimal annulus in B3?

One should compare this conjecture with the well-known Lawson’s conjecture
which states that the only embedded minimal torus in S3 is the Clifford torus. The
Lawson conjecture was answered affirmatively by Brendle [6] using a maximum
principle argument on an ingenious choice of two-point function. We expect that
embeddedness is an essential assumption as in the case of Lawson conjecture (see, for
example, [7, Theorem 1.4]). However, we would like to point out that at the moment
there is no single example (other than an n-fold covering of the critical catenoid)
of an immersed free boundary minimal annulus in B3 which is not embedded.

The following result may be helpful towards an answer to Open Question 5.

Lemma 4.3. An immersed free boundary minimal annulus in B3 has no umbilic
points. Hence, the second fundamental form is nowhere vanishing on the surface.

Proof. Fix a conformal parametrization u : D(r) \ D(1) → B3 of the minimal
annulus where r > 1 is determined by its conformal type. Consider the complexified
second fundamental form h as in the proof of Theorem 4.1. We see that by the
same argument that h( ∂∂z ,

∂
∂z ) is holomorphic inside the annulus and totally real

on the two boundary circles. By countably many reflections we have a bounded
holomorphic function on C \ {0}, which by a removable singularity theorem can be
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extended to all of C. The Liouville theorem then implies that it must be constant.
The constant cannot be zero, otherwise the surface is totally geodesic. Therefore,
h is non-vanishing everywhere so there are no umbilic points on the surface. �

As in the proof of Lawson’s conjecture, the key obstacle to Open Question 5 is
to exploit the embeddedness of the minimal surface. It is unclear whether Brendle’s
proof of the Lawson conjecture can be adapted to this setting to answer Open
Question 5. However, by a Björling-type uniqueness result for free boundary
minimal surfaces [54, Corollary 3.9], it suffices to show that one of the boundary
components of the minimal annulus is rotationally symmetric.

Other characterizations of the critcal catenoid have been found. The following
deep uniqueness result is obtained by Fraser and Schoen [27, Theorem 1.2]. Their
proof uses several ingredients including an analysis of the second variation of energy
and area for free boundary surfaces.

Theorem 4.4 (Fraser-Schoen [27]). Let Σ be a free boundary minimal annulus in
Bn immersed by the first Steklov eigenfunctions. Then n = 3 and Σ is congruent
to the critical catenoid.

On the other hand, a partial result towards Open Question 5 was obtained
by McGrath [73] saying that under additional symmetry assumptions, the critical
catenoid is the unique embedded free boundary minimal annulus in B3.

Theorem 4.5 (McGrath [73]). Let Σ ⊂ B3 be an embedded free boundary minimal
annulus which is symmetric with respect to the coordinate planes. Then, up to rigid
motion in B3, Σ is the critical catenoid.

The proof by McGrath uses in many places the nodal domain theorem for Steklov
eigenfunctions [62]. Using a symmetrization argument of Choe and Soret [9], he
proved that certain symmetry assumptions would imply σ1 = 1. Combining this
with the uniqueness theorem (Theorem 4.4) of Fraser-Schoen, the result follows.

5. Morse index estimates

In this section, we study the second variation of area for a free boundary minimal
submanifold in Bn.

5.1. Morse index bounds. Recall that a free boundary minimal submanifold Σk

in Bn is a critical point to the area functional among the class of submanifolds with
boundary lying on ∂Bn. If one considers the second variation of area with respect
to normal variations (see [80] for example), we have the second variation formula

δ2Σ(W,W ) :=

∫
Σ

(
|D⊥W |2 − |AW |2

)
da−

∫
∂Σ

|W |2 ds

where AW (·, ·) := 〈A(·, ·),W 〉 denotes the second fundamental form of Σ along W
and W is any normal variational field along Σ.

Definition 5.1. The Morse index of Σ is defined to be the maximal dimension of
a subspace of sections of the normal bundle NΣ on which the second variation δ2Σ
is negative definite. We will denote the Morse index of Σ by index(Σ).

Intuitively, the Morse index measures the number of independent deformations
which decrease area up to second order. As the simplest example, we compute the
Morse index of any totally geodesic Bk in Bn. In this case, AW ≡ 0 and the normal
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bundle splits isometrically as Bk × Rn−k. It is clear that δ2Bk is negative definite
along each direction of Rn−k. Therefore, we have the following:

Proposition 5.2. The Morse index of the totally geodesic Bk inside Bn is equal
to n− k.

A general Morse index lower bound was proved by Fraser and Schoen in [27].

Theorem 5.3 (Fraser-Schoen [27]). Let Σk be an immersed free boundary minimal
submanifold in Bn such that Σ is not contained in some Σ0×R where Σ0 is another
(k − 1)-dimensional immersed free boundary minimal submanifold in Bn−1. Then,
index(Σ) ≥ n.

Proof. Let v ∈ Rn be a fixed unit vector. Let v⊥ denote the normal component of
v along Σ. The theorem is proved once we show that

δ2Σ(v⊥, v⊥) = −k
∫

Σ

|v⊥|2 da.

First of all, since v⊥ is a Jacobi field (generated by translation in the v-direction),
integrating by part we have

δ2Σ(v⊥, v⊥) =

∫
∂Σ

(
〈v⊥, Dνv

⊥〉 − |v⊥|2
)
ds.

The next step is to compute the first term in a local frame. Fix p ∈ ∂Σ and a local
orthonormal frame e1, · · · , ek of TΣ near p, where ek = ν = x along ∂Σ. Also, we
fix a local orthonormal frame ν1, · · · , νn−k of NΣ near p such that D⊥να(p) = 0.
Let hαij := 〈A(ei, ej), να〉 be the second fundamental form in this basis. Note that
for any i < k, we have hαik = 〈Deix, να〉 = 〈ei, να〉 = 0. Therefore,

Dννα =

k∑
i=1

〈Dννα, ei〉ei = −hαkkx.

Using this and the minimality of Σ, we have

〈v⊥, Dνv
⊥〉 = 〈v⊥, Dν

(
n−k∑
α=1

〈v, να〉να

)
〉

= −〈v⊥,
n−k∑
α=1

(hαkk〈v, x〉να + hαkk〈v, να〉x)〉

= 〈v, x〉

(
n−k∑
α=1

k−1∑
i=1

hαii〈να, v〉

)
.

Consider the orthogonal decomposition

v = 〈v, x〉x+ v1 + v⊥

where v1 is the component of v tangent to ∂Σ, we compute

−(k − 1)〈v, x〉 = div∂Σ(v1 + v⊥) = div∂Σ(v1)−
n−k∑
α=1

k−1∑
i=1

hαii〈να, v〉.

Putting all these together, we obtain

δ2Σ(v⊥, v⊥) =

∫
∂Σ

(
〈v, x〉div∂Σ(v1) + (k − 1)〈v, x〉2 − |v⊥|2

)
ds.
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Since v1 is tangent to ∂Σ, we can apply divergence theorem in the first term to get

δ2Σ(v⊥, v⊥) =

∫
∂Σ

(
− |v1|2 + (k − 1)〈v, x〉2 − |v⊥|2

)
ds.

=

∫
∂Σ

(
− 1 + k〈v, x〉2

)
ds.

Finally, consider the vector field V = x − k〈v, x〉v and using that δΣ(V ) = 0, we
have

δ2Σ(v⊥, v⊥) = −
∫
∂Σ

〈V, x〉 ds = −
∫

Σ

divΣ V da = −k
∫

Σ

|v⊥|2 da.

�

We now focus on the hypersurface case (i.e. k = n − 1). If Σ is two-sided, we
can fix a global unit normal N on Σ and thus any normal variation field can be
written as W = uN for some u ∈ C∞(Σ). Integrating by parts, we can reduce the
stability of the second variation form δ2Σ to the following eigenvalue problem:{

Ju = λu in Σ,
∂u
∂ν + u = 0 on ∂Σ,

where J := ∆Σ−|AΣ|2 denotes the Jacobi operator of Σ. By studying the relation-
ship between the eigenvalues of the Jacobi operator J and the eigenvalues of the
Laplacian on 1-forms, Sargent [79] and Ambrozio-Carlotto-Sharp [2] independently
obtained new Morse index bounds in terms of the dimension n and the topology
of the minimal hypersurface Σ. In their works, general (mean)-convex Euclidean
domains are considered but for simplicity we only state their results for B3.

Theorem 5.4 (Sargent [79], Ambrozio-Carlotto-Sharp [2]). Let Σ be an orientable
immersed free boundary minimal surface in B3 with genus g and k boundary com-
ponents. Then

index(Σ) ≥ b2g + k + 1

3
c.

Although the lower bound above is not sharp for B3, for example, it only gives
index(D) ≥ 0 and index(K) ≥ 1. However it has an important implication that
the Morse index cannot stay bounded when either the genus or the number of
boundary components goes to infinity. This says, in particular, that the examples
ΣFS` , ΣKLg , ΣFPZn , Σ̃FPZn , ΣKWg and ΣKg constructed by various methods in Section
3 all have unbounded Morse index when either the genus or the number of boundary
components goes to infinity.

5.2. Low index solutions. Precise Morse index control, when combined with
general existence theory, often provides significant insight into geometric problems.
Classically this idea has been applied to the study of geodesics which gives the
celebrated theorems of Bonnet-Myers, Synge and Frankel. For minimal surfaces in
higher codimensions, Micallef and Moore [74] prove the topological sphere theorem
for closed simply connected manifolds with positive isotropic curvature. In a series
of beautiful work [28] [29] [21], Fraser extended many of the ideas to the free bound-
ary setting, for example to study the topology of closed two-convex hypersurfaces
in Rn. We encourage the interested readers to consult the excellent survey [22] on
this subject.



20 MARTIN LI

In the past few years, there has been rapid progress in the theory of closed
minimal surfaces in S3. In 2012, Marques and Neves [69] solved the longstanding
Willmore conjecture which asserts that the Willmore energy is uniquely (up to con-
formal diffeormorphisms) minimized by the Clifford torus among all closed surfaces
of genus one. Their proof is a beautiful application of the Almgren-Pitts min-max
theory. The arguments in [69] also used crucially a result of Urbano [91] saying that
the only non-totally geodesic closed minimal surface Σ in S3 with index(Σ) ≤ 5 is
(up to isometries of S3) the Clifford torus. Note that the totally geodesic spheres
in S3 are of index one.

In light of these positive results, there has been a lot of recent interest to compute
the Morse index of some explicit examples of free boundary minimal surfaces in B3.
It is clear that the equatorial disks in B3 have Morse index one. The Morse index
of the critical catenoid in B3 was computed independently by Tran [90], Smith and
Zhou [86], and Devyver [17].

Theorem 5.5 (Tran [90], Smith-Zhou [86], Devyver [17]). The Morse index of the
critical catenoid K in B3 is equal to 4.

All the proofs use the separation of variables argument to reduce the problem to
study an ODE with Robin boundary conditions. Nonetheless, the analysis is much
more complicated than computing the Morse index of the Clifford torus. While it
is known that the conformal vector fields in S3 are universally area decreasing for
all closed minimal surfaces in S3, it is not known whether the same is true for the
conformal vector fields in B3 in the case of free boundary minimal surfaces. We will
return to this point again in Section 7. In view of Urbano’s result, it is natural to
ask the following question:

Open Question 6. Is the critical catenoid the only (up to rigid motions) immersed
free boundary minimal surface in B3 with Morse index 4?

Only partial results have been obtained by Tran [90] and Devyver [17]. They
showed that the answer is yes if we assume additionally that the free boundary
minimal surfaces is topologically an annulus. Essentially it would force σ1 = 1
and thus the assertion follows from the uniqueness result of Fraser and Schoen in
Theorem 4.4.

Finally, we would like to mention that Smith, Stern, Tran and Zhou [85] have
studied the Morse index of the higher dimensional critical catenoid Kn−1 in Bn for
n ≥ 4. The exact Morse index was computed numerically up to n = 101 and they
proved the following asymptotic estimate on the Morse index as n→∞:

lim
n→∞

log
(

index(Kn−1)
)

√
n− 1 log

√
n− 1

= 1.

An interesting feature of this asymptotics is that for n large, the Killing fields
associated to the infinitesimal translations and dilations of Rn (which has total di-
mension n+1) do not account for all the negative eigenvalues of the index form δ2Σ.
This is in contrast with the situation for the complete higher dimensional catenoids
in Rn (which has Morse index one [89]) and the Clifford minimal hypersurfaces in
Sn (which has Morse index equal to n+ 2 according to Perdomo [77]).
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6. Steklov eigenvalue estimates and compactness theorems

In this section, we describe an estimate for the first Steklov eigenvalue of em-
bedded free boundary minimal hypersurfaces in Bn. We then discuss a few of its
consequences including a smooth compactness result for embedded free boundary
minimal surfaces in B3.

We will need a variant of Reilly’s formula [23, Lemma 2.6] which applies to
domains with piecewise smooth boundary.

Proposition 6.1 (Reilly’s formula). Let Ω ⊂ Rn be a bounded domain with piece-
wise smooth boundary ∂Ω = ∪ki=1Σi. Denote S = ∪ki=1∂Σi. Suppose f ∈ C0(Ω) is
a smooth harmonic function away from S and has uniformly bounded C3-norm on
Ω \ S. Then we have the following inequality

0 ≥
k∑
i=1

∫
Σi

[
(−∆Σif +HΣi

∂f

∂ni
)
∂f

∂ni
+ 〈∇Σif,∇Σi

∂f

∂ni
〉+AΣi(∇Σif,∇Σif)

]
where ∆Σi and ∇Σi are the intrinsic Laplacian and gradient operators on each Σi;
ni is the inward unit normal of Σi with respect to Ω; HΣi and AΣi are respectively
the mean curvature and second fundamental form of Σi in Ω with respect to ni.

The inequality was obtained the same way as the standard Reilly formula by
integrating the Bochner formula, noting that Stokes’ theorem still applies with a
singular set of codimension two. We remark that the same formula holds if Ω is
replaced by a Riemannian manifold with non-negative Ricci curvature.

As an immediate application of Proposition 6.1, we established in [23, Lemma
2.4] an embedded Frankel property for free boundary minimal hypersurfaces in Bn.

Theorem 6.2 (Fraser-Li [23]). Any two embedded free boundary minimal hyper-
surfaces in Bn must intersect.

Proof. The proof is by contradiction. Suppose there exist two disjoint embedded
free boundary minimal hypersurfaces Σ1 and Σ2 in Bn. Let Ω be the domain
bounded by Σ1 and Σ2. Note that Ω is a domain with piecewise smooth boundary
∂Ω = Σ1∪Σ2∪Γ where ∅ 6= Γ ⊂ ∂Bn. Consider the mixed boundary value problem

∆f = 0 in Ω
f = 0 on Σ1

f = 1 on Σ2

∂f/∂n = 0 on Γ,

where n is the outward unit normal of ∂Bn, by elliptic theory there exists a solution
f ∈ C0,α(Ω) which is smooth with uniform C3 bound in Ω away from the singular
set. Therefore, we can apply Reilly’s formula in Proposition 6.1 to get

0 ≥
∫

Γ

|∇Γf |2.

This implies that f must be constant on Γ, which is a contradiction since f = 0 on
Σ1 and f = 1 on Σ2. �

We remark that the embedded Frankel property also holds inside any Riemannian
manifold with non-negative Ricci curvature and strictly convex boundary. This is a
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crucial ingredient in proving the existence of infinitely many embedded free bound-
ary minimal hypersurfaces in such manifolds using a combination of Lusternik-
Schnirelmann theory and Almgren-Pitts min-max theory [66] (see also [71, Remark
1.8]).

6.1. Steklov eigenvalue estimates. Recall that the coordinate functions of Rn
restricted to a free boundary minimal submanifold Σk ⊂ Bn are Steklov eigenfunc-
tions with Steklov eigenvalue 1. Therefore, σ1(Σ) ≤ 1. Inspired by Yau’s famous
conjecture that the first eigenvalue of the Laplacian on any embedded closed min-
imal hypersurface in Sn is equal to n − 1, we conjecture the following in the free
boundary setting:

Open Question 7. If Σ ⊂ Bn is an embedded free boundary minimal hypersurface,
then σ1(Σ) = 1.

In [23], we proved a lower bound of σ1(Σ) which is similar to the bound obtained
by Choi and Wang [11] for closed embedded minimal hypersurface in Sn.

Theorem 6.3 (Fraser-Li [23]). Let Σ be an embedded free boundary minimal hy-
persurface in Bn. Then σ1(Σ) ≥ 1/2.

Proof. Let Ω1 and Ω2 be the two connected components of Bn\Σ. Take Ω = Ω1 and
∂Ω = Σ ∪ Γ where Γ ⊂ ∂Bn. Note that Γ may not be connected. Let u ∈ C∞(Σ)
be a first Steklov eigenfunction of Σ. Since ∂Γ = ∂Σ, we can extend u|∂Γ into Γ
harmonically. Finally, we can take the extended function u on ∂Ω = Σ ∪ Γ and
extend once again harmonically into Ω to obtain a function f in Ω. By elliptic
theory one can see that f ∈ C1,α(Ω) ∩ C∞(Σ \ ∂Σ) with uniform C3 bound away
from the singular set ∂Σ. Plugging this harmonic function f into Reilly’s formula
in Proposition 6.1, we obtain

0 ≥
∫

Σ

(
〈∇Σf,∇ ∂f

∂nΣ
〉+AΣ(∇Σf,∇Σf)

)
+

∫
Γ

(
〈∇Γf,∇Γ ∂f

∂nΓ
〉+ |∇Γf |2

)
,

where nΣ and nΓ are the inward (with respect to Ω) unit normals of Σ and Γ respec-
tively. By choosing Ω = Ω2 if necessary, we can assume that

∫
Σ
AΣ(∇Σf,∇Σf) ≥ 0.

Integrating by parts, we obtain

0 ≥
∫
∂Σ

∂f

∂νΣ

∂f

∂nΣ
+

∫
∂Γ

∂f

∂νΓ

∂f

∂nΓ
+

∫
Γ

|∇Γf |2,

where νΣ and νΓ are the outward conormal vectors of ∂Σ = ∂Γ with respect to Σ
and Γ respectively. Using the free boundary condition, we have along ∂Σ = ∂Γ,

νΣ = −nΓ and nΣ = −νΓ.

Therefore, we can rewrite the above inequality as

0 ≥ −2σ1(Σ)

∫
∂Γ

f
∂f

∂νΓ
+

∫
Γ

|∇Γf |2.

Integrating by part gives
∫
∂Γ
f ∂f
∂νΓ

=
∫

Γ
|∇Γf |2. Thus, we obtain the inequality

σ1(Σ) ≥ 1/2. Note that f is non-constant on Γ since f |∂Σ = u is non-constant. �

With a bit more work, one can in fact show that we have the strict inequality
σ1(Σ) > 1/2 (see [3]). Nonetheless, our lower bound is sufficient to imply a smooth
compactness theorem for embedded free boundary minimal surfaces in B3 to be
described in the next section.
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Although we are still far from having a definite answer to Open question 7,
it has been verified that some of the known examples constructed in Section 3
satisfy σ1(Σ) = 1. It is obvious for the Fraser-Schoen surfaces ΣFS` since they
are constructed by embeddings using the first Steklov eigenfunctions. It is easy
to check by direct computation that all the higher dimensional critical catenoids
have σ1 = 1. In a recent work of McGrath [73], it was proved that σ1 = 1 for any
embedded free boundary minimal surface in B3 which is invariant under certain
groups of reflections such that their fundamental domains satisfy some additional
assumptions. In particular, this implies that the Folha-Pacard-Zolotareva surfaces
ΣFPZn and Σ̃FPZn all have σ1 = 1. McGrath’s proof uses the nodal domain theorem
for Steklov eigenfunctions and a symmetrization technique due to Choe and Soret
[9]. It would be interesting to check whether the other known examples satisfy
σ1 = 1.

6.2. Smooth compactness results. We now turn to the study of the space of
all free boundary minimal hypersurfaces in Bn. In particular, we are interested
in what natural conditions would imply that the space is compact, under suitable
topology. Along this direction, we obtained the first compactness result for embed-
ded free boundary minimal surfaces in B3 with a fixed topological type. Our result
is analogous to the celebrated compactness theorem of Choi and Schoen [10] for
embedded minimal surfaces in S3.

Theorem 6.4 (Fraser-Li [23]). Given any integers g ≥ 0 and k ≥ 1, the space of
all embedded free boundary minimal surfaces in B3 with genus g and k boundary
components is compact in the C∞-topology. In other words, any sequence {Σi}i∈N
of such minimal surfaces has a subsequence converging smoothly as a graph to a
smooth embedded free boundary minimal surface Σ∞ in B3 of the same topological
type.

Proof. We will briefly describe the main steps of the proof. First of all, the coarse
upper bound in Proposition 3.4 and our Steklov eigenvalue lower bound in Theorem
6.3 together imply a uniform bound on the boundary length |∂Σ| ≤ 4π(g + k). By
Proposition 2.4 we also have a uniform area bound |Σ| ≤ 2π(g + k). Using mini-
mality of Σ, the Gauss equation and Gauss-Bonnet theorem, we have the following
uniform L2-bound on the second fundamental form:∫

Σ

|AΣ|2 da =

∫
Σ

−2KΣ da = −2

(
2πχ(Σ)−

∫
∂Σ

kg ds

)
≤ 4π(4g + 3k − 2).

Here, the free boundary condition implies that the geodesic curvature kg of ∂Σ
inside Σ is equal to 1. By a general compactness result we know that any sequence
{Σi}i∈N of embedded free boundary minimal surfaces in B3 with genus g and k
boundary components would have a subsequence converging (as a multi-sheeted
graph) away from finitely many points p1, · · · , pN to a limit embedded free bound-
ary minimal surface Σ∞ in B3. By a removable singularity theorem [23, Theorem
4.1], Σ∞ is smooth across each p1, · · · , pN . Moreover, by a logarithmic cut-off trick
together with the uniform bound σ1 ≥ 1/2 we see that the multiplicity is one. �

In higher dimensions, the control on topology is not enough to guarantee a
smooth compactness theorem. For example, the O(2)×O(2) symmetric embedded
examples Σ2,2(`) in B4 constructed by Freidin, Gulian and McGrath (see Theorem
3.2) are all topologically B2 × S1 but as `→∞ they converge to the minimal cone
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(which is singular at the origin) over the Clifford torus in S3. In [2], Ambrozio,
Carlotto and Sharp proved the following compactness result in higher dimensions
(but still in codimension one):

Theorem 6.5 (Ambrozio-Carlotto-Sharp [2]). Given any integer I ≥ 0 and positive
constant Λ > 0, the space of all embedded free boundary minimal hypersurfaces in
Bn with area at most Λ and Morse index at most I is compact in the C∞-topology.

In particular, Theorem 6.5 implies that the family {ΣFGMk1,k2
(`)}`∈N of embed-

ded free boundary minimal hypersurfaces in Bk1+k2 constructed by Freidin-Gulian-
McGrath in Theorem 3.2 has unbounded Morse index as ` → ∞. In fact, it was
shown in [2] that the same smooth compactness theorem holds when one replaces
the Morse index bound by a uniform lower bound on the p-th eigenvalue of the
stability operator for some p ∈ N. Such compactness results were established ear-
lier by Sharp [82] and Ambrozio-Carlotto-Sharp [1] for closed embedded minimal
hypersurfaces in Sn.

7. Area bounds

In this final section, we study the area of free boundary minimal submanifolds
in Bn. It is a well-known result by Li and Yau [67] that minimal surfaces in
Sn maximize area in their conformal orbit. This has been generalized to higher
dimensional minimal submanifolds in Sn by El Soufi and Ilias [18]. One is then
naturally led to the following question in the free boundary setting:

Open Question 8. Let Σk be an immersed free boundary minimal submanifold in
Bn, and f : Bn → Bn be a conformal diffeomorphism. Is it true that |f(Σ)| ≤ |Σ|?

Very limited results are known. For k = 2, Fraser and Schoen [24] showed that
the boundary of any free boundary minimal surface in Bn maximizes length in its
conformal orbit.

Theorem 7.1. Let Σ be an immersed free boundary minimal surface in Bn. Sup-
pose f : Bn → Bn is a conformal diffeomorphism. Then we have |f(∂Σ)| ≤ |∂Σ|.

Proof. The original proof in [24] uses the conformal invariance of the trace-free
second fundamental form of Σ. We recall here an alternative proof taken from [25]
using a first variation argument. Using our understanding of the conformal group
of Bn, there exists some y ∈ Rn with |y| > 1 such that

f∗gEucl =

(
|y|2 − 1

|x− y|2

)2

gEucl,

where gEucl is the Euclidean metric on Bn. Define a vector field X = (x−y)/|x−y|2
on Bn. Note that X is not tangential to ∂Bn. However, using that Σ is a free
boundary minimal surface, the divergence theorem on Σ implies∫

Σ

divΣX da =

∫
∂Σ

〈X,x〉 ds.

By a direct computation, we have

divΣX =
2

|x− y|2
− 2|(x− y)T |2

|x− y|4
≥ 0,
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〈X,x〉 =
1

2

(
1− |y|

2 − 1

|x− y|2

)
.

Plugging these into the equality above, using the fact that ∂Σ is one-dimensional,

0 ≤ 1

2

∫
∂Σ

(
1− |y|

2 − 1

|x− y|2

)
ds =

1

2

(
|∂Σ| − |f(∂Σ)|

)
.

�

By a conformal blow-up at any boundary point p ∈ ∂Σ, we have the following
sharp area lower bound for free boundary minimal surfaces in Bn. Note that 2|Σ| =
|∂Σ| by Proposition 2.4.

Theorem 7.2 (Fraser-Schoen [24]). Let Σ2 be an immersed free boundary minimal
surface in Bn Then,

|Σ2| ≥ |B2| = π

and equality holds if and only if Σ2 is an equatorial plane disk.

By a direct monotonicity-type argument, Brendle was abled to generalize Fraser
and Schoen’s result to any dimension and codimension.

Theorem 7.3 (Brendle [5]). Let Σk be an immersed free boundary minimal sub-
manifold in Bn Then,

|Σk| ≥ |Bk|
and equality holds if and only if Σk is congruent to Bk.

Note that the sharp area bounds above imply the sharp isoperimetric inequal-
ity for free boundary minimal submanifolds in Bn (see [24, Corollary 5.5] and [5,
Corollary 5]). Motivated by Theorem 7.1, Fraser and Schoen conjectured that the
same statement hold in arbitrary dimension and codimension.

Open Question 9. Let Σk be an immersed free boundary minimal submanifold
in Bn. Suppose f : Bn → Bn is a conformal diffeomorphism. Is it true that
|f(∂Σ)| ≤ |∂Σ|?

Note that an affirmative answer to Open Question 9 would imply Theorem
7.3. When Σ is a cone, it follows from the corresponding results of Li-Yau and El
Soufi-Ilias applied to its link in Sn−1. Moreover, Fraser and Schoen [25, Theorem
3.8] proved that the boundary volume of ∂Σ decreases up to second order under
conformal changes. On the other hand, it is not known that the volume of Σ
itself decreases up to second order under conformal changes. However, it can be
checked numerically that the critical catenoid does satisfy the conclusion of Open
Question 8.

After knowing that Bk gives the sharp lower bound for free boundary minimal
submanifolds in Bn, it is natural to ask what is the next smallest area, at least when
k = 2 = n − 1. In the proof of Willmore conjecture by Marques and Neves [69], a
key step in their argument is to show that the Clifford torus in S3 is the (unique)
closed minimal surface with smallest area other than the geodesic spheres. In view
of this spectacular result, we conjecture the following:

Open Question 10. Let Σ2 be an immersed free boundary minimal surface in B3

which is not the equatorial disk. Is it true that |Σ| ≥ |K|?
The question above should be closely related to the sharp Morse index lower

bound conjectured in Open Question 6.
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