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Abstract We prove the boundedness of a class of tri-linear operators consisting of a
quasi piece of bilinear Hilbert transform whose scale equals to or dominates the scale
of its linear counter part. Such type of operators is motivated by the tri-linear Hilbert
transform and its curved versions.

Keywords Bilinear Hilbert transform · Paraproduct · Tri-linear operators

Mathematics Subject Classification 42A50 · 47G10 · 42B99

1 Introduction

1.1 Background

In a pair of breakthrough papers [4,5], Lacey and Thiele proved the boundedness
property of the bilinear Hilbert transform (BHT)

B( f1, f2)(x) = p.v.

∫
f1(x − t) f2(x + t)

1

t
dt.

Many interesting results about multilinear operators have been established in the
spirit of Lacey–Thiele’s method. However, L p-boundedness of tri-linear Hilbert trans-
form (THT)
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Quasi Pieces of the Bilinear Hilbert Transform 225

T ( f1, f2, f3)(x) = p.v.

∫
f1(x − t) f2(x − 2t) f3(x − 3t)

1

t
dt.

is still unknown. One difficulty arises from certain non-linear issue hidden in the
trilinear structure. This is one of the main reasons motivating Li to study BHT along
curves [8], say

H�( f1, f2)(x) = p.v.

∫
f1(x − t) f2(x − td)

1

t
dt, where d ≥ 2 is an integer.

In [8], H� is split into two operators according to the efficiency of some oscillatory
integral estimate (stationary phase vs. non-stationary phase). One of the two operators
is a paraproduct of the form��( f1, f2) = ∑

k f1k f2k [7] that ismore complex than the
classical Coifman–Meyer paraproduct [1]. Although it turns out�� is slightly simpler
thanBHT, the proof of its boundedness already requires sophisticatedmulti-scale time-
frequency analysis that is essential in the study of BHT.Hence it is reasonable to expect
that tri-linear analogues of the paraproduct �� would be easier to handle than THT,
but at the same time the study of such tri-linear operators could provide some new
insights to THT.

The definition of tri-linear correspondence of ��( f1, f2) was given in [2], where
the author and Li introduced the following class of operators T α,β that can be viewed
a hybrid of BHT and paraproduct:

T α,β( f1, f2, f3)(x) =
∑
k∈Z

Hα,k( f1, f2)(x) f
β,k
3 (x), (1.1)

where

⎧⎪⎪⎨
⎪⎪⎩

Hα,k( f1, f2)(x) = ∫∫
R2 f̂1(ξ1) f̂2(ξ2)e2π i(ξ1+ξ2)x�̂1

(
ξ1−ξ2
2αk

)
dξ1dξ2,

f β,k(x) = ∫
R
f̂ (ξ)e2π iξ x�̂2

(
ξ

2βk

)
dξ.

(1.2)

Here α, β are non-zero positive real numbers, and various conditions (about smooth-
ness, support, etc) can be imposed on the cut-off functions �̂1 and �̂2.

T α,β is closely related with THT along curves. For example, one promising way to
prove the boundedness of TC ( f1, f2, f3)(x) = p.v.

∫
f1(x−t) f2(x+t) f3(x−td) dtt is

to study T 1,d first (See [8] for a similar approach in the bilinear setting). The following
theorem is proved in [2].

Theorem 1.1 ([2], Theorem 1.2) Let �1 and �2 be smooth functions satisfying supp
�̂1 ⊆ [9, 10] and supp �̂2 ⊆ [−1, 1]. Assume α = β �= 0. Then the operator T α,β

defined by (1.1) (1.2) is bounded from L p1 × L p2 × L p3 to L p, 1
p = 1

p1
+ 1

p2
+ 1

p3
,

whenever (p1, p2, p3) ∈ D =
{
(p1, p2, p3) ∈ (1,∞)3 : 1

p1
+ 1

p2
< 3

2

}
.
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Fig. 1 Tile structure of T α,β ,
α < β, k ≥ 2

1

2

3

4

Remarks (1) Strictly speaking, this theorem is proved in [2] only in the case α =
β = 1, but this restriction is inessential. The proof given in [2] works for any
homogeneous-scale case.

(2) The intervals [9, 10] and [−1, 1] in the assumptions of Theorem 1.1 are not
essential. The point is that �̂1 should be supported away from 0 and �̂2 should
be supported near 0.

(3) We conjectured that the condition α = β can be dropped in the above theorem,
but the proof given in [2] relies on the homogeneity of the scales. Let us briefly
analyze the difficulties in the case α �= β here. Assume 0 < α < β and let k ≥ 2
be an integer. After wave packet decomposition, the tile associated with f β,k

3
dominates the other two tiles (associated with f1 and f2) in frequency space as

supp
̂

f β,k
3 has a much larger scale 2βk . This will also introduce a long tile for the

fourth function f4 in the 4-linear form 〈T α( f1, f2, f3), f4〉: see Fig. 1. As there
are two long tiles and one of them contains the origin, the situation is difficult
to handle even we use telescoping techniques that are powerful in some uniform
estimates ([3,6,10]).

1.2 Main Result and Application

The purpose of this paper is to investigate other instances of T α,β , including some
non-homogeneous scale cases. We would like to switch the roles of �̂1 and �̂2, i.e.,
assume that �̂1 is supported near the origin and �̂2 is supported away from 0 (instead
of the other way around in Theorem 1.1). In this case, Hα,k is no longer a piece of
BHT at certain scale: we may call it a quasi piece of BHT. Surprisingly we can obtain
the same range of boundedness as before, even in some cases with non-homogeneous
scales (See Theorem 1.3 below). More precisely, we have
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Theorem 1.2 Let�1 and�2 be smooth bump functions satisfying supp �̂1 ⊆ [−1, 1]
and supp �̂2 ⊆ [9, 10]. Let α = β �= 0. Then the operator T α,β defined by
(1.1) (1.2) is bounded from L p1 × L p2 × L p3 to L p for any (p1, p2, p3) ∈ D ={
(p1, p2, p3) ∈ (1,∞)3 : 1

p1
+ 1

p2
< 3

2

}
, 1
p1

+ 1
p2

+ 1
p3

= 1
p .

The proof of Theorem1.2 uses Lacey–Thiele’s ideas about BHT.However, it should
be noted that because of the quasi pieces of BHT, the 4-tile structure of the operator
T α,α quite different from the tri-tile structure of BHT (see Fig. 3 for a comparison):
the loss of one tile (1-tile and 2-tile are identical) forces us to mainly work with only
two tiles as opposed to three tiles in BHT. The presence of a Littlewood–Paley piece
(3-tile), however, will be of great help (see the proof of Proposition 3.4).

Using Theorem 1.2 together with Theorem 1.1, we can derive the boundedness
property of positive truncations of T α,β in some non-homogeneous scale cases.

Theorem 1.3 Let�1 and�2 be smooth bump functions satisfying supp �̂1 ⊆ [−1, 1]
and supp �̂2 ⊆ [9, 10]. Assume α > β > 0. Define a positive truncation of T α,β by

T α,β
N ( f1, f2, f3)(x) =

∑
k≥N

Hα,k( f1, f2)(x) f
β,k
3 (x), N ∈ N, (1.3)

where Hα,k and f β,k
3 are given in (1.2). Then for any N ≥ 10α/β, the opera-

tor T α,β
N is bounded from L p1 × L p2 × L p3 into L p for any (p1, p2, p3) ∈ D ={

(p1, p2, p3) ∈ (1,∞)3 : 1
p1

+ 1
p2

< 3
2

}
, 1
p1

+ 1
p2

+ 1
p3

= 1
p .

Remarks (1) The choice of intervals [−1, 1] and [9, 10] in the above two theorems
are not important. The key is that �̂1 should be supported near 0 and �̂2 should
be supported away from 0.

(2) One of anticipated applications of Theorem 1.3 is to use boundedness of T d,1
N to

prove that of one prototype of THT along polynomial curves

TC ( f1, f2, f3)(x) = p.v.

∫ 1

−1
f1(x − t) f2(x − td) f3(x + td)

dt

t
.

Just like the relationship between H�( f1, f2)(x) = p.v.
∫

f1(x−t) f2(x−td) 1t dt
and the paraproduct ��( f1, f2) = ∑

k f1k f2k studied in [7], TC can be written

as the sum of finitely many operators of the form T α,β
N (plus some other terms).

The condition N ≥ 10α/β in Theorem 1.3 is assumed only for technical reasons
and it does not affect the application as each scale of TC (after the standard
dyadic decomposition 1

t = ∑
k ρk(t)) is trivially bounded. The reason that we

only consider the positive truncation instead of T α,β itself is that |t | ≤ 1 in the
definition of TC .

(3) Under the assumptions on �̂1 and �̂2 in Theorem 1.3, Fig. 2 illustrates the worst
case of the tri-tile structure of T α,β

N with α > β at any positive scale k. The two
identical long tiles seems to be very problematic. The key to resolve this issue is
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228 D. Dong

Fig. 2 Tri-tile structure of

T α,β
N , α > β > 0, k ≥ 1

3

1,2

to reduce the study of T α,β
N with α > β to that of T β,β (homogeneous case) by a

telescoping argument. The details are provided in Sect. 6.

1.3 Notations

Throughout the paper we will use C to denote a positive constant whose value may
change from line to line. We may add one or more subscripts to C to emphasize
dependence of C . A � B is short for A ≤ CB and A �N B means A ≤ CN B. If
A � B and B � A, then we write A 
 B. χ

E and |E | will be used to denote the
characteristic function and the Lebesgue measure of the set E , respectively.

2 Reduction to Model Form

The goal of this section is to reduce Theorem 1.2 to the study of a model form using
standard wave packet decomposition process. For notational convenience, we assume
α = β = 1 in the proof. The general case can be handled the same way.

Let S(R) denote the class of Schwartz functions on R. Given f j ∈ S(R), j ∈
{1, 2, 3, 4}, consider the 4-linear form � associated with T 1,1

�( f1, f2, f3, f4) :=
∫

T 1,1( f1, f2, f3)(x) f4(x) dx

=
∑
k∈Z

∫∫∫
f̂1(ξ1) f̂2(ξ2) f̂3(ξ3)�̂1

(
ξ1 − ξ2

2k

)
�̂2

(
ξ3

2k

)
f̂4(ξ1 + ξ2 + ξ3) dξ1dξ2dξ3,

(2.1)

where supp �̂1 ⊆ [−1, 1] and supp �̂2 ⊆ [9, 10].
To simplify the 4-linear form above, we use thewave packet decomposition. Choose

a ψ ∈ S(R) such that suppψ̂ ⊆ [0, 1] and
∑
l∈Z

ψ̂

(
ξ − l

2

)
= 1 for any ξ ∈ R.
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Quasi Pieces of the Bilinear Hilbert Transform 229

Define

̂ψk,l(ξ) := ψ̂

(
ξ − 2k−1l

2k

)
for (k, l) ∈ Z

2.

Pick a non-negative ϕ ∈ S(R) with suppϕ̂ ⊆ [−1, 1] and ϕ̂(0) = 1. Let

ϕk(x) := 2kϕ(2k x), k ∈ Z.

For every (k, n) ∈ Z

2, denote Ik,n := [2−kn, 2−k(n + 1)). Then for each scale k ∈ Z

and any function f ∈ S(R), we have

f =
∑

(n,l)∈Z2

fk,n,l , (2.2)

where

fk,n,l(x) := χ∗
Ik,n (x) f ∗ ψk,l(x), and (2.3)

χ∗
I (x) := χ

I ∗ ϕk(x) for any interval I. (2.4)

In sum, fk,n,l is well-localized, as supp ̂fk,n,l ⊆ [2k( l2 − 1), 2k( l2 + 2)] and fk,n,l
is essentially supported on Ik,n in the sense that

| fk,n,l (x)| �N ,M

(
1 + dist(x, Ik,n)

|Ik,n |
)−N 1

|Ik,n |
∫

| f (y)|
(
1 + |x − y|

|Ik,n |
)−M

dy. (2.5)

Now we apply the decomposition (2.2) to all the four functions in (2.1) and obtain

�( f1, f2, f3, f4) =
∑
k∈Z

(n1,n2,n3,n4)∈Z
4

(l1,l2,l3,l4)∈Z
4

∫∫∫
̂( f1)k,n1,l1 ,(ξ1) ̂( f2)k,n2,l2(ξ2) ̂( f3)k,n3,l3(ξ3)

�̂1

(
ξ1 − ξ2

2k

)
�̂2

(
ξ3

2k

)
̂( f4)k,n4,l4(ξ1 + ξ2 + ξ3) dξ1dξ2dξ3.

By the support of functions, each term in the sum is non-zero only when

⎧⎪⎨
⎪⎩

ξi ∈ [2k( li2 − 1), 2k( li2 + 2)] for i = 1, 2, 3;
|ξ1 − ξ2| � 2k, |ξ3| ∈ [9 · 2k, 10 · 2k);
ξ1 + ξ2 + ξ3 ∈ [2k( l42 − 1), 2k( l42 + 2)].
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230 D. Dong

These imply that

⎧⎪⎨
⎪⎩

|l2 − l1| � 1;
|l3 − 9| � 1;
|l4 − (2l1 − 18)| � 1.

In other words, among the four parameters l1, l2, l3, l4 only one is free, say l1.
Without loss of generality we can fix a dependence relation between l2, l3, l4 and l1.
Then drop the cut-off functions by the Fourier expansion trick and ignore the fast
decay terms so that �( f1, f2, f3, f4) becomes essentially as

∑
k,l1

n1,n2,n3,n4

∫
( f1)k,n1,l1(x)( f2)k,n2,l2(x)( f3)k,n3,l3(x)( f4)k,n4,l4(x) dx .

Since ( f j )k,n j ,l j is almost supported in Ik,n j = [2−kn j , 2−k(n j + 1)), there is not
too much loss to assume n1 = n2 = n3 = n4 due to the fast decay in other cases.
Therefore, the original 4-linear form has been simplified to the following model form
(we still use � to denote the model 4-linear form by an abuse of notation):

�( f1, f2, f3, f4) =
∑

(k,n,l)∈Z3

∫ 4∏
j=1

( f j )k,n,l j (x) dx . (2.6)

Here l1 = l, l2 = l, l3 = 18 and l4 = 2l + 18.
We will prove directly that T is of restricted weak type (see [9] for the definition)

when (p1, p2, p3) is in a smaller range D0 := {(p1, p2, p3) : 1 < p1, p2 < 2, 1
p1

+
1
p2

< 3
2 , p3 ∈ (1,∞)}. More precisely, we will prove

Theorem 2.1 Let (p1, p2, p3) ∈ D0. For any measurable sets F1, F2, F3, F of finite
measure, there exists measurable set F ′ ⊆ F with |F ′| ≥ 1

2 |F | such that � defined in
(2.6) satisfy

|�( f1, f2, f3, f4)| � |F1|
1
p1 |F2|

1
p2 |F3|

1
p3 |F ′| 1

p′ ; (2.7)

for every | f1| ≤ χ
F1 , | f2| ≤ χ

F2 , | f3| ≤ χ
F3 and | f4| ≤ χ

F ′ . Here 1
p′ := 1 − ( 1

p1
+

1
p2

+ 1
p3

).

To prove Theorem 2.1 we pick up an arbitrary finite subset S ⊂ Z

3 and aim to
obtain (2.7) for

�S( f1, f2, f3, f4) :=
∑

(k,n,l)∈S

∫ 4∏
j=1

( f j )k,n,l j (x) dx, (2.8)

provided the bound does not depend on the set S. We can also assume |F | = 1 by
dilation invariance. Next we make the geometric structure of�S clearer. To each tuple
s = (k, n, l) ∈ Z

3 we assign a time-interval Is := Ik,n and four frequency-intervals
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Quasi Pieces of the Bilinear Hilbert Transform 231

ωs j , j ∈ {1, 2, 3, 4}, representing the localization of functions in the time-frequency
space. More precisely, Is and ωs j ’s satisfy:

( f j )k,n,l j (x) is dominated by

CN ,M

(
1 + dist(x, Is)

|Is |
)−N 1

|Is |
∫

| f j (y)|
(
1 + |x − y|

|Is |
)−M

dy (2.9)

The Fourier transform of ( f j )k,n,l j is supported on ωs j . (2.10)

Definition 2.2 We call s = (k, n, l) a 4-tile (or simply a tile) as it corresponds to 4
single-tiles s j := Is × ωs j , j ∈ {1, 2, 3, 4}. Write fs j := fk,n,l j for simplicity.

We can take finitely many sparse subsets of S and transform ωs j ’s by fixed affine
mappings if needed (since only relative locations of Fourier supports matter) so that
Is and ωs j ’s enjoy nice geometric properties as follows:

ωs1 = ωs2; (2.11)

|ωs1 | = |ωs3 | = |ωs4 | = C |Is |−1; (2.12)

dist(ωs1 , ωs4) = |ωs1 |; (2.13)

c(ωs1) > c(ωs4), where c(I ) is the center of the interval I ; (2.14)

{Is}s∈S is a grid (defined below); (2.15)

{ωs1 ∪ ωs4}s∈S is a gird; (2.16)

ωsi � J for some i ∈ {1, 4}, J := ωs′1 ∪ ωs′2 ∪ ωs′4 , s
′ ∈ S ⇒

ωs j ⊆ J for all j ∈ {1, 4}. (2.17)

Here a grid is defined as a set of intervals having the property that if two different
elements intersect then one must contain the other and the larger interval is at least
twice as long as the smaller one. See [4] for a detailed construction of the time and
frequency intervals.

From now on we fix a finite set of tiles S ⊂ Z

3 and assume the tiles satisfy (2.9)–
(2.17). See Fig. 3 for a comparison between the tile structure of T 1,1 and that of
BHT.

Theorem 2.1 has been reduced to the following theorem.

Theorem 2.3 Let p > 1 be arbitrary. Given any (p1, p2, p3) ∈ D0 with p3 ≥ p
and any sets of finite measure F1, F2, F3, F with |F | = 1, there exists F ′ ⊆ F with
|F ′| ≥ 1

2 such that

|�S( f1, f2, f3, f4)| � |F1|
1
p1 |F2|

1
p2 |F3|

1
p3

for every | f1| ≤ χ
F1 , | f2| ≤ χ

F2 , | f3| ≤ χ
F3 and | f4| ≤ χ

F ′ .
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3

2

1

3

1,2

4

Fig. 3 4-tile of T 1,1 versus tri-tile of BHT

3 Proof of Theorem 1.2

In this section we prove Theorem 2.3 and hence Theorem 1.2, using some propositions
whose proof will be given in subsequent sections. Fix p > 1, (p1, p2, p3) ∈ D0 =
{(p1, p2, p3) : 1 < p1, p2 < 2, 1

p1
+ 1

p2
< 3

2 , p3 ∈ (1,∞)} with p3 > p, and
measurable sets F1, F2, F3, F with |F | = 1. Let M denote the maximal operator.
Define the exceptional set

� :=
⎛
⎝ 2⋃

j=1

{
x : M(χ Fj )(x) > C |Fj |

}
⎞
⎠⋃{

x : M(χ F3)(x) > C |F3|
1
p

}
.

Then |�| ≤ 1
4 when C is large enough. Set F ′ := F \ � so that |F ′| ≥ 1

2 . For any
dyadic number μ ≥ 1, define

Sμ :=
{
s ∈ S : 1 + dist(Is,�c)

|Is | 
 μ

}
. (3.1)

Then it suffices to obtain the estimate

|�Sμ( f1, f2, f3, f4)| � μ−2|F1|
1
p1 |F2|

1
p2 |F3|

1
p3 for any dyadic μ ≥ 1. (3.2)

The main idea to obtain (3.2) is to group the tiles in Sμ appropriately, aiming to
establish orthogonality among groups. The following definitions are needed.

Definition 3.1 Let j ∈ {1, 4}. Given two 4-tiles s and s′, we write s j < s′
j if Is ⊆ Is′

and ωs j ⊇ ωs′j . We call T ⊆ S a j-tree if there exists a t ∈ T such that s j < t j for all
s ∈ T . t is called the top of T and denote IT := It . We call T ⊆ S a tree (with top t)
if for any s ∈ T we have Is ⊆ It and ωs j ⊇ ωt j for some j ∈ {1, 4}.
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Quasi Pieces of the Bilinear Hilbert Transform 233

It is easy to see that any tree is a union of a 1-tree and a 4-tree.

Definition 3.2 For any P ⊆ S and f ∈ S(R), define

size j (P, f ) := sup
T⊆P

T is a 4-tree

(
1

|IT |
∑
s∈T

‖ fs j ‖22
) 1

2

, j = 1 or 2;

size4(P, f ) := sup
T⊆P

T is a 1-tree

(
1

|IT |
∑
s∈T

‖ fs4‖22
) 1

2

.

Sizes can be controlled using the proposition below, whose proof will be given in
Sect. 4.

Proposition 3.3 Fix a dyadic number μ ≥ 1. For any P ⊆ Sμ, j ∈ {1, 2, 4} and
f ∈ S(R),

size j (P, f ) �M sup
s∈P

(
1

|Is | ‖ f ‖L1(μIs ) + μ−M inf
y∈μIs

M f (y)

)
.

If tiles form a tree, then we can control the corresponding 4-form by sizes, as
suggested by the following proposition.

Proposition 3.4 Let T ⊆ Sμ be a tree. Then

|�T ( f1, f2, f3, f4)| � μ|IT |
∏

j∈{1,2,4}
size j (T, f j )|F3|

1
p3 .

Proof First assume T is a 1-tree. By Cauchy–Schwarz inequality, we have

|�T ( f1, f2, f3, f4)| ≤
∫

sup
s∈T

|( f1)s1 | sup
s∈T

|( f2)s2 |
(∑
s∈T

|( f3)s3 |2
) 1

2
(∑
s∈T

|( f4)s4 |2
) 1

2

≤ |IT | sup
s∈T

‖( f1)s1‖∞ sup
s∈T

‖( f2)s2‖∞

(
1

|IT |
∑
s∈T

‖( f3)s3‖22
) 1

2
(

1

|IT |
∑
s∈T

‖( f4)s4‖22
) 1

2

.

Using the structure of the 1-tree and the definition of Sμ,

(
1

|IT |
∑
s∈T

‖( f3)s3‖22
) 1

2

� μmin
{
1, |F3|

1
p

}
≤ μ|F3|

1
p3 (3.3)

Combine the above two estimates and can bound |�T ( f1, f2, f3, f4)| by

μ|IT | sup
s∈T

‖( f1)s1‖∞ sup
s∈T

‖( f2)s2‖∞ size4(T, f4)|F3|
1
p3 .
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234 D. Dong

It remains to prove that for i = 1 or i = 2, ‖( fi )si ‖∞ � sizei (T, fi ) for any s ∈ T .
We will only consider i = 1 case as the other case can be handled similarly. We just
need to prove the estimate

‖( f1)s1‖∞ � ‖( f1)s1‖2|Is |−
1
2 (3.4)

since {s} is a 4-tree. To prove (3.4), recall for s = (k, n, l), ( f1)s1(x) = χ∗
Ik,n (x) f1 ∗

ψk,l(x), whereψk,l(x) = 2kψ(2k x)e−2π i l2 x . Let b be a real number such that | l2−b| =
2k and define ˜( f1)s1(x) := e2π ibx ( f1)s1(x). Then ˜( f1)s1

′
(x) = γ ( f1)s1(x) for some

γ � 2k . Hence

‖( f1)s1‖∞ = ‖˜( f1)s1‖∞ �
√

‖˜( f1)s1‖2‖˜( f1)s1
′‖2 � 2

k
2 ‖( f1)s1‖2 � ‖( f1)s1‖2|Is |−

1
2

as desired.
Now assume T is a 4-tree. By similar arguments, we have

|�T ( f1, f2, f3, f4)| ≤
∫ (∑

s∈T
|( f1)s1 |2

) 1
2

sup
s∈T

|( f2)s2 |
(∑
s∈T

|( f3)s3 |2
) 1

2

sup
s∈T

|( f4)s4 |

≤ |IT |
(

1

|IT |
∑
s∈T

‖( f1)s1‖22
) 1

2

sup
s∈T

‖( f2)s2‖∞

(
1

|IT |
∑
s∈T

‖( f3)s3‖22
) 1

2

sup
s∈T

‖( f4)s4‖∞

� μ|IT | size1(T, f1) sup
s∈T

‖( f2)s2‖∞ sup
s∈T

‖( f4)s4‖∞|F3|
1
p3

� μ|IT |
∏

j∈{1,2,4}
size j (T, f j )|F3|

1
p3 .

This finishes the proof of Proposition 3.4. ��
The following proposition provides the algorithm to select trees and group tiles.

Proposition 3.5 Let f ∈ L2. Suppose for some j ∈ {1, 2, 4} and P ⊆ S, we have

size j (P, f ) ≤ σ‖ f ‖2 for some dyadic number σ = 2n, n ∈ Z.

Then we can decompose P = P ′ ∪ P ′′ such that

size j (P
′, f ) ≤ σ

2
‖ f ‖2 (3.5)

and P ′′ is a union of trees T in some collection F with
∑

T∈F |IT | � 1
σ 2 .

The proof of this organization proposition will be postponed to Sect. 5.
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Now we are ready to prove our goal (3.2). By Proposition 3.3 and the definition of
Sμ, we have

size j (S
μ, f j ) �

{
μ|Fj | when j = 1, 2;
μ−M for any large M > 0 when j = 4.

(3.6)

Iterate the organization algorithmProposition 3.5 for all j = 1, 2, 4 simultaneously,
and we can decompose Sμ as

Sμ =
⋃

σ is a
dyadic number

Sσ ,

where

size j (Sσ , f j ) �
{
min{μ|Fj |, σ |Fj | 12 } when j = 1, 2;
min{μ−M , σ } for any large M > 0 when j = 4,

(3.7)
and Sσ = ∪T∈Fσ

T is a union of tees with
∑

T∈Fσ
|IT | � 1

σ 2 .
Using this decomposition and the estimate on a single tree (Proposition 3.4), we

see that

|�Sμ ( f1, f2, f3, f4)| �
∑

σ is dyadic

∑
T∈F σ

|�T ( f1, f2, f3, f4)|

� μ
∑
σ

∑
T∈F σ

|IT |
∏

j∈{1,2,4}
size j (T, f j )|F3|

1
p3

� μ3|F3|
1
p3
∑
σ

1

σ 2 min
{
|F1|, σ |F1| 12

}
min

{
|F2|, σ |F2| 12

}
min

{
μ−M , σ

}
.

Apply the elementary inequality min{X,Y } ≤ X θY 1−θ , and we can bound
|�Sμ( f1, f2, f3, f4)| by

μ3|F3|
1
p3
∑
σ

1

σ 2 σ
2
(
1− 1

p1

)
+2

(
1− 1

p2

)
|F1|

1
p1 |F2|

1
p2 min

{
μ−M , σ

}

� μ−2|F1|
1
p1 |F2|

1
p2 |F3|

1
p3 ,

where we used the fact 1
p1

+ 1
p2

< 3
2 in the last inequality. This proves (3.2).

4 Size Estimates

In this section, we prove Proposition 3.3. The proofs of some variants of this propo-
sition already appear in [2] and [9]. For the convenience of the reader, we include
the details here. First we need the following lemma which is another form of the
John-Nirenberg inequality.
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Lemma 4.1 For any P ⊆ S and f ∈ S(R),

size j (P, f ) � sup
T⊆P

T is a 4-tree

1

|IT |

∥∥∥∥∥∥
(∑
s∈T

‖ fs j ‖22
|Is |

χ
Is

) 1
2

∥∥∥∥∥∥
1,∞

, j ∈ {1, 2},

size4(P, f ) � sup
T⊆P

T is a 1-tree

1

|IT |

∥∥∥∥∥∥
(∑
s∈T

‖ fs j ‖22
|Is |

χ
Is

) 1
2

∥∥∥∥∥∥
1,∞

.

Proof Fix j ∈ {1, 2, 4}, P ⊆ S and f ∈ S(R). Let T ⊆ P be an i-tree for some
i ∈ {1, 4} with i �= j such that

size j (P, f ) =
(

1

|IT |
∑
s∈T

‖ fs j ‖22
) 1

2

For simplicity write as := ‖ fs j ‖2 for s ∈ T and we aim to show

(
1

|IT |
∑
s∈T

as
2

) 1
2

� 1

|IT |

∥∥∥∥∥∥
(∑
s∈T

as2

|Is |
χ
Is

) 1
2

∥∥∥∥∥∥
1,∞

. (4.1)

Denote the left-hand side (LHS) and the right-hand side (RHS) of (4.1) by A and B,
respectively. Let C be a large constant and define the set

E :=
⎧⎨
⎩x :

(∑
s∈T

as2

|Is |
χ
Is (x)

) 1
2

> CB

⎫⎬
⎭ ⊆ IT . (4.2)

By the definition of weak 1 norm,

|E | ≤ B|IT |
CB

= |IT |
C

(4.3)

Write E as a joint union of intervals E = ⋃
Im∈J M Im , where J M is the set of

maximal elements in

J :=

⎧⎪⎨
⎪⎩I = Is0 for some s0 ∈ T :

⎛
⎝ ∑

s∈T,Is⊇I

as
2|Is |−1

⎞
⎠

1
2

> CB

⎫⎪⎬
⎪⎭ . (4.4)

By the definition of A,

A2|IT | =
∑
s∈T

as
2 =

∫
E

∑
s∈T

as2

|Is |
χ
Is +

∫
IT \E

∑
s∈T

as2

|Is |
χ
Is =: H + K . (4.5)
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Use the decomposition E = ⋃
Im∈J M Im to split H further as

H =
∑

Im∈J M

∫
Im

∑
s∈T,Is�Im

as2

|Is |
χ
Is +

∑
Im∈J M

∫
Im

∑
s∈T,Is⊆Im

as2

|Is |
χ
Is =: H1 + H2.

(4.6)
Since each Im is maximal in J defined by (4.4),

H1 ≤
∑

Im∈J M

(CB)2|Im | = (CB)2|E | ≤ (CB)2|IT |. (4.7)

For each Im ∈ J M , {s ∈ T : Is ⊆ Im} is still an i-tree by the grid structure. So the
definition of size j (P, f ) and (4.3) give

H2 =
∑

Im∈J M

|Im |
⎛
⎝ 1

|Im |
∑

s∈T,Is⊆Im
as

2

⎞
⎠ ≤

∑
Im∈J M

|Im |A2 = A2|E | ≤ A2 |IT |
C

(4.8)
Since the integrand in K is dominated by CB by (4.2), we have

K ≤ (CB)2|IT |. (4.9)

Putting (4.5)–(4.9) together, we obtain

A2|IT | = H1 + H2 + K ≤ (CB)2|IT | + A2 |IT |
C

+ (CB)2|IT |, (4.10)

from which we obtain A � B. This proves (4.1) and thus Lemma 4.1. ��
We now turn to the proof of Proposition 3.3. Without loss of generality, assume

j = 1. By Lemma 4.1, it suffices to show for any 4-tree T ,

∥∥∥∥∥∥
(∑
s∈T

‖ fs1‖22
|Is |

χ
Is

) 1
2

∥∥∥∥∥∥
1,∞

�M ‖ f ‖L1(μIT ) + μ−M inf
y∈μIT

M f (y)|IT |. (4.11)

Write f = f χμIT + f χ(μIT )c . LHS of (4.11) is bounded by

∥∥∥∥∥∥
(∑
s∈T

‖( f χμIT )s1‖22
|Is |

χ
Is

) 1
2

∥∥∥∥∥∥
1,∞

+
∥∥∥∥∥∥
(∑
s∈T

‖( f χ(μIT )c )s1‖22
|Is |

χ
Is

) 1
2

∥∥∥∥∥∥
1

=: I + I I.

By the conditions (2.11)–(2.17) of the tiles, in a 4-tree, s1 tiles are Littlewood–
Paley pieces as illustrated in Fig. 4. Thus term I is bounded by C‖ f ‖L1(μIT ) since
the discrete square-function operator is of weak type (1, 1) by the L2 estimate and
Calderón-Zygmund decomposition.
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Fig. 4 s1 tiles in a 4-tree

Using the fact l2 norm is no more than l1 norm, we estimate I I by

∑
s∈T

‖( f χ(μIT )c )s1‖2|Is |
1
2 .

It remains to show

∑
s∈T

‖( f χ(μIT )c)s1‖2|Is |
1
2 �M μ−M inf

y∈μIT
M f (y)|IT |. (4.12)

Using (2.9) we see that control the function |( f χ(μIT )c )s1(x)| is bounded above by

(
1 + dist(Is, (μIT )c)

|Is |
)−N (

1 + dist(x, Is)

|Is |
)−N

inf
y∈μIT

M f (y).

Hence
∑

s∈T ‖( f χ(μIT )c )s1‖2|Is |
1
2 is dominated by

inf
y∈μIT

M f (y)
∑
s∈T

|Is |
(
1 + dist(Is, (μIT )c)

|Is |
)−N

�M μ−M inf
y∈μIT

M f (y)|IT |,

as desired.

5 Organizing Tiles

We provide the proof of Proposition 3.5 in this section. Without loss of generality, let
j = 1. By the assumptions of Proposition 3.5,

sup
T⊆P

T is a 4-tree

(
1

|IT |
∑
s∈T

‖ fs1‖22
) 1

2

≤ σ‖ f ‖2. (5.1)
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Now we begin the tree selection algorithm. Initially set S0 = P and F = ∅. Let

F0 =
⎧⎨
⎩T ⊆ S0 : T is a 4-tree such that

(
1

|IT |
∑
s∈T

‖ fs1‖22
) 1

2

≥ σ

2
‖ f ‖2

⎫⎬
⎭ . (5.2)

IfF0 �= ∅, then take T1 to be the 4-tree inF0 with top t such that c(ωt4) ≥ c(ωt ′4) for
any other T ∈ F0 with top t ′. Let

⎧⎪⎨
⎪⎩
T (4)
1 := maximal 4-tree in S0 with top t,

T (1)
1 := maximal 1-tree in S0 with top t,

T ∗
1 := T (1)

1 ∪ T (4)
1 (This is a tree with top t).

Update S0 and F by setting S0 := S0 \ T ∗
1 and F := F ∪ {T ∗

1 }.
Repeat this algorithm until there is no 4-tree in the updated S0 satisfying

(
1

|IT |
∑
s∈T

‖ fs1‖22
) 1

2

≥ σ

2
‖ f ‖2.

When the algorithm terminates, we obtain

S0 = P \ {T ∗
1 , T ∗

2 , . . . , T ∗
l },

F = {T ∗
1 , T ∗

2 , . . . , T ∗
l }.

Simply let P ′ = S0 and P ′′ = ∪T∈F T . Then Clearly size1(P ′, f ) ≤ σ
2 ‖ f ‖2.

Now we turn to the proof of
∑

T∈F |IT | � 1
σ 2 . We can assume that each T ∈ F

is a 4-tree. By the definition of F0 (5.2), for any T ∈ F ,

(
1

|IT |
∑
s∈T

‖ fs1‖22
) 1

2

≥ σ

2
‖ f ‖2. (5.3)

Therefore,

∑
T∈F

|IT | � 1

σ 2‖ f ‖22
∑
T∈F

∑
s∈T

‖ fs1‖22.

It will suffice to prove ∑
T∈F

∑
s∈T

‖ fs1‖22 � ‖ f ‖22. (5.4)
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For each 4-tile s, define an operator As by As f (x) = fs1(x). By Cauchy–Schwarz
inequality,

∑
T∈F

∑
s∈T

‖ fs j ‖22 =
〈∑
T∈F

∑
s∈T

A∗
s As f, f

〉
≤
∥∥∥∥∥∥
∑
T∈F

∑
s∈T

A∗
s As f

∥∥∥∥∥∥
2

‖ f ‖2.

Hence (5.4) follows from the following estimate:

∥∥∥∥∥∥
∑
T∈F

∑
s∈T

A∗
s As f

∥∥∥∥∥∥
2

�

⎛
⎝∑

T∈F

∑
s∈T

‖ fs j ‖22
⎞
⎠

1
2

. (5.5)

To prove (5.5), write

(LHS of (5.5))2 =
∑

T,T ′∈F

∑
s∈T
s′∈T ′

〈
A∗
s As f, A

∗
s′ As′ f

〉 = I + I I,

where

⎧⎨
⎩
I := ∑

T �=T ′∈F
∑

s∈T
s′∈T ′

〈
A∗
s As f, A∗

s′ As′ f
〉
,

I I := ∑
T∈F

∑
s,s′∈T

〈
A∗
s As f, A∗

s′ As′ f
〉
.

Therefore, (5.5) follows from the estimate

max{I, I I } �
∑
T∈F

∑
s∈T

‖ fs1‖22. (5.6)

We will only provide the estimate for I , as I I is easier to control so we omit the proof.
Apply Cauchy–Schwarz inequality,

I ≤
∑

T �=T ′∈F

∑
s∈T
s′∈T ′

‖As f ‖2‖As A
∗
s′ ‖‖As′ f ‖2.

Hence (5.6) is a consequence of the inequality below.

∑
T �=T ′∈F

∑
s∈T
s′∈T ′

‖As f ‖2‖As A
∗
s′ ‖‖As′ f ‖2 �

∑
T∈F

∑
s∈T

‖ fs1‖22. (5.7)

The following estimate for ‖As A∗
s′ ‖ is the key to sum up all the terms in the LHS

of (5.7).
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Claim 5.1 ‖As A∗
s′ ‖ �= 0 only when ωs1 ∩ ωs′1 �= ∅. Moreover,

‖As A
∗
s′ ‖ �N

|Is′ | 12
|Is | 12

(
1 + dist(Is, Is′)

|Is |
)−N

if ωs1 ⊆ ωs′1 . (5.8)

Proof Write As A∗
s′ f (x) = ∫

K (x, y) f (y) dy, where K (x, y) = χ∗
Is (x)

χ∗
Is′ (y)ψ̃s′j ∗

ψs j (x− y),ψs j := ψk,l j for s = (k, n, l) and g̃(x) := g(−x) for any function g. Note

that ψ̃s′j ∗ ψs j (t) = ∫
ψ̂s′(ξ)ψ̂s(ξ)e2π iξ t dξ is non-zero only when ωs j ∩ ωs′j �= ∅ by

(2.3) and (2.10). Assume ωs1 ⊆ ωs′1 . By the definitions of
χ∗
I (2.4) and ψk,l and using

the triangle inequality (1 + |a|)−1 + (1 + |b|)−1 ≤ (1 + |a + b|)−1,

|K (x, y)| �N

(
1 + dist(x, Is)

|Is |
)−2N (

1 + dist(y, Is′)

|Is′ |
)−N

1

|Is ||Is′ |
∫ (

1 + |x − y − z|
|Is′ |

)−2N (
1 + |z|

|Is |
)−N

dz

�N

(
1 + dist(Is, Is′)

|Is |
)−N 1

|Is |
(
1 + dist(x, Is)

|Is |
)−N

.

Hence ∫
|K (x, y)|dx �N

(
1 + dist(Is, Is′)

|Is |
)−N

. (5.9)

Similarly, ∫
|K (x, y)|dy �N

(
1 + dist(Is, Is′)

|Is |
)−N |Is′ |

|Is | . (5.10)

(5.9) and (5.10) imply (5.8) by Schur’s lemma. ��
By the claim and symmetry, in the proof of (5.7) we will assume without loss of
generality ωs1 ⊆ ωs′1 . We will also assume that ωs1 � ωs′1 , as the case ωs1 = ωs′1 can
be handled the same way. Under these assumptions, (5.7) has been reduced to

∑
T �=T ′∈F

∑
s∈T,s′∈T ′
ωs1�ωs′1

‖As f ‖2‖As A
∗
s′ ‖‖As′ f ‖2 �

∑
T∈F

∑
s∈T

‖ fs1‖22. (5.11)

Since {s} is a 4-tree and size1( f, P) ≤ σ‖ f ‖2,

‖As f ‖2 ≤ |Is | 12 σ‖ f ‖2. (5.12)

Also notice that by (5.3)

σ‖ f ‖2 �

⎛
⎝|IT |−1

∑
s0∈T

‖ f(s0)1‖22
⎞
⎠

1
2

. (5.13)
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Combine (5.12) and (5.13), and we see that

‖As f ‖2 � |Is | 12 |IT |− 1
2

⎛
⎝∑

s0∈T
‖ f(s0)1‖22

⎞
⎠

1
2

. (5.14)

Similarly,

‖As′ f ‖2 � |Is′ | 12 |IT |− 1
2

⎛
⎝∑

s0∈T
‖ f(s0)1‖22

⎞
⎠

1
2

. (5.15)

Using (5.14) and (5.15), LHS of (5.11) is bounded by

∑
T∈T

⎛
⎝∑

s0∈T
‖ f(s0)1‖22

⎞
⎠

⎛
⎜⎜⎜⎜⎝

∑
s∈T,T ′ �=T

s′∈T ′,ωs1�ωs′1

|Is | 12 |Is′ | 12 |IT |−1‖As A
∗
s′ ‖

⎞
⎟⎟⎟⎟⎠ .

Therefore, (5.11) will be established once we show that for any T ∈ F ,

∑
s∈T,T ′ �=T

s′∈T ′,ωs1�ωs′1

|Is | 12 |Is′ | 12 |IT |−1‖As A
∗
s′ ‖ � 1.

By (5.8), this can be reduced to the estimate that for any T ∈ F ,

∑
s∈T,T ′ �=T

s′∈T ′,ωs1�ωs′1

(
1 + dist(Is, Is′)

|Is |
)−N

|Is′ | � |IT |. (5.16)

To prove (5.16), we need a crucial observation.

Claim 5.2 If T1 �= T2 ∈ F , s ∈ T1, and s′ ∈ T2, then

ωs1 ⊆ ωs′1 ⇒ Is′ ∩ IT1 = ∅.

Proof Let t and t ′ denote the top of T1 and T2, respectively. Assume otherwise Is′ ∩
IT1 �= ∅. Then Is′ ⊆ It . By (2.17) and the definition of tree, ωs′1 ⊇ ωs4 ⊇ ωt4 . Then
T1 is selected before T2 as c(ωt4) > c(ωt ′4). However, s

′
1 < t1 indicates that s′ should

be selected together with T1 according to the algorithm (See Fig. 5). This contradicts
with the assumption that s′ ∈ T2. ��
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Fig. 5 A crucial geometric
observation

s1

s4

s1

s4
t1

t4

t4

Now we are ready to prove (5.16). It is easy to see that

LHS of (5.16) �
∑
s∈T

∑
T ′ �=T

s′∈T ′,ωs1�ωs′1

∫
Is′

(
1 + dist(Is, x)

|Is |
)−N

dx .

By Claim 5.2, Is′ ’s are pairwise disjoint and the union of these intervals is contained
in (IT )c. Therefore,
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∑
s∈T

∑
T ′ �=T

s′∈T ′,ωs1�ωs′1

∫
Is′

(
1 + dist(Is, x)

|Is |
)−N

dx

≤
∑
s∈T

∫
(IT )c

(
1 + dist(Is, x)

|Is |
)−N

dx �
∑
s∈T

(
1 + dist(Is, (IT )c)

|Is |
)−N

|Is |

Using the tree structure of T and the grid structure of tiles, it is easy to see that

∑
s∈T

(
1 + dist(Is, (IT )c)

|Is |
)−N

|Is | � |IT |.

This proves (5.16).

6 Telescoping

We prove Theorem 1.3 by a telescoping argument. In what follows, [x] will be used
to denote the integer part of x ∈ R.

Since k ≥ N ≥ 10α/β, [β
α
k] is large and essentially we have

T α,β
N ( f1, f2, f3)(x) =

∑
k≥N

Hα,k( f1, f2)(x) f
β,k
3 (x) =: A + B,

where

⎧⎨
⎩
A :=∑

k≥N

(∑[(1−β
α
)k]−1

j=0

(
Hα,k− j ( f1, f2)(x) − Hα,k− j−1( f1, f2)(x)

))
f β,k
3 (x),

B := ∑
k≥N Hα,[ β

α
k]( f1, f2)(x) f

β,k
3 (x) = ∑

k≥N Hβ,k( f1, f2)(x) f
β,k
3 (x).

B has a much better tile structure than T α,β
N : See Figs. 2 and 6 for a comparison.

Since B is a part of T β,β and the proof of Theorem 1.2 is valid for any collection of
scales k, boundedness of B is obtained.

It remains to analyze the operator A. By a change of variable k → k + j , we can
write A = I + I I , where

⎧⎨
⎩
I := ∑

k≥N

(
Hα,k( f1, f2)(x) − Hα,k−1( f1, f2)(x)

) (∑[( α
β
−1)k]

j=0 f β,k+ j
3 (x)

)
,

I I := ∑
(k, j)∈P

(
Hα,k( f1, f2)(x) − Hα,k−1( f1, f2)(x)

)
f β,k+ j
3 (x).

Here P is a finite set of indices, and I I should be considered as an error term, whose
boundedness follows from Hölder and Lacey–Thiele’s Theorem ([4,5]). To prove the
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Fig. 6 Tri-tile structure of T β,β

3

1,2

boundedness of the main term I , first note that

[( α
β
−1)k]∑
j=0

f β,k+ j
3 (x) = f αk

3 (x) − f βk
3 (x),

where

f l(x) :=
∫

f̂ (ξ)φ0

(
ξ

2l

)
dξ, l ∈ R,

for somebump functionφ0 supported in [−1, 1]. Hencewe canwrite I as the difference
of two parts:

I =
∑
k≥1

(
Hα,k( f1, f2)(x) − Hα,k−1( f1, f2)(x)

)
f αk
3 (x)

−
∑
k≥1

(
Hα,k( f1, f2)(x) − Hα,k−1( f1, f2)(x)

)
f β,k
3 (x).

Note that Hα,k( f1, f2)(x) − Hα,k−1( f1, f2)(x) is a piece of BHT at scale k. Since

α > β and k > 0, the supports of̂f αk
3 and

̂

f βk
3 are at most as large as 2αk . We can

introduce a fourth function and do the wave packet decomposition to f1, f2, f4. Then
the tiles associated with these functions have structures similar to that of the tri-tiles
as in the study of BHT. Therefore, the proof of Theorem 1.1 given in [2] still applies
to I , and we omit the details. This finishes the proof of Theorem 1.3.
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