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ABSTRACT

Accurate simulation of seismic waves is of critical importance in a variety of geophysical applica-

tions. Based on recent works on staggered discontinuous Galerkin methods, we propose for the

simulations of seismic waves a new method which has energy conservation and extremely low grid

dispersion, so that it naturally provides accurate numerical simulations of wave propagation use-

ful for geophysical applications and is a generalization of classical staggered grid finite difference

methods. Moreover, it can handle with ease irregular surface topography and discontinuities in the

subsurface models. Our new method discretizes the velocity and the stress tensor on this staggered

grid, with continuity imposed on different parts of the mesh. The symmetry of the stress tensor

is enforced by the Lagrange multiplier technique. The resulting method is an explicit scheme,
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requiring the solutions of a block diagonal system and a local saddle point system in each time

step, and is therefore very efficient. In order to tailor our scheme to Rayleigh waves, we develop a

mortar formulation of our method. In particular, a fine mesh is used near the free surface and a

coarse mesh is used in the rest of the domain. The two meshes are in general not matching, and

the continuity of the velocity at the interface is enforced by a Lagrange multiplier. The resulting

method is also efficient in time marching. We also give a stability analysis of the scheme and

an explicit bound for the time step size. In addition, we present some numerical results to show

that our method is able to preserve the wave energy and accurately compute the Rayleigh waves.

Moreover, the mortar formulation gives a significant speed up compared with the use of a uniform

fine mesh, and provides an efficient tool for the simulation of Rayleigh waves.
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INTRODUCTION

Accurate simulation of seismic and Rayleigh waves is of critical importance in a variety of geophys-

ical applications, such as exploration geophysics, geotechnical characterization, and earthquake-

related damage assessment (Aki and Richards, 2002). Consequently, it is a long-studied topic in

geophysics in that many challenging problems arise in designing for Rayleigh wave simulation an

accurate method which ideally should enjoy low grid dispersion, provide accurate long-time/long-

range wave propagation, and allow irregular surface topography and discontinuities in the subsur-

face model. Based on recent works in Chung and Engquist (2006, 2009), we design a staggered

discontinuous Galerkin method to tackle exactly these challenges: the new method has extremely

low grid dispersion as shown in Chung et al. (2013a) and Chan et al. (2013); it has the energy-

conservation property (Chung and Engquist, 2006, 2009) so that it naturally provides accurate

numerical simulations of wave propagation useful for geophysical applications and is a generaliza-

tion of classical staggered grid finite difference methods. Moreover, it can handle with ease irregular

surface topography and discontinuities in the subsurface models, since our method is based on a

novel triangular staggered mesh.

In the literature, simulations of Rayleigh waves have been mainly tackled with finite-difference

methods (FDM) and finite-element methods (FEM). In terms of FDM for Rayleigh waves, most of

these methods are based on staggered-grid FDMs proposed by Madariaga (1976), Virieux (1986)

and Levander (1988). When the surface topography is flat, the free-surface boundary condition

associated with Rayleigh waves is relatively easy to handle in a staggered-grid FDM. In Bohlen and

Saenger (2006), the staggered-grid and the rotated staggered-grid FDMs are applied to simulate
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Rayleigh waves with flat surface topography, and accuracy for both methods is carefully studied. It

is well-known that one needs more points per wavelength for surface waves than body waves since

the surface wave in the case of flat topography mainly travels horizontally and decays exponentially

in the vertical direction. Therefore, one needs to use more points in the vertical direction in order

to capture the sharp decay. To overcome this increase in the number of unknowns near the surface,

Kosloff and Carcione (2010) proposes a variable-grid-spacing method in which the spatial grid is

finer near the surface and coarser far away from the surface and the staggered sine and cosine

transforms are applied to compute spatial derivatives; the resulting method is highly accurate and

is able to handle propagation of Rayleigh waves at large offsets.

When the surface topography is non-flat, two remedies are proposed to treat free-surface bound-

ary conditions in the setting of a staggered-grid FDM: one option is to use a staircase approximation

to the non-flat free surface topography, another option is to match the free surface topography by

deforming computational grids. When applying staircase approximation to the non-flat free surface

topography, Levander (1988) originally proposed the stress-image technique to update the veoloc-

ities for grid nodes on (flat) free surfaces, and Robertsson (1996) proposed an extension of this

method, in which the grid nodes are classified into seven categories with different update rules.

The vacuum formulation (Zahradnik et al., 1993) is developed along the same line by setting pa-

rameters to zero above the free surface so that surface topography can be implemented in the same

manner as an internal material interface. However, numerical tests have shown that the simple

vacuum formulation becomes unstable when using fourth-order or higher order spatial difference

operators (Graves, 1996); consequently, Zeng et al. (2012) proposed an improved vacuum formu-

lation to incorporate surface topography, in which the parameters at the surface grid nodes are
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averaged using the same scheme as for the interior grid nodes; this method is shown to be stable

using fourth-order spatial difference operators without notable numerical dispersion. On the other

hand, various methods are proposed to deform computational grids to match the free surface to-

pography by using curvilinear coordinates: Hestholm and Ruud (2002); Zhang and Chen (2006);

Lombard et al. (2008) in the setting of a staggered-grid FDM and Appelö and Petersson (2009)

in the setting of a non-staggered-grid FDM. Since these methods involve computation of spatial

derivatives in the curved grid and application of the chain rule to calculate the required cartesian

spatial derivatives, Komatitsch et al. (1996) proposed a method to solve the equation directly on

curved grids.

Despite the efficiency of FDMs on structured grids, implementing free-surface conditions in

FDMs can be difficult on an irregular domain. Therefore, Moczo et al. (1997) presented a hy-

brid method in which low-order FEMs were used near boundaries while second-order FDMs were

used for the rest of the model, and Ma et al. (2004) presented another hybrid method which com-

bined low-order FEMs with a fourth-order velocity-stress staggered-grid FDM. There are certainly

plenty of advantages in using FEMs for surface topography since they allow the use of triangular

meshes suitable for irregular surfaces. In terms of new developments in FEM for seismic wave

modeling, several different methods are popular in geophysical community as briefly summarized

in Basabe and Sen (2009): the mixed finite-element method, the spectral-element method and the

discontinuous Galerkin method. Raviart and Thomas (1977) introduced the mixed FEM that is

suitable for the spatial approximation of the wave equation in the velocity-stress form, and Geveci

(1988) analyzed its convergence. The advantage of using mixed formulations is that the energy is

conserved both locally and globally, which is an important property described by wave equations.
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However, when an explicit time discretization is applied, this method usually produces an implicit

time-marching scheme because nondiagonal mass matrices may arise in the process, which make

the explicit time-stepping inefficient. The mass-lumping technique, which is a way to approximate

the mass matrix by a diagonal matrix, is developed to improve the efficiency (Becache et al., 2000;

Cohen et al., 2001). However, mass-lumping technique for tetrahedral meshes is not available for

arbitrary order of approximations. The spectral element method (SEM) is a class of high-order

Galerkin FEMs and originally developed for fluid dynamics (Patera, 1984), and it has been suc-

cessfully applied to acoustic and elastic wave propagations (Seriani and Priolo, 1994; Komatitsch

and Vilotte, 1998; Komatitsch et al., 2008). Being a method designed for hexahedral meshes, the

SEM makes the design of an optimal mesh cumbersome in contrast to the flexibility offered by

tetrahedral meshes. The discontinuous Galerkin (DG) FEMs provides another class of methods

which can overcome the above disadvantages. In particular, the DG FEMs are constructed based

on tetrahedral meshes, and have block diagonal mass matrices due to the discontinuous nature of

basis functions, allowing efficient time-marching. Discontinuous Galerkin method was first intro-

duced for the neutron transport equation in Reed and Hill (1973) and Lesaint and Raviart (1974).

Since then, the method has become very popular for the numerical solutions of partial differential

equations. For a general introduction to the subject, see Cockburn et al. (2000); Riviere (2008);

Arnold (1982). Regarding computational wave propagation, some discontinuous Galerkin methods

have been proposed in Bernacki et al. (2006); Bourdel et al. (1991); Giraldo et al. (2002); Grote

et al. (2006); Hu et al. (1999) for the acoustic wave equations and in Falk and Richter (1999);

Johnson and Pitkäranta (1986) for the hyperbolic system. For seismic wave simulations, some

discontinuous Galerkin methods have been proposed in De Basabe et al. (2008); Dumbser and
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Kaser (2006); Rivière and Wheeler (2003). Furthermore, the dispersive and dissipative properties

of discontinuous Galerkin methods are analyzed in Ainsworth et al. (2006) and Chan et al. (2013).

Recently, a new class of staggered discontinuous Galerkin methods based on staggered meshes

was proposed and analyzed. In particular, the staggered DG (SDG) method has been successfully

developed for many wave propagation problems (Chung and Engquist, 2006, 2009; Chung et al.,

2013a; Chung and Ciarlet, 2013; Chung and Lee, 2012; Chan et al., 2013) and other applications

(Chung et al., 2013b; Kim et al., 2013; Chung and Kim, 2014; Chung et al., 2014a; Kim et al., 2014;

Chung et al., 2014b). The SDG method is typically applied to the first order formulation of wave

equations, and starts with two sets of irregular, staggered grids, for each of the two unknown func-

tions involved; furthermore, it designs two finite-element spaces on those two sets of staggered grids

and carries out integration-by-parts to derive corresponding weak formulations; finally, it applies

the standard leap-frog scheme for explicit time stepping. The SDG method has several distinctive

features that are particularly attractive: first, it conserves the wave energy automatically; second,

it is optimally convergent in both the L2-norm and energy norm; third, it yields block-diagonal

mass matrices so that very efficient explicit time-stepping is allowed; fourth, it is flexible in han-

dling complex geometries so that free surface conditions on non-flat surfaces can be imposed easily;

fifth, as shown in Chung et al. (2013a) and Chan et al. (2013), it yields solutions with extremely

low dispersion errors in that the order of dispersion error in terms of grid-size for the SDG method

is two orders higher than that of classical finite-difference methods based on non-staggered grids.

Since the SDG method offers many advantages in computational wave propagation, it provides a

competitive alternative for simulations of Rayleigh waves and seismic waves in general for models

with irregular surface topography. It is therefore the purpose of this paper to develop a SDG
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method for the elastic wave equation. We emphasize that the SDG method for the acoustic wave

equation, for example Chung and Engquist (2006, 2009), cannot be directly applied to the elastic

wave equation due to the symmetry of the stress tensor. In this paper, we construct a new SDG

method using the Lagrange multiplier technique for the enforcement of the symmetry of the stress

tensor. The resulting scheme retains all the advantages of the SDG method for acoustic wave

equations discussed above. Moreover, due to the staggered continuity property of basis functions

for the SDG method, the use of the Lagrange multiplier only gives a local saddle point system,

instead of a global system common to other Lagrange multiplier techniques for FEMs. Hence, the

time-marching can be done very efficiently.

In addition, a mortar formulation is developed to tailor our scheme to the simulation of Rayleigh

waves. We split the computational domain in two parts, one of which is a thin layer near the free

surface. A very fine mesh is used in the thin layer near the surface to capture the Rayleigh wave

and a coarse mesh is used in the rest of the domain to speed up the simulations. The basis functions

for the velocity in the two parts of the computational domain are totally decoupled and they are

connected by the use of Lagrange multiplier. The resulting scheme is able to produce an equally

accurate solution compared with solution obtained by a uniform fine mesh.

The paper is organized as follows. The paper starts with the basic formulation of the SDG

method, followed by a stability analysis for the time step size. A set of numerical results are then

given to show the performance of the scheme. In addition, a numerical study of dispersion error is

presented. Finally, a mortar formulation is developed to tailor the scheme to Rayleigh waves. The

paper ends with a conclusion.
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PROBLEM SETTING

The simulation of Rayleigh waves is mathematically modeled by a half-space problem. To simplify

the presentation, we will consider the 2-D problems only. First, the domain of interest is the infinite

half-space defined by

Ω̂ := {(x, z) | −∞ < x < ∞, Γ(x) < z < ∞}

where Γ(x) is a function which models the surface topography. In the domain Ω̂, we solve the

following elastic wave equation

ρ
∂u

∂t
− divΣ = f , (1)

A
∂Σ

∂t
− ε(u) = 0, (2)

where ρ is the density, u = (u1, u2)
T is the velocity field and Σ = (σij) is the 2 × 2 symmetric

stress tensor. In addition, f = (f1, f2)
T is a given source term. We write σ1 = (σ11, σ12) and

σ2 = (σ21, σ22) as the first and the second rows of Σ, respectively. The above divergence is defined

as divΣ = (div σ1,div σ2)
T . Moreover, we have ε(u)ij =

1
2(∂iuj + ∂jui). The matrix A is defined

by

A =




λ+ 2µ λ 0 0

λ λ+ 2µ 0 0

0 0 2µ 0

0 0 0 2µ




−1
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where we assume that Σ = (σ11, σ22, σ12, σ21)
T in equation 2; λ and µ are the first and second

Lamé parameters of the material. Introducing a skew-symmetric 2× 2 matrix Γ, we have

ρ
∂u

∂t
− divΣ = f, (3)

A
∂σ

∂t
−∇u+ Γ = 0, (4)

where

Γ = (γij) =
1

2
(∂jui − ∂iuj).

Note that in the 2-D setting, the skew-symmetric matrix Γ is equivalent to a scalar function γ,

since the diagonal terms are zero and the off-diagonal terms have the same magnitude with opposite

signs. We remark that the role of Γ in the SDG method is a Lagrange multiplier to enforce the

symmetry of the approximate stress tensor. The details will be explained in the next section.

To solve the above elastic wave equations 3 and 4, we impose suitable initial conditions and the

following free-surface boundary condition

Σn = 0 on z = Γ(x)

where n is the outward normal to the free surface, and Σn is the standard matrix-vector product.

We introduce some notations that will be used throughout the paper. For two tensors Σ and

α, we define

Σ · α =

2∑

i=1

2∑

j=1

σijαij .

For a tensor Σ and a vector u, we define

Σ · ∇u =

2∑

i=1

σi · ∇ui
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and

u · (divΣ) =
2∑

i=1

ui(divσi).

For a unit vector n, we define

u · (Σn) =

2∑

i=1

ui(σi · n).

THE SDG METHOD

A staggered triangular grid

We will now present the triangulation of the domain by an unstructured staggered grid. Let Ω be

the computational domain, which is a truncation of the infinite half-space Ω̂ and is defined by

Ω = {(x, z) | −R < x < R, Γ(x) < z < L}.

We assume that Ω is triangulated by an initial triangular mesh, called T ′
h. This mesh can be

formed by any mesh generator. For each triangle in this mesh, we choose an interior point ν, and

then subdivide each triangle into 3 sub-triangles by connecting this point ν to the three vertices

of the triangle. A new mesh, called Th, is then formed by this sub-division process. That is, Th

is the refined triangulation of T ′
h defined by the above construction. The set of all these nodes ν

is denoted by N . An example of such construction is illustrated in Figure 1. The triangles of the

initial triangulation T ′
h are denoted by solid lines. The newly formed edges are denoted by dotted

lines.

Next, we define two types of macro elements. The first type of macro elements is defined with
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respect to the initial mesh. In particular, the triangles of the initial mesh T ′
h are called the first-type

macro elements. We use S(ν) to denote such a macro element, and we remark that these elements

are parametrized by ν. An example of such an element is illustrated by the shaded region with

horizontal lines in Figure 1. The second type of macro elements is defined with respect to the

edges of the initial triangulation T ′
h, and we use R(κ) to denote such a macro element. The macro

element R(κ) is defined as the union of the two triangles in Th sharing the edge κ. An example of

such an element is illustrated by the shaded region with vertical lines in Figure 1. If an edge κ of

the initial triangulation lies on the boundary of the computational domain, then we define R(κ) to

be the only triangle in Th having the edge κ. Moreover, we use the notation Fu to represent the

set of edges of the initial triangulation and F0
u the subset of interior edges, as u will be defined to

be continuous across those edges. We use the notation Fσ to denote the set of new edges formed

by the above sub-division process, as the normal components of σ will be defined to be continuous

across those new edges.

Let m ≥ 1 be a non-negative integer representing the order of polynomials used in our approxi-

mation space. For any triangle τ in the triangulation Th, we let P
m(τ) be the space of polynomials

of degree at most m defined on τ . We define Pm as the space of piecewise Pm(τ) functions; that

is, v ∈ Pm if the restriction of v on each triangle τ ∈ Th is in Pm(τ). We remark that we do not

impose any continuity of functions in Pm on the edges of the triangulation Th.

Next, we present definitions of the approximation spaces. First, we introduce the function space

(Uh)
2 for the approximation of the velocity vector u. Each component of u belongs to the space

Uh, which is defined by

Uh = {v ∈ Pm | v is continuous on F0
u}. (5)
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Thus, the functions in the space Uh are polynomials of at most degree m on each triangle τ ∈ Th

such that they are continuous across the internal edges of the initial triangulation T ′
h, namely, the

set F0
u . Since the functions in Uh are in general discontinuous on Fσ, these functions are supported

on R(κ), the second-type macro element. Second, we introduce the function space (Wh)
2 for the

approximation of Σ. Both of the vectors σ1 and σ2 belong to the space Wh, which is defined by

Wh = {α ∈ (Pm)2 |α · n is continuous on Fσ}. (6)

The vector fields in the space Wh are polynomials of degree at most m on each triangle τ ∈ Th such

that the normal components on the set of edges Fσ are continuous. Since the vector fields in Wh are

in general discontinuous on F0
u , these vectors are supported on S(ν), the first-type macro element.

Finally, we introduce the function space Xh for the approximation of the function Γ. We will take

Xh = Pm−1, which contains functions that are discontinuous on all edges in the triangulation Th.

Derivation

We will now derive the SDG method for the approximation of equations 3 and 4. We consider the

first component of equation 3, namely,

ρ
∂u1
∂t

− div σ1 = f1. (7)

Let v1 be a smooth test function. Multiplying equation 7 by the test function v1 and integrating

on R(κ) yields
∫

R(κ)
ρ
∂u1
∂t

v1 dx−

∫

R(κ)
(div σ1)v1 dx =

∫

R(κ)
f1v1 dx. (8)
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Using integration by parts, we have

∫

R(κ)
ρ
∂u1
∂t

v1 dx+

∫

R(κ)
σ1 · ∇v1 dx−

∫

∂R(κ)
(σ1 · n)v1 ds =

∫

R(κ)
f1v1 dx. (9)

Similarly, for the second component of equation 3, we have

∫

R(κ)
ρ
∂u2
∂t

v2 dx+

∫

R(κ)
σ2 · ∇v2 dx−

∫

∂R(κ)
(σ2 · n)v2 ds =

∫

R(κ)
f2v2 dx. (10)

Combining the above equations 9 and 10, we have

∫

R(κ)
ρ
∂u

∂t
· v dx+

∫

R(κ)
Σ · ∇v dx−

∫

∂R(κ)
(Σn) · v ds =

∫

R(κ)
f · v dx (11)

for all smooth test functions v = (v1, v2)
T . We remark that equation 11 holds for all macro elements

R(κ) and all test functions v such that v = 0 on the Dirichlet boundary of the computational

domain Ω. We also remark that the above boundary condition for the test function is only applied

to the Dirichlet boundary and the boundary where PML is used. This boundary condition is not

applied to the free surface and periodic boundary.

Next we consider equation 4. Let α = (α1,α2)
T be a smooth 2× 2 test tensor, where α1 and

α2 are two row vectors. Notice that α is not necessarily symmetric. Multiplying equation 4 by α

and integrating on the macro element S(ν), we have

∫

S(ν)
A
∂Σ

∂t
·α dx−

∫

S(ν)
∇u · α dx+

∫

S(ν)
Γ · α dx = 0. (12)

For the gradient term involving α1, we apply integration by parts to get

∫

S(ν)
∇u1 ·α1 dx = −

∫

S(ν)
u1 divα1 dx+

∫

∂S(ν)
u1 (α1 · n) ds. (13)

Similarly, for the gradient term involving α2, we have

∫

S(ν)
∇u2 ·α2 dx = −

∫

S(ν)
u2 divα2 dx+

∫

∂S(ν)
u2 (α2 · n) ds. (14)
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Hence, using equations 13 and 14, we have

∫

S(ν)
A
∂Σ

∂t
·α dx+

∫

S(ν)
u divα dx−

∫

∂S(ν)
u · (αn) ds+

∫

S(ν)
Γ · α dx = 0. (15)

Now, we will present the definition of the SDG method. The approximations of u, Σ and Γ are

denoted by uh, Σh and Γh and are obtained in the spaces (Uh)
2, (Wh)

2 and Xh, respectively. For

any macro element R(κ), equation 11 suggests the following approximation

∫

R(κ)
ρ
∂uh

∂t
· v dx+

∫

R(κ)
Σh · ∇v dx−

∫

∂R(κ)
(Σh n) · v ds =

∫

R(κ)
f · v dx, (16)

for any test function v in the space (Uh)
2. Summing over all R(κ), we have

∫

Ω
ρ
∂uh

∂t
· v dx+

∑

κ∈Fu

(∫

R(κ)
Σh · ∇v dx−

∫

∂R(κ)
(Σh n) · v ds

)
=

∫

Ω
f · v dx, ∀v ∈ (Uh)

2. (17)

For any macro element S(ν), equation 15 suggests the following approximation

∫

S(ν)
A
∂Σh

∂t
· α dx+

∫

S(ν)
uh divα dx−

∫

∂S(ν)
uh · (αn) ds+

∫

S(ν)
Γh ·α dx = 0, (18)

for any test function α in the space (Wh)
2. Summing over all S(ν), we have

∫

Ω
A
∂Σh

∂t
·α dx+

∑

ν∈N

(∫

S(ν)
uh divα dx−

∫

∂S(ν)
uh · (αn) ds

)
+

∫

Ω
Γh ·α dx = 0, ∀α ∈ (Wh)

2.

(19)

In addition, we will impose the following weak symmetry condition for Σh

∫

Ω
Σh · η dx = 0, ∀η ∈ Xh. (20)

Equations 17, 19 and 20 give the definition of our SDG method. Throughout the paper, we write

uh = (uh,1,uh,2)
T and Σh = (σh,1,σh,2)

T , where Σh,i is the i-th row of Σh.

Next, we will derive the linear system arising from equations 17, 19 and 20. Assume that

the dimensions of Uh, Wh and Xh are mU , mW and mX , respectively. Let {v(i)}mU

i=1 be the basis
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functions of Uh, {α
(i)}mW

i=1 be the basis functions of Wh, and {η(i)}mX

i=1 be the basis functions of Xh.

Each component of uh can be represented by

uh,k =

mU∑

i=1

u
(i)
h,k v

(i), k = 1, 2. (21)

Moreover, each row of Σh can be represented by

σh,k =

mW∑

i=1

σ
(i)
h,k α

(i), k = 1, 2. (22)

Similarly, Γh can be represented by

Γh =

mX∑

i=1

γ
(i)
h η(i). (23)

We define the mU ×mU mass matrix Mu by

(Mu)ij =

∫

Ω
ρ v(i) v(j) dx. (24)

Notice that the basis functions of (Wh)
2 have the form β(i) = (α(i), 0)T or β(i) = (0,α(i))T . Thus,

we define the 2mW × 2mW mass matrix Mσ by

(Mσ)ij =

∫

Ω
(Aβ(i)) · β(j) dx. (25)

We also define the 2mW ×mX matrix Cγ by

(Cγ)ij =

∫

Ω
β(i) · η(j) dx. (26)

Moreover, with v(i) ∈ Uh and α(j) ∈ Wh, we define the following mU ×mW matrix B by

Bij =
∑

κ∈Fu

(∫

R(κ)
α(j) · ∇v(i) dx−

∫

∂R(κ)
(α(j) · n)v(i) ds

)
(27)

and the following mW ×mU matrix B∗ by

B∗
ji = −

∑

ν∈N

(∫

S(ν)
v(i) divα(j) dx−

∫

∂S(ν)
v(i) (α(j) · n) ds

)
. (28)
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Finally, we define the following two mU × 1 vectors ~fk = (f
(i)
k ) by

f
(i)
k =

∫

Ω
fkv

(i) dx, k = 1, 2. (29)

Let ~u1 = (u
(i)
h,1) and ~u2 = (u

(i)
h,2) be vectors of coefficients giving the approximate solutions uh,1

and uh,2 in equation 21. Moreover, we let ~σ1 = (σ
(i)
h,1) and ~σ2 = (σ

(i)
h,2) be vectors of coefficients

giving the approximate solutions σh,1 and σh,2 in equation 22. We write ~σ = (~σ1, ~σ2)
T . Finally,

we let ~γ = (γ
(i)
h ) be the vector of coefficients giving the approximate solutions Γh in equation 23.

Using these definitions, equation 17 can be written as

d

dt
Mu~u1 +B~σ1 =~f1,

d

dt
Mu~u2 +B~σ2 =~f2. (30)

Moreover, equation 19 can be written as

d

dt
(Mσ~σ)−



B∗ 0

0 B∗






~u1

~u2


+Cγ~γ = 0. (31)

Finally, equation 20 can be written as

CT
γ ~σ = 0. (32)

Equations 30, 31 and 32 define the linear system for the SDG method. We remark that matrix B∗

is the transpose of the matrix B, which is proved in Chung and Engquist (2009). We also remark

that the convergence of our method can be proved using techniques in Chung and Engquist (2009)

and Stenberg (1988).

Time discretization

For time discretization, we will apply the standard leap-frog scheme. The velocity field ~u is com-

puted at the times tn = n∆t while the stress tensors ~Σ and ~γ are computed at tn+ 1

2

= (n+ 1
2)∆t,
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where ∆t is the time step size and n is a non-negative integer. We will use ~un to denote the ap-

proximate value of ~u at time tn. Moreover, we will use ~Σ
n+ 1

2 and ~γn+ 1

2 to denote the approximate

values of ~Σ and ~γ at time tn+ 1

2

, respectively.

For equation 30, we use the central difference approximation in time at tn+ 1

2

to obtain the

following approximation

Mu
~un+1
1 − ~un

1

∆t
+B~σ

n+ 1

2

1 =~f
n+ 1

2

1 , Mu
~un+1
2 − ~un

2

∆t
+B~σ

n+ 1

2

2 =~f
n+ 1

2

2 . (33)

On the other hand, we evaluate equations 31 and 32 at the time tn and use the central difference

approximation for the time derivative to obtain the following

Mσ
~σn+ 3

2 − ~σn+ 1

2

∆t
− B̃

∗
~un+1 +Cγ

~γn+ 3

2 + ~γn+ 1

2

2
= 0

CT
γ ~σ

n+ 3

2 = 0

(34)

where

B̃
∗
=



B∗ 0

0 B∗


 .

Equation 34 can be written as the following saddle point system

2

∆t
Mσ

~Σ
n+ 3

2 +Cγ~γ
n+ 3

2 =
2

∆t
Mσ~σ

n+ 1

2 −Cγ~γ
n+ 1

2 + 2B̃
∗
~un+1 := ~rn+

1

2

CT
γ ~σ

n+ 3

2 = 0.

(35)

Equations 33 and 35 define the time-marching formula. In particular, for any given ~un, ~σn+ 1

2 and

~γn+ 1

2 , where n = 0, 1, 2 · · · , we can use equation 33 to obtain ~un+1. Then using the newly obtained

~un+1, and current values of ~σn+ 1

2 and ~γn+ 1

2 , we can use equation 35 to obtain approximations

~σn+ 3

2 and ~γn+ 3

2 .

Although equation 35 is a coupled system with respect to the unknowns ~σn+ 3

2 and ~γn+ 3

2 , it can

be solved in the following element-wise manner. Since the mass matrix Mσ and the matrix Cγ are
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block diagonal, namely,

Mσ =




M
S(ν1)
σ

M
S(ν2)
σ

. . .

M
S(νN )
σ




and Cγ =




C
S(ν1)
γ

C
S(ν2)
γ

. . .

C
S(νN )
γ




where N is the number of triangles in the initial triangulation T ′
h, M

S(νi)
σ is the local mass matrix

corresponding to the macro element S(νi) and C
S(νi)
γ is the restriction of Cγ to the components

corresponding to the macro element S(νi), equation 35 can be solved as

2

∆t
MS(νi)

σ ~σn+ 3

2 +CS(νi)
γ ~γn+ 3

2 = ~rn+
1

2

(CS(νi)
γ )T ~σn+ 3

2 = 0

(36)

where ~σn+ 3

2 , ~γn+ 3

2 and ~rn+
1

2 are understood as the restriction to the components corresponding

to the macro element S(νi). Similarly, the mass matrix Mu is also block diagonal, namely,

Mu =




M
R(κ1)
u

M
R(κ2)
u

. . .

M
R(κF )
u




where F is the number of second type macro elements, which is the same as the number of edges

in the initial triangulation T ′
h. Therefore, equation 33 can be solved element-by-element as well.

The system defined in equation 36 is invertible. From the classical theory of saddle point

problem, we need to show that, for every η ∈ Xh, there exists α ∈ (Wh)
2 such that

∫

Ω
(α12 − α21)η dx :=

∫

Ω
α · η dx =

∫

Ω
η2 dx (37)
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and
∫

Ω
Aα ·α dx ≤ K0

∫

Ω
η2 dx (38)

where α12 is the second component of α1 ∈ Wh, α21 is the first component of α2 ∈ Wh and K0 > 0

is a constant independent of the mesh size. Consider a triangle τ ∈ Th. From the theory in the

paper Chung and Engquist (2009), we can find a unique α1 satisfying

α1 · n = 0, on κ ∈ ∂τ ∩ Fσ

∫

τ

α11η dx = 0

∫

τ

α11η dx =
1

2

∫

τ

η2 dx.

Similarly, we can find a unique α2 satisfying

α2 · n = 0, on κ ∈ ∂τ ∩ Fσ

∫

τ

α21η dx = −
1

2

∫

τ

η2 dx

∫

τ

α22η dx = 0.

Note that, the above constructions can be done on each τ ∈ Th without destroying the continuity

conditions in the space Wh. Finally, from the above construction, we can see easily that (37) and

(38) hold.

Numerical stability

We will now derive a sufficient condition on the size of ∆t for the stability of the SDG method in

equations 33 and 34. We will assume that the source term f = 0 to simplify the calculations, and

we remark that the same steps can be used to show stability of the method when f 6= 0. First,
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multiplying equation 33 by ~un+1 + ~un, we obtain for k = 1, 2,

(
Mu

~un+1
k − ~un

k

∆t
, ~un+1

k + ~un
k

)
+
(
B~σ

n+ 1

2

k , ~un+1
k + ~un

k

)
=
(
f
n+ 1

2

k , ~un+1
k + ~un

k

)
. (39)

Moreover, multiplying equation 34 by ~σn+ 3

2 + ~σn+ 1

2 , we obtain

(
Mσ

~σn+ 3

2 − ~σn+ 1

2

∆t
, ~σn+ 3

2 + ~σn+ 1

2

)
−
(
B̃

∗
~un+1, ~σn+ 3

2 + ~σn+ 1

2

)
= 0 (40)

By the fact that B∗ = BT which is proved in Chung and Engquist (2009) and the definition of B̃
∗
,

we have

(
B~σ

n+ 1

2

1 , ~un
1

)
+
(
B~σ

n+ 1

2

2 , ~un
2

)
−
(
B̃

∗
~un, ~σn+ 1

2

)

=
(
~σ
n+ 1

2

1 ,BT~un
1

)
+
(
~σ
n+ 1

2

2 ,BT ~un
2

)
−
(
B̃

∗
~un, ~σn+ 1

2

)

=
(
~σ
n+ 1

2

1 ,B∗~un
1

)
+
(
~σ
n+ 1

2

2 ,B∗~un
2

)
−
(
B̃

∗
~un, ~σn+ 1

2

)

= 0.

(41)

Let N > 1 be a fixed integer. Summing equations 39 and 40 from n = 0 to n = N − 1 and using

equation 41, we have

EN = E0 +
∆t

2

(
B̃~σN+ 1

2 , ~uN
)
−

∆t

2

(
~σ

1

2 , B̃
∗
~u0
)
, (42)

where

En :=
1

2

(
‖~un

1‖
2
Mu

+ ‖~un
2‖

2
Mu

+
∥∥∥~σn+ 1

2

∥∥∥
2

Mσ

)
,

and the norms above are defined as

‖~un
k‖

2
Mu

= (Mu~u
n
k , ~u

n
k), k = 1, 2;

∥∥∥~σn+ 1

2

∥∥∥
2

Mσ

= (Mσ~σ
n+ 1

2 , ~σn+ 1

2 ).

Let K := M̃
− 1

2

u B̃M
− 1

2

σ , where

M̃u =



Mu 0

0 Mu


 .
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By the Cauchy-Schwarz inequality, we have

(
B̃~σN+ 1

2 , ~uN
)
≤ ‖K‖2

∥∥∥~uN
∥∥∥
M̃u

∥∥∥~σN+ 1

2

∥∥∥
Mσ

, (43)

where

∥∥∥~uN
∥∥∥
2

M̃u

=
∥∥∥~uN

1

∥∥∥
2

Mu

+
∥∥∥~uN

2

∥∥∥
2

Mu

.

We will now show that the SDG method is stable if Λ := ∆t ‖K‖2 < 2. Using this assumption,

equation 42 can be written as

EN ≤ E0 +
Λ

2

∥∥∥~uN
∥∥∥
M̃u

∥∥∥~σN+ 1

2

∥∥∥
Mσ

+
Λ

2

∥∥~u0
∥∥
M̃u

∥∥∥~σ
1

2

∥∥∥
Mσ

which becomes

EN ≤ E0 +
Λ

4

(∥∥∥~uN
∥∥∥
2

M̃u

+
∥∥∥~σN+ 1

2

∥∥∥
2

Mσ

)
+

Λ

4

(∥∥~u0
∥∥2
M̃u

+
∥∥∥~σ

1

2

∥∥∥
2

Mσ

)
.

Hence, we have

EN ≤
1 + Λ

2

1− Λ
2

E0

provided 1−Λ/2 > 0. The above inequality gives the stability of the SDG method since Λ < 2. To

find the explicit form of ‖K‖2, it is known that ‖K‖2 is proportional to h−1, where h is the mesh

size, since the operator K is a discrete first order derivative operator. Thus we can write

‖K‖2 = Ch−1 (44)

for some constant C. The value of C can be found by computing ‖K‖2 for different values of h and

by using a least-squares fitting.
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Construction of basis functions

We will present the construction of basis functions in this section. First, we describe the basis

functions for Uh. By definition, a function v ∈ Uh is a polynomial of degree m ≥ 1 on each triangle

τ ∈ Th and is continuous on the edges κ ∈ F0
u . Thus, v is decoupled along the boundaries of

the second-type macro elements R(κ) for all κ ∈ Fu. Therefore, the basis functions for the space

Uh are constructed locally on R(κ). We will consider an interior edge κ ∈ F0
u and discuss the

corresponding construction of basis functions on R(κ). The case that κ belongs to the boundary of

the computational domain can be constructed in the same way. With reference to Figure 1, we will

need piecewise polynomials of degree m that are continuous on κ. Thus, the basis functions can be

taken as the standard conforming finite element basis functions applied to the domain R(κ) with

a triangulation composed of two triangles. Secondly, for the space Xh, the basis functions can be

taken as Lagrange basis functions on each triangle in Th, since there is no continuity requirement.

Finally, we describe the construction of the basis functions for the space Wh. By definition, a

vector α ∈ Wh is a vector polynomial on each triangle τ ∈ Th with continuous normal components

on the edges κ ∈ Fσ. Thus, α is decoupled along the boundaries of the first-type macro elements

S(ν) for all ν ∈ N . Therefore, the basis functions for the space Wh are constructed locally on S(ν).

We will now present a convenient way to construct these functions. Consider a first-type macro

element S(ν). Let P1, P2, P3 be the three vertices of S(ν) and P4 = ν, which is the point chosen

for the subdivision process required by the SDG method; see Figure 2. The corresponding three

sub-triangles are denoted by τ1 = P2P3P4, τ2 = P1P3P4 and τ3 = P1P2P4. Moreover, for each of the

three edges PkP4, (k = 1, 2, 3), in the interior of S(ν), we define a region ωk by the union of the two
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sub-triangles having the edge PkP4. That is, ω1 = τ2∪τ3, ω2 = τ1∪τ3 and ω3 = τ1∪τ2. In addition,

we use nk, k = 1, 2, 3, to denote a fixed unit normal vector for the edges PkP4. The basis functions

are divided into three types, and each of these three types of basis functions is supported in ω1, ω2,

and ω3, respectively. We will present the construction of basis function for the first type, namely

those basis functions having support in ω1. The other two types can be constructed similarly. For

the first type of basis functions α, we impose the following conditions

α · n2 = 0, on P2P4; α · n3 = 0, on P3P4,

that is, α has zero normal component on the edges P2P4 and P3P4. To obtain the above condition,

we require α · n2 to be identically zero on ω2 and α · n3 to be identically zero on ω3. Notice

that, using this construction, we have α · n2 and α · n3 are identically zero on τ1, since τ1 is the

intersection of ω2 and ω3. Next, we recall that the space Wh requires that α · n1 be continuous on

P1P4. We now consider ω1 and define α · n1 to be a polynomial of degree m in each sub-triangle

of ω1 such that α · n1 is continuous on P1P4. Similar to the construction of basis functions for

the space Uh, we now choose basis functions of α · n1 on ω1 to be the classical conforming finite

element basis functions defined in the domain ω1 corresponding to the triangulation ω1 = τ2 ∪ τ3.

The construction of basis function is now completed. Since both α · n1 and α · n3 are specified in

τ2, the vector α in τ2 can be re-constructed. Similarly, both α ·n1 and α · n2 are specified in τ3 so

that the vector α can be re-constructed. Specifically, we can then write

α(x) · n1 =





g2(x) in τ2

g3(x) in τ3

where g2 and g3 are polynomials of degree m chosen in the way explained above. On τ2, we have
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α · n1 = g2 and α · n3 = 0. Hence, we have on τ2,

α =
g2

1− (n1 · n3)2
n1 −

(n1 · n3)g2
1− (n1 · n3)2

n3.

Similarly, we have on τ3,

α =
g3

1− (n1 · n2)2
n1 −

(n1 · n2)g3
1− (n1 · n2)2

n2.

In Figure 3, plots of the first type of basis functions for the case m = 1 are shown. Notice that,

these basis functions have support in ω1. Moreover, since m = 1, there are only 4 distinct basis

functions. In particular, ω1 is the union of two sub-triangles τ2 and τ3. By the above construction,

we need basis functions for α ·n1 that are linear in each of τ2 and τ3, and are continuous on P1P4.

Thus, we see that there are only 4 choices, by taking α ·n1 equal to one at one of the four vertices

of ω1 and zero at the other three vertices.

NUMERICAL RESULTS

In this section, we present some numerical results to show the performance of the SDG method for

the simulation of seismic waves. In our test examples, the velocities and stresses are zero initially,

and a point source is vertically excited near the free surface. The source function is taken as the

first derivative of a Gaussian function defined as

w(t) = 2πf0(t− t0)e
−π2f2

0
(t−t0)2

where f0 is the frequency(Hz) and t0 is a shift in time(s). More precisely, in the equation 4, we set

f1 = 0 and f2 to be a point source with the time component being the first derivative of w(t). In

all the examples shown below, the frequency f0 is 50 Hz and t0 is 24ms.
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We will perform computations in both rectangular and irregular domains. For rectangular

domains, we first subdivide the domain into equal size squares, and then we divide each square

into two triangles, which forms the initial mesh T ′
h. Then we choose the centroid as ν in each

triangle and subdivide each triangle into three in the way presented in the previous section. The

resulting triangulation is Th. For computational domains with surface topography, we will use an

unstructured mesh as the initial mesh T ′
h near the free surface and use a structured mesh, similar

to the one used for rectangular computational domains, as the initial mesh T ′
h for the rest of the

computational domain, see Figure 4 for an illustration. The purpose of doing this is to make the

simulations more efficient. We remark that the diameter of the triangles in the unstructured mesh

is about the same size as the diameters of the triangles in the regular mesh. In all the simulations,

we will use ∆t ≈ 2hC−1 which is sufficient for stability, where the constant C is determined by

equation 44.

For our numerical tests presented below, we will consider the use of four different materials.

Their P-wave velocity vp, S-wave velocity vs, density ρ, Poisson’s ratio ν are summarized in Table

1.

We can then find a time step ∆t to ensure the stability by using the method described in the

previous section. For example, we obtain C ≈ 8900 and C ≈ 9130 for Material 1 and Material

2 respectively. Thus the stability condition for these two cases are ∆t < 2.25 × 10−4h and ∆t <

2.20× 10−4h respectively. We remark that this implies that the CFL number, defined as vp∆t/h is

approximately 0.117. We recall that the CFL number for the second order finite difference method

is about 0.707. Hence the stability condition for our SDG method with piecewise linear elements

is approximately 6 times more restrictive than that of the second order finite difference method.
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Notice that this fact is partly due to the regularity of the triangles.

In our first example, called example 1, we will perform the simulations of seismic waves for

a point source located near a flat surface without the use of PMLs. The domain of interest is

[40m, 240m] × [0m, 100m] and the physical parameters appearing in the seismic wave equations 3

and 4 are taken as the values for Material 1 defined in Table ??. We will consider a relatively small

simulation time so that no reflection is created from the boundary of the domain, and therefore

zero boundary condition for the velocity is assumed. We choose a point source which is vertically

excited at [140m, 0m]. For the numerical computations using our SDG method, we take the mesh

size h = 0.167m and the time step size ∆t = 0.033ms, so that the method is stable and accurate

enough. In Figure 5, we present a snapshot of the vertical velocity u2 at the time t = 0.25s. From

this figure, we can see the P- and S-waves as well as the Rayleigh wave. In addition, the faster

P-wave, which is travelling at a speed of 520ms−1, has propagated for a distance of about 130m.

Also, the slower S-wave, which is travelling at a speed of 300ms−1, has been propagated for a

distance of about 75m. On the other hand, we see that the Rayleigh wave is travelling along the

free surface and its speed is slightly smaller than that of the S-wave. To show the accuracy of

the SDG method, we compare the solution obtained by the SDG method and a reference solution

obtained by a fourth order staggered-grid finite difference method on a very fine mesh. In Figure 6,

we present this comparison at four different observation points (160m, 5m), (180m, 5m), (200m, 5m)

and (220m, 5m), where the blue curve represents the SDG solution and the red dash line represents

the reference solution. From these comparisons, we see clearly that the SDG method gives a very

accurate solution. In Figure 7, we present the ability of the SDG method in preserving the wave
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energy by computing the relative rate of change of energy over time, which is defined as

δ(t) =
1

E∞

dE

dt
,

where the energy E(t) is given by

E(t) =
1

2

∫

Ω

(
ρu21 + ρu22 + σTAσ

)
dx

and E∞ is the total amount of energy created by the point source. As we can see in Figure 7, the

source enters into the computational domain between the initial time and 0.05ms. After this time,

we see clearly that the relative rate of change of energy δ(t) remains zero, confirming the energy

conservation property of our scheme. In Figure 8, we present a comparison of seismograms for our

SDG solution and the reference solution at the depth z = 5m for times up to 0.25s. We again see

that our method performs well.

In example 2, we simulate the S-wave and the Rayleigh wave for a material with higher Poisson’s

ratio. The domain of interest is [5m, 45m]× [0m, 15m]. The physical parameters appearing in the

seismic wave equations 3 and 4 are taken as the values for Material 2 defined in Table ??. We

also apply the multi-axial PMLs (see for example Meza-Fajardo and Papageorgiou (2008)) with 5m

width on the boundary of the domain except the free surface. A point source is vertically excited

at [10m, 0m]. For the numerical computations by our SDG method, the mesh size h = 0.05m and

the time step size ∆t = 0.01ms. Snapshots for u2 at times 0.2s, 0.4s and 0.6s are shown in Figure 9,

where the black lines represent the interface between the computational domain and the MPML

layers. First of all, we see that the fast P-wave, with a velocity of 520ms−1, has already left the

computational domain. With the MPML, the P-wave leaves the domain without much artificial

reflection. Moreover, we can see clearly the slower S-wave and the Rayleigh wave near the surface.
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The S-wave reaches the lower boundary of the domain and is absorbed by the MPML. In addition,

we show the comparison of our solution to the reference solution obtained by a fourth-order finite

difference scheme on a very fine mesh at some observation points in Figure 10. It is evident that

our SDG method is able to produce accurate numerical solutions, and preserve the wave energy

well. We remark that the SDG solution travels a little bit slower than the reference solution, which

is due to numerical dispersion. We will discuss more about numerical dispersion at the end of this

section.

In our third example, called example 3, we will simulate Rayleigh waves in a heterogeneous

material with vertical variations in velocity structure on scales smaller than a wavelength. The

domain of interest is [20m, 260m] × [0m, 120m]. Moreover, the density is 1500 kgm−3 and the P-

wave and S-wave velocities are described in Figure 11. For the numerical computations, we will

apply zero boundary conditions at x = 0m and x = 280m. The mesh size is taken as 0.2m and

the time step size is taken according to the stability condition presented in the previous section. A

point source is vertically excited at [140m, 0m] and the snapshot of the solution u2 at the simulation

time T = 0.4s is shown in Figure 12. From this figure, we see clearly the dispersive behavior of

the Rayleigh wave for a vertically varying velocity model is accurately captured. In addition, a

comparison of seismograms of the SDG solution and a reference solution is shown in Figure 13.

Despite some small differences, we can see that the two solutions have a very good match.

In examples 4 and 5, we demonstrate the ability of our scheme to simulate Rayleigh waves in a

domain with surface topography. We assume again that the physical parameters appearing in the

seismic wave equations 3 and 4 are taken as the values for Material 2 defined in Table ??. In example

4, the surface topography is mathematically modelled by the function Γ4(x) = −4 exp(− (x−8)2

20 ) and
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is a convex shaped surface. The computational domain and the MPML are depicted in Figure 13.

The point source is vertically excited at [8m, -4m], which is at the top part of the convex region of

the free surface. For the numerical computations by our SDG method, the mesh size h = 0.05m and

the time step size is ∆t = 3.33µs to ensure stability and accuracy. We also apply the multi-axial

PML with 5m width to absorb outgoing waves. The snapshots of u2 at times t = 0.1s, t = 0.3s

and t = 0.5s are shown in Figure 14. First, we see clearly that the fast P-wave has already left the

domain and that the MPML successfully absorbs the outgoing P-wave. On the other hand, the

slower S-wave and the Rayleigh wave near the free surface are accurately simulated. We also see

that the S-wave is successfully absorbed by the MPML in the left and the lower layers.

In example 5, the surface topography is modelled by the function Γ5(x) = 3 exp(− (x−20)2

20 ) and

is a concave shaped surface. The computational domain and the MPML are depicted in Figure 15.

The point source is vertically excited at [6m,0m], which is on the part of the flat surface located on

the left of the concave free surface. For the numerical computations by our SDG method, the mesh

size h = 0.05m and the time step size is ∆t = 0.006ms, and MPML is also used to absorb outgoing

waves. The snapshots of u2 at times t = 0.1s, t = 0.3s and t = 0.5s are shown in Figure 15. We

observe similar behaviour as example 4.

In example 6, we consider both surface topography and internal discontinuities. The surface

topology is given by Γ6(x) = −4 exp(− (x−8)2

20 ), which is the same as Γ4 in example 4. The internal

interface between the two layers of different materials is given by Γ6(x) + 8. This definition can

be seen in Figure 16, where the dotted lines represent the interface between the two materials.

The upper layer consists of Material 3 and the lower layer consists of Material 4 in the Table ??

respectively. For the computations by the SDG method, the mesh size is h = 0.10m and the time
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step size is 0.0125ms so that the method is both stable and accurate. The snapshots of the solution

u2 at times t = 0.05s, t = 0.2s, t = 0.3s and t = 0.4s are shown in Figure 16. First, we see the

S-wave and the Rayleigh wave are well captured. Moreover, the reflection and transmission of the

waves at the internal discontinuities are accurately computed.

Numerical study of dispersion error

In this section, we present a study of the numerical dispersion of our SDG method. The study is

based on the eigenvalue method used in Cohen (2002) and Chung et al. (2013a) for the acoustic

and electromagnetic wave equations. Let f = 0 in equation 3. We consider a plane wave solution

e−i(k·x−ωt) of equations 3 and 4, where k = (kx, kz) is the wave number and ω is the angular

frequency. Notice that we have the following well-known dispersion relation:

ω1 =
1

ρ
(λ+ 2µ)(k2x + k2z) and ω2 =

1

ρ
µ(k2x + k2z). (45)

We now consider a rectangular mesh and the SDG system defined in equations 30, 31 and 32

using the piecewise linear approximation. Recall that each rectangle is divided into two triangles,

which are denoted generically by S(ν). For a given rectangle, we observe that there are totally

24 unknowns in the variable ~u restricted to this rectangle, and we use U to represent the vector

containing these 24 unknowns. We take the time derivative in equation 30 and use equations 31

and 32 to eliminate the unknown ~σ, we obtain the following

A1Utt = A2Ũ, (46)

where A1 is a block diagonal mass matrix and Ũ is a vector containing all relevant nodal values

of ~u. To find the numerical dispersion relation, we substitute the following plane wave solutions in
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(46):

u1 = αre
−i(k·x−ωht) and u2 = βre

−i(k·x−ωht) (47)

where αr and βr only depends on the relative position of the nodal points, and ωh is the numerical

wave number. Then we obtain the following generalized eigenvalue problem:

ω2
hÃ1η = Ã2η. (48)

Let Λ be the set of all generalized eigenvalues for this problem. Then the dispersion error for ω1

and ω2 can be computed by

min
ω∈Λ

∣∣∣∣
ω2
1

ω2
− 1

∣∣∣∣ and min
ω∈Λ

∣∣∣∣
ω2
2

ω2
− 1

∣∣∣∣ . (49)

In Figure 17, we present the results of the SDG numerical dispersion errors using the physical

parameters for Material 2 defined in Table ?? and compare them to those obtained from the

second and the fourth finite difference methods. In equation 47, we take k = (
√

1
3 ,
√

2
3).

From Figure 17, we see that the dispersion error for our piecewise linear SDG method is smaller

than that of the second order finite difference method. Being a second order method, our SDG

method performs better in terms of dispersion than second order finite difference method. In

addition, we see that the convergence rate of dispersion error for ω2 is 2 for both our SDG method

and the second order finite difference method. Furthermore, for ω1, we see that the dispersion

error has a convergence order of 4, which is the same convergence order for the fourth order finite

difference scheme. We also see that the dispersion error for ω1 for our SDG method is comparable

to that of the fourth order finite difference scheme.

Mortar formulation
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In this section, we present a strategy specifically designed for the simulation of Rayleigh waves. It

is well known that the Rayleigh wave travels along the free surface and decays exponentially in the

vertical direction. To make our scheme tailored to this situation, we present a mortar formulation

for our SDG method. We assume that the computational domain is divided into two parts, one of

them is a thin layer near the free surface. We also assume that a very fine mesh is used for this

thin layer and a coarse mesh is used in the rest of the domain. We do not assume that the meshes

are matching near the interface I of these two parts of the computational domain. A schematic in

Figure 18 shows this non-matching triangulation.

Let UU
h and UL

h be the space for the velocity on the upper mesh and lower mesh respectively.

We assume that these two spaces are totally decoupled. We also introduce the space of Lagrange

multipliers

Ûh = UU
h |I (50)

We will need to modify our SDG method defined in equations 17, 19 and 20 in the following way. We

note that equations 19 and 20 can be solved locally in each of the two parts of the computational

domain. For equation 17, we need to decouple the velocity unknowns in the two parts of the

computational domain and then enforce continuity using the above space of Lagrange multipliers.

The resulting scheme reads: find uh ∈ (Uh)
2, Σh ∈ (Wh)

2, Γh ∈ Xh such that

∫

Ω
ρ
∂uh

∂t
· v dx+

∫

I

ûh · v ds+
∑

κ∈Fu

(∫

R(κ)
Σh · ∇v dx−

∫

∂R(κ)
(Σh n) · v ds

)

=

∫

Ω
f · v dx, ∀v ∈ (Uh)

2, v̂ ∈ (Ûh)
2.

∫

I
[uh] · v̂ ds = 0 ∀v̂ ∈ (Ûh)

2.

∫

Ω
A
∂Σh

∂t
·α dx+

∑

ν∈N

(∫

S(ν)
uh divα dx−

∫

∂S(ν)
uh · (αn) ds

)
+

∫

Ω
Γh ·α dx = 0, ∀α ∈ (Wh)

2.
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∫

Ω
Σh · η dx = 0, ∀η ∈ Xh

where [ûh] is the jump of uh across the mesh interface I. We apply this method to the same

Material in example 1 with same domain of interest and source position. The interface of the two

meshes is located at z = 6m. The mesh size for the upper mesh is 0.167m and the mesh size for

the lower mesh is 0.5m. The time step size ∆t = 0.033ms. In Figure 19, we present the snapshot

of the solution u2 at the time t = 0.25s and in Figure 20, we present a comparison of the numerical

solution and the reference solution at various observation points from the initial time up to time

equals 0.25s. To compare this example with example 1, we compute the relative error defined by

‖u2 − u2,ref‖2
‖u2,ref‖2

at z = 5m and 0 ≤ t ≤ 0.25s, where u2,ref is the reference solution for u2. The

relative error for example 1 and the mortar example is 0.18% and 0.22% respectively. The results

show that the mortar formulation produces equally accurate results. Moreover, in the current

setting in which the coarse mesh size is three times larger than the fine mesh size, the speed up is

about 5.2 times.

CONCLUSIONS

We developed an SDG method for the velocity-stress formulation of elastic waves. Moreover, by

using a mortar formulation, our method can be used for the simulations of Rayleigh waves. The

method enjoys several distinctive features that are particularly attractive: first, it conserves the

wave energy automatically; second, it is optimally convergent in both L2-norm and energy norm;

third, only solutions of a block diagonal linear system and a local saddle point system are needed

in each time step, giving a very efficient time marching scheme; fourth, it is flexible in handling

complex geometries so that free surface conditions on nonflat surfaces can be imposed easily; fifth,
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it yields solutions with extremely low dispersion errors. Numerical examples have shown that the

SDG method provides a competitive alternative for simulations of seismic and Rayleigh waves with

irregular surface topography.
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Figure 1: An example of the initial triangulation T ′
h (denoted by solid lines) and the subdivision of

triangles of T ′
h by interior points (denoted by solid dots). The newly formed edge in the subdivision

process is denoted by dotted lines. The shaded region with horizontal lines is an example of a

macro element S(ν) while the shaded region with vertical lines is a macro element R(κ).
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Figure 2: Notations for the construction of basis for Wh.Chung et al. –
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Figure 3: Plots of the first-type basis functions for Wh on S(ν) with m = 1.Chung et al. –

46



Figure 4: A schematic for an initial triangulation for computational domains with surface topog-

raphy, where unstructured mesh is used near free surface and regular mesh is used for the rest of

the domain.
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Figure 5: The snapshot for the vertical velocity u2 at t = 0.25s in example 1. Chung et al. –
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Figure 9: Snapshots for the vertical velocity u2 in example 2. The black lines indicate the interface

between the domain of interest and the MPMLs.
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Figure 12: The snapshot for vertical velocity u2 at T = 0.4s in example 3.Chung et al. –
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Figure 14: Snapshots for the vertical velocity u2 in example 4. The black lines indicate the interface

between the domain of interest and the MPMLs.
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Figure 15: Snapshots for the vertical velocity u2 in example 5. The black lines indicate the interface

between the domain of interest and the MPMLs.
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Figure 16: Snapshots for the vertical velocity u2 in example 6. The black lines indicate the interface
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Figure 18: A non-matching mesh used for the mortar formulation of our SDG method.
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Figure 19: The snapshot for the vertical velocity u2 at t = 0.25s for the mortar formulation applying

to the same model in example 1.
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Figure 20: Comparsion of the mortar solution (SDG) to a reference solution at the same observation

points as in example 1.
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