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Abstract

Local multiscale methods often construct multiscale basis functions in the offline stage without taking
into account input parameters, such as source terms, boundary conditions, and so on. These basis
functions are then used in the online stage with a specific input parameter to solve the global problem
at a reduced computational cost. Recently, online approaches have been introduced, where multiscale
basis functions are adaptively constructed in some regions to reduce the error significantly. In multiscale
methods, it is desired to have only 1-2 iterations to reduce the error to a desired threshold. Using
Generalized Multiscale Finite Element Framework [10], it was shown that by choosing sufficient number
of offline basis functions, the error reduction can be made independent of physical parameters, such as
scales and contrast. In this paper, our goal is to improve this. Using our recently proposed approach
[4] and special online basis construction in oversampled regions, we show that the error reduction can
be made sufficiently large by appropriately selecting oversampling regions. Our numerical results show
that one can achieve a three order of magnitude error reduction, which is better than our previous
methods. We also develop an adaptive algorithm and enrich in selected regions with large residuals. In
our adaptive method, we show that the convergence rate can be determined by a user-defined parameter
and we confirm this by numerical simulations. The analysis of the method is presented.

1 Introduction

Many multiscale problems are prohibitively expensive to solve due to scale disparity and high contrast. These
problems are often solved using some type of reduced-order models. These include numerical homogenization
[7, 20], multiscale finite element methods [13, 11, 12], heterogeneous multiscale methods [8], variational
multiscale methods [15], mortar multiscale methods [19], localized orthogonal decomposition [16], and so
on. The main idea behind local reduced-order model reduction techniques is to compute multiscale basis
functions in each coarse block. These basis functions are computed using solutions of local problems.

Various approaches have been developed for designing multiscale basis functions. One of the earlier works
[11, 13, 12, 2] use harmonic extensions of standard finite element basis functions in computing multiscale basis
functions. Because of “homogeneous” traces along coarse boundaries, these approaches can have large errors
due to the mismatch between the fine-grid solution and multiscale solutions along the edges of coarse blocks.
These approaches have been generalized by using oversampling ideas [13, 12], where one uses larger regions
and solve local problems. The solutions of these local problems are then used in constructing boundary
conditions for multiscale basis functions. These approaches reduce the errors due to boundary conditions.
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In later works [9, 10, 2], the authors showed that in the presence of high-contrast, one needs multiple
basis functions. In [10, 2], Generalized Multiscale Finite Element is introduced, where the authors propose
a systematic way of computing multiscale basis functions. The multiscale basis functions are computed
by solving spectral problems in each coarse patch and selecting the dominant eigenvectors. In particular,
the eigenvalues are ordered in increasing order and the eigenvectors corresponding to small eigenvalues are
selected. The spectral convergence rate 1/Λ has been derived for these approaches, where Λ is the smallest
eigenvalue (across all coarse blocks) whose corresponding eigenvector is not included in the coarse space. In
[4], using oversampling ideas and localization ideas [18, 16, 17, 14], the authors propose an approach which
provides both mesh-size dependent convergence and spectral convergence. The main idea of this approach,
called CEM-GMsFEM, is to (1) compute some GMsFEM basis (2) use constrained energy minimization in
oversampling domains to construct multiscale basis functions. As a result, we have a minimal number of
basis functions and can show H/Λ1/2 convergence rate.

The above approaches can be classified as offline methods because the construction of multiscale basis
functions does not take into account the right hand side. The offline methods can be tuned in various ways
to achieve smaller errors; however, the error decay slows down as we add basis functions after a certain
number of basis functions are selected. This slow down is due to some slow decay after certain eigenvalue.
To improve this, in [3, 6, 1, 5], the authors propose an online approach. The main idea of online approaches
is to add multiscale basis functions using the residual information after computing the coarse-grid solution.
These online multiscale basis functions are computed adaptively and are chosen to decrease the error the
most. They are solutions of local problems. Our analysis in [3, 6] shows that the error decay is proportional
to 1 − CΛ, where C is the constant (independent of scales and contrast) that guarantees the positivity of
this quantity. This indicates that the error is not reduced unless Λ is sufficiently away from 0, i.e., we have
suffcient number of offline basis functions. This was demonstrated analytically and numerically in our papers
[3, 6]. Since the online procedure can be costly, our goal is to perform only 1-2 iterations.

In this paper, we would like to investigate online approaches for CEM-GMsFEM and show that one can
significantly improve the existing online approaches for some cases. In the paper, first we present an online
approach, which differs from our previous approach since CEM-GMsFEM uses oversampling. In particular,
the online basis functions are formulated in the oversampled regions. Secondly, we present an analysis of
the proposed method. Our analysis shows that the error decay by adding online basis functions can be
significantly better compared to 1−Λ in online GMsFEM. The error decay can be made close to 0 (i.e., we
obtain very accurate approximation in one iteration) by choosing larger oversampling regions provided we
have sufficient number of offline basis functions. To our best knowledge, this is a first result of this kind.
Moreover, the online approaches can be made adaptive and adaptive error indicators can be derived.

We present numerical result. In our numerical results, we consider high-contrast permeability fields and
place the source term in different locations. All results show that the error drops 3 orders of magnitude, which
is much better compared to previous online GMsFEM. We also present numerical results using adaptivity,
which shows that by selecting only some (few) regions, one can achieve a significant error decay. Moreover,
our adaptive algorithm allows one to input a parameter which specifies a desired convergence rate.

The paper is organized as follows. In Section 2, we present some preliminaries. In Section 3, we present
the construction of offline basis functions, and in Section 4, we present our online adaptive enrichment
algorithm. Section 5 is devoted to numerical results. The analysis of our method is presented in Section 6.
Finally, we present some concluding remarks in Section 7.

2 Preliminaries

In this paper, we consider a class of multiscale problems of the form

− div
(
κ(x)∇u

)
= f, in Ω, (1)

subject to the homogeneous Dirichlet boundary condition u = 0 on ∂Ω, where Ω ⊂ Rd is the computational
domain. We assume that κ(x) is a heterogeneous coefficient with multiple scales and very high contrast.
In solving (1), it is desirable to construct multiscale basis functions that can be computed locally and give
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coarse-mesh convergence rate independent of the heterogenities and contrast. In [4], such approach has been
developed. When the source term f does not belong to L2(Ω) and when one needs to obtain solutions with
more refined accuracy, it is desirable to construct online basis functions that capture properties unresolvable
by offline basis functions. It is the purpose of this paper to do this.

Next, we introduce the notion of fine and coarse grids. We let T H be a usual conforming partition of
the computational domain Ω into N finite elements (triangles, quadrilaterals, tetrahedra, etc.), and let H
be the mesh size of T H . We refer to this partition as the coarse grid and assume that each coarse element
is partitioned into a connected union of fine grid blocks. The fine grid partition will be denoted by T h, and
is by definition a refinement of the coarse grid T H . Here, we use h to denote the fine mesh size of T h. In
Figure 1, we give an illustration of the fine grid, coarse grid, and oversampling domain. In the figure, the
coarse grid is contained by a union of rectangular coarse elements, denoted generically by K. Each coarse
element is a union of finer rectangular elements. Moreover, for each coarse grid node xi, we define ωi as the
union of coarse elements having the vertex xi. We also define ω+

i as an oversampled region for ωi. Finally,
we define Nc as the number of coarse grid vertices.

Figure 1: Illustration of the coarse grid, fine grid and oversampling domain.

We let V = H1
0 (Ω). The weak solution u ∈ V of the problem (1) satisfies

a(u, v) = (f, v), ∀v ∈ V, (2)

where a(u, v) =
∫

Ω
κ∇u·∇v and (f, v) =

∫
Ω
fv. We would like to find a multiscale solution ums in a subspace

of V , denoted as Vms, satisfying
a(ums, v) = (f, v), ∀v ∈ Vms. (3)

We will introduce the construction of the multiscale finite element space Vms in the next section. We remark
that the multiscale space Vms consists of two components, which are the offline part and the online part. For
the offline part, we will construct multiscale basis functions in the offline stage, that is, before solving the
problem (3). Note that these basis functions are independent of the source term f . For the online part, we
will construct multiscale basis functions in the online stage using the residual of an approximate solution.
Note that, these basis functions depend on the source term f . In Section 3, we present the construction
of offline basis functions. In Section 4, we present the construction of online basis functions and an online
adaptive enrichment algorithm.
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3 Offline basis functions

In this section, we present the construction of the offline multiscale finite element space. The construction
of our offline basis functions follows the framework in [4]. To construct the multiscale space, we will first
construct the auxiliary space by solving local spectral problem for each coarse element K. Next, we will
construct the multiscale basis functions by solving some local minimization problems using the auxiliary
basis functions. Our multiscale finite element space will then be the span of these multiscale basis functions.
Next, we will discuss the construction of both auxiliary space and multiscale space in detail.

3.1 Auxiliary basis functions

Now, we present the construction of the auxiliary basis functions. For each coarse element Ki, we define

V (Ki) = H1(Ki), and solve the spectral problem: find (λ
(i)
j , φ

(i)
j ) ∈ R× V (Ki)

ai(φ
(i)
j , v) = λ

(i)
j si(φ

(i)
j , v), ∀v ∈ V (Ki),

where ai(u, v) =
∫
Ki
κ∇u · ∇v, si(u, v) =

∫
Ki
κ̃uv, κ̃ = κ

∑Nc

j=1 |∇χj |2 and {χj} is a set of partition of unity

functions with respect to the coarse grid. We remark that one can take {χj} as the standard multiscale
basis functions or the standard piecewise linear functions. We assume that the eigenfunctions satisfy the

normalized condition si(φ
(i)
j , φ

(i)
j ) = 1. We can assume that the eigenvalues are sorted in ascending order,

that is, λ1 ≤ λ2 ≤ . . . . We then choose the first Ji eigenfunctions with small eigenvalue, and define the local
auxiliary space Vaux(Ki) as the span of these eigen-basis functions, which is

Vaux(Ki) = span{φ(i)
j |1 ≤ j ≤ Ji}.

Notice that, by construction, λ
(i)
Ji+1 = O(1). We define

Λ = min
1≤i≤N

λ
(i)
Ji+1.

Finally, the auxiliary space Vaux is defined as the sum of these local auxiliary spaces, that is, Vaux =
⊕iVaux(Ki).

Using the auxiliary space, we define a projection operator π : V → Vaux by

π(v) =

N∑
i=1

Ji∑
j=1

si(v, φ
(i)
j )φ

(i)
j , ∀v ∈ V.

We also denote the kernel of the operator π as

Ṽ = {w ∈ V | π(w) = 0}.

3.2 Multiscale basis functions

Now we present the construction of offline multiscale basis functions using the auxiliary space. For each
coarse element Ki, we define an oversampled region K+

i by extending Ki by ` coarse grid layers. See
Figure 2 for an illustration of K+ with ` = 2.

For each φ
(i)
j ∈ Vaux, we will construct a basis function ψ

(i)
j,ms whose support isK+

i . Using the results in [4],

the multiscale basis function ψ
(i)
j,ms is constructed by solving the following local problem: find ψ

(i)
j,ms ∈ V0(K+

i )
such that

a(ψ
(i)
j,ms, v) + s(π(ψ

(i)
j,ms), π(v)) = s(φ

(i)
j , π(v)), ∀v ∈ V0(K+

i ), (4)

where V0(K+
i ) = H1

0 (K+
i ) and s(u, v) =

∑N
i=1 si(u, v). We remark that the above definition is defined in

the continuous space V0(K+
i ). In our numerical simulations, we solve the above problem using the fine mesh
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K
+

K

Figure 2: A coarse element K and its oversampled region K+.

defined in K+
i and an appropriate finite element method. Finally, the multiscale finite element space Vms is

defined as the span of these multiscale basis functions, namely, Vms = span{φ(i)
j,ms}. This method is called

the CEM-GMsFEM.
We remark that our multiscale basis functions are used to approximate the related global basis functions.

The global basis function ψ
(i)
j is defined by solving the following problem: find ψ

(i)
j ∈ V such that

a(ψ
(i)
j , v) + s(π(ψ

(i)
j ), π(v)) = s(φ

(i)
j , π(v)), ∀v ∈ V. (5)

The global space is defined by Vglo = span{ψ(i)
j }. We note that these global basis functions have an

exponential decay property (see [4]), which motivates the definitions of the multiscale basis functions ψ
(i)
j,ms

having local supports. One important property of the global space is the orthogonal decomposition V =
Vglo ⊕ Ṽ with respect to the inner product a(u, v). This global space will be used in the analysis of the
convergence result of our online adaptive enrichment method.

4 Online basis functions and adaptive enrichment

In this section, we will introduce an online enrichment method for this CEM. We will first present the
construction of online basis functions. Then, we will give an error estimate for using the online enrichment
method. Here, for online basis function, we mean the basis functions constructed in online stage by using
the residual of the solution which contain the information of the source term. We will construct the online
basis function in an iterative process. We remark that the error will decay rapidly such that the error will
within a acceptable range in the first or two iterations.

To begin, we define a residual functional r : V → R. Let ums ∈ Vms be a numerical solution computed
by solving (3). The residual functional r is defined by

r(v) = a(ums, v)−
∫

Ω

fv, ∀v ∈ V.

For each coarse neighborhood ωi, we define the local residual functional ri : V → R by

ri(v) = r(χiv), ∀v ∈ V.

The local residual ri gives a measure of the error u− ums in the coarse neighborhood ωi.
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The construction of online basis function is related to the local residual ri. Using the local residual ri,

we will construct an online basis function φ
(i)
on whose support is an oversampled region ω+

i . More precisely,

the online basis function β
(i)
ms ∈ V0(ω+

i ) is obtained by solving

a(β(i)
ms, v) + s(π(β(i)

ms), π(v)) = ri(v), ∀v ∈ V0(ω+
i ), (6)

where V0(ω+
i ) = H1

0 (ω+
i ). We can perform the above construction for each ri, or for some selected ri (with

i ∈ I for an index set I) based on an adaptive criterion. We remark that the above online basis is obtained
in the local region ω+

i . This is the result of a localization result for the corresponding global online basis

function β
(i)
glo ∈ V defined by

a(β
(i)
glo, v) + s(π(β

(i)
glo), π(v)) = ri(v), ∀v ∈ V. (7)

After constructing the online basis functions, we can enrich our multiscale space by adding these online

basis to the multiscale space, namely, Vms = Vms +spani∈I{β
(i)
ms}. Using this multiscale finite element space,

we can compute a new numerical solution by solving the equation (3). We can repeat the process to enrich
our multiscale space until the residual norm is smaller than a given tolerance. Next, we present the precise
online adaptive enrichment algorithm.

Online adaptive enrichment algorithm

We first choose an initial space V
(1)
ms . This is the space obtained by using the offline basis functions

constructed in Section 3. We also choose a real number θ such that 0 ≤ θ < 1. This number determines how
many online basis functions are needed in each online iteration. Then, we will generate a sequence of spaces

V
(m)
ms and a sequence of multiscale solutions u

(m)
ms obtained by solving (3).

For each m = 1, 2, . . . , we assume that V
(m)
ms is given. We will preform the following procedures to obtain

the new multiscale space V
(m+1)
ms .

Step 1: Find the multiscale solution in the space V
(m)
ms . That is, find u

(m)
ms ∈ V (m)

ms such that

a(u(m)
ms , v) = (f, v), for all v ∈ V (m)

ms . (8)

Step 2: Compute the local residuals zi(v) where

zi(v) = a(u(m)
ms , v)− (f, v), ∀v ∈ V0(ωi).

Define δi = ‖zi‖a∗ where ‖zi‖a∗ = supv∈V0(ωi)

r(v)

‖v‖a
. We re-numerate the indices of ωi such that

δ1 ≥ δ2 ≥ · · · . Choose the first k regions so that

N∑
i=k+1

δ2
i < θ

N∑
i=1

δ2
i . (9)

Step 3: Compute the local online basis functions. For each 1 ≤ i ≤ k and coarse region ωi, find β
(i)
ms ∈ V0(ω+

i )
such that

a(β(i)
ms, v) + s(π(β(i)

ms), π(v)) = r
(m)
i (v) ∀v ∈ V0(ω+

i )

where r
(m)
i (v) = a(u

(m)
ms , χiv)−

∫
Ω
fχiv.

Step 4: Enrich the multiscale space. Let

V (m+1)
ms = V (m)

ms + span1≤i≤k{β(i)
ms}.
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In the next section, we will analyze the convergence rate for this online adaptive enrichment method. In
particular, we will prove the following theorem.

Theorem 1. Let u be the solution of (1) and let {u(m)
ms } be the sequence of multiscale solutions obtained by

our online adaptive enrichment algorithm. Then we have

‖u− u(m+1)
ms ‖2a ≤ 3(1 + Λ−1)

(
C(`+ 1)dE + 2M2θ

)
‖u− u(m)

ms ‖2a

where E = 3(1 + Λ−1)(1 + 2(1 + Λ
1
2 )−1)1−`, M is maximum number of overlapping subdomains and C is a

constant.

Remark 1. We note that the convergence rate depends two terms C(`+ 1)dE and 2M2θ. By using enough
number of oversampling layers, the term C(` + 1)dE tends to zero. Thus, the factor 2M2θ dominates the
convergence rate. One can choose θ to obtain a desired convergence rate. We will also confirm this by some
numerical examples. This is an improvement over the online method in [3], where the convergence rate is
(C1 + C2θ) with 0 < C1 < 1.

5 Numerical Result

In this section, we present some numerical results to demonstrate the convergence of our proposed method.
We take the computational domain Ω = (0, 1)2. The medium parameter κ in the equation (1) is chosen to be
the function shown in Figure 3. We note that the medium κ contains high contrast inclusions and channels.
The fine mesh size h is taken to be 1/200, while the coarse mesh size H in this example is 1/10. In all our
results, we take the number of oversampling layers ` = 2. We will illustrate the performance of our method
by using two different source terms f1 = ((x−0.5)2 + (y−0.5)2)−

1
4 and f2 = ((x−0.5)2 + (y−0.5)2)−

3
4 . We

will test the performance by considering uniform enrichment and by using the online adaptive enrichment
algorithm presented in Section 4.
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Figure 3: The medium κ for the test case 1.

In Table 1, we present the L2 error and the energy error for the case f1 with uniform enrichment, that
is θ = 0. From the first two online iterations, we observe very fast convergence of the method. Next, we
will consider some adaptive results for this case. In Table 2, we present the error decay by using our online
adaptive enrichment algorithm with θ = 0.95. That is, we only add basis for regions which account for
the largest 5% of the residual. From the table, we observe that the convergence rate in the energy norm is
0.9154, which is close to 0.95. This results confirm our assertion that the convergence rate can be controlled
by the user-defined parameter θ. We remark that the convergence rate is computed by taking the maximum
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of all ‖u− u(m+1)
ms ‖2a/‖u− u

(m)
ms ‖2a. In Table 3, we present the adaptive result with θ = 0.1. That is, we add

basis for regions which account for the largest 90% of the residual. From the table, we observe that the
convergence rate in the energy norm is 0.0589, which is close to 0.1. This result also confirms our prediction.
Moreover, we note that the adaptive approach allows adding a very few online basis functions to reduce the
error to 1%.

Number of offline basis online iteration oversampling layers L2 error energy error
3 0 2 0.37% 4.71%
3 1 2 6.75e-05% 1.28e-03%
3 2 2 1.57e-08% 2.64e-08%

Table 1: Using source term f1 and uniform enrichment.

Number of offline basis ω DOF oversampling layers L2 error energy error
3 300 2 0.37% 4.71%
3 311 2 0.14% 2.21%
3 339 2 0.073% 1.12%
3 368 2 0.033% 0.57%

Table 2: Using source term f1 and online adaptivity with θ = 0.95. Convergence rate is 0.9154.

Number of offline basis DOF oversampling layers L2 error energy error
3 300 2 0.37% 4.71%
3 341 2 0.073% 1.09%
3 407 2 0.014% 0.21%
3 470 2 2.93e-03% 0.051%

Table 3: Using source term f1 and online adaptivity with θ = 0.1. Convergence rate is 0.0589.

Now, we consider the second source term f2. In Table 4, we present the error decay using uniform
enrichement. We observe very fast decay in error from this table. Next, we test the performance using
adaptivity. In Tables 5 and 6, we present the error decays with θ = 0.95 and θ = 0.1 respectively. We
observe that the convergence rates in these two cases are 0.9338 and 0.09 respectively. This confirms that
the user-defined parameter is useful in controlling the convergence rate of our adaptive method. Moreover,
we note that the adaptive approach allows adding a very few online basis functions to reduce the error to
1%. Furthermore, in Figure 4, we show the number of online basis functions added in the computational
domain. For θ = 0.95, we will add a small number of basis functions in each iteration. We observe that
the basis functions are added near the singularity of the source f2 and along the high contrast channel. For
θ = 0.1, more basis functions are added throughout the domain with a faster convergence rate. We still
observe that more basis are added near the singularity of f2 and along the high contrast channel in κ.

Number of offline basis online iteration oversampling layers L2 error energy error
3 0 2 1.06% 11.70%
3 1 2 6.43e-05% 1.51e-03%
3 2 2 1.57e-08% 4.25e-08%

Table 4: Using source term f2 and uniform enrichment.

Finally, we present a test case with a more singular source term f3 = −∇ · (κ∇(xy)), shown in Figure 5,
where the reference solution is also presented. In Table 7, we present the error decay with uniform enrichment
and observe the same type of exponential decay as the earlier examples. We also observe that the error is
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Number of offline basis DOF oversampling layers L2 error energy error
3 300 2 1.06% 11.70%
3 309 2 0.13% 1.95%
3 324 2 0.062% 0.99%
3 347 2 0.031% 0.51%

Table 5: Using source term f2 and online adaptivity with θ = 0.95. Convergence rate is 0.9338.

Number of offline basis DOF oversampling layers L2 error energy error
3 300 2 1.06% 11.70%
3 391 2 9.27e-03% 0.13%
3 513 2 3.65e-04% 6.44e-03%
3 578 2 5.31e-05% 9.89e-04%

Table 6: Using source term f2 and online adaptivity with θ = 0.1. Convergence rate is 0.09.
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Figure 4: Number of online basis functions for the source f2: Left: θ = 0.95. Right: θ = 0.1.

relatively large when no online basis function is used. In Table 8, we present the results with the online
adaptive enrichment algorithm with θ = 0.1. We see that the numerically computed convergence rate is
0.0771, which is close to the parameter θ.

Number of offline basis online iteration oversampling layers L2 error energy error
3 0 2 30.01% 82.57%
3 1 2 0.0066% 0.0030%
3 2 2 4.45e-07% 1.22e-07%

Table 7: Using source term f3 and uniform enrichment.

6 Convergence analysis

In this section, we analyze the convergence of the online adaptive enrichment algorithm presented in Section
4. First, we need some notations. We will define two different norms for the space V . One is the a-norm ‖·‖a
where ‖u‖2a =

∫
Ω
κ|∇u|2. The other is s-norm ‖ · ‖s where ‖u‖2s =

∫
Ω
κ̃u2. For a given subdomain Ωi ⊂ Ω,

we will define the local a-norm and s-norm by ‖u‖2a(Ωi)
=
∫

Ωi
κ|∇u|2 and ‖u‖2s(Ωi)

=
∫

Ωi
κ̃u2 respectively.

9



 

 

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180 −0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

 

 

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180 −1.5

−1

−0.5

0

0.5

1

1.5

x 10
6

Figure 5: Left: Reference solution for the source f3. Right: the source term f3.

Number of offline basis DOF oversampling layers L2 error energy error
3 300 2 30.01% 82.57%
3 356 2 8.68% 22.06%
3 378 2 4.87% 5.41%
3 392 2 4.46% 1.50%

Table 8: Using source term f3 and online adaptivity with θ = 0.1. Convergence rate is 0.0771.

Next, we will recall a few theoretical results from [4] that are useful for our analysis. The first result is
Lemma 1.

Lemma 1. There is a constant D such that for all vaux ∈ Vaux there exists a function v ∈ V such that

π(v) = vaux, ‖v‖2a ≤ D ‖vaux‖2s, supp(v) ⊂ supp(vaux).

The second result is a localization result, saying that the global basis function defined in (5) has an
exponential decay outside an oversampled region. This result motivates the local multiscale basis functions
defined in (4).

Lemma 2. We consider the oversampled domain K+
i obtained from Ki by extending ` coarse grid layers

with ` ≥ 2. Let φ
(i)
j ∈ Vaux be a given auxiliary multiscale basis function. We let ψ

(i)
j,ms be the multiscale

basis functions obtained in (4) and let ψ
(i)
j be the global multiscale basis functions obtained in (5). Then we

have
‖ψ(i)

j − ψ
(i)
j,ms‖

2
a + ‖π(ψ

(i)
j − ψ

(i)
j,ms)‖

2
s ≤ E

(
‖ψ(i)

j ‖
2
a + ‖π(ψ

(i)
j )‖2s

)
where E = 3(1 + Λ−1)

(
1 + (2(1 + Λ−

1
2 ))−1

)1−`
.

Next, we will need the following lemma in our analysis. The proof is given in the Appendix.

Lemma 3. Assume the same conditions in Lemma 2. We have

‖
N∑
i=1

Ji∑
j=1

c
(i)
j (ψ

(i)
j − ψ

(i)
j,ms)‖

2
a + ‖π(

N∑
i=1

Ji∑
j=1

c
(i)
j (ψ

(i)
j − ψ

(i)
j,ms))‖

2
s

≤ C(1 + Λ−1)(`+ 1)d
N∑
i=1

(
‖

Ji∑
j=1

c
(i)
j (ψ

(i)
j − ψ

(i)
j,ms)‖

2
a + ‖π(

Ji∑
j=1

c
(i)
j (ψ

(i)
j − ψ

(i)
j,ms))‖

2
s

)
.

10



In the next lemma, we see that the same localization result holds for the online basis function defined
in (6). The proof of the following lemma is the same as that for Lemma 2 and Lemma 3, and is therefore
omitted.

Lemma 4. We consider the oversampled domain ω+
i obtained from ωi by extending ` coarse grid layers with

` ≥ 2. We let β
(i)
ms be the online multiscale basis functions obtained in (6) and let β

(i)
glo be the global online

multiscale basis functions obtained in (7). Then we have

‖β(i)
glo − β

(i)
ms‖2a + ‖π(β

(i)
glo − β

(i)
ms)‖2s ≤ E

(
‖β(i)

glo‖
2
a + ‖π(β

(i)
glo)‖2s

)
where E = 3(1 + Λ−1)

(
1 + (2(1 + Λ−

1
2 ))−1

)1−`
. Furthermore, we have

‖
Nc∑
i=1

(β
(i)
glo − β

(i)
ms)‖2a + ‖π(

Nc∑
i=1

(β
(i)
glo − β

(i)
ms))‖2s

≤ C(1 + Λ−1)(`+ 1)d
Nc∑
i=1

(
‖β(i)

glo − β
(i)
ms‖2a + ‖π(β

(i)
glo − β

(i)
ms)‖2s

)
.

Finally, we define a constant C0 ∈ R as

C0 = sup
v∈V

‖π(v)‖2s
‖v‖2a

.

We remark that C0 ≤ max{κ̃}C2
p , where Cp is the Poincare constant defined by ‖w‖L2(Ω) ≤ Cp‖∇w‖L2(Ω)

for w ∈ H1
0 (Ω).

Now we are ready to prove Theorem 1.

6.1 Proof of Theorem 1

First, by using the Galerkin orthogonality, we have

‖u− u(m+1)
ms ‖a ≤ ‖u− w‖a, ∀w ∈ V (m+1)

ms . (10)

The proof is based on a suitable choice of w ∈ V (m+1)
ms , and consists of 4 steps.

Step 1:

In this step, we will give a representation of the error u − u(m)
ms . For each i = 1, 2, · · · , Nc, we construct

a global online basis function β
(i)
glo ∈ V such that

a(β
(i)
glo, v) + s(π(β

(i)
glo), π(v)) = r

(m)
i (v), ∀v ∈ V.

Summing over all i = 1, 2, · · · , Nc, we have

a(

Nc∑
i=1

β
(i)
glo, v) + s(π(

Nc∑
i=1

β
(i)
glo), π(v)) =

Nc∑
i=1

r
(m)
i (v).

By the definition of r
(m)
i (v), we have

Nc∑
i=1

r
(m)
i (v) =

Nc∑
i=1

(
a(u(m)

ms , χiv)−
∫

Ω

fχiv
)

=

Nc∑
i=1

(
a(u(m)

ms , χiv)− a(u, χiv)
)

= a(u(m)
ms − u, v).

11



Therefore, we have

a(u− u(m)
ms +

Nc∑
i=1

β
(i)
glo, v) = s(−π(

Nc∑
i=1

β
(i)
glo), π(v)), ∀v ∈ V. (11)

From the above relation, we see that

a(u− u(m)
ms +

Nc∑
i=1

β
(i)
glo, v) = 0, ∀v ∈ Ṽ .

Using the decomposition V = Vglo ⊕ Ṽ , we have

u− u(m)
ms +

Nc∑
i=1

β
(i)
glo ∈ Ṽ

⊥ = Vglo.

Hence, we obtain the representation

u− u(m)
ms +

Nc∑
i=1

β
(i)
glo =

N∑
i=1

Ji∑
j=1

c
(i)
j ψ

(i)
j (12)

where c
(i)
j are some coefficients. We will use this representation in the next steps. We remark that, in Step

2 and Step 3, we will localize the terms ψ
(i)
j and β

(i)
glo, and estimate the errors.

Step 2:

In this step, we will localize each ψ
(i)
j in (12) and estimate the error. In particular, we will estimate

‖
∑N

i=1

∑Ji

j=1 c
(i)
j ψ

(i)
j −

∑N
i=1

∑Ji

j=1 c
(i)
j ψ

(i)
j,ms‖a. We define η := u− u(m)

ms +
∑Nc

i=1 β
(i)
glo. Using (12), we have

a(η, v) + s(π(η), π(v)) = a(

Nc∑
i=1

Ji∑
j=1

c
(i)
j ψ

(i)
j , v) + s(

Nc∑
i=1

Ji∑
j=1

c
(i)
j π(ψ

(i)
j ), π(v)) (13)

=

Nc∑
i=1

Ji∑
j=1

c
(i)
j s(φ

(i)
j , π(v)), ∀v ∈ V, (14)

where the last equality follows from (5). We let v
(i)
aux =

∑Ji

j=1 c
(i)
j φ

(i)
j ∈ Vaux(Ki). By Lemma 1, there exists

a function q(i) ∈ V0(Ki) such that π(q(i)) = v
(i)
aux and

‖q(i)‖2a ≤ D‖v(i)
aux‖2s.

Taking v = q(i) in (14), we have

‖v(i)
aux‖2s = a(η, q(i)) + s(π(η), π(q(i)))

≤
(
‖η‖2a(Ki)

+ ‖π(η)‖2s(Ki)

) 1
2
(
‖q(i)‖2a + ‖π(q(i))‖2s

) 1
2

≤
(
‖η‖2a(Ki)

+ ‖π(η)‖2s(Ki)

) 1
2
(

(1 +D)‖v(i)
aux‖2s

) 1
2

.

Thus, by the orthogonality of the eigenfunctions φ
(i)
j and the normalization condition si(φ

(i)
j , φ

(i)
j ) = 1, we

have

N∑
i=1

Ji∑
j=1

(c
(i)
j )2 =

N∑
i=1

‖
Ji∑
j=1

c
(i)
j φ

(i)
j ‖

2
s ≤ (1 +D)

(
‖η‖2a + ‖π(η)‖2s

)
≤ (1 +D)(C0 + 1)‖η‖2a

12



where the last inequality follows from the definition of the constant C0. Recalling the definition of η, we
have

N∑
i=1

Ji∑
j=1

(c
(i)
j )2 ≤ (1 +D)(C0 + 1)‖u− u(m)

ms +

Nc∑
i=1

β
(i)
glo‖

2
a

≤ 2(1 +D)(C0 + 1)
(
‖u− u(m)

ms ‖2a + ‖
Nc∑
i=1

β
(i)
glo‖

2
a

)
≤ 4(1 +D)(C0 + 1)‖u− u(m)

ms ‖2a

where the last inequality follows from (11). Finally, using Lemma 2 and Lemma 3, we have

‖
N∑
i=1

Ji∑
j=1

c
(i)
j ψ

(i)
j −

N∑
i=1

Ji∑
j=1

c
(i)
j ψ

(i)
j,ms‖

2
a ≤ C(`+ 1)dE(1 +D)(C0 + 1)‖u− u(m)

ms ‖2a.

Step 3:

In this step, we will derive an estimate for β
(i)
glo − β

(i)
ms. By Lemma 4, we have

‖β(i)
glo − β

(i)
ms‖2a + ‖π(β

(i)
glo − β

(i)
ms)‖2s ≤ E

(
‖β(i)

glo‖
2
a + ‖π(β

(i)
glo)‖2s

)
.

Using the equation (7),

‖β(i)
glo‖

2
a + ‖π(β

(i)
glo)‖2s = a(u− u(m)

ms , χiβ
(i)
glo)

≤ ‖u− u(m)
ms ‖a(ωi)‖χiβ

(i)
glo‖a(ωi)

≤
√

2‖u− u(m)
ms ‖a(ωi)

(
‖β(i)

glo‖
2
a(ωi)

+ ‖β(i)
glo‖

2
s(ωi)

) 1
2

.

Since π is an orthogonal projection onto the space spanned by the eigenfunctions {φ(i)
j } for j = 1, 2, · · · , Ji

and i = 1, 2, · · · , N , we have

‖β(i)
glo‖

2
s(ωi)

≤ ‖π(β
(i)
glo)‖2s(ωi)

+ ‖(I − π)(β
(i)
glo)‖2s(ωi)

≤ ‖π(β
(i)
glo)‖2s(ωi)

+
1

Λ
‖β(i)

glo‖
2
a(ωi)

.

Therefore, we have

Nc∑
i=1

(
‖β(i)

glo − β
(i)
ms‖2a + ‖π(β

(i)
glo − β

(i)
ms)‖2s

)
≤ 2E(1 + Λ−1)

Nc∑
i=1

‖u− u(m)
ms ‖2a(ωi)

≤ 2ME(1 + Λ−1)‖u− u(m)
ms ‖2a.

Step 4:
In this final step, we will prove the required convergence. Let I = {1, · · · , k}. From the adaptive

enrichment algorithm, we add the online basis functions β
(i)
ms for i ∈ I. We will take w in (10) as

w = u(m)
ms −

∑
i∈I

β(i)
ms +

N∑
i=1

Ji∑
j=1

c
(i)
j ψ

(i)
j,ms ∈ V

(m+1)
ms .

13



Using (10) and (12), we have

‖u− u(m+1)
ms ‖2a ≤ ‖u− u(m)

ms +
∑
i∈I

β(i)
ms −

N∑
i=1

Ji∑
j=1

c
(i)
j ψ

(i)
j,ms‖

2
a

= ‖
∑
i∈I

(β
(i)
glo − β

(i)
ms) +

∑
i/∈I

β
(i)
glo +

N∑
i=1

Ji∑
j=1

c
(i)
j (ψ

(i)
j − ψ

(i)
j,ms)‖

2
a

≤ 3
{
‖
∑
i∈I

(β
(i)
glo − β

(i)
ms)‖2a + ‖

∑
i/∈I

β
(i)
glo‖

2
a + ‖

N∑
i=1

Ji∑
j=1

c
(i)
j (ψ

(i)
j − ψ

(i)
j,ms)‖

2
a

}
.

Using Step 2 and Step 3 as well as Lemma 4, we see that

‖
∑
i∈I

(β
(i)
glo − β

(i)
ms)‖2a + ‖

N∑
i=1

Ji∑
j=1

c
(i)
j (ψ

(i)
j − ψ

(i)
j,ms)‖

2
a ≤ C(`+ 1)dE(1 + Λ−1)‖u− u(m)

ms ‖2a.

Next, we will estimate the remaining term ‖
∑

i/∈I β
(i)
glo‖2a. We write p :=

∑
i/∈I β

(i)
glo. Then, by (7),

‖p‖2a + ‖π(p)‖2s = r(
∑
i/∈I

χip) ≤
∑
i/∈I

(
sup

v∈V0(ωi)

r(v)

‖v‖a

)
‖χip‖a

≤
√

2
∑
i/∈I

‖zi‖a∗

(
‖p‖2a(ωi)

+ ‖p‖2s(ωi)

) 1
2

≤
√

2(1 + Λ−1)
1
2

∑
i/∈I

‖zi‖a∗

(
‖p‖2a(ωi)

+ ‖π(p)‖2s(ωi)

) 1
2

.

Thus, we have

‖
∑
i/∈I

β
(i)
glo‖

2
a ≤ 2M(1 + Λ−1)

∑
i/∈I

‖zi‖2a∗ ≤ 2M(1 + Λ−1)θ

Nc∑
i=1

‖zi‖2a∗

where θ is defined in (9). Lastly, we will estimate ‖zi‖a∗ . By definition,

zi(v) = a(u− u(m)
ms , v) ≤ ‖u− u(m)

ms ‖a(ωi)‖v‖a

Thus, we have

Nc∑
i=1

‖zi‖2a∗ ≤
Nc∑
i=1

‖u− u(m)
ms ‖2a(ωi)

≤M‖u− u(m)
ms ‖2a.

Combining the above equations, we have

‖u− u(m+1)
ms ‖2a ≤ 3

(
C(`+ 1)dE(1 + Λ−1)‖u− u(m)

ms ‖2a + 2M2(1 + Λ−1)θ‖u− u(m)
ms ‖2a

)
≤ 3(1 + Λ−1)

(
C(`+ 1)dE + 2M2θ

)
‖u− u(m)

ms ‖2a.

This completes the proof.

7 Conclusions

In this paper, we develop an online adaptive enrichment algorithm for CEM-GMsFEM. The CEM-GMsFEM,
developed in [4], provides a general methodology for constructing multiscale basis functions that give a mesh-
dependent convergence rate, regardless the contrast and heterogeneties of the media. In some applications,

14



there is a need to further reduce the error without refining the coarse mesh. In these cases, one needs
to add basis functions. We propose a strategy to compute new basis functions in the online stage using
local residuals. These online basis functions provide very fast (exponential) decay in error. Moreover, an
adaptive strategy is proposed to enrich the basis in some selected regions with large residuals. This strategy
is determined by a user-defined parameter. We show that this used-defined parameter relates directly to the
convergence rate of the method. That is, one can determine the convergence rate by using this parameter
correspondingly. Several numerical tests are shown to validate our estimates.

References

[1] Ho Yuen Chan, Eric Chung, and Yalchin Efendiev. Adaptive mixed GMsFEM for flows in heterogeneous
media. Numerical Mathematics: Theory, Methods and Applications, 9(4):497–527, 2016.

[2] Eric Chung, Yalchin Efendiev, and Thomas Y Hou. Adaptive multiscale model reduction with general-
ized multiscale finite element methods. Journal of Computational Physics, 320:69–95, 2016.

[3] Eric T Chung, Yalchin Efendiev, and Wing Tat Leung. Residual-driven online generalized multiscale
finite element methods. Journal of Computational Physics, 302:176–190, 2015.

[4] Eric T Chung, Yalchin Efendiev, and Wing Tat Leung. Constraint energy minimizing generalized
multiscale finite element method. arXiv preprint arXiv:1704.03193, 2017.

[5] Eric T Chung, Yalchin Efendiev, Wing Tat Leung, Maria Vasilyeva, and Yating Wang. Online adaptive
local multiscale model reduction for heterogeneous problems in perforated domains. Applicable Analysis,
pages 1–30, 2016.

[6] ET Chung, Y Efendiev, and WT Leung. An online generalized multiscale discontinuous Galerkin method
(GMsDGM) for flows in heterogeneous media. arXiv preprint arXiv:1504.04417, 2015.

[7] L.J. Durlofsky. Numerical calculation of equivalent grid block permeability tensors for heterogeneous
porous media. Water Resour. Res., 27:699–708, 1991.

[8] W. E and B. Engquist. Heterogeneous multiscale methods. Comm. Math. Sci., 1(1):87–132, 2003.

[9] Y. Efendiev and J. Galvis. A domain decomposition preconditioner for multiscale high-contrast prob-
lems. In Y. Huang, R. Kornhuber, O. Widlund, and J. Xu, editors, Domain Decomposition Methods in
Science and Engineering XIX, volume 78 of Lect. Notes in Comput. Science and Eng., pages 189–196.
Springer-Verlag, 2011.

[10] Y. Efendiev, J. Galvis, and T. Hou. Generalized multiscale finite element methods. Journal of Compu-
tational Physics, 251:116–135, 2013.

[11] Y. Efendiev and T. Hou. Multiscale Finite Element Methods: Theory and Applications. Springer, 2009.

[12] Y. Efendiev, T. Hou, and X.H. Wu. Convergence of a nonconforming multiscale finite element method.
SIAM J. Numer. Anal., 37:888–910, 2000.

[13] T. Hou and X.H. Wu. A multiscale finite element method for elliptic problems in composite materials
and porous media. J. Comput. Phys., 134:169–189, 1997.

[14] Tom Hou and Pengchuan Zhang. private communications.

[15] TJR Hughes. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid
scale models, bubbles and the origins of stabilized methods. Computer methods in applied mechanics
and engineering, 127(1):387–401, 1995.

15
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A Proof of Lemma 3

In this appendix, we give a proof for Lemma 3. Let Ki be a coarse element and let Ki,n be the oversampled
region by enlarging Ki by n coarse grid layers. For integers m > n, we denote χm,n

i as the cutoff function
used in [4]. In particular, this function satisfies χm,n

i = 1 in Ki,n and χm,n
i = 0 in Ω\Ki,m. Next, we set w(i)

as
∑Ji

j=1 c
(i)
j (ψ

(i)
j − ψ

(i)
j,ms) and w as

∑N
i=1 w

(i). Then, by the definitions (4) and (5), we have

a((1− χ`+1,`
i )w,

Ji∑
j=1

c
(i)
j ψ

(i)
j,ms) + s(π((1− χ`+1,`

i )w), π(

Ji∑
j=1

c
(i)
j ψ

(i)
j,ms)) = 0

and

a((1− χ`+1,`
i )w,

Ji∑
j=1

c
(i)
j ψ

(i)
j ) + s(π((1− χ`+1,`

i )w), π(

Ji∑
j=1

c
(i)
j ψ

(i)
j )) = s(

Ji∑
j=1

c
(i)
j φ

(i)
j , (1− χ`+1,`

i )w) = 0

since supp{
∑Ji

j=1 c
(i)
j φ

(i)
j,ms} ⊂ supp{

∑Ji

j=1 c
(i)
j ψ

(i)
j,ms} ⊂ Ki,`. Therefore, by subtracting the above two equa-

tions, we have

‖w‖2a + ‖π(w)‖2s =

N∑
i=1

a((χ`+1,`
i )w,w(i)) + s(π((χ`+1,`

i )w), π(w(i)))

≤
N∑
i=1

(
‖(χ`+1,`

i )w‖a‖w(i)‖a + ‖π((χ`+1,`
i )w)‖s‖π(w(i))‖s

)
.

Now, we estimate the right hand side of the above. Notice that,

‖(χ`+1,`
i )w‖2a + ‖π((χ`+1,`

i )w)‖2s ≤ C(‖w‖2a(Ki,`+1) + ‖w‖2s(Ki,`+1))

≤ C(1 + Λ−1)(‖w‖2a(Ki,`+1) + ‖π(w)‖2s(Ki,`+1)).

Summing over i = 1, 2, · · · , N , we have

N∑
i=1

‖(χ`+1,`
i )w‖2a + ‖π((χ`+1,`

i )w)‖2s ≤ C(1 + Λ−1)

N∑
i=1

(‖w‖2a(Ki,`+1) + ‖π(w)‖2s(Ki,`+1))

≤ C(1 + Λ−1)(`+ 1)d(‖w‖2a + ‖π(w)‖2s).
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Hence, we conclude that

‖w‖2a + ‖π(w)‖2s ≤ C(1 + Λ−1)(`+ 1)d
N∑
i=1

(
‖w(i)‖2a + ‖π(w(i))‖2s

)
.

This completes the proof of the lemma.
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