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Abstract

Offline computation is an essential component in most multiscale model reduction techniques. How-

ever, there are multiscale problems in which offline procedure is insufficient to give accurate representa-

tions of solutions, due to the fact that offline computations are typically performed locally and global

information is missing in these offline information. To tackle this difficulty, we develop an online local

adaptivity technique for local multiscale model reduction problems. We design new online basis func-

tions within Discontinuous Galerkin method based on local residuals and some optimally estimates. The

resulting basis functions are able to capture the solution efficiently and accurately, and are added to

the approximation iteratively. Moreover, we show that the iterative procedure is convergent with a rate

independent of physical scales if the initial space is chosen carefully. Our analysis also gives a guideline

on how to choose the initial space. We present some numerical examples to show the performance of the

proposed method.

1 Introduction

In this paper, we develop an online local adaptivity technique for a class of multiscale model reduction
problems. Many realistic applications involve solving problems that contain multiple scales and high contrast.
Direct solution methods for these problems require fine-grid discretizations and result in large discrete systems
that are computationally intractable. Common model reduction techniques perform the discretization of the
problems on a coarse grid, which is much larger than the scales under consideration, with the aim of getting
more efficient solution strategies. There are a variety of multiscale model reduction techniques based on
numerical upscaling (e.g., [14, 32]) or multiscale methods (e.g., [2, 5, 15, 21, 22, 23, 25, 6, 11, 7, 9]). Most
of the existing techniques are based on the so called offline construction. In particular, reduced models are
computed in a pre-processing step, called offline stage, before the actual simulations, called online stage, are
performed. For instances, some effective media are pre-computed for methods based on numerical upscaling
and some multiscale basis functions are pre-computed for multiscale finite element methods. While these
methods are effective in a wide variety of applications, there are still situations for which these methods
are inadequate to give reliable solutions unless a large dimensional offline space is employed. Some of these
situations involve external source effects and distant effects, which are ignored by most multiscale model
reduction methods since they are typically based on local constructions. Therefore, it is evident that offline
procedures are sometimes not enough to give efficient reduced models. Hence, it is the purpose of this paper to
design a novel multiscale model reduction method. Our proposed method is based on a combination of offline
technique and an online enrichment technique. The online technique is able to produce a reduced model
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taking care of external sources and distant effects, without using global models. The online construction
is also performed locally and adaptively in regions with more heterogeneities, giving very efficient reduced
models.

Our proposed method follows the overall idea of the Generalized Multiscale Finite Element Method
(GMsFEM), which is introduced in [17] and is a generalization of the classical multiscale finite element
method ([26]) in the way that the coarse spaces are systematically enriched, taking into account small scale
information and complex input spaces. Instead of conforming finite element spaces as in [17, 26], we will
use in this paper discontinuous Galerkin finite element spaces, which have some essential advantages (see
[18, 9]) in multiscale simulations because it allows coupling discontinuous basis functions. The discretization
starts with a coarse grid and a space of snapshot functions, which are defined on coarse elements. A space
reduction is then performed to obtain a much smaller offline space by means of spectral decomposition.
The spectral decomposition is performed locally on coarse elements, thus the functions in the offline space
are in general discontinuous across coarse edges. The offline space is used as the approximation space for
the interior penalty discontinuous Galerkin (IPDG) discretization on the coarse grid for the problem under
consideration, giving our generalized multiscale discontinuous Galerkin method (GMsDGM). We remark
that the offline space is computed only once in the pre-processing offline stage, and the same set of basis
functions is used for any given source terms and boundary conditions. A-priori error estimate can be derived
as in [21, 20, 9] showing that the error is inverse proportional to the first eigenvalue corresponding to the
first eigenfunction that is not used in the construction of the reduced space. Since the aim of the paper is
the new online locally adaptive procedure and its convergence, we will not discuss a-priori error estimate in
this paper.

The previous paragraph discusses the offline component of our method. As we discussed before, some
new basis functions are necessary to capture certain behavior of the solution which cannot be captured by
offline basis functions. For example, the solution may contain heterogeneities due to some distant effects
and source terms, and these cannot be incorporated efficiently by offline basis functions before the solution
is computed. Hence, it is the purpose of this paper to develop a technique to find new basis functions in
the online stage. Our method consists of an iterative procedure. Given an approximate solution, some local
residuals on coarse elements can be computed to reflect the amount of error in these coarse elements. These
local residuals serve as indicators to locate regions, where new online basis functions are necessary. We will
show that the projection of these residuals to the fine-grid can be used as new basis functions and that
the energy-norm error has the most decay in a certain sense when these residual-based basis functions are
included in the next solution process. In addition, we will show that this iterative procedure is convergent
with a convergence rate independent of scales and contrast. In our analysis of convergence, we will show
that it is essential to choose the appropriate space to begin the iterative procedure (cf. [16, 24, 19]). This
initial space is computed in the offline stage and is obtained from a carefully design spectral problem. With
this choice of the initial space, we show that one can obtain a very fast decay of errors by adding our online
basis functions. Finally, we remark that there are offline adaptive enrichment strategies in the context of
GMsFEM. In particular, in [10], offline adaptive procedure is developed and its convergence is analyzed
using techniques in [3, 28]. This is an efficient method to adaptively enrich the offline space and is desirable
for problems, where offline basis functions are good enough to capture the solution. On the other hand, we
remark that other adaptive methods are available [12, 13, 1, 27, 29, 31, 4]. Also, we remark that online basis
functions within continuous Galerkin GMsFEM is studied in [8].

The rest of the paper is organized in the following way. In the next section, we present the basic idea of
GMsDGM and our online locally adaptive procedure. The method is then detailed and analyzed in Section
3. In Section 4, numerical results are illustrated to test the performance of this adaptive algorithm. Finally
a conclusion is given in Section 5.
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2 Preliminaries

In this paper, we consider the following high-contrast flow problem

− div
(
κ(x)∇u

)
= f in D, (1)

subject to the homogeneous Dirichlet boundary condition u = g on ∂D, where D is the computational
domain and f(x) is a given source term. We assume that the coefficient κ(x) is highly heterogeneous with
very high contrast. For the convenience of our analysis, we also assume that κ(x) is bounded below, that
is, κ(x) ≥ 1. Due to the heterogeneity and high contrast of κ(x), very fine meshes are necessary to obtain
accurate numerical solutions. It is therefore crucial to develop a numerical scheme with a low dimensional
approximation space for the efficient approximation of (1).

Next, we present some notations needed for the constructions of our scheme. Consider a given triangu-
lation T H of the domain D with mesh size H > 0. For convenience, we assume the domain D is rectangular
and that the triangulation T H consists of rectangles. We call T H the coarse grid and H the coarse mesh
size. Elements of T H are called coarse grid blocks and we use N to denote the number of coarse grid blocks.
The set of all coarse grid edges is denoted by EH . See Figure 1 for an illustration. We also introduce a finer
triangulation T h of the computational domain D, obtained by a conforming refinement of the coarse grid
T H . We call T h the fine grid and h > 0 the fine mesh size.

i

K1

K2K3

K4

T H (Coarse Grid)

ωi
Coarse

Neighborhood

K

Coarse
Element

i

Figure 1: Illustration of a coarse neighborhood and a coarse element.

Now we present the framework of our GMsDGM. The methodology consists of two main ingredients,
namely, the construction of local basis functions and the global coarse grid level coupling. For the coarse
grid level coupling, we will apply the interior penalty discontinuous Galerkin (IPDG) method [30]. We
remark that other discretizations can also be used. Assume that VH is a given approximation space defined
on the coarse grid T H . Functions in VH are piecewise polynomials within coarse grid blocks and are in
general discontinuous across coarse grid edges. Following standard procedures, the IPDG method reads:
find uH ∈ VH such that

aDG(uH , v) = (f, v), ∀v ∈ VH , (2)

where the bilinear form aDG is defined as

aDG(u, v) = aH(u, v)−
∑

E∈EH

∫

E

(
{{κ∇u · nE}}[[v]] + {{κ∇v · nE}}[[u]]

)
+

∑

E∈EH

γ

h

∫

E

κ[[u]][[v]] (3)
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with

aH(u, v) =
∑

K∈TH

aKH(u, v), aKH(u, v) =

∫

K

κ∇u · ∇v, (4)

where γ > 0 is a penalty parameter, nE is a fixed unit normal vector defined on the coarse edge E ∈ EH .
Note that, in (3), the average and the jump operators are defined in the classical way. Specifically, consider
an interior coarse edge E ∈ EH and let K+ and K− be the two coarse grid blocks sharing the edge E. For
a piecewise smooth function G with respect to the coarse grid T H , we define

{{G}} =
1

2
(G+ +G−), [[G]] = G+ −G−, on E,

where G+ = G|K+ and G− = G|K− and we assume that the normal vector nE is pointing from K+ to K−.
Moreover, on the edge E, we define κ = (κK+ + κK−)/2, where κK± is the maximum value of κ over K±.
For a coarse edge E lying on the boundary ∂D, we define

{{G}} = [[G]] = G, and κ = κK on E,

where we always assume that nE is pointing outside of D.
For our analysis, we define the DG-norm as

‖u‖2DG = aH(u, u) +
∑

E∈EH

γ

h

∫

E

κ[[u]]2.

Then, the following continuity and coercivity of the bilinear form aDG hold. For completeness, we include a
proof of this result in the Appendix.

Lemma 2.1. Assume that the penalty parameter γ is chosen so that γ > C2
inv. The bilinear form aDG

defined in (3) is continuous and coercive with respect to the DG-norm, that is,

aDG(u, v) ≤ a1‖u‖DG ‖v‖DG, (5)

aDG(u, u) ≥ a0‖u‖
2
DG, (6)

for all u, v ∈ VH , where a0 = 1− Cinvγ
− 1

2 > 0 and a1 = 1 + Cinvγ
− 1

2 .

One main result of the paper is a convergence estimate of an adaptive procedure for the problem (2). For
this purpose, we will compare the multiscale solution uH to a fine-scale solution uh defined in the following
way. We first let

V h
DG = {v ∈ L2(D) : v|K ∈ V h(K)},

where V h(K) is the space of continuous piecewise bilinear functions defined on K with respect to the fine
grid. The fine-scale solution uh ∈ V h

DG is defined as the solution of the following

aDG(uh, v) = (f, v), ∀v ∈ V h
DG. (7)

It is well-known that uh gives a good approximation to the exact solution u up to a coarse grid discretization
error.

The second main component of our method is the construction of local basis functions, which contains
two stages, namely the offline stage and the online stage. In the offline stage, a snapshot space V i,snap is
first constructed for each coarse grid block Ki ∈ T H . The snapshot space contains a rich space of basis
functions, which can be used to approximate the fine-scale solution defined (7) with a good accuracy. A
spectral problem is then solved in the snapshot space V i,snap and eigenfunctions corresponding to dominant
modes are used as the basis functions. The resulting space is called the local offline space V i,off for the i-th
coarse grid block Ki. The global offline space V off is then defined as the linear span of all these V i,off, for
i = 1, 2, · · · , N . This global offline space V off will be used as the initial space of our method. We denote

4



this initial space as V
(0)
H . Using the initial space, an initial solution u

(0)
H can be computed by solving (2).

Local residuals in coarse grid blocks can then be computed based on the initial solution u
(0)
H . In coarse grid

blocks with large residuals, new basis functions are computed and added to the approximation space. This
procedure is continued until certain tolerance is reached. Next, we present a general outline of the method.

Assume that the initial space V
(0)
H is given and the initial solution u

(0)
H is computed. For any m ≥ 0, we

repeat the following until the solution u
(m)
H satisfies certain tolerance requirement.

Step 1: Solve (2) using the space V
(m)
H to obtain the solution u

(m)
H ∈ V

(m)
H .

Step 2: Compute local residuals based on the solution u
(m)
H .

Step 3: Construct new basis functions in regions, where the residuals are large.

Step 4: Add these basis functions to V
(m)
H to form a new space V (m+1).

In the following, we will give the details of Step 2 and Step 3. We will also explain how one chooses the

initial space V
(0)
H .

3 Locally online adaptivity

In this section, we will give details of our locally online adaptivity for the problem (2). As presented in the
general outline of the method from the previous section, our adaptivity idea contains the choice of initial
space as well as construction of new local multiscale basis functions. In the following, we will give the
construction of these in detail.

3.1 Initial space

We present the definition of the initial space V
(0)
H . Let xi be a node in the coarse grid T H , referred to as

the i-th coarse node, for i = 1, 2, · · · , Nc, where Nc is the number of nodes in the coarse grid T H . We will
then define the i-th coarse neighbourhood ωi as the union of all coarse grid blocks having the node xi, see
Figure 1. Moreover, for each coarse grid block K ∈ T H , we let χK

(j), j = 1, 2, 3, 4, be the partition of unity
functions, having value 1 at one vertex yj and value 0 at the remaining three vertices, where yj , j = 1, 2, 3, 4,
are the four vertices of K. Note that there is exactly one value of j such that the vertex yj is the same as the
vertex xi. In the case, we write χK

(j) = χK
i . One can use the standard multiscale basis functions or bilinear

functions as the partition of unity functions. Note that we do not require any continuity of these partition
of unity functions across coarse grid edges. The partition of unity functions are all supported on coarse grid
blocks. Furthermore, we define the space V h(ωi) by

V h(ωi) = {v ∈ L2(ωi) : v|K ∈ V h(K), K ∈ T H , K ⊂ ωi}.

That is, functions in V h(ωi) are supported in ωi and belong to the space V h(K) for each coarse grid block
K ⊂ ωi. Note that there is no continuity condition across boundaries of coarse grid blocks. We consider
V h(ωi) as the snapshot space in ωi, that is V

i,snap = V h(ωi), and perform a dimension reduction through a
spectral problem. For this purpose, we define EH

i be the set of coarse grid edges lying in the interior of ωi,
and the following bilinear form

aωi
(u, v) =

∑

K∈T H ,K⊂ωi

aKH(u, v) +
∑

E∈EH

i

γ

h

∫

E

κ[[u]][[v]], ∀u, v ∈ V h(ωi). (8)

Based on our analysis to be presented next, we solve the following spectral problem

aωi
(u, v) = λsωi

(u, v), ∀v ∈ V h(ωi), (9)
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where

sωi
(u, v) =

∑

K∈T H ,K⊂ωi

∫

K

κ|∇χK
i |2u v +

∑

E∈EH

i

γ

h

∫

E

κ[[χK
i ]]2{{u}} {{v}}, ∀u, v ∈ V h(ωi). (10)

We use the notations λωi

k and Ψωi

k to denote the k-th eigenvalue and the k-th eigenvector of the above
spectral problem (9). Each eigenfunction Ψωi

k corresponds to a function in ψωi

k ∈ V h(ωi) defined by

ψωi

k =

ni∑

j=1

(Ψωi

k )jw
ωi

j ,

where ni is the dimension of V h(ωi) and {wωi

j }ni

j=1 is a basis for V h(ωi). In the above definition, (Ψωi

k )j is
the j-th component of the eigenvector Ψωi

k .
For each ωi, we solve the spectral problem (9) and the first Li eigenfunctions are used to form the initial

space. Each eigenfunction ψωi

k will be first multiplied by the partition of unity function χK
i , for each K ⊂ ωi,

and is then decoupled across coarse grid edges to form 4 basis functions. In particular, the 4 new basis
functions have support in one of the coarse grid block forming ωi and are zero in the other three coarse
grid blocks forming ωi. For example, if K ⊂ ωi, the basis function is χK

i ψ
ωi

k . We write V i,off as the space

spanned by χK
i ψ

ωi

k , for all K ⊂ ωi. See Figure 2 for an illustration. The initial space V
(0)
H is obtained by

the linear span of all functions constructed in the above procedure.

Figure 2: Illustration of the initial basis construction. Left: An eigenfunction χK
i ψ

ωi

k is defined in ωi. Right:
4 basis functions are obtained by splitting χK

i ψ
ωi

k into 4 pieces, and each has support in K ⊂ ωi.

3.2 Construction of online basis functions

In this section, we will discuss the construction of our local online basis functions. The purpose is to add basis
functions locally in some coarse neighborhoods to obtain rapidly decaying errors. Assume that the space

V
(m)
H at the m-th iteration and the corresponding solution u

(m)
H are given. For each coarse neighborhood ωi,

we define the local residual by

R
(m)
i (v) = (f, v)− aDG(u

(m)
H , v), v ∈ V h

0 (ωi) (11)
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where V h
0 (ωi) ⊂ V h(ωi) contains functions that are zero on ∂ωi. The residual R

(m)
i can be seen as a linear

functional defined on V h
0 (ωi) with norm ‖R

(m)
i ‖ defined by

‖R
(m)
i ‖ = sup

v∈V h

0
(ωi)

|R
(m)
i (v)|

‖v‖ωi

,

and ‖v‖2ωi
= aωi

(v, v). We will then find the new online basis function φ ∈ V h
0 (ωi) by solving

aωi
(φ, v) = R

(m)
i (v), ∀v ∈ V h

0 (ωi). (12)

The new online basis function φ is added to V
(m)
H to form V

(m+1)
H .

The motivation of finding a new basis function φ by solving (12) can be explained as follows. We define
the A-norm by

‖u‖2A = aDG(u, u), ∀u ∈ VH .

We notice that the A-norm is equivalent to the DG-norm ‖u‖DG by Lemma 2.1. From (2) and (7), we have
the following Galerkin orthogonality condition

aDG(uh − u
(m)
H , v) = 0, ∀v ∈ V

(m)
H . (13)

Thus, we see that the following optimal error bound holds

‖uh − u
(m)
H ‖2A ≤ ‖uh − ũ‖2A, ∀ũ ∈ V

(m)
H . (14)

Notice that (13) and (14) hold for any m ≥ 0.

We will enrich the space V
(m)
H by adding a basis function φ in the space V h

0 (ωi) to form V
(m+1)
H . First,

(14) implies

‖uh − u
(m+1)
H ‖2A ≤ ‖uh − ũ‖2A, ∀ũ ∈ V

(m+1)
H . (15)

Taking ũ = u
(m)
H + αφ, for some scalar α, in (15), we have

‖uh − u
(m+1)
H ‖2A ≤ ‖uh − u

(m)
H − αφ‖2A

which implies

‖uh − u
(m+1)
H ‖2A ≤ ‖uh − u

(m)
H ‖2A − 2αaDG(uh − u

(m)
H , φ) + α2‖φ‖2A.

Taking α = aDG(uh − u
(m)
H , φ)/‖φ‖2A, we obtain

‖uh − u
(m+1)
H ‖2A ≤ ‖uh − u

(m)
H ‖2A −

aDG(uh − u
(m)
H , φ)2

‖φ‖2A
. (16)

By the definition of the residual R
(m)
i in (11), we see that (16) becomes

‖uh − u
(m+1)
H ‖2A ≤ ‖uh − u

(m)
H ‖2A −

(R
(m)
i (φ))2

‖φ‖2A
. (17)

From (17), we see that the quantity (R
(m)
i (φ))2/‖φ‖2A measures the amount of reduction in error when the

basis function φ is added in V
(m)
H to form V

(m+1)
H . We will construct the function φ ∈ V h

0 (ωi) to obtain the

most reduction in error. Thus, we find φ ∈ V h
0 (ωi) that maximizes R

(m)
i (φ)/‖φ‖A. Equivalently, we find

φ ∈ V h
0 (ωi) by solving

aωi
(φ, v) = R

(m)
i (v), ∀v ∈ V h

0 (ωi).

Notice that, we have used the fact that ‖φ‖A = ‖φ‖ωi
when φ ∈ V h

0 (ωi).

7



3.3 Convergence of the adaptive procedure

In this section, we analyze the convergence of the above online enrichment procedure. We begin our analysis
at the inequality (17). Notice that, this inequality can be written as

‖uh − u
(m+1)
H ‖2A ≤ ‖uh − u

(m)
H ‖2A − ‖R

(m)
i ‖2, (18)

when the basis function φ is obtained as in (12).

On the other hand, we will show that the error ‖uh − u
(m)
H ‖A can be controlled by the residual norm

‖R
(m)
i ‖. To do so, we consider an arbitrary function v ∈ V h

DG. Let vi ∈ V h(ωi) be the restriction of v in ωi,

and let v
(0)
i ∈ V i,off be the component of vi in the offline space V i,off. By the GMsDGM (2), the fine-grid

problem (7) and the Galerkin orthogonality (13), we have

aDG(uh − u
(m)
H , v) = aDG(uh − u

(m)
H , v − v(0)), ∀v(0) ∈ V

(0)
H ,

where we define v(0) =
∑Nc

i=1 v
(0)
i ∈ V

(0)
H and use the fact that V

(0)
H ⊂ V

(m)
H for all m ≥ 0. By (7), we have

aDG(uh − u
(m)
H , v) = (f, v − v(0))− aDG(u

(m)
H , v − v(0)).

Using the property
∑4

j=1 χ
K
(j) = 1 for all K ∈ T H ,

aDG(uh − u
(m)
H , v) =

∑

K∈T H

4∑

j=1

(
(f, χK

(j)(v − v
(0)
i ))− aDG(u

(m)
H , χK

(j)(v − v
(0)
i ))

)
.

Writing the above sum over coarse neighborhoods ωi, we have

aDG(uh − u
(m)
H , v) =

Nc∑

i=1

∑

K⊂ωi

(
(f, χK

i (v − v
(0)
i ))− aDG(u

(m)
H , χK

i (v − v
(0)
i ))

)
.

For each coarse neighborhood ωi, we define the following modified local residual by

R̃
(m)
i (v) =

∑

K⊂ωi

(
(f, χK

i v)− aDG(u
(m)
H , χK

i v)
)
, v ∈ V h(ωi). (19)

The modified residual R̃
(m)
i can be seen as a linear functional defined on V h(ωi) with norm ‖R̃

(m)
i ‖ defined

in the following way

‖R̃
(m)
i ‖ = sup

v∈V h(ωi)

|R̃
(m)
i (v)|

‖
∑

K⊂ωi
χK
i v‖ωi

In the above definitions, χK
i is considered to be defined only on K, and has zero value outside K.

Using the definition of the modified residual R̃
(m)
i , we have

aDG(uh − u
(m)
H , v) ≤

Nc∑

i=1

‖R̃
(m)
i ‖ ‖

∑

K⊂ωi

χK
i (v − v

(0)
i )‖A (20)

where we used the fact that
∑

K⊂ωi
χK
i (v − v

(0)
i ) is zero on ∂ωi. Using Lemma 2.1,

‖
∑

K⊂ωi

χK
i (v − v

(0)
i )‖A ≤ a

1
2

1 ‖
∑

K⊂ωi

χK
i (v − v

(0)
i )‖DG. (21)
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By the definition of the DG-norm,

‖χK
i (v − v

(0)
i )‖2DG =

∑

K⊂ωi

∫

K

κ|∇(χK
i (v − v

(0)
i ))|2 +

γ

h

∑

e

∫

e

κ[[χK
i (v − v

(0)
i )]]2. (22)

For each K ⊂ ωi, we have

∫

K

κ|∇(χK
i (v − v

(0)
i ))|2 ≤ 2

∫

K

κχ2
i |∇(v − v

(0)
i )|2 + 2

∫

K

κ|∇χK
i |2(v − v

(0)
i )2. (23)

For each e ∈ EH
i , we have

∫

e

κ[[χK
i (v − v

(0)
i )]]2 ≤ 2

∫

e

κ{{χK
i }}2[[v − v

(0)
i ]]2 + 2

∫

e

κ[[χK
i ]]2{{v − v

(0)
i }}2. (24)

Combining inequalities (23) and (24) in (22), we have

‖χK
i (v − v

(0)
i )‖2DG ≤ 2‖v − v

(0)
i ‖2Ai

+ 2
(∫

ωi

κ|∇χK
i |2(v − v

(0)
i )2 +

γ

h

∑

e∈EH

i

∫

e

κ[[χK
i ]]2{{v − v

(0)
i }}2

)
(25)

where ‖v‖2Ai
= aωi

(v, v). Using the spectral problem (9), we have

‖v − v
(0)
i ‖2Ai

= aωi
(vi − v

(0)
i , vi − v

(0)
i ) ≤ aωi

(vi, vi) = ‖v‖2Ai

and
∫

ωi

κ|∇χK
i |2(v − v

(0)
i )2 +

γ

h

∑

e∈EH

i

∫

e

κ[[∇χK
i ]]2{{v − v

(0)
i }}2 = sωi

(vi − v
(0)
i , vi − v

(0)
i ) ≤

1

λωi

Li+1

‖v‖2Ai
.

Thus, (25) and (21) impleis

‖χK
i (v − v

(0)
i )‖2A ≤ 2a1

(
1 +

1

λωi

Li+1

)
‖v‖2Ai

.

Hence, (20) becomes

aDG(uh − u
(m)
H , v) ≤

( Nc∑

i=1

2a1(1 +
1

λωi

Li+1

)‖R̃
(m)
i ‖2

) 1
2
( Nc∑

i=1

‖v‖2Ai

) 1
2

.

We remark that the above inequality holds for any v ∈ V h
DG. Taking v = vh − v

(m)
H and using Lemma 2.1,

we finally obtain

‖uh − u
(m)
H ‖2A ≤ 2a−1

0 a1C0

Nc∑

i=1

(
1 +

1

λωi

Li+1

)
‖R̃

(m)
i ‖2, (26)

where C0 = maxK∈T H nK and nK is the number of vertices of the coarse grid block K.
We define

θ = ‖R
(m)
i ‖2/η2, and η2 = 2a−1

0 a1C0

Nc∑

i=1

(
1 +

1

λωi

Li+1

)
‖R̃

(m)
i ‖2. (27)

From (18) and (26), we see that the following convergence holds

‖uh − u
(m+1)
H ‖2A ≤ (1 − θ)‖uh − u

(m)
H ‖2A.

We summarize the above results in the following theorem.
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Theorem 3.1. Let uh be the solution of (7) and u
(m)
H , m ≥ 0, be the solution of (2) in the m-th iteration.

Then the following residual bound holds

‖uh − u
(m)
H ‖2A ≤ 2a−1

0 a1C0

Nc∑

i=1

(
1 +

1

λωi

Li+1

)
‖R̃

(m)
i ‖2. (28)

Moreover, the following convergence holds

‖uh − u
(m+1)
H ‖2A ≤ (1− θ)‖uh − u

(m)
H ‖2A (29)

where θ is defined in (27).

We remark that one can derive a priori error estimate for the error ‖uh − u
(m)
H ‖DG, for every m ≥ 0.

Since the purpose of this paper is an a posteriori error estimate (28) and the convergence of an adaptive
enrichment algorithm (29), we will not derive a priori error estimate.

Finally, we remark that by using more basis functions in the initial space V
(0)
H , the values of the eigenvalues

λωi

Li+1 are larger. Thus, the value of θ is further away from zero, and this fact enhances the convergence rate.
In particular, the convergence rate is affected by the quantity Λmin = min1≤i≤Nc

λωi

Li+1. The convergence is
slow when Λmin is small (cf. [8, 24]). We also remark that one can add online basis functions in multiple
coarse neighborhoods to speed up the convergence. Let S be the index set for which online basis functions
are added in ωi for i ∈ S. By using similar arguments as above, we obtain

‖uh − u
(m+1)
H ‖2A ≤ (1− θ̃)‖uh − u

(m)
H ‖2A

where
θ̃ =

∑

i∈S

‖R
(m)
i ‖2/η2.

4 Numerical Results

In this section, we will present some numerical examples to show the performance of the proposed method.
The implementation procedure of online adaptive GMsDGM is described below. First, we choose a fixed
number of functions for every coarse neighborhood by solving the local spectral problem. This fixed number
for every coarse neighborhood is called the number of initial basis. After that, we split these functions into
the basis functions of the offline space such that each basis function is supported in one coarse grid block.

We denote this offline space as V off and set V
(0)
H = V off.

The coarse neighborhoods are denoted by ωi,j , where i = 1, 2, · · · , Nx and j = 1, 2, · · · , Ny and Nx and
Ny are the number of coarse nodes in the x and y directions respectively. We consider Ix,odd and Ix,even
as the set of odd and even indices from {1, 2, · · · , Nx}. Similarly, Iy,odd and Iy,even are the set of odd
and even indices from {1, 2, · · · , Ny}. In each iteration of our online adaptive GMsDGM, we will perform
4 sub-iterations which add online basis functions in the non-overlapping coarse neighborhoods ωi,j with
(i, j) ∈ Ix,odd× Iy,odd, (i, j) ∈ Ix,odd× Iy,even, (i, j) ∈ Ix,even× Iy,odd and (i, j) ∈ Ix,even× Iy,even respectively.

We will take γ = 2 and D = [0, 1]2. The domain is divided into 10 × 10 uniform square coarse blocks.
Each coarse block is then divided into 10× 10 fine blocks consisting of uniform squares. Namely, the whole
domain is partitioned by 100 × 100 fine grid blocks. The medium parameter κ is shown in Figure 3. The
source function f is taken as the constant 1. To compare the accuracy, we will use the following error
quantities

e2 =
‖uh − uH‖L2(D)

‖uh‖L2(D)
, and ea =

‖uh − uH‖DG

‖uh‖DG
.
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Figure 3: Permeability field κ.

4.1 Comparison of using different number of initial basis

In Table 1, we present the convergence history of our algorithm for using one, two, three, four initial basis
per coarse neighborhood. Notice that, in the presentation of our results, DOF means the total number of
basis functions used in the whole domain. We use the continuous multiscale basis functions as the initial
partition of unity. In the tables, we obtain a fast error decay which give us a numerical solution with error
smaller than 0.1% in two or three iterations. We can see the error decay of using one initial basis is slower
than the error decay of using two or more initial basis since Λmin for using one initial basis is too small.

DOF ea e2
324 44.50% 24.88%
648 9.92% 2.18%
972 0.78% 7.54e-2%
1296 3.24e-2% 2.13e-3%
1620 2.42e-4% 1.10e-5%

DOF ea e2
648 17.73% 3.58%
972 0.31% 1.80e-2%
1296 3.52e-3% 1.62e-4%
1620 1.81e-5% 8.58e-7%
1948 1.04e-7% 4.68e-9%

DOF ea e2
972 11.30% 1.72%
1296 0.45% 2.44e-2%
1620 3.05e-3% 1.37e-4%
1944 1.06e-5% 4.08e-7%
2240 4.59e-8% 2.14e-9%

DOF ea e2
1296 8.38% 1.00%
1620 7.98e-2% 3.13e-3%
1944 9.93e-4% 3.57e-5%
2268 1.39e-5% 5.15e-7%
2540 4.23e-8% 1.55e-9%

Table 1: Top-left: One initial basis (Λmin = 4.89e− 4). Top-right: Two initial basis (Λmin = 0.9504).
Bottom-left: Three initial basis (Λmin = 1.4226). Bottom-right: Four initial basis (Λmin = 2.2045).

To further study the importance of the initial basis, we will present another example with a different
medium parameter κ shown in Figure 4. The domain D is divided into 5 × 5 coarse blocks consisting of
uniform squares. Each coarse block is then divided into 40×40 fine blocks also consisting of uniform squares.
The convergence history for the use of one, two, three, four initial basis and the corresponding total number
of degrees of freedom (DOF) are shown in Table 2, Table 3, Table 4, Table 5 respectively. We consider
two different contrasts. On the right table, we increase the contrast by 100 times. More precisely, the
conductivity of inclusions and channels in Figure 2 (left figure) is multiplied by 100. In this case, the first 4
eigenvalue that are in the regions with channels become 100 times smaller. The decrease in the eigenvalues
will slow down the error decay. In Table 2, we can observe that the error decay for the lower contrast case
is much faster than the higher contrast case. In the higher contrast case, the error stop decreasing in some
iterations. Similar observations are obtained when we use 2 or 3 initial basis. For using four initial basis, we
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observe a rapid convergence for both higher and lower contrast case.
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Figure 4: Permeability field κ.

DOF ea e2
64 25.44% 6.67%
128 1.20% 0.23%
192 0.47% 0.10%
256 0.26% 5.79e-2%
320 0.10% 2.30e-2%
384 6.22e-2% 1.02e-2%
448 3.70e-4% 1.57e-5%

DOF ea e2
64 25.45% 6.67%
128 1.45% 0.27%
192 1.39% 0.27%
256 0.84% 0.15%
320 0.34% 7.98e-2%
384 0.34% 7.91e-2%
448 0.15% 3.71e-2%

Table 2: One initial basis. Left: Lower contrast(1e4)(Λmin = 0.0062).
Right: Higher contrast(1e6)(Λmin = 6.22e− 5).

DOF ea e2
128 18.22% 4.42%
192 1.14% 0.12%
256 0.50% 4.95e-2%
320 4.17e-2% 2.06e-3%
384 5.73e-3% 5.38e-4%
448 7.12e-4% 2.89e-5%

DOF ea e2
128 18.56% 4.62%
192 1.37% 0.16%
256 1.25% 0.14%
320 1.23% 0.13%
384 0.41% 3.22e-2%
448 3.63e-2% 3.56e-3%

Table 3: Two initial basis. Left: Lower contrast(1e4)(Λmin = 0.027).
Right: Higher contrast(1e6)(Λmin = 2.72e− 4).

4.2 Setting tolerance for the residual

In this section, we will show the performance for the online enrichment implementing it only for regions
with a residual error bigger than a certain threshold. We consider the medium parameter shown in Figure
3. We show the results for using three different tolerances (tol) 10−3, 10−4 and 10−5. We will enrich for the
coarse regions with residual larger than the tolerance. In Table 6, we show the errors when using 1 initial
basis function for tolerances 10−3, 10−4 and 10−5. We can see that the convergence history in the first few
iteration is similar to the result shown in previous section. Moreover, the energy error of the multiscale
solution is in the same order of the tolerance and the error will stop decreasing even if we perform more
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DOF ea e2
192 10.69% 1.86%
256 0.80% 6.66e-2%
320 0.34% 2.24e-2%
384 1.51e-2% 6.24e-4%
448 2.25e-4% 1.61e-5%
508 1.72e-6% 6.70e-8%

DOF ea e2
192 11.55% 2.14%
256 1.13% 0.10%
320 0.98% 8.85e-2%
384 0.96% 8.95e-2%
448 0.30% 1.39e-2%
508 2.00e-3% 8.39e-5%

Table 4: Three initial basis. Left: Lower contrast(1e4)(Λmin = 0.0371).
Right: Higher contrast(1e6)(Λmin = 3.75e− 4).

DOF ea e2
248 7.92% 1.14%
312 0.25% 2.42e-2%
376 5.09e-3% 2.72e-4%
440 5.18e-5% 2.62e-6%
484 1.39e-6% 6.40e-8%

DOF ea e2
242 9.63% 1.59%
306 0.51% 5.40e-2%
370 1.38e-2% 9.46e-4%
434 2.10e-4% 1.59e-5%
494 1.74e-6% 1.27e-7%

Table 5: Four initial basis. Left: Lower contrast(1e4)(Λmin = 0.4472).
Right: Higher contrast(1e6)(Λmin = 0.3844).

iterations. Therefore, we can compute a multiscale solution with a prescribed error level by choosing a
suitable tolerance in the adaptive algorithm. In Table 7 and Table 8, we show the errors for the last three
iterations when using 2 and 3 initial basis functions respectively for tolerances 10−3, 10−4 and 10−5. We
have the same observation that the energy errors have the same magnitude as the tolerances.

DOF ea e2
324 44.50% 24.88%
648 9.92% 2.18%
924 0.81% 7.72e-2%
976 0.29% 2.49e-2%

DOF ea e2
324 44.50% 24.88%
648 9.92% 2.18%
972 0.78% 7.54e-2%
1176 4.12e-2% 2.88e-3%
1184 2.65e-2% 1.57e-3%

DOF ea e2
324 44.50% 24.88%
648 9.92% 2.18%
972 0.78% 7.54e-2%
1284 3.24e-2% 2.13e-3%
1364 2.56e-3% 1.55e-4%

Table 6: One initial basis. Left: tol = 10−3. Middle: tol = 10−4. Right: tol = 10−5.

DOF ea e2
648 17.73% 3.58%
964 0.33% 1.85e-2%
972 0.30% 1.63e-2%

DOF ea e2
648 17.73% 3.58%
972 0.31% 1.80e-2%
1136 2.53e-2% 1.24e-3%

DOF ea e2
972 0.31% 1.80e-2%
1248 3.99e-3% 1.85e-4%
1276 2.49e-3% 1.19e-4%

Table 7: Two initial basis. Left: tol = 10−3. Middle: tol = 10−4. Right: tol = 10−5.

DOF ea e2
972 11.30% 1.72%
1248 0.50% 2.57e-2%
1276 0.24% 9.98e-3%

DOF ea e2
972 11.30% 1.72%
1296 0.45% 2.44e-2%
1436 2.60e-2% 9.70e-4%

DOF ea e2
1296 0.45% 2.44e-2%
1564 3.52e-3% 1.56e-4%
1576 2.49e-3% 1.04e-4%

Table 8: Three initial basis. Left: tol = 10−3. Middle: tol = 10−4. Right: tol = 10−5.
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4.3 Adaptive online enrichment

In this section, we will show the performance for the online enrichment implementing it only for regions that
have a cumulative residual that is θ fraction of the total residual. We consider the medium parameter shown
in Figure 4 (4 channels medium).

Assume that the local residuals are arranged such that

r1 ≥ r2 ≥ r3 ≥ · · · .

We only add the basis φ1, · · · , φk for the coarse neighborhoods ω1, · · · , ωk such that k is the smallest integer
with

θ

Nc∑

i=1

r2i ≤

k∑

i=1

r2i .

In Table 9, we present the error for the last 5 iterations when using 1 initial basis functions with the
tolerance 10−5 and θ = 0.5. Comparing the result to the previous case, we can observe that this can use less
number of basis functions to achieve a similar error. In Figure 5, we present the distribution of number of
basis functions in coarse blocks, and see that the number of basis functions is larger near the channels (c.f.
Figure 4). Thus, online basis functions can be adaptively added in some regions using an error indicator.

DOF ea e2
348 0.35% 5.19e-2%
368 0.27% 4.03e-2%
392 6.13e-2% 9.34e-3%
412 6.04e-3% 6.60e-4%
424 1.51e-3% 1.25e-4%

Table 9: The results using cumulative errors with θ = 0.5, tol = 10−5 and 1 initial basis.
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5 Conclusion

Though the use of offline basis functions is important for multiscale finite element methods, adding online
basis functions in some regions can improve the convergence dramatically. The construction of online basis
functions for various applications and discretizations require a careful analysis. In particular, as we have
shown earlier [8] for GMsFEM within continuous Galerkin framework that one needs a certain number of
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offline basis functions in order to guarantee that the online basis functions can result to a convergence
independent of physical parameters. In this paper, we develop an online basis procedure for GMsDGM that
can provide a convergence independent of the contrast and small scales. Because multiscale basis functions
are discontinuous across coarse-grid boundaries, we construct a special offline space as well as online basis
functions. We show that our construction will guarantee a convergence independent of the contrast and small
scales if we select a certain number of offline basis functions based on a local spectral problem. Furthermore,
we apply an adaptive procedure to add online basis functions in only some selected regions. Numerical
results are presented to back up our theoretical findings.

Appendix

In this section, we proof Lemma 2.1. Let K be a coarse grid block and let n∂K be the unit outward normal
vector on ∂K. We let V h(K) be the space of continuous piecewise bi-quadratic polynomials defined in K,
and we denote V h(∂K) by the restriction of the conforming space V h(K) on ∂K. The normal flux κ∇u · n∂K

is understood as an element in Vh(∂K) and is defined by
∫

∂K

(κ∇u · n∂K) · v =

∫

K

κ∇u · ∇v̂, v ∈ V h(∂K), (30)

where v̂ ∈ Vh(K) is the harmonic extension of v in K. By the Cauchy-Schwarz inequality,
∫

∂K

(κ∇u · n∂K) · v ≤ aKH(u, u)
1
2 aKH(v̂, v̂)

1
2 .

By an inverse inequality and the fact that v̂ is the harmonic extension of v

aKH(v̂, v̂) ≤ κKC
2
invh

−1

∫

∂K

|v|2, (31)

where we recall that κK is the maximum of κ over K and Cinv > 0 is the constant from inverse inequality.
Thus, ∫

∂K

(κ∇u · n∂K) · v ≤ κ
1
2

KCinvh
− 1

2 ‖v‖L2(∂K) a
K
H(u, u)

1
2 .

This shows that ∫

∂K

|κ∇u · n∂K |2 ≤ κKC
2
invh

−1aKH(u, u). (32)

Next, by the definition of aDG, we have

aDG(u, v) = aH(u, v)−
∑

E∈EH

∫

E

(
{{κ∇u · nE}}[[v]] + {{κ∇v · nE}}[[u]]

)
+

∑

E∈EH

γ

h

∫

E

κ[[u]][[v]].

Notice that

aH(u, v) +
∑

E∈EH

γ

h

∫

E

κ[[u]] [[v]] ≤ ‖u‖DG ‖v‖DG.

For an interior coarse edge E ∈ EH , we let K+,K− ∈ T H be the two coarse grid blocks having the edge E.
By the Cauchy-Schwarz inequality, we have

∫

E

{{κ∇u · nE}} · [[v]] ≤
(
h

∫

E

{{κ∇u · nE}}
2(κ)−1

) 1
2
( 1

h

∫

E

κ[[v]]2
) 1

2

. (33)

Notice that

h

∫

E

{{κ∇u · nE}}
2(κ)−1 ≤ h

(∫

E

(κ+∇u+ · nE)
2(κK+)−1 +

∫

E

(κ−∇u− · nE)
2(κK−)−1

)
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where u± = u|K± , κ± = κ|K± . So, summing the above over all E, we have

h
∑

E∈EH

∫

E

{{κ∇u · nE}}
2(κ)−1 ≤ h

∑

K∈TH

∫

∂K

(κ∇u · n∂K)2(κK)−1 ≤ C2
invaH(u, u).

Thus we have ∑

E∈EH

∫

E

{{κ∇u · nE}}[[v]] ≤ CinvaH(u, u)
1
2

( ∑

E∈EH

1

h

∫

E

κ[[v]]2 ds
) 1

2

. (34)

Similarly, we have

∑

E∈EH

∫

E

{{κ∇v · nE}}[[u]] ≤ CinvaH(v, v)
1
2

( ∑

E∈EH

1

h

∫

E

κ[[u]]2 ds
) 1

2

.

Summing the above two inequalities, we have

∑

E∈EH

∫

E

(
{{κ∇u · nE}}[[v]] + {{κ∇v · nE}}[[u]]

)
≤ Cinvγ

− 1
2 ‖u‖DG ‖v‖DG. (35)

This proves the continuity (5).
For the coercivity (6), we have

aDG(u, u) = ‖u‖2DG −
∑

E∈EH

∫

E

(
{{κ∇u · nE}} · [[u]] + {{κ∇u · nE}} · [[u]]

)
.

By (35), we have

aDG(u, u) ≥ (1− Cinvγ
− 1

2 )‖u‖2DG,

which gives the desired result.

References

[1] Assyr Abdulle and Yun Bai. Adaptive reduced basis finite element heterogeneous multiscale method.
Comput. Methods Appl. Mech. Engrg., 257:203–220, 2013.

[2] T. Arbogast. Analysis of a two-scale, locally conservative subgrid upscaling for elliptic problems. SIAM
J. Numer. Anal., 42(2):576–598 (electronic), 2004.

[3] S. Brenner and L. Scott. The Mathematical Theory of Finite Element Methods. Springer-Verlag, New
York, 2007.

[4] Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decomposition by basis
pursuit. SIAM Rev., 43(1):129–159, 2001. Reprinted from SIAM J. Sci. Comput. 20 (1998), no. 1,
33–61 (electronic) [ MR1639094 (99h:94013)].

[5] C.-C. Chu, I. G. Graham, and T.-Y. Hou. A new multiscale finite element method for high-contrast
elliptic interface problems. Math. Comp., 79(272):1915–1955, 2010.

[6] E. Chung and Y. Efendiev. Reduced-contrast approximations for high-contrast multiscale flow problems.
Multiscale Model. Simul., 8:1128–1153, 2010.

[7] E. Chung, Y. Efendiev, and R. Gibson. An energy-conserving discontinuous multiscale finite element
method for the wave equation in heterogeneous media. Advances in Adaptive Data Analysis, 3:251–268,
2011.

16



[8] E. Chung, Y. Efendiev, and T. Leung. Residual-driven online generalized multiscale finite element
methods. submitted, arXiv:1501.04565.

[9] E. Chung, Y. Efendiev, and W. T. Leung. Generalized multiscale finite element method for wave
propagation in heterogeneous media. arXiv:1307.0123.

[10] E. Chung, Y. Efendiev, and G. Li. An adaptive GMsFEM for high contrast flow problems. J. Comput.
Phys., 273:54–76, 2014.

[11] E. Chung and W. T. Leung. A sub-grid structure enhanced discontinuous galerkin method for multiscale
diffusion and convection-diffusion problems. Commun. Comput. Phys., 14:370–392, 2013.

[12] W. Dorfler. A convergent adaptive algorithm for poisson’s equation. SIAM J.Numer. Anal., 33:1106 –
1124, 1996.

[13] Martin Drohmann, Bernard Haasdonk, and Mario Ohlberger. Reduced basis approximation for nonlinear
parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput.,
34(2):A937–A969, 2012.

[14] L.J. Durlofsky. Numerical calculation of equivalent grid block permeability tensors for heterogeneous
porous media. Water Resour. Res., 27:699–708, 1991.

[15] W. E and B. Engquist. Heterogeneous multiscale methods. Comm. Math. Sci., 1(1):87–132, 2003.

[16] Y. Efendiev and J. Galvis. A domain decomposition preconditioner for multiscale high-contrast prob-
lems. In Y. Huang, R. Kornhuber, O. Widlund, and J. Xu, editors, Domain Decomposition Methods in
Science and Engineering XIX, volume 78 of Lect. Notes in Comput. Science and Eng., pages 189–196.
Springer-Verlag, 2011.

[17] Y. Efendiev, J. Galvis, and T. Hou. Generalized multiscale finite element methods. Journal of Compu-
tational Physics, 251:116–135, 2013.

[18] Y. Efendiev, J. Galvis, R. Lazarov, M. Moon, and M. Sarkis. Generalized multiscale finite element
method. Symmetric interior penalty coupling. J. Comput. Phys., 255:1–15, 2013.

[19] Y. Efendiev, J. Galvis, R. Lazarov, and J. Willems. Robust domain decomposition preconditioners for
abstract symmetric positive definite bilinear forms. ESAIM Math. Model. Numer. Anal., 46(5):1175–
1199, 2012.

[20] Y. Efendiev, J. Galvis, G. Li, and M. Presho. Generalized multiscale finite element methods. oversam-
pling strategies. to appear in International Journal for Multiscale Computational Engineering.

[21] Y. Efendiev, J. Galvis, and X.H. Wu. Multiscale finite element methods for high-contrast problems
using local spectral basis functions. Journal of Computational Physics, 230:937–955, 2011.

[22] Y. Efendiev and T. Hou. Multiscale Finite Element Methods: Theory and Applications, volume 4 of
Surveys and Tutorials in the Applied Mathematical Sciences. Springer, New York, 2009.

[23] Y. Efendiev, T. Hou, and V. Ginting. Multiscale finite element methods for nonlinear problems and
their applications. Comm. Math. Sci., 2:553–589, 2004.

[24] J. Galvis and Y. Efendiev. Domain decomposition preconditioners for multiscale flows in high contrast
media. reduced dimension coarse spaces. SIAM J. Multiscale Modeling and Simulation, 8:1621–1644,
2010.

[25] M. Ghommem, M. Presho, V. M. Calo, and Y. Efendiev. Mode decomposition methods for flows in
high-contrast porous media. global-local approach. Journal of Computational Physics, Vol. 253., pages
226–238.

17



[26] T. Hou and X.H. Wu. A multiscale finite element method for elliptic problems in composite materials
and porous media. J. Comput. Phys., 134:169–189, 1997.

[27] Dinh Bao Phuong Huynh, David J. Knezevic, and Anthony T. Patera. A static condensation reduced
basis element method: approximation and a posteriori error estimation. ESAIM Math. Model. Numer.
Anal., 47(1):213–251, 2013.

[28] K. Mekchay and R. H. Nochetto. Convergence of adaptive finite element method for general second
order elliptic PDEs. SIAM J. Numer. Anal., 43:1803–1827, 2005.

[29] N. C. Nguyen, G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced basis approximation and a pos-
teriori error estimation for parametrized parabolic PDEs: application to real-time Bayesian parameter
estimation. In Large-scale inverse problems and quantification of uncertainty, Wiley Ser. Comput. Stat.,
pages 151–177. Wiley, Chichester, 2011.

[30] Beatrice M. Riviere. Discontinuous Galerkin Methods For Solving Elliptic And parabolic Equations:
Theory and Implementation. SIAM, 2008.

[31] Timo Tonn, K. Urban, and S. Volkwein. Comparison of the reduced-basis and POD a posteriori error
estimators for an elliptic linear-quadratic optimal control problem. Math. Comput. Model. Dyn. Syst.,
17(4):355–369, 2011.

[32] X.H. Wu, Y. Efendiev, and T.Y. Hou. Analysis of upscaling absolute permeability. Discrete and
Continuous Dynamical Systems, Series B., 2:158–204, 2002.

18


	1 Introduction
	2 Preliminaries
	3 Locally online adaptivity
	3.1 Initial space
	3.2 Construction of online basis functions
	3.3 Convergence of the adaptive procedure

	4 Numerical Results
	4.1 Comparison of using different number of initial basis
	4.2 Setting tolerance for the residual
	4.3 Adaptive online enrichment

	5 Conclusion

